

Jan 16, 2023 - 05:09 pm GMT

| PDB ID                 | : | 7ZYV                                                                           |
|------------------------|---|--------------------------------------------------------------------------------|
| EMDB ID                | : | EMD-15027                                                                      |
| Title                  | : | Cryo-EM structure of catalytically active Spinacia oleracea cytochrome b6f in  |
|                        |   | complex with endogenous plastoquinones at 2.13 A resolution                    |
| Authors                | : | Sarewicz, M.; Szwalec, M.; Pintscher, S.; Indyka, P.; Rawski, M.; Pietras, R.; |
|                        |   | Mielecki, B.; Koziej, L.; Jaciuk, M.; Glatt, S.; Osyczka, A.                   |
| Deposited on           | : | 2022-05-25                                                                     |
| Resolution             | : | 2.13 Å(reported)                                                               |
| Based on initial model | : | 7QRM                                                                           |

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| EMDB validation analysis       | : | 0.0.1.dev43                                                        |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.4, CSD as541be (2020)                                          |
| MolProbity                     | : | 4.02b-467                                                          |
| buster-report                  | : | 1.1.7(2018)                                                        |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| MapQ                           | : | 1.9.9                                                              |
| Ideal geometry (proteins)      | : | Engh & Huber $(2001)$                                              |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.31.3                                                             |

## 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $ELECTRON\ MICROSCOPY$ 

The reported resolution of this entry is 2.13 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | Whole archive $(\# Entries)$ | ${f EM} {f structures} \ (\#{f Entries})$ |
|-----------------------|------------------------------|-------------------------------------------|
| Clashscore            | 158937                       | 4297                                      |
| Ramachandran outliers | 154571                       | 4023                                      |
| Sidechain outliers    | 154315                       | 3826                                      |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain |       |        |
|-----|-------|--------|------------------|-------|--------|
| 1   | А     | 215    | 86%              |       | 13%    |
| 1   | Ι     | 215    | 85%              |       | 14%    |
| 2   | В     | 160    | 85%              |       | 13% •• |
| 2   | J     | 160    | 86%              |       | 12% •• |
| 3   | С     | 320    | 66%              | 18% • | 13%    |
| 3   | Κ     | 320    | 67%              | 18% • | 13%    |
| 4   | D     | 230    | 60% 11% ·        | 28%   | )      |
| 4   | L     | 230    | 59% 12% ·        | 28%   | )      |



| Mol | Chain | Length | Quality of chain |       |
|-----|-------|--------|------------------|-------|
| 5   | Е     | 31     | 87%              | 13%   |
| 5   | М     | 31     | 87%              | 13%   |
| 6   | F     | 131    | 27% · 72%        |       |
| 6   | Ν     | 131    | <b>25%</b> • 73% |       |
| 7   | G     | 37     | 89%              | • 8%  |
| 7   | 0     | 37     | 76% 11%          | • 11% |
| 8   | Н     | 29     | 97%              | •     |
| 8   | Р     | 29     | 93%              | 7%    |
| 9   | Q     | 103    | 17% 7% · 75%     |       |
| 9   | R     | 103    | 17% 8% • 75%     |       |

 9
 R
 103
 17%
 8%
 75%

residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria: Mol | Type | Chain | Bes | Chirality | Geometry | Clashes | Electron density |

| Mol | Type | Chain | Res | Chirality | Geometry | Clashes | Electron density |
|-----|------|-------|-----|-----------|----------|---------|------------------|
| 12  | CLA  | А     | 304 | X         | -        | -       | -                |
| 12  | CLA  | Ι     | 304 | X         | -        | -       | -                |

Continued from previous page...



## 2 Entry composition (i)

There are 17 unique types of molecules in this entry. The entry contains 16892 atoms, of which 440 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues |       | At   |     | AltConf | Trace        |   |   |
|-----|-------|----------|-------|------|-----|---------|--------------|---|---|
| 1   | А     | 214      | Total | С    | Ν   | 0       | S            | 0 | 0 |
|     |       |          | 1697  | 1126 | 271 | 289     | 11           | Ŭ | Ű |
| 1   | 1 I   | 214      | Total | С    | Ν   | Ο       | $\mathbf{S}$ | 0 | 0 |
| L   |       | 214      | 1697  | 1126 | 271 | 289     | 11           |   | 0 |

• Molecule 1 is a protein called Cytochrome b6.

• Molecule 2 is a protein called Cytochrome b6-f complex subunit 4.

| Mol | Chain | Residues |               | At       | oms      |          | AltConf                                                 | Trace |   |
|-----|-------|----------|---------------|----------|----------|----------|---------------------------------------------------------|-------|---|
| 2   | В     | 159      | Total<br>1225 | C<br>820 | N<br>193 | O<br>208 | S<br>4                                                  | 0     | 0 |
| 2   | J     | 159      | Total<br>1226 | C<br>820 | N<br>193 | O<br>209 | $\begin{array}{c} \mathrm{S} \\ \mathrm{4} \end{array}$ | 0     | 0 |

• Molecule 3 is a protein called Cytochrome f.

| Mol | Chain | Residues |       | Ate  |     | AltConf | Trace |   |   |
|-----|-------|----------|-------|------|-----|---------|-------|---|---|
| 9   | 3 C   | 279      | Total | С    | Ν   | 0       | S     | 0 | 0 |
|     | U     | 210      | 2158  | 1391 | 365 | 396     | 6     |   |   |
| 9   | 3 K   | 270      | Total | С    | Ν   | 0       | S     | 0 | 0 |
| Э   |       | 219      | 2167  | 1396 | 366 | 399     | 6     | 0 | 0 |

• Molecule 4 is a protein called Cytochrome b6-f complex iron-sulfur subunit, chloroplastic.

| Mol | Chain | Residues |               | At       | oms      |          | AltConf    | Trace |   |
|-----|-------|----------|---------------|----------|----------|----------|------------|-------|---|
| 4   | D     | 166      | Total<br>1259 | C<br>807 | N<br>212 | O<br>233 | ${ m S} 7$ | 0     | 0 |
| 4   | L     | 165      | Total<br>1254 | C<br>804 | N<br>211 | 0<br>232 | S<br>7     | 0     | 0 |

• Molecule 5 is a protein called Cytochrome b6-f complex subunit 6.



| Mol | Chain | Residues |       | Ato | ms |    | AltConf | Trace |   |
|-----|-------|----------|-------|-----|----|----|---------|-------|---|
| 5   | F     | 21       | Total | С   | Ν  | Ο  | S       | 0     | 0 |
| D E | Ľ     | 51       | 243   | 167 | 36 | 39 | 1       | 0     | 0 |
| 5   | 5 M   | 21       | Total | С   | Ν  | Ο  | S       | 0     | 0 |
| 5   | 111   | 51       | 243   | 167 | 36 | 39 | 1       |       | 0 |

• Molecule 6 is a protein called Cytochrome b6-f complex subunit 7.

| Mol | Chain | Residues |       | Atc | $\mathbf{ms}$ |    | AltConf      | Trace |   |
|-----|-------|----------|-------|-----|---------------|----|--------------|-------|---|
| 6   | Б     | 27       | Total | С   | Ν             | 0  | $\mathbf{S}$ | 0     | 0 |
| 0 F | 51    | 269      | 174   | 45  | 49            | 1  | 0            | 0     |   |
| 6 N | 26    | Total    | С     | Ν   | 0             | S  | 0            | 0     |   |
|     | IN    | - 30     | 264   | 171 | 44            | 48 | 1            | 0     | U |

• Molecule 7 is a protein called Cytochrome b6-f complex subunit 5.

| Mol | Chain | Residues |              | Ato      | $\mathbf{ms}$ |         |        | AltConf | Trace |
|-----|-------|----------|--------------|----------|---------------|---------|--------|---------|-------|
| 7   | G     | 34       | Total<br>266 | C<br>181 | N<br>41       | 0<br>43 | S<br>1 | 0       | 0     |
| 7   | О     | 33       | Total<br>261 | C<br>178 | N<br>40       | 0<br>42 | S<br>1 | 0       | 0     |

• Molecule 8 is a protein called Cytochrome b6-f complex subunit 8.

| Mol  | Chain | Residues |       | Atc | $\mathbf{ms}$ |    |              | AltConf | Trace |
|------|-------|----------|-------|-----|---------------|----|--------------|---------|-------|
| 8    | н     | 20       | Total | С   | Ν             | Ο  | S            | 0       | 0     |
| 0 11 | 11    | 25       | 222   | 150 | 34            | 36 | 2            | 0       | 0     |
| 8    | D     | 20       | Total | С   | Ν             | Ο  | $\mathbf{S}$ | 0       | 0     |
| 0    | I     | 29       | 223   | 150 | 34            | 37 | 2            | 0       | 0     |

• Molecule 9 is a protein called Thylakoid soluble phosphoprotein.

| Mol | Chain | Residues | Atoms |     |    |    | AltConf | Trace |
|-----|-------|----------|-------|-----|----|----|---------|-------|
| 0   | D     | 26       | Total | С   | Ν  | 0  | 0       | 0     |
| 9 n | 20    | 219      | 144   | 34  | 41 | 0  | 0       |       |
| 0   | 0     | 26       | Total | С   | Ν  | 0  | 0       | 0     |
| 9   | Q     | 20       | 219   | 144 | 34 | 41 | 0       | 0     |

• Molecule 10 is PROTOPORPHYRIN IX CONTAINING FE (three-letter code: HEM) (formula: C<sub>34</sub>H<sub>32</sub>FeN<sub>4</sub>O<sub>4</sub>) (labeled as "Ligand of Interest" by depositor).





| Mol | Chain | Residues |       |    | AltConf |   |   |   |
|-----|-------|----------|-------|----|---------|---|---|---|
| 10  | Δ     | 1        | Total | С  | Fe      | Ν | 0 | 0 |
| 10  | A     | L        | 86    | 68 | 2       | 8 | 8 | 0 |
| 10  | Δ     | 1        | Total | С  | Fe      | Ν | 0 | 0 |
| 10  | A     | L        | 86    | 68 | 2       | 8 | 8 | 0 |
| 10  | т     | 1        | Total | С  | Fe      | Ν | 0 | 0 |
| 10  | 1     | L        | 86    | 68 | 2       | 8 | 8 | 0 |
| 10  | т     | 1        | Total | С  | Fe      | Ν | 0 | 0 |
| 10  | 1     | L        | 86    | 68 | 2       | 8 | 8 | 0 |

• Molecule 11 is HEME C (three-letter code: HEC) (formula:  $C_{34}H_{34}FeN_4O_4$ ) (labeled as "Ligand of Interest" by depositor).





| Mol | Chain | Residues | Atoms |    |    |   |   | AltConf |
|-----|-------|----------|-------|----|----|---|---|---------|
| 11  | Δ     | 1        | Total | С  | Fe | Ν | Ο | 0       |
|     | A     | 1        | 43    | 34 | 1  | 4 | 4 | 0       |
| 11  | С     | 1        | Total | С  | Fe | Ν | 0 | 0       |
|     | C     | 1        | 43    | 34 | 1  | 4 | 4 | 0       |
| 11  | т     | 1        | Total | С  | Fe | Ν | 0 | 0       |
|     | 1     | 1        | 43    | 34 | 1  | 4 | 4 | 0       |
| 11  | V     | 1        | Total | С  | Fe | Ν | 0 | 0       |
|     | IX    | 1        | 43    | 34 | 1  | 4 | 4 | 0       |

• Molecule 12 is CHLOROPHYLL A (three-letter code: CLA) (formula:  $C_{55}H_{72}MgN_4O_5$ ) (labeled as "Ligand of Interest" by depositor).



| Mol | Chain | Residues |       |    | AltConf |   |   |   |
|-----|-------|----------|-------|----|---------|---|---|---|
| 19  | Λ     | 1        | Total | С  | Mg      | Ν | Ο | 0 |
| 12  | Π     | T        | 65    | 55 | 1       | 4 | 5 | 0 |
| 10  | т     | 1        | Total | С  | Mg      | Ν | Ο | 0 |
| 12  | 1     | 1        | 65    | 55 | 1       | 4 | 5 | 0 |

• Molecule 13 is UNDECYL-MALTOSIDE (three-letter code: UMQ) (formula:  $C_{23}H_{44}O_{11}$ ) (labeled as "Ligand of Interest" by depositor).





| Mol | Chain | Residues |       | Ator         | ns |    | AltConf |
|-----|-------|----------|-------|--------------|----|----|---------|
| 12  | Δ     | 1        | Total | С            | Η  | 0  | 0       |
| 10  | A     | L        | 156   | 46           | 88 | 22 | 0       |
| 12  | Δ     | 1        | Total | С            | Η  | 0  | 0       |
| 10  | Π     | T        | 156   | 46           | 88 | 22 | 0       |
| 13  | В     | 1        | Total | С            | Η  | 0  | 0       |
| 10  | D     | T        | 156   | 46           | 88 | 22 | 0       |
| 13  | В     | 1        | Total | С            | Η  | 0  | 0       |
| 10  | D     | T        | 156   | 46           | 88 | 22 | 0       |
| 13  | н     | 1        | Total | С            | Η  | Ο  | 0       |
| 10  | 11    | I        | 78    | 23           | 44 | 11 | 0       |
| 13  | т     | 1        | Total | С            | Η  | Ο  | 0       |
| 10  | 1     | 1        | 156   | 46           | 88 | 22 | 0       |
| 13  | т     | 1        | Total | С            | Η  | Ο  | 0       |
| 10  | 1     | 1        | 156   | 46           | 88 | 22 | 0       |
| 13  | Т     | 1        | Total | С            | Η  | Ο  | 0       |
| 10  | 0     | 1        | 156   | 46           | 88 | 22 | 0       |
| 13  | Т     | 1        | Total | С            | Η  | Ο  | 0       |
| 10  |       | 1        | 156   | 46           | 88 | 22 | 0       |
| 13  | Р     | 1        | Total | $\mathbf{C}$ | Η  | 0  | 0       |
| 10  | 1     | L        | 78    | 23           | 44 | 11 |         |

• Molecule 14 is 2,3-DIMETHYL-5-(3,7,11,15,19,23,27,31,35-NONAMETHYL-2,6,10,14,18 ,22,26,30,34-HEXATRIACONTANONAENYL-2,5-CYCLOHEXADIENE-1,4-DIONE-2, 3-DIMETHYL-5-SOLANESYL-1,4-BENZOQUINONE (three-letter code: PL9) (formula:  $C_{53}H_{80}O_2$ ) (labeled as "Ligand of Interest" by depositor).





| Mol | Chain | Residues | Atoms                                                                              | AltConf |
|-----|-------|----------|------------------------------------------------------------------------------------|---------|
| 14  | А     | 1        | Total C O<br>55 53 2                                                               | 0       |
| 14  | В     | 1        | Total         C         O           110         106         4                      | 0       |
| 14  | В     | 1        | Total         C         O           110         106         4                      | 0       |
| 14  | J     | 1        | Total         C         O           110         106         4                      | 0       |
| 14  | J     | 1        | Total         C         O           110         106         4                      | 0       |
| 14  | K     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 55 & 53 & 2 \end{array}$ | 0       |

• Molecule 15 is 1,2-DI-O-ACYL-3-O-[6-DEOXY-6-SULFO-ALPHA-D-GLUCOPYRANOSY L]-SN-GLYCEROL (three-letter code: SQD) (formula: C<sub>41</sub>H<sub>78</sub>O<sub>12</sub>S) (labeled as "Ligand of Interest" by depositor).





| Mol | Chain | Residues | A     | AltConf |    |              |   |
|-----|-------|----------|-------|---------|----|--------------|---|
| 15  | П     | 1        | Total | С       | Ο  | $\mathbf{S}$ | 0 |
| 15  | D     | 1        | 54    | 41      | 12 | 1            | 0 |
| 15  | т     | 1        | Total | С       | Ο  | $\mathbf{S}$ | 0 |
| 10  | L     | L        | 54    | 41      | 12 | 1            | 0 |

• Molecule 16 is FE2/S2 (INORGANIC) CLUSTER (three-letter code: FES) (formula: Fe<sub>2</sub>S<sub>2</sub>) (labeled as "Ligand of Interest" by depositor).



| Mol | Chain | Residues | Atoms       | AltConf |
|-----|-------|----------|-------------|---------|
| 16  | D     | 1        | TotalFeS422 | 0       |



Continued from previous page...

| Mo | Chain | Residues | Atoms      |         |                                                         | AltConf |
|----|-------|----------|------------|---------|---------------------------------------------------------|---------|
| 16 | L     | 1        | Total<br>4 | Fe<br>2 | $\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$ | 0       |

• Molecule 17 is BETA-CAROTENE (three-letter code: BCR) (formula:  $C_{40}H_{56}$ ) (labeled as "Ligand of Interest" by depositor).



| Mol | Chain | Residues | Atoms                                   | AltConf |
|-----|-------|----------|-----------------------------------------|---------|
| 17  | F     | 1        | Total         C           40         40 | 0       |
| 17  | Р     | 1        | Total         C           40         40 | 0       |



## 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Cytochrome b6





• Molecule 3: Cytochrome f

| Chain K:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 67%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • 13%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MET<br>CLN<br>TLE<br>TLE<br>TLE<br>ASN<br>TLE<br>TLE<br>FHE<br>SER<br>TLE<br>CLV<br>CLV<br>CLV<br>CLV<br>CLV<br>SER<br>TLE<br>SER<br>SER<br>SER<br>SER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LEU<br>LLE<br>LLE<br>LEU<br>LEU<br>LEU<br>TLE<br>TLE<br>SER<br>SER<br>ALA<br>ALA<br>ALA<br>ALA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T16<br>G17<br>R18<br>C21<br>A22<br>N23<br>K29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V35<br>P36<br>R50<br>D54<br>M55<br>M65<br>M63<br>M63<br>K65<br>K65<br>K65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| E96<br>K96<br>N97<br>N97<br>110<br>0121<br>110<br>0121<br>110<br>0121<br>112<br>115<br>115<br>115<br>115<br>115<br>115<br>115<br>115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D162<br>C163<br>C163<br>C163<br>C167<br>C177<br>C177<br>C177<br>C177<br>C177<br>C177<br>C177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | K185<br>E186<br>K187<br>Y190<br>E191<br>1192<br>N193<br>1194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A195<br>A195<br>A1A<br>A1A<br>A1A<br>A1A<br>A17<br>A17<br>A12<br>C203<br>V203<br>V203<br>V203<br>V203<br>V204<br>V203<br>V204<br>V203<br>V204<br>V203<br>V203<br>V204<br>V203<br>V203<br>V203<br>V203<br>V203<br>V203<br>V203<br>V203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| E217<br>E217<br>G216<br>E219<br>E221<br>L223<br>L223<br>L224<br>C224<br>C224<br>C224<br>C224<br>C223<br>C224<br>C223<br>C224<br>C223<br>C224<br>C223<br>C224<br>C223<br>C224<br>C223<br>C224<br>C223<br>C224<br>C223<br>C224<br>C223<br>C224<br>C225<br>C224<br>C226<br>C226<br>C226<br>C226<br>C226<br>C226<br>C226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| • Molecule 4: Cytochrome be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6-f complex iron-sulfu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r subunit, ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | loroplastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chain D: 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11% •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MET<br>ALA<br>SER<br>PHE<br>THR<br>THR<br>LEU<br>CR<br>CR<br>CR<br>CVS<br>SER<br>CVS<br>SER<br>SER<br>SER<br>SER<br>SER<br>SER<br>SER<br>SER<br>SER<br>SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PHE<br>ALA<br>SER<br>PRO<br>SER<br>LEU<br>LEU<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ASN<br>VAL<br>VAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ILE<br>SER<br>LYS<br>CLV<br>GLV<br>ARG<br>ARG<br>GLY<br>MET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LEU<br>THR<br>CYS<br>CYS<br>CYS<br>GLN<br>GLN<br>ALA<br>ALA<br>ALA<br>ALA<br>ASP<br>ASP<br>ASP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 128<br>129<br>129<br>129<br>129<br>129<br>129<br>153<br>153<br>153<br>153<br>153<br>153<br>153<br>153<br>153<br>153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M68<br>M69<br>H71<br>H71<br>H72<br>H73<br>A73<br>A73<br>C75<br>D76<br>D76<br>D76<br>D76<br>D76<br>D76<br>D76<br>D76<br>D76<br>D76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P115<br>1124<br>R137<br>V139<br>V139<br>R140<br>G141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6157<br>V160<br>F161<br>V162<br>P163<br>E166<br>A179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| • Molecule 4: Cytochrome be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6-f complex iron-sulfu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r subunit, ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | loroplastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Chain L: 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12% •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Chain L: 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A PHE<br>A PHE<br>PRO<br>PRO<br>FRO<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ARA<br>ARA<br>ARA<br>ARA<br>ARA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12% •<br>Banda Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sanata<br>Sana                                                                                                                                                      | 882<br>ALLA<br>ALLA<br>ALLA<br>ALLA<br>ALLA<br>ALLA<br>ALLA<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Chain L: 59<br>Chain L: 59<br>VIII CIA<br>VIII CIA | P74         PHE         PHE           076         8.77         8.87         8.41.4           177         8.11.4         8.11.4         9.14.4           177         8.87         8.87.4         8.81.4           177         1.80         1.41.4         1.41.4           178         1.173         8.14.4         1.41.4           1790         1.120         1.123         1.41.4           190         1.133         1.41.4         1.41.4           190         1.133         0.11.7         8.81.4           1110         1.140         1.140         1.141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12% •<br>12% •<br>12% •<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4133<br>4133<br>4133<br>4133<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>41411<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141<br>4141 |
| Chain T: 20<br>KIA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P74         PHE         PHE           076         ALA         PHE           076         ALA         ALA           077         SER         PRO           177         SER         ALA           178         ALA         ALA           179         ALA         SER           179         ALA         ALA           180         LEU         LEU           190         LYS         ALA           193         ALA         ALA           110         LIA         ALA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12% •<br>NU117<br>S25<br>H 128<br>H | 28%<br>133<br>133<br>133<br>133<br>133<br>133<br>133<br>133<br>133<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Chain L:       59         Image: Section of the section of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90<br>6-f complex subunit 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15% •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Chain L:     59       Image: State S                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9%         #4         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         *****         *****         *****         **** <tr< td=""><td>15%<br/>MIT<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>ARG<br/>CU<br/>SISE<br/>SISE<br/>SISE<br/>SISE<br/>SISE<br/>SISE<br/>SISE<br/>SIS</td><td>28%<br/>13%<br/>13%</td></tr<> | 15%<br>MIT<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>SISE<br>ARG<br>CU<br>SISE<br>ARG<br>CU<br>SISE<br>SISE<br>SISE<br>SISE<br>SISE<br>SISE<br>SISE<br>SIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28%<br>13%<br>13%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Chain L: 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9%<br>H T A B A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Chain L:       59         Image: Section of the section of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Chain L:       59         Image: Section of the section of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | W       Y       W       Y       W       Y       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

PROTEIN DATA BANK



• Molecule 6: Cytochrome b6-f complex subunit 7

| Chain                           | F:                                     | 27%                                                                | •                                                            |                                                      | 72%                                                  |                                        |                          | I                               |
|---------------------------------|----------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------|--------------------------|---------------------------------|
| MET<br>ALA<br>THR<br>ALA<br>ALA | ALA<br>ALA<br>SER<br>THR<br>THR<br>LEU | SER<br>SER<br>ALA<br>ALA<br>ALA<br>PRO<br>PRO<br>TLE<br>SER<br>SER | SER<br>ARG<br>GLY<br>GLN<br>ARG<br>LYS<br>MET<br>ASN         | LYS<br>VAL<br>VAL<br>TYR<br>MET<br>SER<br>GLY<br>VAL | ASN<br>TYR<br>GLY<br>GLY<br>LEU<br>LYS<br>ALA<br>ASN | ASN<br>ALA<br>VAL<br>LEU<br>GLY<br>LEU | GLY<br>GLN<br>ALA<br>VAL | CTS<br>THR<br>GLU<br>GLU<br>CYS |
| PHE<br>ALA<br>ASN<br>VAL        | VAL<br>SER<br>LEU<br>ARG<br>SER        | THR<br>ALA<br>THR<br>LYS<br>LYS<br>GLY<br>GLY<br>GLY<br>GLY        | 61.Y<br>61.Y<br>61.Y<br>61.Y<br>61.Y<br>61.Y<br>61.Y<br>71.A | LEU<br>THR<br>SER<br>THR<br>CYS<br>CYS<br>F25        | E35<br>E36<br>A37<br>GLU                             |                                        |                          |                                 |
| • Mole                          | ecule 6:                               | Cytochrome                                                         | b6-f comple                                                  | ex subunit 7                                         | 7                                                    |                                        |                          |                                 |
| Chain                           | N:                                     | 25%                                                                |                                                              |                                                      | 73%                                                  |                                        |                          |                                 |
| MET<br>ALA<br>THR<br>ALA        | ALA<br>ALA<br>SER<br>THR<br>THR<br>LEU | SER<br>SER<br>ALA<br>ALA<br>ALA<br>PRO<br>ALA<br>TLE<br>SER<br>SER | ARG<br>GLY<br>GLN<br>GLN<br>ARG<br>LYS<br>MET<br>ASN         | LYS<br>VAL<br>VAL<br>TYR<br>MET<br>SER<br>GLY<br>VAL | ASN<br>TYR<br>GLY<br>GLY<br>LEU<br>LYS<br>ALA        | ASN<br>ALA<br>VAL<br>LEU<br>GLY<br>LEU | GLY<br>GLN<br>ALA<br>VAL | CYS<br>GLU<br>GLU<br>CYS        |
| PHE<br>ALA<br>ASN<br>VAL        | VAL<br>SER<br>LEU<br>ARG<br>SER        | THR<br>ALA<br>LTA<br>LTA<br>LYS<br>LYS<br>GLY<br>SER<br>SER<br>CLY | GLY<br>GLY<br>GLY<br>GLY<br>GLY<br>GLY<br>GLY                | LEU<br>THR<br>SER<br>THR<br>CYS<br>CYS<br>F25        | R29<br>E36<br>ALA<br>GLU                             |                                        |                          |                                 |
| • Mole                          | ecule 7:                               | Cytochrome                                                         | b6-f comple                                                  | ex subunit 5                                         | Ď                                                    |                                        |                          |                                 |
| Chain                           | G:                                     |                                                                    | 8                                                            | 9%                                                   |                                                      | •                                      | 8%                       |                                 |
| M1<br>R31                       | 434<br>LEU<br>LEU<br>LEU               |                                                                    |                                                              |                                                      |                                                      |                                        |                          |                                 |
| • Mol                           | ecule 7:                               | Cytochrome                                                         | b6-f comple                                                  | ex subunit §                                         | Ď                                                    |                                        |                          |                                 |
| Chain                           | O:                                     |                                                                    | 76%                                                          |                                                      |                                                      | 11% •                                  | 11%                      |                                 |
| M1<br>114<br>P15                | R30<br>R31<br>G32<br>D33<br>GLN        | LEU<br>LEU                                                         |                                                              |                                                      |                                                      |                                        |                          |                                 |
| • Mol                           | ecule 8:                               | Cytochrome                                                         | b6-f comple                                                  | ex subunit &                                         | 3                                                    |                                        |                          |                                 |
| Chain                           | H:                                     |                                                                    |                                                              | 97%                                                  |                                                      |                                        | ·                        |                                 |
| M1<br>D2<br>L29                 |                                        |                                                                    |                                                              |                                                      |                                                      |                                        |                          |                                 |
| • Mole                          | ecule 8:                               | Cytochrome                                                         | b6-f comple                                                  | ex subunit 8                                         | 3                                                    |                                        |                          |                                 |
| Chain                           | P:                                     |                                                                    |                                                              | 93%                                                  |                                                      |                                        | 7%                       |                                 |
| M1<br>D2<br>L29                 |                                        |                                                                    |                                                              |                                                      |                                                      |                                        |                          |                                 |







# 4 Experimental information (i)

| Property                           | Value                                    | Source    |
|------------------------------------|------------------------------------------|-----------|
| EM reconstruction method           | SINGLE PARTICLE                          | Depositor |
| Imposed symmetry                   | POINT, C2                                | Depositor |
| Number of particles used           | 685979                                   | Depositor |
| Resolution determination method    | FSC 0.143 CUT-OFF                        | Depositor |
| CTF correction method              | PHASE FLIPPING AND AMPLITUDE             | Depositor |
|                                    | CORRECTION; Non-uniform Refinement       |           |
|                                    | with iterative global CTF refinement and |           |
|                                    | anisotropic magnification fitting        |           |
| Microscope                         | TFS KRIOS                                | Depositor |
| Voltage (kV)                       | 300                                      | Depositor |
| Electron dose $(e^-/\text{\AA}^2)$ | 40                                       | Depositor |
| Minimum defocus (nm)               | 900                                      | Depositor |
| Maximum defocus (nm)               | 2100                                     | Depositor |
| Magnification                      | 105000                                   | Depositor |
| Image detector                     | GATAN K3 BIOQUANTUM (6k x 4k)            | Depositor |
| Maximum map value                  | 2.455                                    | Depositor |
| Minimum map value                  | -0.577                                   | Depositor |
| Average map value                  | 0.001                                    | Depositor |
| Map value standard deviation       | 0.042                                    | Depositor |
| Recommended contour level          | 0.208                                    | Depositor |
| Map size (Å)                       | 319.92, 319.92, 319.92                   | wwPDB     |
| Map dimensions                     | 372, 372, 372                            | wwPDB     |
| Map angles $(^{\circ})$            | 90.0, 90.0, 90.0                         | wwPDB     |
| Pixel spacing (Å)                  | 0.86, 0.86, 0.86                         | Depositor |



# 5 Model quality (i)

## 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: FES, SQD, UMQ, PL9, BCR, HEM, HEC, CLA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Chain | Bond | lengths  | Bond | angles   |
|-----|-------|------|----------|------|----------|
|     | Unam  | RMSZ | # Z  > 5 | RMSZ | # Z  > 5 |
| 1   | А     | 0.26 | 0/1747   | 0.42 | 0/2382   |
| 1   | Ι     | 0.26 | 0/1747   | 0.42 | 0/2382   |
| 2   | В     | 0.25 | 0/1262   | 0.43 | 0/1733   |
| 2   | J     | 0.25 | 0/1263   | 0.43 | 0/1733   |
| 3   | С     | 0.26 | 0/2204   | 0.44 | 0/2987   |
| 3   | Κ     | 0.27 | 0/2213   | 0.44 | 0/2999   |
| 4   | D     | 0.24 | 0/1293   | 0.44 | 0/1769   |
| 4   | L     | 0.24 | 0/1288   | 0.44 | 0/1762   |
| 5   | Е     | 0.26 | 0/247    | 0.41 | 0/333    |
| 5   | М     | 0.26 | 0/247    | 0.40 | 0/333    |
| 6   | F     | 0.28 | 0/270    | 0.40 | 0/366    |
| 6   | Ν     | 0.29 | 0/265    | 0.41 | 0/359    |
| 7   | G     | 0.27 | 0/271    | 0.41 | 0/367    |
| 7   | 0     | 0.27 | 0/266    | 0.40 | 0/360    |
| 8   | Н     | 0.26 | 0/227    | 0.39 | 0/309    |
| 8   | Р     | 0.27 | 0/228    | 0.40 | 0/309    |
| 9   | Q     | 0.24 | 0/224    | 0.35 | 0/301    |
| 9   | R     | 0.23 | 0/224    | 0.35 | 0/301    |
| All | All   | 0.26 | 0/15486  | 0.43 | 0/21085  |

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen



| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 1697  | 0        | 1724     | 18      | 0            |
| 1   | Ι     | 1697  | 0        | 1724     | 20      | 0            |
| 2   | В     | 1225  | 0        | 1276     | 28      | 0            |
| 2   | J     | 1226  | 0        | 1276     | 23      | 0            |
| 3   | С     | 2158  | 0        | 2212     | 84      | 0            |
| 3   | K     | 2167  | 0        | 2218     | 78      | 0            |
| 4   | D     | 1259  | 0        | 1232     | 23      | 0            |
| 4   | L     | 1254  | 0        | 1227     | 23      | 0            |
| 5   | Е     | 243   | 0        | 268      | 1       | 0            |
| 5   | М     | 243   | 0        | 268      | 4       | 0            |
| 6   | F     | 269   | 0        | 287      | 2       | 0            |
| 6   | N     | 264   | 0        | 282      | 2       | 0            |
| 7   | G     | 266   | 0        | 282      | 1       | 0            |
| 7   | 0     | 261   | 0        | 280      | 3       | 0            |
| 8   | Н     | 222   | 0        | 234      | 1       | 0            |
| 8   | Р     | 223   | 0        | 234      | 1       | 0            |
| 9   | Q     | 219   | 0        | 216      | 7       | 0            |
| 9   | R     | 219   | 0        | 216      | 8       | 0            |
| 10  | А     | 86    | 0        | 60       | 9       | 0            |
| 10  | Ι     | 86    | 0        | 60       | 10      | 0            |
| 11  | А     | 43    | 0        | 31       | 2       | 0            |
| 11  | С     | 43    | 0        | 31       | 6       | 0            |
| 11  | Ι     | 43    | 0        | 31       | 2       | 0            |
| 11  | K     | 43    | 0        | 31       | 5       | 0            |
| 12  | А     | 65    | 0        | 72       | 4       | 0            |
| 12  | Ι     | 65    | 0        | 72       | 5       | 0            |
| 13  | А     | 68    | 88       | 88       | 0       | 0            |
| 13  | В     | 68    | 88       | 88       | 3       | 0            |
| 13  | Н     | 34    | 44       | 44       | 1       | 0            |
| 13  | Ι     | 68    | 88       | 88       | 2       | 0            |
| 13  | J     | 68    | 88       | 88       | 1       | 0            |
| 13  | Р     | 34    | 44       | 44       | 1       | 0            |
| 14  | А     | 55    | 0        | 80       | 10      | 0            |
| 14  | В     | 110   | 0        | 158      | 27      | 0            |
| 14  | J     | 110   | 0        | 160      | 28      | 0            |
| 14  | K     | 55    | 0        | 77       | 4       | 0            |
| 15  | D     | 54    | 0        | 77       | 5       | 0            |
| 15  | L     | 54    | 0        | 77       | 1       | 0            |
| 16  | D     | 4     | 0        | 0        | 0       | 0            |
| 16  | L     | 4     | 0        | 0        | 0       | 0            |
| 17  | F     | 40    | 0        | 56       | 2       | 0            |

atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.



Continued from previous page...

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 17  | Р     | 40    | 0        | 56       | 5       | 0            |
| All | All   | 16452 | 440      | 17025    | 386     | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 12.

All (386) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom-1            | Atom-2            | Interatomic  | Clash       |
|-------------------|-------------------|--------------|-------------|
| Atom-1            | Atom-2            | distance (Å) | overlap (Å) |
| 3:K:180:LYS:HG2   | 3:K:194:ILE:HA    | 1.39         | 1.04        |
| 3:K:180:LYS:HE2   | 3:K:195:ALA:H     | 1.22         | 1.03        |
| 3:C:180:LYS:HE2   | 3:C:195:ALA:H     | 1.22         | 1.01        |
| 3:C:180:LYS:HG2   | 3:C:194:ILE:HA    | 1.39         | 1.00        |
| 3:C:179:VAL:HA    | 3:C:194:ILE:HG22  | 1.44         | 0.99        |
| 3:K:179:VAL:HA    | 3:K:194:ILE:HG22  | 1.44         | 0.99        |
| 3:C:178:ILE:HA    | 3:C:220:SER:HA    | 1.44         | 0.97        |
| 3:K:178:ILE:HA    | 3:K:220:SER:HA    | 1.44         | 0.97        |
| 3:K:21:CYS:HB2    | 11:K:301:HEC:HAB  | 1.47         | 0.97        |
| 3:C:222:LYS:HB3   | 3:C:222:LYS:HZ2   | 1.31         | 0.94        |
| 3:C:222:LYS:HB3   | 3:C:222:LYS:NZ    | 1.79         | 0.94        |
| 3:C:21:CYS:HB2    | 11:C:301:HEC:HAB  | 1.47         | 0.94        |
| 3:C:29:LYS:HG3    | 3:C:235:GLY:HA3   | 1.50         | 0.92        |
| 3:K:29:LYS:HG3    | 3:K:235:GLY:HA3   | 1.50         | 0.91        |
| 3:C:182:ILE:HG12  | 3:C:192:ILE:HD12  | 1.54         | 0.90        |
| 3:K:182:ILE:HG12  | 3:K:192:ILE:HD12  | 1.54         | 0.89        |
| 10:A:301:HEM:HBC2 | 10:A:301:HEM:HMC2 | 1.58         | 0.85        |
| 10:I:302:HEM:HBC2 | 10:I:302:HEM:HMC2 | 1.60         | 0.84        |
| 10:A:302:HEM:HBC2 | 10:A:302:HEM:HMC2 | 1.60         | 0.83        |
| 14:A:307:PL9:H453 | 15:D:201:SQD:H202 | 1.59         | 0.83        |
| 10:I:301:HEM:HBC2 | 10:I:301:HEM:HMC2 | 1.59         | 0.83        |
| 10:I:301:HEM:HMB1 | 10:I:301:HEM:HBB2 | 1.61         | 0.82        |
| 3:K:178:ILE:HG22  | 3:K:220:SER:HB2   | 1.61         | 0.82        |
| 3:C:178:ILE:HG22  | 3:C:220:SER:HB2   | 1.61         | 0.82        |
| 4:D:64:ILE:HG23   | 4:D:157:GLY:O     | 1.81         | 0.81        |
| 10:A:301:HEM:HMB1 | 10:A:301:HEM:HBB2 | 1.61         | 0.81        |
| 13:B:403:UMQ:O3'  | 13:B:403:UMQ:O2   | 1.93         | 0.80        |
| 3:C:177:GLY:O     | 3:C:220:SER:OG    | 2.00         | 0.79        |
| 3:K:180:LYS:HE2   | 3:K:195:ALA:N     | 1.98         | 0.79        |
| 10:A:302:HEM:HBB2 | 10:A:302:HEM:HMB1 | 1.63         | 0.78        |
| 3:K:177:GLY:O     | 3:K:220:SER:OG    | 2.00         | 0.78        |
| 3:K:178:ILE:HG13  | 3:K:180:LYS:NZ    | 1.99         | 0.78        |



| A + a 1           |                   | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1            | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 3:C:178:ILE:HG13  | 3:C:180:LYS:NZ    | 1.99                    | 0.78        |
| 10:I:302:HEM:HMB1 | 10:I:302:HEM:HBB2 | 1.63                    | 0.78        |
| 3:C:180:LYS:HE2   | 3:C:195:ALA:N     | 1.98                    | 0.77        |
| 3:C:179:VAL:HA    | 3:C:194:ILE:CG2   | 2.15                    | 0.77        |
| 3:K:175:ALA:O     | 3:K:221:ILE:HD11  | 1.86                    | 0.76        |
| 3:K:179:VAL:HA    | 3:K:194:ILE:CG2   | 2.15                    | 0.76        |
| 3:C:175:ALA:O     | 3:C:221:ILE:HD11  | 1.86                    | 0.75        |
| 3:K:195:ALA:HB2   | 3:K:202:GLU:HG3   | 1.68                    | 0.74        |
| 2:J:121:GLN:N     | 9:R:50:GLU:OE2    | 2.21                    | 0.74        |
| 4:L:122:LYS:HB2   | 4:L:132:TYR:O     | 1.87                    | 0.74        |
| 3:C:179:VAL:HG13  | 3:C:218:GLY:H     | 1.53                    | 0.74        |
| 3:C:173:SER:HB3   | 3:C:227:LEU:HD11  | 1.70                    | 0.74        |
| 1:I:150:ILE:HG21  | 14:J:401:PL9:H502 | 1.70                    | 0.73        |
| 3:K:179:VAL:HG13  | 3:K:218:GLY:H     | 1.53                    | 0.72        |
| 3:K:173:SER:HB3   | 3:K:227:LEU:HD11  | 1.70                    | 0.72        |
| 2:J:74:GLU:HB3    | 14:J:402:PL9:H121 | 1.70                    | 0.72        |
| 3:C:178:ILE:HG13  | 3:C:180:LYS:HZ3   | 1.52                    | 0.72        |
| 14:B:402:PL9:HC72 | 14:B:402:PL9:H122 | 1.71                    | 0.71        |
| 3:C:63:ASN:OD1    | 3:C:65:LYS:HG2    | 1.91                    | 0.71        |
| 12:I:304:CLA:H151 | 14:J:401:PL9:H312 | 1.71                    | 0.71        |
| 1:I:27:PRO:HG3    | 2:J:24:HIS:O      | 1.90                    | 0.71        |
| 3:K:63:ASN:OD1    | 3:K:65:LYS:HG2    | 1.91                    | 0.70        |
| 3:K:283:MET:HE3   | 3:K:283:MET:HA    | 1.73                    | 0.69        |
| 3:K:162:ASP:OD1   | 3:K:163:GLY:N     | 2.26                    | 0.69        |
| 3:K:178:ILE:HG13  | 3:K:180:LYS:HZ3   | 1.56                    | 0.69        |
| 3:K:181:LYS:HZ1   | 3:K:183:VAL:HG12  | 1.56                    | 0.69        |
| 4:D:28:LEU:HB2    | 4:D:29:PRO:HD3    | 1.74                    | 0.68        |
| 3:C:162:ASP:OD1   | 3:C:163:GLY:N     | 2.26                    | 0.68        |
| 2:B:121:GLN:N     | 9:Q:50:GLU:OE2    | 2.22                    | 0.68        |
| 3:C:184:ARG:NH2   | 3:C:186:GLU:HA    | 2.08                    | 0.68        |
| 1:A:27:PRO:HG3    | 2:B:24:HIS:O      | 1.93                    | 0.68        |
| 8:P:2:ASP:OD2     | 13:P:102:UMQ:O4   | 2.07                    | 0.68        |
| 1:A:150:ILE:HD13  | 14:B:401:PL9:H512 | 1.75                    | 0.68        |
| 2:B:74:GLU:OE1    | 2:B:74:GLU:N      | 2.27                    | 0.68        |
| 14:J:402:PL9:H252 | 14:J:402:PL9:H201 | 1.75                    | 0.68        |
| 5:M:29:ARG:HG3    | 5:M:29:ARG:HH11   | 1.57                    | 0.67        |
| 3:K:121:GLN:HA    | 3:K:121:GLN:OE1   | 1.93                    | 0.67        |
| 17:P:101:BCR:H401 | 9:R:39:LEU:HD21   | 1.76                    | 0.67        |
| 2:J:74:GLU:N      | 2:J:74:GLU:OE1    | 2.27                    | 0.67        |
| 3:C:283:MET:HE3   | 3:C:283:MET:HA    | 1.74                    | 0.67        |
| 3:C:121:GLN:OE1   | 3:C:121:GLN:HA    | 1.93                    | 0.67        |



| A + a 1           |                   | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1            | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 2:B:88:LEU:HB2    | 2:B:101:MET:CE    | 2.25                    | 0.67        |
| 3:C:184:ARG:HH22  | 3:C:186:GLU:HA    | 1.59                    | 0.67        |
| 4:L:93:GLU:OE2    | 4:L:93:GLU:HA     | 1.95                    | 0.67        |
| 12:A:304:CLA:O1D  | 14:B:402:PL9:H502 | 1.95                    | 0.67        |
| 3:C:182:ILE:HG12  | 3:C:192:ILE:CD1   | 2.24                    | 0.67        |
| 7:G:31:ARG:HG2    | 9:Q:49:TYR:OH     | 1.95                    | 0.67        |
| 3:K:182:ILE:HG12  | 3:K:192:ILE:CD1   | 2.24                    | 0.66        |
| 4:L:137:ARG:HG2   | 4:L:137:ARG:HH21  | 1.60                    | 0.66        |
| 3:C:185:LYS:HD2   | 3:C:186:GLU:H     | 1.61                    | 0.66        |
| 10:I:302:HEM:HBA1 | 10:I:302:HEM:HHA  | 1.78                    | 0.66        |
| 4:L:67:GLU:O      | 4:L:71:THR:HG22   | 1.96                    | 0.66        |
| 3:K:185:LYS:HD2   | 3:K:186:GLU:H     | 1.61                    | 0.65        |
| 10:A:302:HEM:HHA  | 10:A:302:HEM:HBA1 | 1.78                    | 0.65        |
| 3:C:185:LYS:HZ3   | 3:C:187:LYS:H     | 1.45                    | 0.65        |
| 12:I:304:CLA:HBB1 | 12:I:304:CLA:HMB1 | 1.78                    | 0.65        |
| 3:C:63:ASN:OD1    | 3:C:64:GLY:N      | 2.30                    | 0.65        |
| 12:A:304:CLA:HMB1 | 12:A:304:CLA:HBB1 | 1.79                    | 0.65        |
| 2:J:85:PHE:CE1    | 14:J:401:PL9:H503 | 2.33                    | 0.64        |
| 3:K:185:LYS:HZ3   | 3:K:187:LYS:H     | 1.45                    | 0.64        |
| 3:K:63:ASN:OD1    | 3:K:64:GLY:N      | 2.30                    | 0.64        |
| 3:C:178:ILE:HG22  | 3:C:220:SER:CB    | 2.28                    | 0.64        |
| 7:O:31:ARG:HG2    | 9:R:49:TYR:OH     | 1.97                    | 0.64        |
| 4:L:64:ILE:HB     | 4:L:67:GLU:OE1    | 1.98                    | 0.63        |
| 2:J:74:GLU:HA     | 14:J:402:PL9:O2   | 1.99                    | 0.63        |
| 2:J:75:ILE:HG12   | 14:J:401:PL9:C51  | 2.29                    | 0.63        |
| 2:B:75:ILE:HG12   | 14:B:401:PL9:H501 | 1.81                    | 0.63        |
| 4:L:140:ARG:HD2   | 4:L:141:GLY:N     | 2.14                    | 0.63        |
| 3:K:181:LYS:NZ    | 3:K:183:VAL:HG12  | 2.14                    | 0.62        |
| 4:D:140:ARG:HD2   | 4:D:141:GLY:N     | 2.14                    | 0.62        |
| 10:A:301:HEM:HBC2 | 10:A:301:HEM:CMC  | 2.30                    | 0.62        |
| 3:C:181:LYS:NZ    | 3:C:183:VAL:HG12  | 2.14                    | 0.62        |
| 14:J:402:PL9:H153 | 14:J:402:PL9:H101 | 1.81                    | 0.62        |
| 3:K:178:ILE:HG22  | 3:K:220:SER:CB    | 2.28                    | 0.62        |
| 11:C:301:HEC:HBC3 | 11:C:301:HEC:HHD  | 1.82                    | 0.61        |
| 3:C:181:LYS:HG2   | 3:C:182:ILE:N     | 2.15                    | 0.61        |
| 10:I:301:HEM:HBB2 | 10:I:301:HEM:CMB  | 2.31                    | 0.61        |
| 1:I:145:TYR:O     | 1:I:148:VAL:HG12  | 2.00                    | 0.61        |
| 10:I:301:HEM:HBC2 | 10:I:301:HEM:CMC  | 2.30                    | 0.61        |
| 3:K:181:LYS:HG2   | 3:K:182:ILE:N     | 2.15                    | 0.61        |
| 4:D:64:ILE:HB     | 4:D:67:GLU:OE1    | 2.01                    | 0.61        |
| 10:I:302:HEM:HBC2 | 10:I:302:HEM:CMC  | 2.31                    | 0.61        |



| Atom 1            | Atom D            | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1            | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 10:A:301:HEM:HBB2 | 10:A:301:HEM:CMB  | 2.31                    | 0.61        |
| 2:B:75:ILE:HG12   | 14:B:401:PL9:C50  | 2.31                    | 0.61        |
| 1:A:145:TYR:O     | 1:A:148:VAL:HG12  | 2.01                    | 0.60        |
| 3:C:191:GLU:O     | 3:C:192:ILE:HD13  | 2.01                    | 0.60        |
| 17:P:101:BCR:H401 | 9:R:39:LEU:CD2    | 2.30                    | 0.60        |
| 10:I:302:HEM:HBB2 | 10:I:302:HEM:CMB  | 2.31                    | 0.60        |
| 3:K:194:ILE:O     | 3:K:203:VAL:HG22  | 2.01                    | 0.60        |
| 11:K:301:HEC:HBC3 | 11:K:301:HEC:HHD  | 1.82                    | 0.60        |
| 2:J:121:GLN:HB2   | 9:R:50:GLU:OE2    | 2.01                    | 0.60        |
| 4:D:163:PRO:HB3   | 4:D:179:ALA:O     | 2.01                    | 0.60        |
| 3:K:92:GLU:O      | 3:K:95:GLU:HG3    | 2.02                    | 0.60        |
| 2:B:74:GLU:HA     | 14:B:402:PL9:O2   | 2.01                    | 0.60        |
| 3:C:194:ILE:O     | 3:C:203:VAL:HG22  | 2.01                    | 0.60        |
| 10:A:302:HEM:HBC2 | 10:A:302:HEM:CMC  | 2.31                    | 0.60        |
| 10:A:302:HEM:HBB2 | 10:A:302:HEM:CMB  | 2.31                    | 0.59        |
| 3:C:92:GLU:O      | 3:C:95:GLU:HG3    | 2.02                    | 0.59        |
| 4:D:67:GLU:O      | 4:D:71:THR:HG22   | 2.01                    | 0.59        |
| 4:L:64:ILE:HG23   | 4:L:157:GLY:O     | 2.02                    | 0.59        |
| 3:K:191:GLU:O     | 3:K:192:ILE:HD13  | 2.01                    | 0.59        |
| 14:A:307:PL9:H453 | 15:D:201:SQD:H223 | 1.86                    | 0.58        |
| 2:B:88:LEU:HB2    | 2:B:101:MET:HE1   | 1.85                    | 0.58        |
| 8:H:2:ASP:OD2     | 13:H:201:UMQ:O4   | 2.19                    | 0.58        |
| 3:K:185:LYS:NZ    | 3:K:186:GLU:HG3   | 2.18                    | 0.58        |
| 3:K:202:GLU:OE1   | 3:K:202:GLU:N     | 2.36                    | 0.58        |
| 3:C:185:LYS:NZ    | 3:C:186:GLU:HG3   | 2.18                    | 0.58        |
| 4:D:64:ILE:HB     | 4:D:67:GLU:OE2    | 2.04                    | 0.58        |
| 3:K:180:LYS:HG2   | 3:K:194:ILE:CA    | 2.26                    | 0.57        |
| 3:C:181:LYS:HZ1   | 3:C:183:VAL:HG12  | 1.68                    | 0.57        |
| 3:K:193:ASN:OD1   | 3:K:204:VAL:HG22  | 2.05                    | 0.57        |
| 4:L:70:LYS:HB2    | 4:L:70:LYS:NZ     | 2.20                    | 0.57        |
| 3:C:193:ASN:OD1   | 3:C:204:VAL:HG22  | 2.04                    | 0.57        |
| 3:K:195:ALA:HB2   | 3:K:202:GLU:CG    | 2.34                    | 0.56        |
| 3:K:173:SER:OG    | 3:K:224:ASP:N     | 2.39                    | 0.56        |
| 12:A:304:CLA:H151 | 14:B:401:PL9:H28  | 1.88                    | 0.56        |
| 3:C:173:SER:OG    | 3:C:224:ASP:N     | 2.39                    | 0.56        |
| 14:A:307:PL9:H453 | 15:D:201:SQD:C20  | 2.34                    | 0.56        |
| 3:C:179:VAL:HG22  | 3:C:217:GLU:OE1   | 2.06                    | 0.56        |
| 4:L:171:THR:HB    | 4:L:173:GLU:OE1   | 2.06                    | 0.56        |
| 14:J:402:PL9:H201 | 14:J:402:PL9:C25  | 2.36                    | 0.55        |
| 1:A:113:PRO:HB2   | 1:I:11:ARG:HG2    | 1.88                    | 0.55        |
| 3:C:180:LYS:HG2   | 3:C:194:ILE:CA    | 2.26                    | 0.55        |



| A + a 1           |                   | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1            | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 3:C:184:ARG:NH1   | 3:C:185:LYS:O     | 2.39                    | 0.55        |
| 3:C:221:ILE:C     | 3:C:221:ILE:HD12  | 2.27                    | 0.55        |
| 3:K:221:ILE:HD12  | 3:K:221:ILE:C     | 2.27                    | 0.55        |
| 14:A:307:PL9:H451 | 14:A:307:PL9:C48  | 2.36                    | 0.55        |
| 12:I:304:CLA:HMA3 | 14:J:402:PL9:H513 | 1.88                    | 0.55        |
| 3:K:179:VAL:HG12  | 3:K:219:GLU:O     | 2.07                    | 0.55        |
| 3:C:179:VAL:HG12  | 3:C:219:GLU:O     | 2.07                    | 0.55        |
| 11:I:303:HEC:HBC3 | 11:I:303:HEC:HMC1 | 1.89                    | 0.55        |
| 4:D:64:ILE:HB     | 4:D:67:GLU:CD     | 2.28                    | 0.54        |
| 3:C:183:VAL:HG13  | 3:C:191:GLU:CB    | 2.38                    | 0.54        |
| 4:L:74:PRO:HA     | 4:L:92:VAL:HG12   | 1.88                    | 0.54        |
| 3:K:179:VAL:HG22  | 3:K:217:GLU:OE1   | 2.06                    | 0.54        |
| 14:A:307:PL9:C35  | 14:J:401:PL9:H532 | 2.37                    | 0.54        |
| 2:B:154:SER:OG    | 13:B:404:UMQ:O2'  | 2.25                    | 0.54        |
| 4:L:137:ARG:HG2   | 4:L:137:ARG:NH2   | 2.20                    | 0.54        |
| 3:C:179:VAL:HG12  | 3:C:219:GLU:H     | 1.73                    | 0.54        |
| 2:J:74:GLU:HA     | 14:J:402:PL9:C1   | 2.38                    | 0.54        |
| 3:K:183:VAL:HG13  | 3:K:191:GLU:CB    | 2.37                    | 0.54        |
| 4:D:166:GLU:OE1   | 4:D:166:GLU:N     | 2.41                    | 0.54        |
| 14:K:302:PL9:H301 | 14:K:302:PL9:H33  | 1.90                    | 0.54        |
| 13:I:306:UMQ:O3'  | 13:I:306:UMQ:O2   | 2.21                    | 0.53        |
| 11:A:303:HEC:HMC1 | 11:A:303:HEC:HBC3 | 1.89                    | 0.53        |
| 3:K:179:VAL:HG12  | 3:K:219:GLU:H     | 1.73                    | 0.53        |
| 2:B:88:LEU:HB2    | 2:B:101:MET:HE2   | 1.90                    | 0.53        |
| 14:B:402:PL9:C38  | 14:B:402:PL9:H351 | 2.38                    | 0.53        |
| 3:K:179:VAL:CG1   | 3:K:219:GLU:H     | 2.21                    | 0.53        |
| 5:M:29:ARG:HG3    | 5:M:29:ARG:NH1    | 2.23                    | 0.53        |
| 2:J:70:ALA:HB1    | 3:K:16:THR:HG22   | 1.89                    | 0.53        |
| 2:B:29:GLU:HG2    | 2:B:30:PRO:HD2    | 1.90                    | 0.53        |
| 3:C:179:VAL:CG1   | 3:C:219:GLU:H     | 2.21                    | 0.53        |
| 4:D:74:PRO:HA     | 4:D:92:VAL:HG12   | 1.90                    | 0.53        |
| 3:K:155:GLY:O     | 11:K:301:HEC:HBA1 | 2.09                    | 0.53        |
| 3:K:29:LYS:HB2    | 3:K:154:ARG:NH1   | 2.24                    | 0.53        |
| 4:L:64:ILE:HB     | 4:L:67:GLU:CD     | 2.29                    | 0.53        |
| 2:J:29:GLU:HG2    | 2:J:30:PRO:HD2    | 1.90                    | 0.53        |
| 3:C:29:LYS:HE2    | 3:C:234:GLY:O     | 2.09                    | 0.52        |
| 3:C:185:LYS:HD2   | 3:C:186:GLU:N     | 2.24                    | 0.52        |
| 3:C:29:LYS:HB2    | 3:C:154:ARG:NH1   | 2.24                    | 0.52        |
| 1:I:150:ILE:HD13  | 14:J:401:PL9:C50  | 2.39                    | 0.52        |
| 3:C:155:GLY:O     | 11:C:301:HEC:HBA1 | 2.09                    | 0.52        |
| 3:K:185:LYS:HD2   | 3:K:186:GLU:N     | 2.24                    | 0.52        |



| A + 1             |                   | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1            | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 14:B:401:PL9:H101 | 14:B:401:PL9:H13  | 1.92                    | 0.52        |
| 4:L:64:ILE:HB     | 4:L:67:GLU:OE2    | 2.10                    | 0.52        |
| 3:K:283:MET:HE3   | 3:K:283:MET:CA    | 2.40                    | 0.52        |
| 14:B:402:PL9:H523 | 4:L:128:HIS:NE2   | 2.25                    | 0.52        |
| 3:C:173:SER:O     | 3:C:224:ASP:HA    | 2.10                    | 0.52        |
| 11:C:301:HEC:HMB1 | 11:C:301:HEC:HBB3 | 1.92                    | 0.52        |
| 3:K:183:VAL:HG13  | 3:K:191:GLU:HB3   | 1.92                    | 0.52        |
| 3:C:179:VAL:CG1   | 3:C:218:GLY:H     | 2.23                    | 0.51        |
| 11:K:301:HEC:HBB3 | 11:K:301:HEC:HMB1 | 1.93                    | 0.51        |
| 4:D:29:PRO:O      | 4:D:33:MET:HG2    | 2.10                    | 0.51        |
| 14:J:402:PL9:H252 | 14:J:402:PL9:C20  | 2.40                    | 0.51        |
| 3:K:140:ASP:OD1   | 3:K:140:ASP:N     | 2.43                    | 0.51        |
| 3:K:173:SER:O     | 3:K:224:ASP:HA    | 2.10                    | 0.51        |
| 13:I:305:UMQ:HJ2  | 15:L:401:SQD:H301 | 1.92                    | 0.51        |
| 3:K:29:LYS:HE2    | 3:K:234:GLY:O     | 2.09                    | 0.51        |
| 2:J:118:ASN:OD1   | 2:J:119:LYS:N     | 2.43                    | 0.51        |
| 4:L:74:PRO:HA     | 4:L:92:VAL:CG1    | 2.41                    | 0.51        |
| 3:C:183:VAL:HG13  | 3:C:191:GLU:HB3   | 1.92                    | 0.51        |
| 3:K:173:SER:HG    | 3:K:224:ASP:H     | 1.58                    | 0.51        |
| 3:K:190:TYR:CE2   | 3:K:213:LEU:HG    | 2.46                    | 0.51        |
| 3:C:140:ASP:OD1   | 3:C:140:ASP:N     | 2.43                    | 0.51        |
| 1:I:117:THR:HG22  | 1:I:202:HIS:CE1   | 2.46                    | 0.51        |
| 3:K:178:ILE:HG13  | 3:K:180:LYS:HZ2   | 1.72                    | 0.51        |
| 1:A:117:THR:HG22  | 1:A:202:HIS:CE1   | 2.46                    | 0.50        |
| 2:B:85:PHE:CE1    | 14:B:401:PL9:H513 | 2.47                    | 0.50        |
| 3:C:190:TYR:CE2   | 3:C:213:LEU:HG    | 2.46                    | 0.50        |
| 9:R:33:SER:O      | 9:R:34:PHE:HB3    | 2.12                    | 0.50        |
| 9:Q:33:SER:O      | 9:Q:34:PHE:HB3    | 2.12                    | 0.50        |
| 3:K:179:VAL:CG1   | 3:K:218:GLY:H     | 2.23                    | 0.49        |
| 14:A:307:PL9:H13  | 3:C:250:ARG:HA    | 1.94                    | 0.49        |
| 2:B:75:ILE:HG22   | 14:B:402:PL9:H531 | 1.94                    | 0.49        |
| 6:F:25:PHE:HE1    | 9:Q:41:LYS:HB3    | 1.78                    | 0.49        |
| 4:D:115:PRO:HD2   | 4:D:124:ILE:O     | 2.10                    | 0.49        |
| 14:B:402:PL9:H251 | 14:B:402:PL9:H272 | 1.55                    | 0.49        |
| 3:C:222:LYS:NZ    | 3:C:222:LYS:CB    | 2.66                    | 0.49        |
| 2:J:70:ALA:HB1    | 3:K:16:THR:CG2    | 2.42                    | 0.49        |
| 2:B:74:GLU:HG3    | 14:B:402:PL9:H152 | 1.94                    | 0.49        |
| 3:C:185:LYS:HZ3   | 3:C:186:GLU:HG3   | 1.76                    | 0.49        |
| 1:I:81:LEU:HD21   | 14:K:302:PL9:H221 | 1.95                    | 0.49        |
| 3:K:185:LYS:HZ3   | 3:K:186:GLU:HG3   | 1.78                    | 0.49        |
| 2:B:74:GLU:HA     | 14:B:402:PL9:C1   | 2.43                    | 0.48        |



| A 4 1             | A t arra 0        | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1 Atom-2     |                   | distance $(\text{\AA})$ | overlap (Å) |
| 2:B:144:GLY:HA3   | 14:B:402:PL9:H422 | 1.95                    | 0.48        |
| 3:C:283:MET:HE3   | 3:C:283:MET:CA    | 2.42                    | 0.48        |
| 3:C:194:ILE:O     | 3:C:194:ILE:HD12  | 2.14                    | 0.48        |
| 3:C:178:ILE:HG13  | 3:C:180:LYS:HZ2   | 1.76                    | 0.48        |
| 4:D:93:GLU:N      | 4:D:97:THR:O      | 2.43                    | 0.48        |
| 14:B:402:PL9:H451 | 14:B:402:PL9:H471 | 1.56                    | 0.47        |
| 6:N:25:PHE:HE1    | 9:R:41:LYS:HB3    | 1.79                    | 0.47        |
| 4:L:166:GLU:OE1   | 4:L:166:GLU:N     | 2.47                    | 0.47        |
| 14:A:307:PL9:C45  | 15:D:201:SQD:H223 | 2.44                    | 0.47        |
| 3:C:184:ARG:NH2   | 3:C:185:LYS:O     | 2.47                    | 0.47        |
| 2:J:74:GLU:HB3    | 14:J:402:PL9:C12  | 2.42                    | 0.47        |
| 14:B:402:PL9:H121 | 14:B:402:PL9:H172 | 1.96                    | 0.47        |
| 3:K:194:ILE:O     | 3:K:194:ILE:HD12  | 2.14                    | 0.47        |
| 1:A:150:ILE:HG21  | 14:B:401:PL9:H512 | 1.97                    | 0.47        |
| 1:A:11:ARG:HG2    | 1:I:113:PRO:HB2   | 1.97                    | 0.47        |
| 14:A:307:PL9:H322 | 14:A:307:PL9:H301 | 1.68                    | 0.47        |
| 3:K:54:ASP:OD2    | 3:K:55:MET:N      | 2.49                    | 0.46        |
| 4:L:67:GLU:OE1    | 4:L:67:GLU:N      | 2.38                    | 0.46        |
| 2:B:125:ARG:NH1   | 9:Q:50:GLU:OE1    | 2.48                    | 0.46        |
| 4:D:93:GLU:OE1    | 4:D:93:GLU:HA     | 2.16                    | 0.46        |
| 2:B:85:PHE:CD1    | 14:B:401:PL9:H472 | 2.50                    | 0.46        |
| 3:C:54:ASP:OD2    | 3:C:55:MET:N      | 2.49                    | 0.46        |
| 17:F:101:BCR:C8   | 17:F:101:BCR:H331 | 2.45                    | 0.46        |
| 1:A:150:ILE:HD13  | 14:B:401:PL9:C51  | 2.42                    | 0.46        |
| 3:C:178:ILE:HB    | 3:C:219:GLU:O     | 2.16                    | 0.46        |
| 14:B:401:PL9:H471 | 14:B:401:PL9:H451 | 1.70                    | 0.46        |
| 3:C:180:LYS:CE    | 3:C:195:ALA:H     | 2.11                    | 0.46        |
| 3:K:159:ILE:O     | 11:K:301:HEC:HBC3 | 2.16                    | 0.46        |
| 3:K:178:ILE:HB    | 3:K:219:GLU:O     | 2.16                    | 0.46        |
| 13:B:403:UMQ:O3'  | 13:B:403:UMQ:C2   | 2.64                    | 0.46        |
| 1:I:207:ARG:HD2   | 11:I:303:HEC:O2D  | 2.15                    | 0.46        |
| 3:K:145:LYS:HE3   | 3:K:242:GLU:HG3   | 1.98                    | 0.46        |
| 1:A:207:ARG:HD2   | 11:A:303:HEC:O2D  | 2.15                    | 0.45        |
| 2:J:74:GLU:HA     | 14:J:402:PL9:C2   | 2.46                    | 0.45        |
| 1:A:103:ARG:HD2   | 1:A:103:ARG:C     | 2.37                    | 0.45        |
| 3:C:145:LYS:HE3   | 3:C:242:GLU:HG3   | 1.98                    | 0.45        |
| 3:C:159:ILE:O     | 11:C:301:HEC:HBC3 | 2.16                    | 0.45        |
| 1:I:146:TRP:HB2   | 2:J:75:ILE:HD13   | 1.97                    | 0.45        |
| 6:N:36:GLU:OE2    | 6:N:36:GLU:N      | 2.48                    | 0.45        |
| 14:A:307:PL9:H151 | 14:A:307:PL9:H172 | 1.66                    | 0.45        |
| 14:J:402:PL9:C38  | 14:J:402:PL9:H351 | 2.43                    | 0.45        |



| Atom-1            | Atom-2            | Interatomic | $\operatorname{Clash}_{\circ}$ |
|-------------------|-------------------|-------------|--------------------------------|
|                   |                   |             | overlap (Å)                    |
| 3:K:18:ARG:NH2    | 3:K:23:ASN:OD1    | 2.50        | 0.45                           |
| 2:B:104:VAL:HB    | 2:B:105:PRO:CD    | 2.47        | 0.45                           |
| 3:C:184:ARG:HH22  | 3:C:186:GLU:CA    | 2.28        | 0.45                           |
| 2:J:104:VAL:HB    | 2:J:105:PRO:CD    | 2.47        | 0.45                           |
| 3:K:206:ILE:H     | 3:K:206:ILE:HD12  | 1.82        | 0.45                           |
| 14:B:402:PL9:H212 | 14:B:402:PL9:H161 | 1.99        | 0.45                           |
| 1:I:103:ARG:C     | 1:I:103:ARG:HD2   | 2.37        | 0.45                           |
| 5:E:27:LYS:CA     | 5:E:27:LYS:HE2    | 2.47        | 0.45                           |
| 17:P:101:BCR:H20C | 17:P:101:BCR:H361 | 1.84        | 0.45                           |
| 3:C:206:ILE:HD12  | 3:C:206:ILE:H     | 1.82        | 0.45                           |
| 3:K:180:LYS:CE    | 3:K:195:ALA:H     | 2.11        | 0.45                           |
| 14:J:401:PL9:H23  | 14:J:401:PL9:C18  | 2.47        | 0.44                           |
| 4:D:55:ALA:O      | 4:D:63:VAL:HG23   | 2.17        | 0.44                           |
| 4:D:73:ALA:HB1    | 4:D:74:PRO:HD2    | 1.98        | 0.44                           |
| 1:A:211:ILE:HG13  | 1:A:212:SER:H     | 1.81        | 0.44                           |
| 3:C:18:ARG:NH2    | 3:C:23:ASN:OD1    | 2.50        | 0.44                           |
| 1:I:150:ILE:HD13  | 14:J:401:PL9:H502 | 1.98        | 0.44                           |
| 17:P:101:BCR:H24C | 17:P:101:BCR:H371 | 1.83        | 0.44                           |
| 1:I:211:ILE:HG13  | 1:I:212:SER:H     | 1.81        | 0.44                           |
| 3:C:223:LEU:O     | 3:C:224:ASP:HB2   | 2.18        | 0.44                           |
| 1:I:63:THR:HG22   | 1:I:64:ASP:OD2    | 2.17        | 0.44                           |
| 17:P:101:BCR:C8   | 17:P:101:BCR:H331 | 2.48        | 0.44                           |
| 1:A:63:THR:HG22   | 1:A:64:ASP:OD2    | 2.18        | 0.44                           |
| 9:R:54:ILE:HD12   | 9:R:54:ILE:H      | 1.83        | 0.44                           |
| 1:I:163:SER:HB2   | 1:I:164:PRO:HD3   | 2.00        | 0.44                           |
| 5:M:27:LYS:CA     | 5:M:27:LYS:HE2    | 2.47        | 0.44                           |
| 1:A:163:SER:HB2   | 1:A:164:PRO:HD3   | 2.00        | 0.43                           |
| 4:D:74:PRO:HA     | 4:D:92:VAL:CG1    | 2.48        | 0.43                           |
| 1:I:138:LEU:N     | 1:I:139:PRO:CD    | 2.81        | 0.43                           |
| 1:A:138:LEU:N     | 1:A:139:PRO:CD    | 2.81        | 0.43                           |
| 3:K:35:VAL:HB     | 3:K:36:PRO:HD2    | 1.99        | 0.43                           |
| 4:L:110:LEU:HD23  | 4:L:110:LEU:HA    | 1.85        | 0.43                           |
| 14:J:401:PL9:H422 | 14:J:401:PL9:H401 | 1.58        | 0.43                           |
| 3:K:223:LEU:O     | 3:K:224:ASP:HB2   | 2.18        | 0.43                           |
| 1:A:165:LEU:HD12  | 1:A:165:LEU:HA    | 1.86        | 0.43                           |
| 2:B:159:LEU:O     | 2:B:160:PHE:C     | 2.57        | 0.43                           |
| 6:F:25:PHE:CE1    | 9:Q:41:LYS:HB3    | 2.54        | 0.43                           |
| 3:K:191:GLU:C     | 3:K:192:ILE:HD13  | 2.39        | 0.43                           |
| 3:C:35:VAL:HB     | 3:C:36:PRO:HD2    | 1.99        | 0.43                           |
| 3:C:191:GLU:C     | 3:C:192:ILE:HD13  | 2.39        | 0.43                           |
| 4:D:69:LEU:HD21   | 4:D:98:LEU:HD13   | 2.01        | 0.43                           |



| Atom 1            | Atom 2            | Interatomic  | Clash       |  |  |
|-------------------|-------------------|--------------|-------------|--|--|
| Atom-1            | Atom-2            | distance (Å) | overlap (Å) |  |  |
| 2:J:159:LEU:O     | 2:J:160:PHE:C     | 2.57         | 0.43        |  |  |
| 7:O:30:ARG:HA     | 7:O:30:ARG:HD2    | 1.77         | 0.43        |  |  |
| 9:Q:54:ILE:H      | 9:Q:54:ILE:HD12   | 1.83         | 0.43        |  |  |
| 14:B:402:PL9:HC72 | 14:B:402:PL9:C12  | 2.39         | 0.43        |  |  |
| 3:K:178:ILE:O     | 3:K:180:LYS:HD3   | 2.19         | 0.43        |  |  |
| 14:J:402:PL9:H201 | 14:J:402:PL9:H221 | 1.64         | 0.43        |  |  |
| 3:K:283:MET:HA    | 3:K:283:MET:CE    | 2.45         | 0.43        |  |  |
| 4:L:69:LEU:HD21   | 4:L:98:LEU:HD23   | 2.01         | 0.43        |  |  |
| 1:A:154:VAL:N     | 1:A:155:PRO:HD2   | 2.34         | 0.42        |  |  |
| 15:D:201:SQD:H102 | 15:D:201:SQD:H132 | 1.87         | 0.42        |  |  |
| 1:I:154:VAL:N     | 1:I:155:PRO:HD2   | 2.34         | 0.42        |  |  |
| 10:I:302:HEM:HBA1 | 10:I:302:HEM:CHA  | 2.48         | 0.42        |  |  |
| 2:J:8:ASP:O       | 2:J:8:ASP:CG      | 2.58         | 0.42        |  |  |
| 3:K:100:LEU:HD23  | 3:K:100:LEU:HA    | 1.93         | 0.42        |  |  |
| 4:D:139:VAL:O     | 4:D:140:ARG:HB2   | 2.20         | 0.42        |  |  |
| 3:C:178:ILE:O     | 3:C:180:LYS:HD3   | 2.19         | 0.42        |  |  |
| 4:D:97:THR:OG1    | 4:D:98:LEU:N      | 2.51         | 0.42        |  |  |
| 4:D:162:VAL:HG13  | 4:D:163:PRO:HD2   | 2.01         | 0.42        |  |  |
| 17:F:101:BCR:H24C | 17:F:101:BCR:H371 | 1.82         | 0.42        |  |  |
| 1:I:45:LEU:HD12   | 14:K:302:PL9:H403 | 2.01         | 0.42        |  |  |
| 2:B:119:LYS:HB3   | 2:B:119:LYS:HE3   | 1.18         | 0.42        |  |  |
| 14:B:402:PL9:H351 | 14:B:402:PL9:H38  | 2.00         | 0.42        |  |  |
| 3:C:283:MET:HA    | 3:C:283:MET:CE    | 2.45         | 0.42        |  |  |
| 2:J:109:LEU:HD12  | 2:J:109:LEU:HA    | 1.86         | 0.42        |  |  |
| 5:M:29:ARG:HD2    | 5:M:29:ARG:N      | 2.34         | 0.42        |  |  |
| 3:C:50:ARG:NH2    | 3:C:125:GLU:OE1   | 2.53         | 0.42        |  |  |
| 14:J:401:PL9:H361 | 14:J:401:PL9:H321 | 1.67         | 0.42        |  |  |
| 4:L:78:THR:HG22   | 4:L:79:LEU:N      | 2.35         | 0.42        |  |  |
| 3:C:153:ASN:ND2   | 3:C:235:GLY:O     | 2.53         | 0.42        |  |  |
| 14:K:302:PL9:H422 | 14:K:302:PL9:H401 | 1.40         | 0.42        |  |  |
| 4:L:90:LEU:HD23   | 4:L:90:LEU:HA     | 1.83         | 0.42        |  |  |
| 2:B:70:ALA:HB1    | 3:C:16:THR:HG22   | 2.00         | 0.42        |  |  |
| 3:K:50:ARG:NH2    | 3:K:125:GLU:OE1   | 2.53         | 0.42        |  |  |
| 3:K:181:LYS:HE3   | 3:K:181:LYS:HB3   | 1.98         | 0.42        |  |  |
| 3:C:184:ARG:HG2   | 3:C:184:ARG:HH11  | 1.83         | 0.41        |  |  |
| 4:D:140:ARG:CD    | 4:D:141:GLY:N     | 2.83         | 0.41        |  |  |
| 2:J:29:GLU:HG2    | 2:J:30:PRO:CD     | 2.50         | 0.41        |  |  |
| 12:I:304:CLA:C20  | 14:J:401:PL9:H221 | 2.51         | 0.41        |  |  |
| 2:B:29:GLU:HG2    | 2:B:30:PRO:CD     | 2.50         | 0.41        |  |  |
| 1:I:150:ILE:HD13  | 14:J:401:PL9:H501 | 2.02         | 0.41        |  |  |
| 12:I:304:CLA:H61  | 12:I:304:CLA:H101 | 1.74         | 0.41        |  |  |



| A 4 1             | A 4 9             | Interatomic  | Clash       |  |
|-------------------|-------------------|--------------|-------------|--|
| Atom-1            | Atom-2            | distance (Å) | overlap (Å) |  |
| 14:J:402:PL9:HC72 | 14:J:402:PL9:H112 | 1.70         | 0.41        |  |
| 4:L:139:VAL:O     | 4:L:140:ARG:HB2   | 2.20         | 0.41        |  |
| 2:B:144:GLY:HA3   | 14:B:402:PL9:C42  | 2.50         | 0.41        |  |
| 4:D:53:THR:O      | 4:D:160:VAL:HA    | 2.21         | 0.41        |  |
| 3:K:191:GLU:OE2   | 3:K:206:ILE:HG13  | 2.21         | 0.41        |  |
| 3:K:153:ASN:ND2   | 3:K:235:GLY:O     | 2.53         | 0.41        |  |
| 1:A:146:TRP:HB2   | 2:B:75:ILE:HD13   | 2.02         | 0.41        |  |
| 14:A:307:PL9:H112 | 3:C:250:ARG:HA    | 2.02         | 0.41        |  |
| 2:B:8:ASP:O       | 2:B:8:ASP:CG      | 2.58         | 0.41        |  |
| 1:I:92:MET:O      | 1:I:96:MET:HG2    | 2.21         | 0.41        |  |
| 13:J:403:UMQ:O5   | 13:J:403:UMQ:O6'  | 2.30         | 0.41        |  |
| 2:B:119:LYS:H     | 2:B:119:LYS:HG2   | 1.69         | 0.41        |  |
| 2:B:74:GLU:HA     | 14:B:402:PL9:C2   | 2.51         | 0.40        |  |
| 3:C:191:GLU:OE2   | 3:C:206:ILE:HG13  | 2.21         | 0.40        |  |
| 2:J:6:LYS:HE3     | 2:J:6:LYS:HB3     | 1.74         | 0.40        |  |
| 14:J:402:PL9:H401 | 14:J:402:PL9:H422 | 1.74         | 0.40        |  |
| 4:L:56:LYS:O      | 4:L:80:THR:HB     | 2.21         | 0.40        |  |
| 12:A:304:CLA:H61  | 12:A:304:CLA:H101 | 1.74         | 0.40        |  |
| 3:C:21:CYS:HB2    | 11:C:301:HEC:CAB  | 2.35         | 0.40        |  |
| 2:J:85:PHE:HE1    | 14:J:401:PL9:H503 | 1.84         | 0.40        |  |
| 14:J:401:PL9:H301 | 14:J:401:PL9:H322 | 1.59         | 0.40        |  |
| 7:O:14:ILE:N      | 7:O:15:PRO:HD2    | 2.36         | 0.40        |  |
| 1:A:92:MET:O      | 1:A:96:MET:HG2    | 2.21         | 0.40        |  |
| 3:C:115:ILE:HG23  | 3:C:115:ILE:O     | 2.21         | 0.40        |  |
| 3:C:69:LEU:N      | 3:C:69:LEU:HD12   | 2.37         | 0.40        |  |
| 3:K:97:MET:HE2    | 3:K:97:MET:HB2    | 1.91         | 0.40        |  |

There are no symmetry-related clashes.

#### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.



| Mol | Chain | Analysed        | Favoured   | Allowed | Outliers | Perce | ntiles |
|-----|-------|-----------------|------------|---------|----------|-------|--------|
| 1   | А     | 212/215~(99%)   | 205~(97%)  | 7 (3%)  | 0        | 100   | 100    |
| 1   | Ι     | 212/215~(99%)   | 205~(97%)  | 7(3%)   | 0        | 100   | 100    |
| 2   | В     | 157/160~(98%)   | 151 (96%)  | 6 (4%)  | 0        | 100   | 100    |
| 2   | J     | 157/160~(98%)   | 151 (96%)  | 6 (4%)  | 0        | 100   | 100    |
| 3   | С     | 274/320~(86%)   | 263~(96%)  | 11 (4%) | 0        | 100   | 100    |
| 3   | Κ     | 275/320~(86%)   | 264 (96%)  | 11 (4%) | 0        | 100   | 100    |
| 4   | D     | 162/230~(70%)   | 151 (93%)  | 11 (7%) | 0        | 100   | 100    |
| 4   | L     | 161/230~(70%)   | 152 (94%)  | 9 (6%)  | 0        | 100   | 100    |
| 5   | Е     | 29/31~(94%)     | 28~(97%)   | 1 (3%)  | 0        | 100   | 100    |
| 5   | М     | 29/31~(94%)     | 28~(97%)   | 1 (3%)  | 0        | 100   | 100    |
| 6   | F     | 35/131~(27%)    | 35 (100%)  | 0       | 0        | 100   | 100    |
| 6   | Ν     | 34/131~(26%)    | 34 (100%)  | 0       | 0        | 100   | 100    |
| 7   | G     | 32/37~(86%)     | 31 (97%)   | 1 (3%)  | 0        | 100   | 100    |
| 7   | Ο     | 31/37~(84%)     | 30~(97%)   | 1 (3%)  | 0        | 100   | 100    |
| 8   | Н     | 27/29~(93%)     | 27 (100%)  | 0       | 0        | 100   | 100    |
| 8   | Р     | 27/29~(93%)     | 27 (100%)  | 0       | 0        | 100   | 100    |
| 9   | Q     | 24/103~(23%)    | 23~(96%)   | 1 (4%)  | 0        | 100   | 100    |
| 9   | R     | 24/103~(23%)    | 23~(96%)   | 1 (4%)  | 0        | 100   | 100    |
| All | All   | 1902/2512 (76%) | 1828 (96%) | 74 (4%) | 0        | 100   | 100    |

There are no Ramachandran outliers to report.

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed       | Rotameric | Percentiles |       |  |
|-----|-------|----------------|-----------|-------------|-------|--|
| 1   | А     | 185/186~(100%) | 178 (96%) | 7 (4%)      | 33 30 |  |
| 1   | Ι     | 185/186~(100%) | 178 (96%) | 7 (4%)      | 33 30 |  |
| 2   | В     | 134/135~(99%)  | 128 (96%) | 6 (4%)      | 27 23 |  |



| Mol | Chain | Analysed        | Rotameric  | Outliers | Perce | ntiles |
|-----|-------|-----------------|------------|----------|-------|--------|
| 2   | J     | 134/135~(99%)   | 128 (96%)  | 6 (4%)   | 27    | 23     |
| 3   | С     | 237/275~(86%)   | 228~(96%)  | 9 (4%)   | 33    | 30     |
| 3   | Κ     | 238/275~(86%)   | 231~(97%)  | 7 (3%)   | 42    | 40     |
| 4   | D     | 135/183 (74%)   | 130 (96%)  | 5 (4%)   | 34    | 31     |
| 4   | L     | 135/183 (74%)   | 130 (96%)  | 5 (4%)   | 34    | 31     |
| 5   | Е     | 26/26~(100%)    | 23 (88%)   | 3 (12%)  | 5     | 2      |
| 5   | М     | 26/26~(100%)    | 24 (92%)   | 2 (8%)   | 13    | 7      |
| 6   | F     | 26/90~(29%)     | 25~(96%)   | 1 (4%)   | 33    | 30     |
| 6   | Ν     | 26/90~(29%)     | 25~(96%)   | 1 (4%)   | 33    | 30     |
| 7   | G     | 27/31~(87%)     | 26 (96%)   | 1 (4%)   | 34    | 31     |
| 7   | О     | 27/31~(87%)     | 25 (93%)   | 2 (7%)   | 13    | 8      |
| 8   | Н     | 24/24~(100%)    | 24 (100%)  | 0        | 100   | 100    |
| 8   | Р     | 24/24~(100%)    | 23~(96%)   | 1 (4%)   | 30    | 26     |
| 9   | Q     | 24/78~(31%)     | 21 (88%)   | 3 (12%)  | 4     | 1      |
| 9   | R     | 24/78~(31%)     | 21 (88%)   | 3 (12%)  | 4     | 1      |
| All | All   | 1637/2056~(80%) | 1568 (96%) | 69 (4%)  | 33    | 26     |

All (69) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 6   | ASP  |
| 1   | А     | 89  | SER  |
| 1   | А     | 131 | PHE  |
| 1   | А     | 133 | VAL  |
| 1   | А     | 156 | ASP  |
| 1   | А     | 167 | GLU  |
| 1   | А     | 207 | ARG  |
| 2   | В     | 3   | VAL  |
| 2   | В     | 8   | ASP  |
| 2   | В     | 35  | ASP  |
| 2   | В     | 103 | SER  |
| 2   | В     | 119 | LYS  |
| 2   | В     | 152 | ASP  |
| 3   | С     | 124 | SER  |
| 3   | С     | 140 | ASP  |
| 3   | С     | 154 | ARG  |
| 3   | С     | 181 | LYS  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 3   | С     | 183 | VAL  |
| 3   | С     | 184 | ARG  |
| 3   | С     | 222 | LYS  |
| 3   | С     | 242 | GLU  |
| 3   | С     | 281 | SER  |
| 4   | D     | 71  | THR  |
| 4   | D     | 76  | ASP  |
| 4   | D     | 137 | ARG  |
| 4   | D     | 140 | ARG  |
| 4   | D     | 166 | GLU  |
| 5   | Е     | 1   | MET  |
| 5   | Е     | 26  | ASN  |
| 5   | Е     | 29  | ARG  |
| 6   | F     | 35  | GLU  |
| 7   | G     | 31  | ARG  |
| 1   | Ι     | 6   | ASP  |
| 1   | Ι     | 89  | SER  |
| 1   | Ι     | 131 | PHE  |
| 1   | Ι     | 133 | VAL  |
| 1   | Ι     | 156 | ASP  |
| 1   | Ι     | 167 | GLU  |
| 1   | Ι     | 207 | ARG  |
| 2   | J     | 3   | VAL  |
| 2   | J     | 8   | ASP  |
| 2   | J     | 35  | ASP  |
| 2   | J     | 103 | SER  |
| 2   | J     | 119 | LYS  |
| 2   | J     | 152 | ASP  |
| 3   | K     | 124 | SER  |
| 3   | K     | 140 | ASP  |
| 3   | K     | 154 | ARG  |
| 3   | K     | 181 | LYS  |
| 3   | K     | 183 | VAL  |
| 3   | K     | 242 | GLU  |
| 3   | K     | 281 | SER  |
| 4   | L     | 32  | TYR  |
| 4   | L     | 76  | ASP  |
| 4   | L     | 117 | ASN  |
| 4   | L     | 140 | ARG  |
| 4   | L     | 166 | GLU  |
| 5   | М     | 1   | MET  |
| 5   | М     | 26  | ASN  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 6   | Ν     | 29  | ARG  |
| 7   | 0     | 31  | ARG  |
| 7   | 0     | 33  | ASP  |
| 8   | Р     | 1   | MET  |
| 9   | R     | 33  | SER  |
| 9   | R     | 52  | ASP  |
| 9   | R     | 56  | ARG  |
| 9   | Q     | 33  | SER  |
| 9   | Q     | 52  | ASP  |
| 9   | Q     | 56  | ARG  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

#### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

#### 5.6 Ligand geometry (i)

32 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol Type | Tuno | Chain | Dog      | Link | Bo             | ond leng | ths      | Bo       | ond ang | es     |
|----------|------|-------|----------|------|----------------|----------|----------|----------|---------|--------|
|          | Type | Chain | main nes |      | Counts         | RMSZ     | # Z  > 2 | Counts   | RMSZ    | # Z >2 |
| 13       | UMQ  | Ι     | 305      | -    | $35,\!35,\!35$ | 1.15     | 1 (2%)   | 46,46,46 | 0.96    | 3 (6%) |



| Mol | Type | Chain | Bos | Link | Bond lengths   |      | Bond angles         |                |      |          |
|-----|------|-------|-----|------|----------------|------|---------------------|----------------|------|----------|
|     | Type | Chan  | nes |      | Counts         | RMSZ | # Z  > 2            | Counts         | RMSZ | # Z  > 2 |
| 16  | FES  | D     | 202 | 4    | 0,4,4          | -    | -                   | -              |      |          |
| 17  | BCR  | F     | 101 | -    | 41,41,41       | 1.15 | 2 (4%)              | 56, 56, 56     | 1.19 | 7 (12%)  |
| 13  | UMQ  | А     | 306 | -    | 35,35,35       | 1.15 | 1 (2%)              | 46,46,46       | 0.96 | 3 (6%)   |
| 13  | UMQ  | Ι     | 306 | -    | 35,35,35       | 1.13 | 1 (2%)              | 46,46,46       | 0.97 | 1 (2%)   |
| 10  | HEM  | А     | 301 | 1    | 41,50,50       | 1.47 | 3 (7%)              | 45,82,82       | 1.41 | 6 (13%)  |
| 12  | CLA  | А     | 304 | -    | 65,73,73       | 1.49 | 6 (9%)              | 76,113,113     | 1.38 | 9 (11%)  |
| 13  | UMQ  | Η     | 201 | -    | 35,35,35       | 1.12 | 1 (2%)              | 46,46,46       | 0.94 | 3 (6%)   |
| 14  | PL9  | В     | 402 | -    | 55,55,55       | 1.08 | 4 (7%)              | 68,69,69       | 1.53 | 16 (23%) |
| 12  | CLA  | Ι     | 304 | -    | 65,73,73       | 1.49 | <mark>6 (9%)</mark> | 76,113,113     | 1.37 | 9 (11%)  |
| 13  | UMQ  | В     | 404 | -    | 35,35,35       | 1.14 | 2 (5%)              | 46,46,46       | 1.05 | 4 (8%)   |
| 14  | PL9  | А     | 307 | -    | 55,55,55       | 1.03 | 4 (7%)              | 68,69,69       | 1.54 | 10 (14%) |
| 16  | FES  | L     | 402 | 4    | 0,4,4          | -    | -                   | -              |      |          |
| 11  | HEC  | Ι     | 303 | 1    | 32,50,50       | 2.28 | 3 (9%)              | 24,82,82       | 1.37 | 2 (8%)   |
| 14  | PL9  | J     | 401 | -    | $55,\!55,\!55$ | 1.03 | 4 (7%)              | $68,\!69,\!69$ | 1.55 | 12 (17%) |
| 10  | HEM  | Ι     | 302 | 1    | 41,50,50       | 1.47 | 3 (7%)              | 45,82,82       | 1.33 | 6 (13%)  |
| 10  | HEM  | Ι     | 301 | 1    | 41,50,50       | 1.46 | 3 (7%)              | 45,82,82       | 1.40 | 6 (13%)  |
| 13  | UMQ  | J     | 403 | -    | 35,35,35       | 1.18 | 3 (8%)              | 46,46,46       | 0.92 | 2 (4%)   |
| 14  | PL9  | К     | 302 | 14   | 55,55,55       | 1.02 | 3 (5%)              | 68,69,69       | 1.52 | 10 (14%) |
| 13  | UMQ  | Р     | 102 | -    | 35,35,35       | 1.12 | 1 (2%)              | 46,46,46       | 1.09 | 3 (6%)   |
| 15  | SQD  | L     | 401 | -    | 53,54,54       | 0.98 | 5 (9%)              | 62,65,65       | 1.46 | 8 (12%)  |
| 11  | HEC  | К     | 301 | 3    | 32,50,50       | 2.26 | 3 (9%)              | 24,82,82       | 1.32 | 1 (4%)   |
| 11  | HEC  | С     | 301 | 3    | 32,50,50       | 2.25 | 3 (9%)              | 24,82,82       | 1.32 | 1 (4%)   |
| 13  | UMQ  | А     | 305 | -    | 35,35,35       | 1.15 | 2 (5%)              | 46,46,46       | 0.85 | 0        |
| 14  | PL9  | В     | 401 | 14   | 55,55,55       | 1.03 | 4 (7%)              | 68,69,69       | 1.55 | 13 (19%) |
| 17  | BCR  | Р     | 101 | -    | 41,41,41       | 1.14 | 2 (4%)              | 56, 56, 56     | 1.24 | 9 (16%)  |
| 13  | UMQ  | В     | 403 | -    | 35,35,35       | 1.23 | 3 (8%)              | 46,46,46       | 1.40 | 7 (15%)  |
| 14  | PL9  | J     | 402 | -    | 55,55,55       | 1.05 | 4 (7%)              | 68,69,69       | 1.53 | 11 (16%) |
| 10  | HEM  | А     | 302 | 1    | 41,50,50       | 1.47 | 3 (7%)              | 45,82,82       | 1.33 | 6 (13%)  |
| 15  | SQD  | D     | 201 | -    | 53,54,54       | 0.97 | 5 (9%)              | 62,65,65       | 1.53 | 8 (12%)  |
| 13  | UMQ  | J     | 404 | -    | 35,35,35       | 1.23 | 4 (11%)             | 46,46,46       | 1.40 | 7 (15%)  |
| 11  | HEC  | А     | 303 | 1    | 32,50,50       | 2.27 | 3 (9%)              | 24,82,82       | 1.36 | 2 (8%)   |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.



| Mol | Type                 | Chain | Res | Link | Chirals   | Torsions      | Rings   |
|-----|----------------------|-------|-----|------|-----------|---------------|---------|
| 13  | UMQ                  | Ι     | 305 | -    | -         | 9/20/60/60    | 0/2/2/2 |
| 16  | FES                  | D     | 202 | 4    | -         | -             | 0/1/1/1 |
| 17  | BCR                  | F     | 101 | -    | -         | 4/29/63/63    | 0/2/2/2 |
| 13  | UMQ                  | А     | 306 | -    | -         | 9/20/60/60    | 0/2/2/2 |
| 13  | UMQ                  | Ι     | 306 | -    | -         | 12/20/60/60   | 0/2/2/2 |
| 12  | CLA                  | А     | 304 | -    | 1/1/15/20 | 16/37/115/115 | -       |
| 10  | HEM                  | А     | 301 | 1    | -         | 3/12/54/54    | -       |
| 13  | UMQ                  | Н     | 201 | -    | -         | 5/20/60/60    | 0/2/2/2 |
| 14  | PL9                  | В     | 402 | -    | -         | 24/53/73/73   | 0/1/1/1 |
| 12  | CLA                  | Ι     | 304 | -    | 1/1/15/20 | 16/37/115/115 | -       |
| 13  | UMQ                  | В     | 404 | -    | -         | 11/20/60/60   | 0/2/2/2 |
| 14  | PL9                  | А     | 307 | -    | -         | 19/53/73/73   | 0/1/1/1 |
| 16  | FES                  | L     | 402 | 4    | -         | -             | 0/1/1/1 |
| 11  | HEC                  | Ι     | 303 | 1    | _         | 4/10/54/54    | -       |
| 14  | PL9                  | J     | 401 | -    | -         | 21/53/73/73   | 0/1/1/1 |
| 10  | HEM                  | Ι     | 301 | 1    | -         | 3/12/54/54    | -       |
| 10  | HEM                  | Ι     | 302 | 1    | -         | 2/12/54/54    | -       |
| 13  | UMQ                  | J     | 403 | -    | -         | 12/20/60/60   | 0/2/2/2 |
| 14  | PL9                  | Κ     | 302 | 14   | -         | 21/53/73/73   | 0/1/1/1 |
| 13  | UMQ                  | Р     | 102 | -    | -         | 8/20/60/60    | 0/2/2/2 |
| 15  | $\operatorname{SQD}$ | L     | 401 | -    | -         | 20/49/69/69   | 0/1/1/1 |
| 11  | HEC                  | Κ     | 301 | 3    | -         | 2/10/54/54    | -       |
| 11  | HEC                  | С     | 301 | 3    | -         | 2/10/54/54    | -       |
| 13  | UMQ                  | А     | 305 | -    | -         | 7/20/60/60    | 0/2/2/2 |
| 14  | PL9                  | В     | 401 | 14   | -         | 18/53/73/73   | 0/1/1/1 |
| 17  | BCR                  | Р     | 101 | -    | -         | 2/29/63/63    | 0/2/2/2 |
| 13  | UMQ                  | В     | 403 | -    | -         | 8/20/60/60    | 0/2/2/2 |
| 14  | PL9                  | J     | 402 | -    | -         | 21/53/73/73   | 0/1/1/1 |
| 10  | HEM                  | А     | 302 | 1    | -         | 2/12/54/54    | -       |
| 15  | SQD                  | D     | 201 | -    | -         | 15/49/69/69   | 0/1/1/1 |
| 13  | UMQ                  | J     | 404 | -    | -         | 8/20/60/60    | 0/2/2/2 |
| 11  | HEC                  | А     | 303 | 1    | -         | 4/10/54/54    | -       |

All (92) bond length outliers are listed below:



| Mol | Chain | Res | Type | Atoms Z |       | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|-------|-------------|----------|
| 12  | А     | 304 | CLA  | C4B-NB  | 7.39  | 1.41        | 1.35     |
| 12  | Ι     | 304 | CLA  | C4B-NB  | 7.34  | 1.41        | 1.35     |
| 11  | Ι     | 303 | HEC  | C2B-C3B | -6.94 | 1.33        | 1.40     |
| 11  | А     | 303 | HEC  | C2B-C3B | -6.88 | 1.33        | 1.40     |
| 11  | Ι     | 303 | HEC  | C3C-C2C | -6.76 | 1.33        | 1.40     |
| 11  | Κ     | 301 | HEC  | C2B-C3B | -6.74 | 1.33        | 1.40     |
| 11  | Κ     | 301 | HEC  | C3C-C2C | -6.72 | 1.33        | 1.40     |
| 11  | А     | 303 | HEC  | C3C-C2C | -6.71 | 1.33        | 1.40     |
| 11  | С     | 301 | HEC  | C3C-C2C | -6.71 | 1.33        | 1.40     |
| 11  | С     | 301 | HEC  | C2B-C3B | -6.67 | 1.33        | 1.40     |
| 11  | Κ     | 301 | HEC  | C3D-C2D | 5.40  | 1.53        | 1.37     |
| 11  | С     | 301 | HEC  | C3D-C2D | 5.38  | 1.53        | 1.37     |
| 11  | Ι     | 303 | HEC  | C3D-C2D | 5.38  | 1.53        | 1.37     |
| 11  | А     | 303 | HEC  | C3D-C2D | 5.37  | 1.53        | 1.37     |
| 10  | Ι     | 302 | HEM  | C3C-C2C | -4.38 | 1.34        | 1.40     |
| 10  | А     | 301 | HEM  | C3C-C2C | -4.38 | 1.34        | 1.40     |
| 10  | А     | 302 | HEM  | C3C-C2C | -4.37 | 1.34        | 1.40     |
| 10  | Ι     | 301 | HEM  | C3C-C2C | -4.35 | 1.34        | 1.40     |
| 12  | А     | 304 | CLA  | C1D-ND  | 3.80  | 1.42        | 1.37     |
| 12  | Ι     | 304 | CLA  | C1D-ND  | 3.80  | 1.42        | 1.37     |
| 14  | В     | 401 | PL9  | C7-C3   | -3.67 | 1.47        | 1.51     |
| 17  | F     | 101 | BCR  | C1-C6   | -3.63 | 1.48        | 1.53     |
| 14  | А     | 307 | PL9  | C7-C3   | -3.57 | 1.47        | 1.51     |
| 10  | А     | 302 | HEM  | C3C-CAC | 3.53  | 1.55        | 1.47     |
| 10  | А     | 301 | HEM  | C3C-CAC | 3.53  | 1.55        | 1.47     |
| 10  | Ι     | 301 | HEM  | C3C-CAC | 3.51  | 1.55        | 1.47     |
| 10  | Ι     | 302 | HEM  | C3C-CAC | 3.51  | 1.55        | 1.47     |
| 14  | В     | 402 | PL9  | C7-C3   | -3.51 | 1.47        | 1.51     |
| 14  | J     | 402 | PL9  | C7-C3   | -3.44 | 1.47        | 1.51     |
| 17  | Р     | 101 | BCR  | C30-C25 | -3.40 | 1.49        | 1.53     |
| 14  | K     | 302 | PL9  | C7-C3   | -3.39 | 1.47        | 1.51     |
| 14  | J     | 401 | PL9  | C7-C3   | -3.36 | 1.47        | 1.51     |
| 17  | F     | 101 | BCR  | C30-C25 | -3.29 | 1.49        | 1.53     |
| 17  | Р     | 101 | BCR  | C1-C6   | -3.26 | 1.49        | 1.53     |
| 12  | A     | 304 | CLA  | CHC-C1C | 3.12  | 1.43        | 1.35     |
| 15  | D     | 201 | SQD  | O48-C23 | 3.10  | 1.42        | 1.33     |
| 15  | L     | 401 | SQD  | O48-C23 | 3.09  | 1.42        | 1.33     |
| 12  | Ι     | 304 | CLA  | CHC-C1C | 3.08  | 1.42        | 1.35     |
| 12  | А     | 304 | CLA  | C4D-ND  | -3.02 | 1.33        | 1.37     |
| 12  | Ι     | 304 | CLA  | C4D-ND  | -2.98 | 1.33        | 1.37     |
| 15  | D     | 201 | SQD  | O47-C7  | 2.82  | 1.42        | 1.34     |
| 10  | Ι     | 301 | HEM  | CAB-C3B | 2.82  | 1.55        | 1.47     |
| 10  | А     | 302 | HEM  | CAB-C3B | 2.82  | 1.55        | 1.47     |



| Mol | Chain | $\mathbf{Res}$ | Type         | Atoms          | Z      | Observed(Å) | Ideal(Å) |
|-----|-------|----------------|--------------|----------------|--------|-------------|----------|
| 10  | А     | 301            | HEM          | CAB-C3B        | 2.81   | 1.55        | 1.47     |
| 15  | L     | 401            | SQD          | O47-C7         | 2.80   | 1.42        | 1.34     |
| 10  | Ι     | 302            | HEM          | CAB-C3B        | 2.80   | 1.55        | 1.47     |
| 14  | В     | 402            | PL9          | C3-C4          | -2.78  | 1.45        | 1.49     |
| 14  | J     | 402            | PL9          | C3-C4          | -2.73  | 1.45        | 1.49     |
| 13  | В     | 403            | UMQ          | O5'-C5'        | 2.68   | 1.50        | 1.44     |
| 13  | J     | 404            | UMQ          | O5'-C5'        | 2.68   | 1.50        | 1.44     |
| 14  | К     | 302            | PL9          | C3-C4          | -2.62  | 1.45        | 1.49     |
| 13  | В     | 403            | UMQ          | O5'-C1'        | 2.57   | 1.48        | 1.41     |
| 13  | J     | 404            | UMQ          | O5'-C1'        | 2.55   | 1.48        | 1.41     |
| 14  | А     | 307            | PL9          | C3-C4          | -2.50  | 1.45        | 1.49     |
| 14  | J     | 401            | PL9          | C3-C4          | -2.47  | 1.45        | 1.49     |
| 14  | В     | 401            | PL9          | C3-C4          | -2.47  | 1.45        | 1.49     |
| 12  | Ι     | 304            | CLA          | CMB-C2B        | -2.43  | 1.46        | 1.51     |
| 12  | А     | 304            | CLA          | CMB-C2B        | -2.42  | 1.46        | 1.51     |
| 14  | J     | 402            | PL9          | C6-C1          | -2.36  | 1.44        | 1.48     |
| 13  | Ι     | 305            | UMQ          | C3-C4          | -2.32  | 1.46        | 1.52     |
| 13  | А     | 306            | UMQ          | C3-C4          | -2.30  | 1.46        | 1.52     |
| 15  | D     | 201            | SQD          | O2-C2          | -2.29  | 1.37        | 1.43     |
| 15  | L     | 401            | SQD          | O2-C2          | -2.28  | 1.37        | 1.43     |
| 13  | A     | 305            | UMQ          | C3-C4          | -2.24  | 1.46        | 1.52     |
| 14  | J     | 401            | PL9          | C53-C6         | -2.22  | 1.46        | 1.50     |
| 13  | J     | 403            | UMQ          | C3-C4          | -2.16  | 1.46        | 1.52     |
| 15  | L     | 401            | SQD          | O4-C4          | -2.14  | 1.37        | 1.43     |
| 15  | D     | 201            | SQD          | O3-C3          | -2.14  | 1.37        | 1.43     |
| 13  | J     | 403            | UMQ          | O5'-C1'        | 2.14   | 1.47        | 1.41     |
| 14  | B     | 402            | PL9          | C6-C1          | -2.13  | 1.44        | 1.48     |
| 13  | Н     | 201            | UMQ          | C3-C4          | -2.13  | 1.46        | 1.52     |
| 15  | L     | 401            | SQD          | O3-C3          | -2.12  | 1.38        | 1.43     |
| 13  |       | 306            | UMQ          | C3-C4          | -2.12  | 1.46        | 1.52     |
| 14  | A     | 307            | PL9          | C6-C1          | -2.12  | 1.44        | 1.48     |
| 13  | B     | 404            | UMQ          | O5'-C5'        | 2.10   | 1.49        | 1.44     |
| 13  | J     | 404            | UMQ          | C3'-C4'        | -2.10  | 1.46        | 1.52     |
| 14  | J     | 402            | PL9          | C53-C6         | -2.09  | 1.46        | 1.50     |
| 13  | B     | 403            | UMQ          | C3'-C4'        | -2.09  | 1.46        | 1.52     |
| 15  | D     | 201            | SQD          | O4-C4          | -2.09  | 1.38        | 1.43     |
| 14  | K     | 302            | PL9          | C53-C6         | -2.08  | 1.46        | 1.50     |
| 13  | P     | 102            | UMQ          | C3-C4          | -2.07  | 1.47        | 1.52     |
| 14  | A     | 307            | PL9          | <u>C53-C6</u>  | -2.07  | 1.46        | 1.50     |
| 14  | J     | 401            | PL9          | <u>C6-C1</u>   | -2.06  | 1.44        | 1.48     |
| 13  | J     | 403            | UMQ          | <u>U5'-C5'</u> | 2.05   | 1.49        | 1.44     |
| 14  | В     | 401            | $\vdash$ PL9 | ⊢ C53-C6       | 1-2.05 | 1.46        | 1.50     |


| Mol | Chain | Res | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|-------|-------------|----------|
| 12  | А     | 304 | CLA  | CMD-C2D | -2.03 | 1.46        | 1.50     |
| 14  | В     | 402 | PL9  | C53-C6  | -2.02 | 1.46        | 1.50     |
| 14  | В     | 401 | PL9  | C6-C1   | -2.02 | 1.45        | 1.48     |
| 13  | В     | 404 | UMQ  | C3-C2   | -2.02 | 1.47        | 1.52     |
| 13  | А     | 305 | UMQ  | O5'-C5' | 2.01  | 1.49        | 1.44     |
| 12  | Ι     | 304 | CLA  | CMD-C2D | -2.01 | 1.46        | 1.50     |
| 13  | J     | 404 | UMQ  | O5-C1   | 2.01  | 1.47        | 1.41     |

Continued from previous page...

All (185) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|------------------|---------------|
| 12  | А     | 304 | CLA  | C4A-NA-C1A  | 6.36  | 109.56           | 106.71        |
| 12  | Ι     | 304 | CLA  | C4A-NA-C1A  | 6.30  | 109.54           | 106.71        |
| 14  | J     | 401 | PL9  | C7-C3-C4    | 5.60  | 121.43           | 116.88        |
| 14  | А     | 307 | PL9  | C7-C3-C4    | 5.55  | 121.39           | 116.88        |
| 14  | В     | 401 | PL9  | C7-C3-C4    | 5.39  | 121.25           | 116.88        |
| 14  | K     | 302 | PL9  | C7-C3-C4    | 5.31  | 121.19           | 116.88        |
| 14  | J     | 402 | PL9  | C7-C3-C4    | 5.27  | 121.16           | 116.88        |
| 14  | В     | 402 | PL9  | C7-C3-C4    | 5.02  | 120.96           | 116.88        |
| 15  | D     | 201 | SQD  | O6-C1-C2    | 4.24  | 114.92           | 108.30        |
| 13  | Р     | 102 | UMQ  | CA-01'-C1'  | -4.12 | 107.01           | 113.84        |
| 15  | D     | 201 | SQD  | O9-S-C6     | 4.08  | 111.78           | 106.94        |
| 15  | L     | 401 | SQD  | O9-S-C6     | 4.05  | 111.75           | 106.94        |
| 15  | L     | 401 | SQD  | O7-S-C6     | 3.80  | 111.45           | 106.94        |
| 15  | D     | 201 | SQD  | O7-S-C6     | 3.79  | 111.45           | 106.94        |
| 15  | D     | 201 | SQD  | O47-C7-C8   | 3.75  | 119.59           | 111.50        |
| 14  | J     | 401 | PL9  | C7-C3-C2    | -3.74 | 118.38           | 123.30        |
| 14  | А     | 307 | PL9  | C7-C3-C2    | -3.72 | 118.41           | 123.30        |
| 15  | L     | 401 | SQD  | O9-S-O7     | -3.71 | 101.09           | 113.95        |
| 15  | D     | 201 | SQD  | O9-S-O7     | -3.70 | 101.16           | 113.95        |
| 14  | В     | 401 | PL9  | C7-C3-C2    | -3.64 | 118.51           | 123.30        |
| 14  | K     | 302 | PL9  | C7-C3-C2    | -3.54 | 118.64           | 123.30        |
| 13  | J     | 404 | UMQ  | O1-C1-C2    | 3.49  | 117.14           | 108.10        |
| 13  | В     | 403 | UMQ  | O1-C1-C2    | 3.48  | 117.12           | 108.10        |
| 14  | J     | 402 | PL9  | C7-C3-C2    | -3.47 | 118.73           | 123.30        |
| 12  | А     | 304 | CLA  | CMB-C2B-C1B | -3.46 | 123.15           | 128.46        |
| 12  | Ι     | 304 | CLA  | CMB-C2B-C1B | -3.41 | 123.22           | 128.46        |
| 15  | L     | 401 | SQD  | O6-C1-C2    | 3.36  | 113.55           | 108.30        |
| 14  | В     | 402 | PL9  | C7-C3-C2    | -3.35 | 118.89           | 123.30        |
| 15  | L     | 401 | SQD  | O47-C7-C8   | 3.27  | 118.54           | 111.50        |
| 13  | J     | 403 | UMQ  | O1-C4'-C5'  | 3.17  | 118.13           | 109.45        |
| 13  | J     | 404 | UMQ  | C1'-O5'-C5' | 3.13  | 119.83           | 113.69        |



| $\alpha$ $\cdot$ $\cdot$ $\cdot$ | C    |          |      |
|----------------------------------|------|----------|------|
| Continued                        | from | previous | page |
|                                  |      | 1        | 1 0  |

| Mol | Chain | Res | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|------------------|---------------|
| 13  | В     | 403 | UMQ  | C1'-O5'-C5' | 3.12  | 119.81           | 113.69        |
| 14  | А     | 307 | PL9  | C40-C39-C41 | 3.05  | 120.40           | 115.27        |
| 14  | Κ     | 302 | PL9  | C40-C39-C41 | 2.99  | 120.31           | 115.27        |
| 13  | В     | 403 | UMQ  | O5-C1-C2    | 2.96  | 116.61           | 110.35        |
| 13  | Ι     | 305 | UMQ  | C1-O1-C4'   | -2.95 | 110.66           | 117.96        |
| 12  | А     | 304 | CLA  | O2D-CGD-O1D | -2.95 | 118.07           | 123.84        |
| 13  | J     | 404 | UMQ  | O5-C1-C2    | 2.94  | 116.58           | 110.35        |
| 12  | Ι     | 304 | CLA  | O2D-CGD-O1D | -2.93 | 118.11           | 123.84        |
| 13  | А     | 306 | UMQ  | C1-O1-C4'   | -2.92 | 110.74           | 117.96        |
| 13  | В     | 403 | UMQ  | C1-C2-C3    | 2.90  | 116.04           | 110.00        |
| 13  | J     | 404 | UMQ  | C1-C2-C3    | 2.90  | 116.03           | 110.00        |
| 15  | L     | 401 | SQD  | O8-S-C6     | 2.89  | 110.34           | 105.74        |
| 10  | Ι     | 302 | HEM  | C4D-ND-C1D  | 2.87  | 108.04           | 105.07        |
| 15  | D     | 201 | SQD  | O8-S-C6     | 2.86  | 110.30           | 105.74        |
| 12  | А     | 304 | CLA  | CMB-C2B-C3B | 2.86  | 130.04           | 124.68        |
| 14  | J     | 402 | PL9  | C40-C39-C41 | 2.86  | 120.08           | 115.27        |
| 10  | А     | 301 | HEM  | C4D-ND-C1D  | 2.86  | 108.02           | 105.07        |
| 12  | Ι     | 304 | CLA  | CMB-C2B-C3B | 2.85  | 130.01           | 124.68        |
| 13  | Н     | 201 | UMQ  | CA-01'-C1'  | -2.83 | 109.14           | 113.84        |
| 10  | А     | 302 | HEM  | C4D-ND-C1D  | 2.82  | 107.99           | 105.07        |
| 10  | Ι     | 301 | HEM  | C4D-ND-C1D  | 2.81  | 107.97           | 105.07        |
| 10  | А     | 301 | HEM  | C1B-NB-C4B  | 2.79  | 107.95           | 105.07        |
| 10  | Ι     | 301 | HEM  | C4B-CHC-C1C | 2.78  | 126.22           | 122.56        |
| 10  | Ι     | 301 | HEM  | C1B-NB-C4B  | 2.78  | 107.94           | 105.07        |
| 15  | D     | 201 | SQD  | O5-C5-C4    | 2.77  | 114.72           | 109.69        |
| 14  | В     | 401 | PL9  | C7-C8-C9    | -2.75 | 122.21           | 126.79        |
| 10  | А     | 301 | HEM  | C4B-CHC-C1C | 2.73  | 126.17           | 122.56        |
| 14  | В     | 402 | PL9  | C27-C28-C29 | -2.73 | 121.09           | 127.66        |
| 17  | F     | 101 | BCR  | C33-C5-C6   | -2.72 | 121.48           | 124.53        |
| 10  | А     | 302 | HEM  | C1B-NB-C4B  | 2.72  | 107.88           | 105.07        |
| 10  | Ι     | 302 | HEM  | C1B-NB-C4B  | 2.71  | 107.88           | 105.07        |
| 14  | В     | 402 | PL9  | C22-C23-C24 | -2.70 | 121.15           | 127.66        |
| 13  | В     | 403 | UMQ  | C4-C3-C2    | 2.69  | 115.51           | 110.82        |
| 13  | J     | 404 | UMQ  | C4-C3-C2    | 2.68  | 115.50           | 110.82        |
| 14  | J     | 402 | PL9  | C22-C23-C24 | -2.67 | 121.22           | 127.66        |
| 14  | J     | 402 | PL9  | C27-C28-C29 | -2.66 | 121.25           | 127.66        |
| 13  | Р     | 102 | UMQ  | O1'-C1'-C2' | 2.66  | 112.46           | 108.30        |
| 17  | Р     | 101 | BCR  | C15-C16-C17 | -2.66 | 118.02           | 123.47        |
| 15  | L     | 401 | SQD  | O5-C5-C4    | 2.66  | 114.53           | 109.69        |
| 14  | J     | 401 | PL9  | C27-C28-C29 | -2.64 | 121.30           | 127.66        |
| 14  | J     | 401 | PL9  | C40-C39-C41 | 2.64  | 119.71           | 115.27        |
| 13  | Р     | 102 | UMQ  | C1'-O5'-C5' | -2.63 | 108.53           | 113.69        |



| $\alpha$ $\cdot$ $\cdot$ $\cdot$ | C    |          |      |
|----------------------------------|------|----------|------|
| Continued                        | trom | previous | page |
|                                  |      | 1        | 1 0  |

| Mol | Chain | Res | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|------------------|---------------|
| 17  | F     | 101 | BCR  | C15-C16-C17 | -2.62 | 118.11           | 123.47        |
| 14  | В     | 401 | PL9  | C22-C23-C24 | -2.61 | 121.37           | 127.66        |
| 14  | Κ     | 302 | PL9  | C7-C8-C9    | -2.60 | 122.46           | 126.79        |
| 13  | В     | 404 | UMQ  | C1-O1-C4'   | -2.59 | 111.54           | 117.96        |
| 17  | Р     | 101 | BCR  | C2-C1-C6    | 2.59  | 114.47           | 110.48        |
| 14  | К     | 302 | PL9  | C22-C23-C24 | -2.53 | 121.56           | 127.66        |
| 17  | Р     | 101 | BCR  | C27-C26-C25 | 2.52  | 126.39           | 122.73        |
| 14  | J     | 402 | PL9  | C20-C19-C21 | 2.52  | 119.50           | 115.27        |
| 14  | В     | 401 | PL9  | C27-C28-C29 | -2.52 | 121.60           | 127.66        |
| 14  | J     | 402 | PL9  | C7-C8-C9    | -2.51 | 122.62           | 126.79        |
| 14  | В     | 402 | PL9  | C7-C8-C9    | -2.50 | 122.62           | 126.79        |
| 17  | F     | 101 | BCR  | C27-C26-C25 | 2.50  | 126.36           | 122.73        |
| 14  | А     | 307 | PL9  | C7-C8-C9    | -2.49 | 122.65           | 126.79        |
| 14  | J     | 401 | PL9  | C20-C19-C21 | 2.47  | 119.43           | 115.27        |
| 10  | А     | 301 | HEM  | C4C-CHD-C1D | 2.46  | 125.81           | 122.56        |
| 14  | J     | 401 | PL9  | C7-C8-C9    | -2.45 | 122.71           | 126.79        |
| 10  | Ι     | 301 | HEM  | C4C-CHD-C1D | 2.42  | 125.75           | 122.56        |
| 14  | К     | 302 | PL9  | C27-C28-C29 | -2.41 | 121.85           | 127.66        |
| 10  | А     | 302 | HEM  | C4B-CHC-C1C | 2.41  | 125.74           | 122.56        |
| 14  | А     | 307 | PL9  | C27-C28-C29 | -2.41 | 121.86           | 127.66        |
| 14  | А     | 307 | PL9  | C22-C23-C24 | -2.40 | 121.88           | 127.66        |
| 14  | J     | 401 | PL9  | C22-C23-C24 | -2.39 | 121.90           | 127.66        |
| 10  | Ι     | 302 | HEM  | C4B-CHC-C1C | 2.39  | 125.71           | 122.56        |
| 17  | Р     | 101 | BCR  | C33-C5-C6   | -2.37 | 121.87           | 124.53        |
| 13  | А     | 306 | UMQ  | CA-O1'-C1'  | -2.35 | 109.94           | 113.84        |
| 13  | Ι     | 305 | UMQ  | CA-O1'-C1'  | -2.35 | 109.94           | 113.84        |
| 15  | D     | 201 | SQD  | O48-C23-C24 | 2.35  | 119.28           | 111.91        |
| 14  | В     | 401 | PL9  | C40-C39-C41 | 2.34  | 119.20           | 115.27        |
| 12  | Ι     | 304 | CLA  | C1B-CHB-C4A | -2.33 | 125.49           | 130.12        |
| 12  | А     | 304 | CLA  | C1B-CHB-C4A | -2.32 | 125.52           | 130.12        |
| 13  | Н     | 201 | UMQ  | O1'-C1'-C2' | 2.31  | 111.91           | 108.30        |
| 13  | J     | 404 | UMQ  | C3-C4-C5    | 2.31  | 114.36           | 110.24        |
| 14  | В     | 401 | PL9  | C20-C19-C21 | 2.31  | 119.16           | 115.27        |
| 12  | Ι     | 304 | CLA  | CHB-C4A-NA  | 2.31  | 127.70           | 124.51        |
| 12  | А     | 304 | CLA  | CHB-C4A-NA  | 2.30  | 127.69           | 124.51        |
| 17  | Р     | 101 | BCR  | C15-C14-C13 | -2.30 | 124.03           | 127.31        |
| 11  | Ι     | 303 | HEC  | C1D-C2D-C3D | -2.29 | 105.40           | 107.00        |
| 17  | F     | 101 | BCR  | C15-C14-C13 | -2.29 | 124.05           | 127.31        |
| 13  | В     | 403 | UMQ  | C3-C4-C5    | 2.28  | 114.30           | 110.24        |
| 11  | A     | 303 | HEC  | C1D-C2D-C3D | -2.27 | 105.42           | 107.00        |
| 17  | Р     | 101 | BCR  | C7-C8-C9    | -2.27 | 122.81           | 126.23        |
| 17  | F     | 101 | BCR  | C38-C26-C25 | -2.25 | 122.00           | 124.53        |



| $\alpha$ $\cdot$ $\cdot$ $\cdot$ | C    |          |      |
|----------------------------------|------|----------|------|
| Continued                        | trom | previous | page |
|                                  |      | 1        | 1 0  |

| Mol | Chain | Res | Type | Atoms       |       | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|------------------|---------------|
| 17  | Р     | 101 | BCR  | C3-C4-C5    | -2.24 | 110.07           | 114.08        |
| 14  | В     | 402 | PL9  | C32-C33-C34 | -2.24 | 122.27           | 127.66        |
| 17  | Р     | 101 | BCR  | C24-C23-C22 | -2.21 | 122.89           | 126.23        |
| 13  | В     | 404 | UMQ  | O5'-C5'-C4' | 2.20  | 114.40           | 109.75        |
| 10  | А     | 301 | HEM  | C3B-C2B-C1B | 2.20  | 108.12           | 106.49        |
| 11  | K     | 301 | HEC  | C1D-C2D-C3D | -2.20 | 105.47           | 107.00        |
| 14  | В     | 402 | PL9  | C40-C39-C41 | 2.20  | 118.97           | 115.27        |
| 11  | С     | 301 | HEC  | C1D-C2D-C3D | -2.19 | 105.47           | 107.00        |
| 14  | В     | 402 | PL9  | C37-C38-C39 | -2.19 | 122.39           | 127.66        |
| 14  | В     | 402 | PL9  | C36-C34-C33 | -2.19 | 116.69           | 121.12        |
| 17  | F     | 101 | BCR  | C7-C8-C9    | -2.17 | 122.95           | 126.23        |
| 13  | В     | 404 | UMQ  | C3'-C4'-C5' | 2.17  | 115.91           | 110.93        |
| 10  | А     | 302 | HEM  | C4C-CHD-C1D | 2.17  | 125.42           | 122.56        |
| 14  | В     | 402 | PL9  | C20-C19-C21 | 2.17  | 118.92           | 115.27        |
| 17  | Р     | 101 | BCR  | C38-C26-C25 | -2.17 | 122.09           | 124.53        |
| 14  | В     | 402 | PL9  | O1-C4-C3    | -2.17 | 118.33           | 120.72        |
| 14  | K     | 302 | PL9  | C37-C38-C39 | -2.16 | 122.45           | 127.66        |
| 15  | L     | 401 | SQD  | O48-C23-C24 | 2.16  | 118.69           | 111.91        |
| 14  | В     | 401 | PL9  | C37-C38-C39 | -2.16 | 122.46           | 127.66        |
| 14  | В     | 402 | PL9  | C31-C32-C33 | -2.15 | 104.81           | 111.88        |
| 10  | Ι     | 302 | HEM  | C4C-CHD-C1D | 2.15  | 125.40           | 122.56        |
| 14  | А     | 307 | PL9  | C37-C38-C39 | -2.15 | 122.48           | 127.66        |
| 10  | Ι     | 301 | HEM  | C3B-C2B-C1B | 2.14  | 108.07           | 106.49        |
| 14  | K     | 302 | PL9  | O2-C1-C6    | 2.13  | 124.28           | 120.59        |
| 13  | В     | 403 | UMQ  | O5'-C5'-C4' | 2.13  | 114.24           | 109.75        |
| 13  | J     | 404 | UMQ  | O5'-C5'-C4' | 2.13  | 114.24           | 109.75        |
| 14  | В     | 401 | PL9  | O2-C1-C6    | 2.12  | 124.27           | 120.59        |
| 14  | K     | 302 | PL9  | O1-C4-C3    | -2.12 | 118.39           | 120.72        |
| 12  | А     | 304 | CLA  | C1-C2-C3    | -2.12 | 122.38           | 126.04        |
| 12  | Ι     | 304 | CLA  | O2A-CGA-O1A | -2.11 | 118.26           | 123.59        |
| 14  | А     | 307 | PL9  | O2-C1-C2    | -2.11 | 116.94           | 121.78        |
| 14  | В     | 401 | PL9  | O2-C1-C2    | -2.11 | 116.94           | 121.78        |
| 10  | Ι     | 302 | HEM  | C3D-C4D-ND  | -2.11 | 107.82           | 110.17        |
| 14  | J     | 402 | PL9  | O1-C4-C3    | -2.11 | 118.40           | 120.72        |
| 14  | J     | 402 | PL9  | C32-C33-C34 | -2.11 | 122.59           | 127.66        |
| 12  | А     | 304 | CLA  | O2A-CGA-O1A | -2.11 | 118.28           | 123.59        |
| 14  | J     | 401 | PL9  | O2-C1-C6    | 2.11  | 124.24           | 120.59        |
| 14  | A     | 307 | PL9  | O2-C1-C6    | 2.10  | 124.23           | 120.59        |
| 12  | Ι     | 304 | CLA  | C1-C2-C3    | -2.09 | 122.42           | 126.04        |
| 14  | В     | 402 | PL9  | O2-C1-C6    | 2.09  | 124.21           | 120.59        |
| 17  | F     | 101 | BCR  | C24-C23-C22 | -2.09 | 123.08           | 126.23        |
| 14  | J     | 401 | PL9  | C12-C13-C14 | -2.09 | 122.63           | 127.66        |



| Mol | Chain | Res | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|------------------|---------------|
| 14  | K     | 302 | PL9  | O2-C1-C2    | -2.09 | 117.00           | 121.78        |
| 14  | В     | 401 | PL9  | C31-C32-C33 | -2.08 | 105.06           | 111.88        |
| 13  | J     | 403 | UMQ  | O5'-C1'-C2' | 2.07  | 114.74           | 110.35        |
| 14  | В     | 402 | PL9  | C41-C39-C38 | -2.07 | 116.93           | 121.12        |
| 14  | В     | 401 | PL9  | O1-C4-C3    | -2.07 | 118.44           | 120.72        |
| 13  | В     | 404 | UMQ  | O5-C5-C4    | 2.07  | 113.45           | 109.69        |
| 10  | А     | 302 | HEM  | C3D-C4D-ND  | -2.07 | 107.87           | 110.17        |
| 13  | Ι     | 305 | UMQ  | O1'-C1'-C2' | 2.06  | 111.53           | 108.30        |
| 10  | Ι     | 302 | HEM  | C3B-C2B-C1B | 2.06  | 108.02           | 106.49        |
| 13  | А     | 306 | UMQ  | O1'-C1'-C2' | 2.06  | 111.52           | 108.30        |
| 10  | А     | 301 | HEM  | CBA-CAA-C2A | -2.06 | 109.11           | 112.62        |
| 14  | В     | 402 | PL9  | O2-C1-C2    | -2.06 | 117.06           | 121.78        |
| 14  | В     | 401 | PL9  | C36-C34-C33 | -2.05 | 116.96           | 121.12        |
| 14  | J     | 401 | PL9  | O2-C1-C2    | -2.05 | 117.08           | 121.78        |
| 13  | Н     | 201 | UMQ  | C1'-O5'-C5' | -2.05 | 109.66           | 113.69        |
| 12  | Ι     | 304 | CLA  | CHD-C1D-ND  | -2.05 | 122.57           | 124.45        |
| 10  | Ι     | 301 | HEM  | CBA-CAA-C2A | -2.04 | 109.14           | 112.62        |
| 14  | А     | 307 | PL9  | C50-C49-C48 | -2.04 | 116.75           | 122.65        |
| 13  | Ι     | 306 | UMQ  | C2'-C3'-C4' | 2.03  | 114.33           | 109.68        |
| 12  | А     | 304 | CLA  | CHD-C1D-ND  | -2.03 | 122.58           | 124.45        |
| 11  | А     | 303 | HEC  | CBD-CAD-C3D | -2.03 | 109.16           | 112.62        |
| 14  | J     | 402 | PL9  | O2-C1-C6    | 2.03  | 124.11           | 120.59        |
| 14  | В     | 402 | PL9  | C42-C43-C44 | -2.03 | 122.78           | 127.66        |
| 14  | J     | 401 | PL9  | C37-C38-C39 | -2.02 | 122.79           | 127.66        |
| 11  | Ι     | 303 | HEC  | CBD-CAD-C3D | -2.02 | 109.17           | 112.62        |
| 14  | J     | 401 | PL9  | C31-C32-C33 | -2.02 | 105.25           | 111.88        |
| 14  | J     | 402 | PL9  | O2-C1-C2    | -2.02 | 117.16           | 121.78        |
| 10  | A     | 302 | HEM  | C3B-C2B-C1B | 2.01  | 107.98           | 106.49        |

Continued from previous page...

All (2) chirality outliers are listed below:

| Mol | Chain | Res | Type | Atom |
|-----|-------|-----|------|------|
| 12  | А     | 304 | CLA  | ND   |
| 12  | Ι     | 304 | CLA  | ND   |

All (308) torsion outliers are listed below:

| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 10  | А     | 302 | HEM  | C1A-C2A-CAA-CBA |
| 10  | А     | 302 | HEM  | C3A-C2A-CAA-CBA |
| 10  | Ι     | 302 | HEM  | C1A-C2A-CAA-CBA |
| 10  | Ι     | 302 | HEM  | C3A-C2A-CAA-CBA |



| EMD-15027, | 7ZYV |
|------------|------|
|------------|------|

| Mol | Chain | $\mathbf{Res}$ | Type | Atoms           |
|-----|-------|----------------|------|-----------------|
| 11  | А     | 303            | HEC  | C1A-C2A-CAA-CBA |
| 11  | А     | 303            | HEC  | C3A-C2A-CAA-CBA |
| 11  | Ι     | 303            | HEC  | C1A-C2A-CAA-CBA |
| 11  | Ι     | 303            | HEC  | C3A-C2A-CAA-CBA |
| 12  | А     | 304            | CLA  | C1A-C2A-CAA-CBA |
| 12  | А     | 304            | CLA  | C3A-C2A-CAA-CBA |
| 12  | Ι     | 304            | CLA  | C1A-C2A-CAA-CBA |
| 12  | Ι     | 304            | CLA  | C3A-C2A-CAA-CBA |
| 13  | В     | 403            | UMQ  | O5'-C1'-O1'-CA  |
| 13  | J     | 404            | UMQ  | O5'-C1'-O1'-CA  |
| 14  | А     | 307            | PL9  | C12-C13-C14-C16 |
| 14  | А     | 307            | PL9  | C13-C14-C16-C17 |
| 14  | А     | 307            | PL9  | C14-C16-C17-C18 |
| 14  | А     | 307            | PL9  | C27-C28-C29-C30 |
| 14  | А     | 307            | PL9  | C27-C28-C29-C31 |
| 14  | А     | 307            | PL9  | C30-C29-C31-C32 |
| 14  | А     | 307            | PL9  | C47-C48-C49-C50 |
| 14  | А     | 307            | PL9  | C47-C48-C49-C51 |
| 14  | В     | 401            | PL9  | C22-C23-C24-C26 |
| 14  | В     | 401            | PL9  | C34-C36-C37-C38 |
| 14  | В     | 401            | PL9  | C37-C38-C39-C41 |
| 14  | В     | 401            | PL9  | C40-C39-C41-C42 |
| 14  | В     | 401            | PL9  | C43-C44-C46-C47 |
| 14  | В     | 401            | PL9  | C45-C44-C46-C47 |
| 14  | В     | 402            | PL9  | C7-C8-C9-C11    |
| 14  | В     | 402            | PL9  | C19-C21-C22-C23 |
| 14  | В     | 402            | PL9  | C25-C24-C26-C27 |
| 14  | В     | 402            | PL9  | C29-C31-C32-C33 |
| 14  | В     | 402            | PL9  | C35-C34-C36-C37 |
| 14  | В     | 402            | PL9  | C37-C38-C39-C41 |
| 14  | В     | 402            | PL9  | C42-C43-C44-C46 |
| 14  | В     | 402            | PL9  | C45-C44-C46-C47 |
| 14  | J     | 401            | PL9  | C4-C3-C7-C8     |
| 14  | J     | 401            | PL9  | C15-C14-C16-C17 |
| 14  | J     | 401            | PL9  | C14-C16-C17-C18 |
| 14  | J     | 401            | PL9  | C22-C23-C24-C25 |
| 14  | J     | 401            | PL9  | C22-C23-C24-C26 |
| 14  | J     | 401            | PL9  | C24-C26-C27-C28 |
| 14  | J     | 402            | PL9  | C9-C11-C12-C13  |
| 14  | J     | 402            | PL9  | C22-C23-C24-C26 |
| 14  | J     | 402            | PL9  | C27-C28-C29-C31 |
| 14  | J     | 402            | PL9  | C33-C34-C36-C37 |



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 14  | J     | 402 | PL9  | C38-C39-C41-C42 |
| 14  | K     | 302 | PL9  | C12-C11-C9-C10  |
| 14  | K     | 302 | PL9  | C32-C33-C34-C35 |
| 14  | K     | 302 | PL9  | C32-C33-C34-C36 |
| 14  | K     | 302 | PL9  | C42-C43-C44-C45 |
| 14  | K     | 302 | PL9  | C42-C43-C44-C46 |
| 14  | K     | 302 | PL9  | C44-C46-C47-C48 |
| 15  | D     | 201 | SQD  | O6-C44-C45-O47  |
| 15  | L     | 401 | SQD  | O49-C7-O47-C45  |
| 15  | L     | 401 | SQD  | C8-C7-O47-C45   |
| 13  | J     | 403 | UMQ  | C5'-C4'-O1-C1   |
| 13  | В     | 403 | UMQ  | C2-C1-O1-C4'    |
| 13  | J     | 404 | UMQ  | C2-C1-O1-C4'    |
| 13  | В     | 403 | UMQ  | O5-C1-O1-C4'    |
| 13  | J     | 404 | UMQ  | O5-C1-O1-C4'    |
| 12  | А     | 304 | CLA  | O1A-CGA-O2A-C1  |
| 12  | Ι     | 304 | CLA  | O1A-CGA-O2A-C1  |
| 12  | А     | 304 | CLA  | CBA-CGA-O2A-C1  |
| 12  | Ι     | 304 | CLA  | CBA-CGA-O2A-C1  |
| 14  | J     | 401 | PL9  | C40-C39-C41-C42 |
| 14  | J     | 401 | PL9  | C28-C29-C31-C32 |
| 14  | J     | 401 | PL9  | C38-C39-C41-C42 |
| 14  | В     | 402 | PL9  | C42-C43-C44-C45 |
| 14  | K     | 302 | PL9  | C27-C28-C29-C30 |
| 14  | В     | 402 | PL9  | C12-C13-C14-C16 |
| 14  | Κ     | 302 | PL9  | C27-C28-C29-C31 |
| 13  | J     | 403 | UMQ  | O5-C5-C6-O6     |
| 13  | J     | 403 | UMQ  | C4-C5-C6-O6     |
| 13  | А     | 306 | UMQ  | O5-C5-C6-O6     |
| 13  | Ι     | 305 | UMQ  | O5-C5-C6-O6     |
| 15  | D     | 201 | SQD  | C10-C11-C12-C13 |
| 14  | J     | 401 | PL9  | C47-C48-C49-C51 |
| 14  | А     | 307 | PL9  | C15-C14-C16-C17 |
| 14  | J     | 401 | PL9  | C30-C29-C31-C32 |
| 14  | J     | 402 | PL9  | C20-C19-C21-C22 |
| 14  | J     | 402 | PL9  | C35-C34-C36-C37 |
| 14  | Κ     | 302 | PL9  | C40-C39-C41-C42 |
| 14  | J     | 402 | PL9  | C18-C19-C21-C22 |
| 14  | К     | 302 | PL9  | C12-C11-C9-C8   |
| 14  | К     | 302 | PL9  | C38-C39-C41-C42 |
| 13  | J     | 403 | UMQ  | O5'-C5'-C6'-O6' |
| 13  | А     | 306 | UMQ  | O5'-C1'-O1'-CA  |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 13  | Ι     | 305 | UMQ  | O5'-C1'-O1'-CA  |
| 14  | А     | 307 | PL9  | C34-C36-C37-C38 |
| 14  | В     | 401 | PL9  | C24-C26-C27-C28 |
| 14  | В     | 402 | PL9  | C24-C26-C27-C28 |
| 14  | J     | 401 | PL9  | C39-C41-C42-C43 |
| 14  | J     | 402 | PL9  | C24-C26-C27-C28 |
| 14  | А     | 307 | PL9  | C12-C13-C14-C15 |
| 14  | J     | 401 | PL9  | C27-C28-C29-C30 |
| 14  | В     | 402 | PL9  | C17-C18-C19-C21 |
| 14  | J     | 401 | PL9  | C7-C8-C9-C11    |
| 14  | J     | 401 | PL9  | C2-C3-C7-C8     |
| 13  | J     | 403 | UMQ  | C4'-C5'-C6'-O6' |
| 12  | А     | 304 | CLA  | C13-C15-C16-C17 |
| 12  | Ι     | 304 | CLA  | C13-C15-C16-C17 |
| 15  | D     | 201 | SQD  | O47-C45-C46-O48 |
| 15  | D     | 201 | SQD  | O10-C23-O48-C46 |
| 14  | В     | 402 | PL9  | C43-C44-C46-C47 |
| 15  | D     | 201 | SQD  | C11-C10-C9-C8   |
| 15  | D     | 201 | SQD  | C24-C23-O48-C46 |
| 10  | А     | 301 | HEM  | C2A-CAA-CBA-CGA |
| 10  | Ι     | 301 | HEM  | C2A-CAA-CBA-CGA |
| 11  | А     | 303 | HEC  | C3D-CAD-CBD-CGD |
| 11  | Ι     | 303 | HEC  | C3D-CAD-CBD-CGD |
| 15  | D     | 201 | SQD  | C23-C24-C25-C26 |
| 13  | А     | 306 | UMQ  | C4-C5-C6-O6     |
| 13  | Ι     | 305 | UMQ  | C4-C5-C6-O6     |
| 13  | Ι     | 306 | UMQ  | O1'-CA-CB-CC    |
| 14  | А     | 307 | PL9  | C44-C46-C47-C48 |
| 14  | В     | 401 | PL9  | C29-C31-C32-C33 |
| 14  | J     | 401 | PL9  | C9-C11-C12-C13  |
| 14  | J     | 401 | PL9  | C34-C36-C37-C38 |
| 14  | J     | 402 | PL9  | C44-C46-C47-C48 |
| 14  | K     | 302 | PL9  | C39-C41-C42-C43 |
| 14  | K     | 302 | PL9  | C20-C19-C21-C22 |
| 13  | В     | 403 | UMQ  | CB-CC-CD-CF     |
| 13  | Ι     | 306 | UMQ  | CC-CD-CF-CG     |
| 13  | Ι     | 306 | UMQ  | CD-CF-CG-CH     |
| 13  | J     | 404 | UMQ  | CB-CC-CD-CF     |
| 13  | Р     | 102 | UMQ  | CB-CC-CD-CF     |
| 13  | В     | 404 | UMQ  | CH-CI-CJ-CK     |
| 15  | L     | 401 | SQD  | C28-C29-C30-C31 |
| 13  | В     | 403 | UMQ  | C2'-C1'-O1'-CA  |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 13  | J     | 404 | UMQ  | C2'-C1'-O1'-CA  |
| 14  | В     | 401 | PL9  | C37-C38-C39-C40 |
| 13  | А     | 306 | UMQ  | CC-CD-CF-CG     |
| 13  | Ι     | 305 | UMQ  | CC-CD-CF-CG     |
| 15  | D     | 201 | SQD  | C24-C25-C26-C27 |
| 15  | L     | 401 | SQD  | C31-C32-C33-C34 |
| 15  | L     | 401 | SQD  | C27-C28-C29-C30 |
| 13  | В     | 403 | UMQ  | CB-CA-O1'-C1'   |
| 13  | J     | 404 | UMQ  | CB-CA-O1'-C1'   |
| 12  | А     | 304 | CLA  | C15-C16-C17-C18 |
| 12  | Ι     | 304 | CLA  | C15-C16-C17-C18 |
| 13  | Р     | 102 | UMQ  | CC-CD-CF-CG     |
| 14  | К     | 302 | PL9  | C12-C13-C14-C16 |
| 13  | Ι     | 306 | UMQ  | CH-CI-CJ-CK     |
| 13  | В     | 403 | UMQ  | CC-CD-CF-CG     |
| 17  | F     | 101 | BCR  | C23-C24-C25-C26 |
| 17  | F     | 101 | BCR  | C23-C24-C25-C30 |
| 13  | J     | 404 | UMQ  | CC-CD-CF-CG     |
| 14  | K     | 302 | PL9  | C47-C48-C49-C50 |
| 14  | K     | 302 | PL9  | C15-C14-C16-C17 |
| 15  | L     | 401 | SQD  | C10-C11-C12-C13 |
| 13  | Ι     | 306 | UMQ  | O5-C5-C6-O6     |
| 13  | В     | 404 | UMQ  | CD-CF-CG-CH     |
| 14  | В     | 402 | PL9  | C34-C36-C37-C38 |
| 13  | Н     | 201 | UMQ  | CF-CG-CH-CI     |
| 14  | J     | 402 | PL9  | C47-C48-C49-C51 |
| 13  | J     | 403 | UMQ  | CH-CI-CJ-CK     |
| 12  | А     | 304 | CLA  | C4-C3-C5-C6     |
| 12  | Ι     | 304 | CLA  | C4-C3-C5-C6     |
| 14  | А     | 307 | PL9  | C28-C29-C31-C32 |
| 14  | В     | 402 | PL9  | C4-C3-C7-C8     |
| 14  | J     | 402 | PL9  | C4-C3-C7-C8     |
| 13  | А     | 305 | UMQ  | O5-C5-C6-O6     |
| 12  | А     | 304 | CLA  | C2A-CAA-CBA-CGA |
| 12  | Ι     | 304 | CLA  | C2A-CAA-CBA-CGA |
| 13  | В     | 404 | UMQ  | O5'-C5'-C6'-O6' |
| 14  | В     | 402 | PL9  | C7-C8-C9-C10    |
| 14  | В     | 402 | PL9  | C12-C13-C14-C15 |
| 13  | Н     | 201 | UMQ  | CA-CB-CC-CD     |
| 15  | D     | 201 | SQD  | C11-C12-C13-C14 |
| 14  | В     | 401 | PL9  | C42-C43-C44-C46 |
| 13  | Р     | 102 | UMQ  | CA-CB-CC-CD     |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 13  | Ι     | 306 | UMQ  | CF-CG-CH-CI     |
| 13  | Ι     | 306 | UMQ  | O5'-C5'-C6'-O6' |
| 14  | А     | 307 | PL9  | C24-C26-C27-C28 |
| 14  | K     | 302 | PL9  | C29-C31-C32-C33 |
| 15  | L     | 401 | SQD  | C24-C25-C26-C27 |
| 13  | А     | 305 | UMQ  | O1'-CA-CB-CC    |
| 13  | В     | 403 | UMQ  | O5'-C5'-C6'-O6' |
| 13  | J     | 404 | UMQ  | O5'-C5'-C6'-O6' |
| 13  | Ι     | 306 | UMQ  | C2-C1-O1-C4'    |
| 12  | А     | 304 | CLA  | C2-C1-O2A-CGA   |
| 12  | Ι     | 304 | CLA  | C2-C1-O2A-CGA   |
| 13  | Р     | 102 | UMQ  | C4-C5-C6-O6     |
| 13  | Ι     | 306 | UMQ  | O5-C1-O1-C4'    |
| 13  | А     | 305 | UMQ  | CF-CG-CH-CI     |
| 15  | D     | 201 | SQD  | C12-C13-C14-C15 |
| 13  | Р     | 102 | UMQ  | CG-CH-CI-CJ     |
| 13  | А     | 306 | UMQ  | CH-CI-CJ-CK     |
| 13  | Ι     | 305 | UMQ  | CH-CI-CJ-CK     |
| 13  | Н     | 201 | UMQ  | CH-CI-CJ-CK     |
| 13  | А     | 306 | UMQ  | CB-CC-CD-CF     |
| 13  | Ι     | 305 | UMQ  | CB-CC-CD-CF     |
| 14  | J     | 402 | PL9  | C25-C24-C26-C27 |
| 12  | А     | 304 | CLA  | C2-C3-C5-C6     |
| 12  | Ι     | 304 | CLA  | C2-C3-C5-C6     |
| 15  | L     | 401 | SQD  | C29-C30-C31-C32 |
| 13  | А     | 305 | UMQ  | CB-CA-O1'-C1'   |
| 13  | Ι     | 306 | UMQ  | CB-CA-O1'-C1'   |
| 13  | А     | 306 | UMQ  | CG-CH-CI-CJ     |
| 13  | Ι     | 305 | UMQ  | CG-CH-CI-CJ     |
| 15  | D     | 201 | SQD  | O6-C44-C45-C46  |
| 15  | D     | 201 | SQD  | C44-C45-C46-O48 |
| 15  | L     | 401 | SQD  | C44-C45-C46-O48 |
| 14  | J     | 402 | PL9  | C42-C43-C44-C45 |
| 13  | Ι     | 306 | UMQ  | CB-CC-CD-CF     |
| 15  | D     | 201 | SQD  | C13-C14-C15-C16 |
| 14  | А     | 307 | PL9  | C9-C11-C12-C13  |
| 13  | J     | 403 | UMQ  | CD-CF-CG-CH     |
| 15  | L     | 401 | SQD  | C19-C20-C21-C22 |
| 14  | В     | 401 | PL9  | C47-C48-C49-C50 |
| 12  | А     | 304 | CLA  | C11-C12-C13-C15 |
| 12  | Ι     | 304 | CLA  | C11-C12-C13-C15 |
| 13  | J     | 403 | UMQ  | O1'-CA-CB-CC    |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 14  | В     | 402 | PL9  | C32-C33-C34-C36 |
| 13  | А     | 305 | UMQ  | CH-CI-CJ-CK     |
| 14  | J     | 402 | PL9  | C12-C13-C14-C15 |
| 15  | L     | 401 | SQD  | O47-C45-C46-O48 |
| 13  | В     | 404 | UMQ  | CF-CG-CH-CI     |
| 14  | А     | 307 | PL9  | C43-C44-C46-C47 |
| 13  | Н     | 201 | UMQ  | C4-C5-C6-O6     |
| 13  | А     | 305 | UMQ  | CB-CC-CD-CF     |
| 13  | Ι     | 306 | UMQ  | CG-CH-CI-CJ     |
| 13  | Р     | 102 | UMQ  | CD-CF-CG-CH     |
| 13  | J     | 403 | UMQ  | CC-CD-CF-CG     |
| 13  | Р     | 102 | UMQ  | O5-C5-C6-O6     |
| 13  | В     | 404 | UMQ  | C3'-C4'-O1-C1   |
| 12  | А     | 304 | CLA  | C11-C12-C13-C14 |
| 12  | Ι     | 304 | CLA  | C11-C12-C13-C14 |
| 14  | А     | 307 | PL9  | C25-C24-C26-C27 |
| 15  | L     | 401 | SQD  | C14-C15-C16-C17 |
| 14  | J     | 402 | PL9  | C7-C8-C9-C11    |
| 14  | J     | 401 | PL9  | C13-C14-C16-C17 |
| 15  | D     | 201 | SQD  | C33-C34-C35-C36 |
| 14  | Κ     | 302 | PL9  | C24-C26-C27-C28 |
| 15  | L     | 401 | SQD  | C2-C1-O6-C44    |
| 14  | J     | 401 | PL9  | C37-C38-C39-C41 |
| 14  | Κ     | 302 | PL9  | C7-C8-C9-C11    |
| 12  | А     | 304 | CLA  | C11-C10-C8-C9   |
| 12  | Ι     | 304 | CLA  | C11-C10-C8-C9   |
| 14  | J     | 401 | PL9  | C43-C44-C46-C47 |
| 14  | В     | 401 | PL9  | C47-C48-C49-C51 |
| 14  | J     | 402 | PL9  | C19-C21-C22-C23 |
| 14  | J     | 402 | PL9  | C34-C36-C37-C38 |
| 14  | В     | 402 | PL9  | C15-C14-C16-C17 |
| 14  | J     | 402 | PL9  | C12-C11-C9-C10  |
| 15  | L     | 401 | SQD  | C18-C19-C20-C21 |
| 13  | Ι     | 305 | UMQ  | CD-CF-CG-CH     |
| 13  | А     | 306 | UMQ  | CD-CF-CG-CH     |
| 13  | J     | 403 | UMQ  | CG-CH-CI-CJ     |
| 17  | F     | 101 | BCR  | C11-C10-C9-C34  |
| 17  | Р     | 101 | BCR  | C11-C10-C9-C34  |
| 14  | В     | 401 | PL9  | C12-C13-C14-C15 |
| 14  | J     | 402 | PL9  | C2-C3-C7-C8     |
| 13  | A     | 305 | UMQ  | CC-CD-CF-CG     |
| 14  | В     | 401 | PL9  | C15-C14-C16-C17 |

Continued from previous page...



| Mol | Chain | Res              | Type             | Atoms           |  |
|-----|-------|------------------|------------------|-----------------|--|
| 14  | K     | 302              | PL9              | C25-C24-C26-C27 |  |
| 14  | В     | 402              | PL9              | C12-C11-C9-C10  |  |
| 13  | Р     | 102              | UMQ              | CF-CG-CH-CI     |  |
| 17  | F     | 101              | BCR              | C11-C10-C9-C8   |  |
| 17  | Р     | 101              | BCR              | C11-C10-C9-C8   |  |
| 13  | В     | 404              | UMQ              | O5-C1-O1-C4'    |  |
| 13  | Ι     | 305              | UMQ              | CI-CJ-CK-CL     |  |
| 13  | А     | 306              | UMQ              | CI-CJ-CK-CL     |  |
| 14  | В     | 402              | PL9              | C27-C28-C29-C30 |  |
| 13  | В     | 404              | UMQ              | C5'-C4'-O1-C1   |  |
| 14  | В     | 402              | PL9              | C40-C39-C41-C42 |  |
| 14  | В     | 402              | PL9              | C23-C24-C26-C27 |  |
| 15  | L     | 401              | SQD              | C33-C34-C35-C36 |  |
| 13  | В     | 404              | UMQ              | C2-C1-O1-C4'    |  |
| 14  | В     | 401              | PL9              | C30-C29-C31-C32 |  |
| 14  | J     | 402              | PL9              | C40-C39-C41-C42 |  |
| 11  | С     | 301              | HEC              | CAA-CBA-CGA-O2A |  |
| 13  | Н     | 201              | UMQ              | O5-C5-C6-O6     |  |
| 11  | Κ     | 301              | HEC              | CAA-CBA-CGA-O2A |  |
| 15  | L     | 401              | SQD              | C11-C12-C13-C14 |  |
| 14  | В     | 401              | PL9              | C20-C19-C21-C22 |  |
| 12  | А     | 304              | CLA              | CAA-CBA-CGA-O2A |  |
| 12  | Ι     | 304              | CLA              | CAA-CBA-CGA-O2A |  |
| 14  | В     | 401              | PL9              | C39-C41-C42-C43 |  |
| 15  | L     | 401              | SQD              | C34-C35-C36-C37 |  |
| 15  | L     | 401              | SQD              | O6-C44-C45-O47  |  |
| 14  | А     | 307              | PL9              | C4-C3-C7-C8     |  |
| 15  | D     | 201              | SQD              | C9-C10-C11-C12  |  |
| 14  | В     | 401              | PL9              | C13-C14-C16-C17 |  |
| 13  | J     | 403              | UMQ              | CA-CB-CC-CD     |  |
| 12  | А     | 304              | CLA              | CAA-CBA-CGA-O1A |  |
| 12  | Ι     | 304              | CLA              | CAA-CBA-CGA-O1A |  |
| 11  | С     | 301              | HEC              | CAA-CBA-CGA-O1A |  |
| 11  | K     | $30\overline{1}$ | $HE\overline{C}$ | CAA-CBA-CGA-O1A |  |
| 15  | L     | 401              | SQD              | C11-C10-C9-C8   |  |
| 13  | В     | 404              | UMQ              | CG-CH-CI-CJ     |  |
| 10  | А     | 301              | HEM              | CAD-CBD-CGD-O2D |  |
| 10  | Ι     | 301              | HEM              | CAD-CBD-CGD-O2D |  |
| 13  | B     | $40\overline{4}$ | $UM\overline{Q}$ | O5-C5-C6-O6     |  |
| 12  | А     | 304              | CLA              | CAD-CBD-CGD-O1D |  |
| 12  | Ι     | 304              | CLA              | CAD-CBD-CGD-O1D |  |
| 10  | Ι     | 301              | HEM              | CAD-CBD-CGD-O1D |  |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 10  | А     | 301 | HEM  | CAD-CBD-CGD-O1D |
| 11  | А     | 303 | HEC  | C2A-CAA-CBA-CGA |
| 11  | Ι     | 303 | HEC  | C2A-CAA-CBA-CGA |
| 14  | В     | 402 | PL9  | C28-C29-C31-C32 |
| 13  | В     | 404 | UMQ  | CB-CC-CD-CF     |
| 15  | L     | 401 | SQD  | C32-C33-C34-C35 |
| 13  | J     | 403 | UMQ  | CB-CA-O1'-C1'   |
| 14  | Κ     | 302 | PL9  | C9-C11-C12-C13  |
| 14  | А     | 307 | PL9  | C21-C22-C23-C24 |
| 14  | J     | 401 | PL9  | C41-C42-C43-C44 |

Continued from previous page...

There are no ring outliers.

27 monomers are involved in 122 short contacts:

| Mol | Chain | Res | Type | Clashes | Symm-Clashes |
|-----|-------|-----|------|---------|--------------|
| 13  | Ι     | 305 | UMQ  | 1       | 0            |
| 17  | F     | 101 | BCR  | 2       | 0            |
| 13  | Ι     | 306 | UMQ  | 1       | 0            |
| 10  | А     | 301 | HEM  | 4       | 0            |
| 12  | А     | 304 | CLA  | 4       | 0            |
| 13  | Н     | 201 | UMQ  | 1       | 0            |
| 14  | В     | 402 | PL9  | 17      | 0            |
| 12  | Ι     | 304 | CLA  | 5       | 0            |
| 13  | В     | 404 | UMQ  | 1       | 0            |
| 14  | А     | 307 | PL9  | 10      | 0            |
| 11  | Ι     | 303 | HEC  | 2       | 0            |
| 14  | J     | 401 | PL9  | 14      | 0            |
| 10  | Ι     | 302 | HEM  | 6       | 0            |
| 10  | Ι     | 301 | HEM  | 4       | 0            |
| 13  | J     | 403 | UMQ  | 1       | 0            |
| 14  | K     | 302 | PL9  | 4       | 0            |
| 13  | Р     | 102 | UMQ  | 1       | 0            |
| 15  | L     | 401 | SQD  | 1       | 0            |
| 11  | Κ     | 301 | HEC  | 5       | 0            |
| 11  | С     | 301 | HEC  | 6       | 0            |
| 14  | В     | 401 | PL9  | 10      | 0            |
| 17  | Р     | 101 | BCR  | 5       | 0            |
| 13  | В     | 403 | UMQ  | 2       | 0            |
| 14  | J     | 402 | PL9  | 14      | 0            |
| 10  | А     | 302 | HEM  | 5       | 0            |
| 15  | D     | 201 | SQD  | 5       | 0            |
| 11  | А     | 303 | HEC  | 2       | 0            |



The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.































































# 5.7 Other polymers (i)

There are no such residues in this entry.

# 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-15027. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

# 6.1 Orthogonal projections (i)

#### 6.1.1 Primary map



6.1.2 Raw map



The images above show the map projected in three orthogonal directions.



### 6.2 Central slices (i)

#### 6.2.1 Primary map



X Index: 186





Z Index: 186

#### 6.2.2 Raw map



X Index: 186

Y Index: 186



The images above show central slices of the map in three orthogonal directions.



### 6.3 Largest variance slices (i)

### 6.3.1 Primary map



X Index: 205



Y Index: 189



Z Index: 173

#### 6.3.2 Raw map



X Index: 205

Y Index: 189



The images above show the largest variance slices of the map in three orthogonal directions.



# 6.4 Orthogonal surface views (i)

#### 6.4.1 Primary map



The images above show the 3D surface view of the map at the recommended contour level 0.208. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

#### 6.4.2 Raw map



These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

### 6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.



# 7 Map analysis (i)

This section contains the results of statistical analysis of the map.

# 7.1 Map-value distribution (i)



The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.



## 7.2 Volume estimate (i)



The volume at the recommended contour level is  $150 \text{ nm}^3$ ; this corresponds to an approximate mass of 136 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.



# 7.3 Rotationally averaged power spectrum (i)



\*Reported resolution corresponds to spatial frequency of 0.469  $\text{\AA}^{-1}$ 


# 8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

#### 8.1 FSC (i)



\*Reported resolution corresponds to spatial frequency of 0.469  $\mathrm{\AA^{-1}}$ 



### 8.2 Resolution estimates (i)

| $\mathbf{Bosolution} \text{ ostimato } (\mathbf{\hat{\lambda}})$ | Estimation criterion (FSC cut-off) |      |          |
|------------------------------------------------------------------|------------------------------------|------|----------|
| resolution estimate (A)                                          | 0.143                              | 0.5  | Half-bit |
| Reported by author                                               | 2.13                               | -    | -        |
| Author-provided FSC curve                                        | 2.13                               | 2.36 | 2.16     |
| Unmasked-calculated*                                             | 2.56                               | 2.93 | 2.58     |

\*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 2.56 differs from the reported value 2.13 by more than 10 %



# 9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-15027 and PDB model 7ZYV. Per-residue inclusion information can be found in section 3 on page 12.

## 9.1 Map-model overlay (i)



The images above show the 3D surface view of the map at the recommended contour level 0.208 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



### 9.2 Q-score mapped to coordinate model (i)



The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

#### 9.3 Atom inclusion mapped to coordinate model (i)



The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.208).



### 9.4 Atom inclusion (i)



At the recommended contour level, 97% of all backbone atoms, 97% of all non-hydrogen atoms, are inside the map.



1.0

0.0 <0.0

## 9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.208) and Q-score for the entire model and for each chain.

| Chain        | Atom inclusion | $\mathbf{Q}	ext{-score}$ |
|--------------|----------------|--------------------------|
| All          | 0.9675         | 0.6440                   |
| А            | 0.9873         | 0.6780                   |
| В            | 0.9646         | 0.6510                   |
| $\mathbf{C}$ | 0.9571         | 0.6120                   |
| D            | 0.9654         | 0.6270                   |
| Ε            | 0.9917         | 0.6400                   |
| F            | 0.9639         | 0.6470                   |
| G            | 0.9885         | 0.6670                   |
| Η            | 0.9920         | 0.6740                   |
| Ι            | 0.9885         | 0.6820                   |
| J            | 0.9640         | 0.6510                   |
| Κ            | 0.9543         | 0.6110                   |
| L            | 0.9606         | 0.6300                   |
| M            | 0.9958         | 0.6480                   |
| N            | 0.9808         | 0.6500                   |
| Ō            | 0.9961         | 0.6730                   |
| Р            | 0.9829         | 0.6700                   |
| Q            | 0.8930         | 0.6110                   |
| R            | 0.8884         | 0.5990                   |

