

Nov 21, 2022 – 12:23 pm GMT

PDB ID	:	7ZLK
EMDB ID	:	EMD-14783
Title	:	AMC009 SOSIPv5.2 in complex with Fabs ACS101 and ACS124
Authors	:	van Schooten, J.; Ozorowski, G.; Ward, A.
Deposited on	:	2022-04-15
Resolution	:	3.99 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry. We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.0.dev97
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.26

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.99 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motria	Whole archive	EM structures		
Metric	$(\# { m Entries})$	$(\# {\rm Entries})$		
Clashscore	158937	4297		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain		
1	А	482	85%	6%	10%
1	С	482	87%	•	10%
1	D	482	87%	•	10%
2	В	154	73% 5% •	22%	
2	Е	154	80%	20%	
2	F	154	80% 6%	14	%
3	Н	120	96%		•
3	Ο	120	96%		•
3	Q	120	95%		5%

Mol	Chain	Length	Quality of chain	
4	L	112	97%	•
4	Р	112	96%	•
4	R	112	95%	5%
5	М	124	94%	5% •
5	\mathbf{S}	124	83%	12% • •
6	Ν	108	93%	6% •
6	Т	108	93%	6% ••
7	G	2	100%	
7	V	2	100%	
7	е	2	100%	
8	Ι	5	100%	
8	U	5	100%	
8	W	5	100%	
8	Y	5	100%	
8	Ζ	5	80%	20%
8	b	5	100%	
8	f	5	100%	
9	J	7	100%	
9	Х	7	100%	
9	с	7	100%	
10	K	4	25% 75%	
11	a	3	100%	
12	d	8	100%	

2 Entry composition (i)

There are 13 unique types of molecules in this entry. The entry contains 23518 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called AMC009 SOSIPv5.2 envelope glycoprotein gp120.

Mol	Chain	Residues		At		AltConf	Trace		
1	А	436	Total 3460	C 2185	N 606	0 642	S 27	0	0
1	С	436	Total 3460	C 2185	N 606	0 642	S 27	0	0
1	D	436	Total 3460	C 2185	N 606	0 642	S 27	0	0

• Molecule 2 is a protein called AMC009 SOSIPv5.2 envelope glycoprotein gp41.

Mol	Chain	Residues		At	oms		AltConf	Trace	
2 B	В	120	Total	С	Ν	Ο	S	0	0
	120	954	601	170	176	7	0	0	
2	F	192	Total	С	Ν	Ο	\mathbf{S}	0	0
	123	982	616	176	183	7	0	0	
0	Б	120	Total	С	Ν	0	S	0	0
2	Г	132	1058	662	187	202	7		

• Molecule 3 is a protein called ACS114 heavy chain.

Mol	Chain	Residues		At	oms		AltConf	Trace	
3 H	Ц	120	Total	С	Ν	0	S	0	0
	120	934	594	163	171	6	0	0	
2	0	120	Total	С	Ν	0	S	0	0
3 0	0	120	934	594	163	171	6	0	0
3 Q	190	Total	С	Ν	0	S	0	0	
	Q	2 120	934	594	163	171	6	0	0

• Molecule 4 is a protein called ACS114 light chain.

Mol	Chain	Residues		At	oms	AltConf	Trace		
4	L	112	Total 856	C 538	N 147	0 168	${ m S} { m 3}$	0	0

	j = j		9						
Mol	Chain	Residues		At	oms	AltConf	Trace		
4	Р	112	Total	С	Ν	Ο	S	0	0
	1	112	856	538	147	168	3		0
4	D	119	Total	С	Ν	0	\mathbf{S}	0	0
4	n	ι 112	856	538	147	168	3		0

• Molecule 5 is a protein called ACS122 heavy chain.

Mol	Chain	Residues		At	oms	AltConf	Trace		
5	М	124	Total 971	C 618	N 165	0 185	${ m S} { m 3}$	0	0
5	S	119	Total 938	$\begin{array}{c} \mathrm{C} \\ 598 \end{array}$	N 160	O 177	${ m S} { m 3}$	0	0

• Molecule 6 is a protein called ACS122 light chain.

Mol	Chain	Residues		At	oms		AltConf	Trace	
6	6 N	107	Total	С	Ν	0	S	0	0
0 1	1 N	107	814	509	141	161	3		0
6	6 T	107	Total	С	Ν	0	S	0	0
0		107	814	509	141	161	3	0	

• Molecule 7 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	AltConf	Trace
7	G	2	Total C N O 28 16 2 10	0	0
7	V	2	Total C N O 28 16 2 10	0	0
7	е	2	Total C N O 28 16 2 10	0	0

• Molecule 8 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyran ose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	AltConf	Trace
8	Ι	5	Total C N O 61 34 2 25	0	0
8	U	5	Total C N O 61 34 2 25	0	0
8	W	5	Total C N O 61 34 2 25	0	0
8	Y	5	Total C N O 61 34 2 25	0	0
8	Z	5	Total C N O 61 34 2 25	0	0
8	b	5	Total C N O 61 34 2 25	0	0
8	f	5	Total C N O 61 34 2 25	0	0

• Molecule 9 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyran ose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyran ose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-g

Mol	Chain	Residues	Atoms	AltConf	Trace
9	J	7	Total C N O 83 46 2 35	0	0
9	Х	7	Total C N O 83 46 2 35	0	0
9	с	7	Total C N O 83 46 2 35	0	0

• Molecule 10 is an oligosaccharide called alpha-D-mannopyranose-(1-6)-beta-D-mannopyran ose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glu copyranose.

Mol	Chain	Residues	Atoms			AltConf	Trace	
10	K	4	Total 50	C 28	N 2	O 20	0	0

• Molecule 11 is an oligosaccharide called beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxybeta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms			AltConf	Trace	
11	a	3	Total 39	C 22	N 2	O 15	0	0

• Molecule 12 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyra nose-(1-3)-[alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopy ranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms			AltConf	Trace	
12	d	8	Total 94	C 52	N 2	O 40	0	0

• Molecule 13 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	I	Aton	ns		AltConf	
19	Δ	1	Total	С	Ν	0	0	
15	A	1	70	40	5	25	0	
19	Δ	1	Total	С	Ν	0	0	
10	A	L	70	40	5	25	0	
12	Δ	1	Total	С	Ν	0	0	
10	A	L	70	40	5	25	0	
12	Δ	1	Total	С	Ν	0	0	
10	Л	T	70	40	5	25	0	
13	Δ	1	Total	С	Ν	0	0	
10	Π	T	70	40	5	25	0	
13	C	1	Total	С	Ν	Ο	0	
10		I	112	64	8	40	0	
13	C	1	Total	С	Ν	Ο	0	
10	U		I	112	64	8	40	0
13	C	1	Total	С	Ν	Ο	0	
10	0	T	112	64	8	40	0	
13	C	1	Total	С	Ν	Ο	0	
10	0	T	112	64	8	40	0	
13	C	1	Total	\mathbf{C}	Ν	Ο	0	
10	0	1	112	64	8	40	0	
13	C	1	Total	С	Ν	Ο	0	
10		1	112	64	8	40	0	
13	C	1	Total	С	Ν	Ο	0	
	Ŭ	±	112	64	8	40	Ŭ	
13	C	1	Total	С	Ν	Ο	0	
	Ŭ	*	112	64	8	40		
13	D	1	Total	С	Ν	Ο	0	
10		_ *	112	64	8	40		

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
12	Л	1	Total C N O	0
10	D	1	112 64 8 40	0
12	Л	1	Total C N O	0
10	D	1	112 64 8 40	0
12	Л	1	Total C N O	0
10	D	1	112 64 8 40	0
12	Л	1	Total C N O	0
10	D	1	112 64 8 40	0
12	Л	1	Total C N O	0
10	D	1	112 64 8 40	0
12	Л	1	Total C N O	0
10	D	1	112 64 8 40	0
12	Л	1	Total C N O	0
10	D		112 64 8 40	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Chain A: 85% 10% 6% VAL GLY ASN ALA ALA ASN ALA SER GLU VAL SER ASN ASN ASP ASP TLE • Molecule 1: AMC009 SOSIPv5.2 envelope glycoprotein gp120 Chain C: 87% 10% ALA THE ASN ASN ALA SEF SEF THE THE ALA ASN THE THR GLU VAL SER SER ASN ASN ASP THE • Molecule 1: AMC009 SOSIPv5.2 envelope glycoprotein gp120 Chain D: 87% 10% • Molecule 2: AMC009 SOSIPv5.2 envelope glycoprotein gp41 Chain B: 73% 5%・ 22% ALA VAL GLY ALA ALA GLY ALA VAL VAL PHE LEU CLY PRO GLU GLN GLN GLN HIS MET MET LEU LEU GLN GLN GLN GLU GLU GLU LEU LEU LEU LEU LEU • Molecule 2: AMC009 SOSIPv5.2 envelope glycoprotein gp41
- Molecule 1: AMC009 SOSIPv5.2 envelope glycoprotein gp120

Chain E:	80%	20%
ALA VAL GLY GLY ALA ILE GLY PHE LEU GLY GLY	PHC PHC PRO PRO PRO PRO PRO PRO PRO PRO	
• Molecule 2:	AMC009 SOSIPv5.2 envelope glycoprotein gp41	
Chain F:	80%	6% 14%
ALA VAL GLY ALA ALA ALA ALA ALA PHE PHE CLU	Herrich Contract of the second	
• Molecule 3:	ACS114 heavy chain	
Chain H:	96%	
Q1 F29 R66 D86 B8 R94		
• Molecule 3:	ACS114 heavy chain	
Chain O:	96%	·
Q 1 F 29 R 66 L 80 L 80 D 86 D 86		
• Molecule 3:	ACS114 heavy chain	
Chain Q:	95%	5%
11 Y25 R66 R66 R66		
• Molecule 4:	ACS114 light chain	
Chain L:	97%	
D1 H27D S27E X49 K107		
• Molecule 4:	ACS114 light chain	
Chain P:	96%	•
D1 17 17 17 145 194 194	K107	
	•	

• Molecule 4: ACS114 light chain

Chain R:	95%	5%	
D1 H27D S27E R54 P60 P60 F94 F94 K107			
• Molecule 5: ACS122	heavy chain		
Chain M:	94%	5% ·	
91 86 759 86 86 80 80 1008 1008 1008 1008 8100 8100			
• Molecule 5: ACS122	heavy chain		
Chain S:	83%	12% • •	
01 129 129 133 133 133 133 133 133 133 133 133 13	D1008 V1006 R1006 F1001 F1001 P102 V10 V10 V11 THR V11 THR V12 SER		
• Molecule 6: ACS122	light chain		
Chain N:	93%	6% ·	
9358. 14 14 14 14 14 14 14 14 14 14 14 14 14			
• Molecule 6: ACS122	light chain		
Chain T:	93%	6% ••	
SER 126 126 126 126 126 126 126 126 131 131 131 131 131 131 131 131 131 13			
• Molecule 7: 2-acetar opyranose	nido-2-deoxy-beta-D-glucopyran	ose-(1-4)-2-acetamido-2-deoxy-beta	ı-D-gluc
Chain G:	100%		
1462			

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain V:

100%

NAG1 NAG2

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain e:

100%

NAG1 NAG2

 \bullet Molecule 8: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose nose

Chain I:

100%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5

 \bullet Molecule 8: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose nose

Chain U:

100%

NAG1 NAG2 BMA3 MAN4 MAN5

 \bullet Molecule 8: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose nose

Chain W:

100%

NAG1 NAG2 BMA3 MAN4 MAN5

 • Molecule 8: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyrano
 se-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain Y:

100%

NAG1 NAG2 BMA3 MAN4 MAN5

 • Molecule 8: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyrano
 se-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain Z:	80%	20%

 • Molecule 8: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain b:

100%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5

 • Molecule 8: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyrano
 se-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain f:

100%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5

 $\label{eq:mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-b$

Chain J:

100%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 MAN6

 $\label{eq:mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-b$

Chain X:

100%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 MAN5 MAN7

 $\label{eq:mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-b$

Chain c:

100%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 MAN7

 $\bullet \ Molecule \ 10: \ alpha-D-mannopyranose-(1-6)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose$

Chain K: 25%

75%

NAG1 NAG2 BM<mark>a3</mark> Man4

• Molecule 11: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain a:

100%

NAG1 NAG2 BMA3

• Molecule 12: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranos e

Chain d:

100%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 MAN5 MAN7 MAN7 MAN8

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	159597	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TALOS ARCTICA	Depositor
Voltage (kV)	200	Depositor
Electron dose $(e^-/\text{\AA}^2)$	49.3	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	1700	Depositor
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAG, MAN, BMA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	В	ond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	1.11	13/3535~(0.4%)	0.92	4/4800~(0.1%)
1	С	1.08	12/3535~(0.3%)	0.89	5/4800~(0.1%)
1	D	1.06	13/3535~(0.4%)	0.92	6/4800~(0.1%)
2	В	1.06	1/970~(0.1%)	1.01	2/1317~(0.2%)
2	Е	1.08	0/998	0.87	0/1353
2	F	1.16	3/1074~(0.3%)	0.88	1/1456~(0.1%)
3	Н	1.03	1/963~(0.1%)	1.02	7/1314~(0.5%)
3	0	1.01	1/963~(0.1%)	0.94	3/1314~(0.2%)
3	Q	1.11	2/963~(0.2%)	1.02	6/1314~(0.5%)
4	L	0.98	1/875~(0.1%)	1.01	1/1190~(0.1%)
4	Р	1.02	1/875~(0.1%)	1.01	2/1190~(0.2%)
4	R	0.98	1/875~(0.1%)	0.99	2/1190~(0.2%)
5	М	1.16	6/997~(0.6%)	0.93	1/1361~(0.1%)
5	S	1.15	6/964~(0.6%)	1.04	4/1315~(0.3%)
6	Ν	1.15	8/834~(1.0%)	0.92	1/1136~(0.1%)
6	Т	1.12	$\overline{6/834}\ (0.7\%)$	0.97	$2/\overline{1136}~(0.2\%)$
All	All	1.08	75/22790~(0.3%)	0.94	47/30986~(0.2%)

All (75) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms		Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
5	S	102	PRO	N-CD	10.08	1.61	1.47
3	Q	29	PHE	CB-CG	-8.49	1.36	1.51
6	Ν	1	TYR	CG-CD2	8.02	1.49	1.39
6	Т	1	TYR	CG-CD2	8.01	1.49	1.39
1	С	482	GLU	CG-CD	-7.81	1.40	1.51
1	D	134	TYR	CG-CD2	7.72	1.49	1.39
1	А	134	TYR	CE1-CZ	7.71	1.48	1.38
1	А	134	TYR	CG-CD2	7.65	1.49	1.39
6	Т	1	TYR	CG-CD1	7.61	1.49	1.39
1	D	134	TYR	CE2-CZ	7.58	1.48	1.38

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
6	N	1	TYR	CE2-CZ	7.57	1.48	1.38
6	N	86	CYS	CB-SG	-7.46	1.69	1.82
1	А	134	TYR	CG-CD1	7.43	1.48	1.39
1	D	134	TYR	CG-CD1	7.28	1.48	1.39
1	С	134	TYR	CG-CD2	7.24	1.48	1.39
1	D	134	TYR	CE1-CZ	7.16	1.47	1.38
5	S	34	TRP	CB-CG	-7.10	1.37	1.50
1	С	482	GLU	CD-OE2	-7.00	1.18	1.25
6	N	1	TYR	CG-CD1	6.99	1.48	1.39
6	Т	1	TYR	CE1-CZ	6.99	1.47	1.38
3	Н	29	PHE	CB-CG	-6.90	1.39	1.51
6	Т	96	CYS	CB-SG	-6.88	1.70	1.82
5	М	59	TYR	CB-CG	-6.81	1.41	1.51
1	С	134	TYR	CE2-CZ	6.81	1.47	1.38
5	М	100(G)	TRP	CB-CG	-6.78	1.38	1.50
6	Т	86	CYS	CB-SG	-6.76	1.70	1.82
1	С	134	TYR	CG-CD1	6.74	1.48	1.39
1	С	134	TYR	CE1-CZ	6.74	1.47	1.38
5	М	6	GLU	CD-OE2	-6.41	1.18	1.25
6	N	34	TYR	CB-CG	-6.34	1.42	1.51
1	С	35	TRP	CD2-CE3	6.28	1.49	1.40
1	D	35	TRP	CD2-CE3	6.25	1.49	1.40
1	А	53	PHE	CB-CG	-6.18	1.40	1.51
3	0	29	PHE	CB-CG	-6.08	1.41	1.51
1	А	134	TYR	CE2-CZ	6.00	1.46	1.38
6	Т	1	TYR	CE2-CZ	6.00	1.46	1.38
1	А	150	GLU	CB-CG	5.91	1.63	1.52
1	А	35	TRP	CZ2-CH2	5.87	1.48	1.37
1	С	35	TRP	CZ2-CH2	5.86	1.48	1.37
1	А	35	TRP	CE3-CZ3	5.82	1.48	1.38
2	F	631	TRP	CB-CG	-5.81	1.39	1.50
5	S	78	PHE	CB-CG	-5.72	1.41	1.51
1	D	35	TRP	CZ2-CH2	5.69	1.48	1.37
1	D	150	GLU	CB-CG	5.67	1.62	1.52
1	D	159	PHE	CB-CG	-5.64	1.41	1.51
2	F	647	GLU	CD-OE2	-5.62	1.19	1.25
1	D	482	GLU	CD-OE1	-5.61	1.19	1.25
1	D	308	HIS	CB-CG	-5.60	1.40	1.50
4	Р	94	PHE	CB-CG	-5.52	1.42	1.51
1	A	466	GLU	CD-OE1	-5.48	1.19	1.25
5	S	33	TYR	CE1-CZ	-5.47	1.31	1.38
3	Q	25	TYR	CB-CG	-5.47	1.43	1.51

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	А	159	PHE	CB-CG	-5.44	1.42	1.51
5	М	95	GLU	CD-OE1	-5.44	1.19	1.25
1	А	35	TRP	CD2-CE3	5.38	1.48	1.40
6	N	1	TYR	CD2-CE2	5.38	1.47	1.39
6	N	96	CYS	CB-SG	-5.34	1.73	1.81
4	R	94	PHE	CB-CG	-5.33	1.42	1.51
1	С	53	PHE	CB-CG	-5.29	1.42	1.51
1	С	317	PHE	CB-CG	-5.27	1.42	1.51
5	S	34	TRP	CE2-CZ2	-5.26	1.30	1.39
1	D	35	TRP	CE3-CZ3	5.21	1.47	1.38
2	F	651	ASN	CB-CG	-5.21	1.39	1.51
1	А	468	PHE	CB-CG	-5.21	1.42	1.51
5	М	100	GLU	CD-OE1	-5.17	1.20	1.25
5	М	59	TYR	CD1-CE1	-5.16	1.31	1.39
1	D	482	GLU	CD-OE2	-5.15	1.20	1.25
1	С	150	GLU	CB-CG	5.12	1.61	1.52
1	D	466	GLU	CD-OE2	-5.10	1.20	1.25
4	L	49	TYR	CE1-CZ	-5.08	1.31	1.38
1	С	482	GLU	CD-OE1	-5.07	1.20	1.25
6	N	1	TYR	CE1-CZ	5.05	1.45	1.38
2	В	643	TYR	CB-CG	-5.02	1.44	1.51
1	A	482	GLU	CD-OE2	-5.01	1.20	1.25
5	S	6	GLU	CD-OE2	-5.00	1.20	1.25

All (47) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
6	Т	48	TYR	CB-CG-CD1	-11.38	114.17	121.00
5	S	101	ASP	N-CA-C	10.86	140.32	111.00
3	Н	66	ARG	NE-CZ-NH2	-10.20	115.20	120.30
3	Q	66	ARG	NE-CZ-NH2	-9.00	115.80	120.30
3	0	66	ARG	NE-CZ-NH2	-8.89	115.85	120.30
2	В	588	ARG	NE-CZ-NH2	-8.75	115.93	120.30
1	D	273	ARG	NE-CZ-NH2	-8.59	116.00	120.30
4	L	49	TYR	CB-CG-CD1	-8.27	116.04	121.00
2	В	633	ARG	NE-CZ-NH2	-8.11	116.24	120.30
1	D	456	ARG	NE-CZ-NH1	7.94	124.27	120.30
3	Q	38	ARG	NE-CZ-NH1	7.81	124.20	120.30
4	Р	45	ARG	NE-CZ-NH2	-7.70	116.45	120.30
4	Р	49	TYR	CB-CG-CD1	-7.60	116.44	121.00
2	F	617	ARG	NE-CZ-NH2	-7.50	116.55	120.30
1	D	469	ARG	NE-CZ-NH2	-7.49	116.55	120.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	С	217	TYR	CB-CG-CD1	-7.35	116.59	121.00
3	Н	66	ARG	NE-CZ-NH1	7.33	123.97	120.30
3	0	66	ARG	NE-CZ-NH1	7.25	123.93	120.30
4	R	54	ARG	NE-CZ-NH2	-6.77	116.91	120.30
6	Т	48	TYR	CB-CG-CD2	6.39	124.83	121.00
3	Q	29	PHE	N-CA-C	6.16	127.64	111.00
3	Q	86	ASP	CB-CG-OD1	6.14	123.82	118.30
1	D	456	ARG	NE-CZ-NH2	-6.11	117.25	120.30
3	Q	66	ARG	NE-CZ-NH1	6.05	123.32	120.30
1	D	469	ARG	NE-CZ-NH1	6.01	123.31	120.30
6	Ν	34	TYR	CB-CG-CD2	-5.98	117.41	121.00
1	А	273	ARG	NE-CZ-NH2	-5.95	117.32	120.30
1	А	217	TYR	CB-CG-CD1	-5.91	117.45	121.00
1	С	384	TYR	CB-CG-CD2	-5.88	117.47	121.00
3	Н	86	ASP	CB-CG-OD1	5.81	123.53	118.30
3	Н	38	ARG	NE-CZ-NH2	-5.76	117.42	120.30
1	А	61	TYR	CB-CG-CD2	-5.64	117.62	121.00
3	Н	29	PHE	N-CA-C	5.64	126.23	111.00
5	М	102	PRO	N-CA-C	-5.63	97.46	112.10
3	Q	102	TYR	CB-CG-CD1	-5.52	117.69	121.00
3	Н	38	ARG	NE-CZ-NH1	5.48	123.04	120.30
1	С	166	ARG	NE-CZ-NH2	5.42	123.01	120.30
1	D	191	TYR	CB-CG-CD2	-5.38	117.77	121.00
1	С	104	MET	CG-SD-CE	5.37	108.79	100.20
1	С	480	ARG	NE-CZ-NH1	5.31	122.96	120.30
4	R	86	TYR	CB-CG-CD2	-5.27	117.83	121.00
5	S	101	ASP	CB-CG-OD2	5.16	122.94	118.30
5	S	102	PRO	CA-N-CD	-5.15	104.28	111.50
3	Н	94	ARG	NE-CZ-NH2	-5.11	117.74	120.30
3	0	86	ASP	CB-CG-OD1	5.10	122.89	118.30
5	S	31	ARG	NE-CZ-NH2	-5.05	117.78	120.30
1	А	66	ARG	NE-CZ-NH2	-5.04	117.78	120.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3460	0	3412	9	0
1	С	3460	0	3410	4	0
1	D	3460	0	3410	4	0
2	В	954	0	945	3	0
2	Е	982	0	969	0	0
2	F	1058	0	1038	3	0
3	Н	934	0	900	0	0
3	0	934	0	900	1	0
3	Q	934	0	900	0	0
4	L	856	0	848	1	0
4	Р	856	0	848	1	0
4	R	856	0	848	2	0
5	М	971	0	948	3	0
5	S	938	0	913	6	0
6	Ν	814	0	785	3	0
6	Т	814	0	785	3	0
7	G	28	0	25	0	0
7	V	28	0	25	0	0
7	е	28	0	25	0	0
8	Ι	61	0	52	0	0
8	U	61	0	52	0	0
8	W	61	0	52	0	0
8	Y	61	0	52	0	0
8	Ζ	61	0	52	1	0
8	b	61	0	52	0	0
8	f	61	0	52	0	0
9	J	83	0	70	0	0
9	Х	83	0	70	0	0
9	с	83	0	70	0	0
10	K	50	0	43	0	0
11	a	39	0	34	0	0
12	d	94	0	79	0	0
13	A	70	0	65	1	0
13	С	112	0	104	0	0
13	D	112	0	104	0	0
All	All	23518	0	22937	38	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 1.

All (38) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom_1	Atom-2	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:C:444:ARG:HH12	8:Z:1:NAG:H81	1.65	0.62	
5:M:100(G):TRP:HE1	6:N:48:TYR:H	1.48	0.62	
5:S:100(H):PHE:O	5:S:103:TRP:NE1	2.35	0.60	
5:S:35:ASN:ND2	5:S:95:GLU:HB2	2.20	0.57	
1:A:113:ASP:OD1	1:A:429:LYS:NZ	2.38	0.56	
1:A:59:LYS:NZ	1:A:62:ASP:OD2	2.40	0.55	
1:D:500:LYS:NZ	6:N:51:ASP:OD2	2.39	0.55	
1:D:107:ASP:OD1	2:F:574:LYS:NZ	2.42	0.52	
1:A:133:ASP:OD1	1:A:155:LYS:NZ	2.43	0.52	
1:D:501:CYS:O	1:D:502:LYS:C	2.47	0.51	
1:C:231:LYS:NZ	1:C:267:GLU:OE1	2.43	0.51	
4:R:60:ASP:OD1	4:R:60:ASP:N	2.46	0.48	
1:A:501:CYS:O	1:A:502:LYS:C	2.51	0.48	
1:A:40:TYR:O	1:A:40:TYR:CG	2.65	0.48	
1:C:72:HIS:ND1	1:C:72:HIS:N	2.57	0.47	
5:S:100(B):ASP:N	5:S:100(B):ASP:OD1	2.45	0.47	
1:A:490:LYS:NZ	1:A:492:GLU:OE2	2.49	0.46	
1:A:363:GLN:HB2	13:A:605:NAG:H82	1.98	0.46	
4:L:27(D):HIS:ND1	4:L:27(E):SER:N	2.64	0.46	
6:T:26:ILE:HG23	6:T:31:VAL:HG21	1.97	0.46	
1:C:123:THR:N	1:C:124:PRO:CD	2.78	0.46	
1:A:123:THR:N	1:A:124:PRO:CD	2.79	0.46	
4:R:27(D):HIS:ND1	4:R:27(E):SER:N	2.64	0.45	
2:B:531:GLY:O	2:B:532:ALA:C	2.55	0.45	
5:S:100(F):ARG:HD2	6:T:89:TRP:CE2	2.50	0.45	
5:M:100(B):ASP:N	5:M:100(B):ASP:OD1	2.43	0.45	
2:F:596:TRP:O	2:F:650:GLN:HG2	2.17	0.44	
5:S:100(E):VAL:HG21	6:T:48:TYR:CE1	2.52	0.44	
1:A:345:ILE:O	1:A:349:LEU:N	2.50	0.44	
2:F:541:ALA:O	2:F:542:ARG:HB2	2.17	0.44	
2:B:642:ILE:O	2:B:643:TYR:C	2.54	0.43	
6:N:64:LYS:HE3	6:N:64:LYS:HB3	1.87	0.42	
1:D:123:THR:N	1:D:124:PRO:CD	2.82	0.42	
5:M:6:GLU:OE2	5:M:105:GLN:N	2.51	0.42	
2:B:533:ALA:HB3	2:B:623:TRP:HA	2.00	0.42	
5:S:29:ILE:HA	5:S:94:ARG:HH21	1.84	0.42	
3:O:36:TRP:CE2	3:O:80:LEU:HB2	2.55	0.41	
4:P:7:THR:HB	4:P:8:PRO:HD3	2.03	0.41	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	428/482~(89%)	413 (96%)	15 (4%)	0	100	100
1	С	428/482~(89%)	422 (99%)	6 (1%)	0	100	100
1	D	428/482~(89%)	414 (97%)	14 (3%)	0	100	100
2	В	116/154~(75%)	110 (95%)	6 (5%)	0	100	100
2	Ε	119/154~(77%)	116 (98%)	3 (2%)	0	100	100
2	F	128/154~(83%)	122 (95%)	6 (5%)	0	100	100
3	Н	118/120~(98%)	116 (98%)	2 (2%)	0	100	100
3	Ο	118/120~(98%)	114 (97%)	4 (3%)	0	100	100
3	Q	118/120~(98%)	115 (98%)	3 (2%)	0	100	100
4	L	110/112~(98%)	107~(97%)	3~(3%)	0	100	100
4	Р	110/112~(98%)	108 (98%)	2(2%)	0	100	100
4	R	110/112~(98%)	107~(97%)	3~(3%)	0	100	100
5	М	122/124~(98%)	117 (96%)	5 (4%)	0	100	100
5	S	117/124~(94%)	113 (97%)	4 (3%)	0	100	100
6	Ν	105/108~(97%)	103 (98%)	2 (2%)	0	100	100
6	Т	105/108~(97%)	102 (97%)	3 (3%)	0	100	100
All	All	2780/3068~(91%)	2699 (97%)	81 (3%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
1	А	393/429~(92%)	393~(100%)	0	100	100	
1	С	393/429~(92%)	393 (100%)	0	100	100	
1	D	393/429~(92%)	392 (100%)	1 (0%)	92	95	
2	В	102/130~(78%)	102 (100%)	0	100	100	
2	Ε	105/130~(81%)	105 (100%)	0	100	100	
2	F	114/130~(88%)	114 (100%)	0	100	100	
3	Н	101/101 (100%)	101 (100%)	0	100	100	
3	Ο	101/101~(100%)	101 (100%)	0	100	100	
3	Q	101/101 (100%)	101 (100%)	0	100	100	
4	L	98/98~(100%)	98 (100%)	0	100	100	
4	Р	98/98~(100%)	98 (100%)	0	100	100	
4	R	98/98~(100%)	98 (100%)	0	100	100	
5	М	109/109~(100%)	109 (100%)	0	100	100	
5	S	104/109~(95%)	103 (99%)	1 (1%)	76	86	
6	Ν	90/91~(99%)	90 (100%)	0	100	100	
6	Т	90/91~(99%)	90 (100%)	0	100	100	
All	All	2490/2674~(93%)	2488 (100%)	2 (0%)	93	97	

All (2) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	D	88	ASN
5	S	94	ARG

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. There are no such side chains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

77 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Mol Type Chain	Bos	Link	Bo	Bond lengths			Bond angles		
MOI	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
7	NAG	G	1	7,1	14,14,15	2.28	7 (50%)	17,19,21	1.08	2 (11%)
7	NAG	G	2	7	14,14,15	2.00	4 (28%)	17,19,21	0.92	1 (5%)
8	NAG	Ι	1	8,1	14,14,15	2.14	6 (42%)	17,19,21	1.56	3 (17%)
8	NAG	Ι	2	8	14,14,15	2.15	6 (42%)	17,19,21	1.32	3 (17%)
8	BMA	Ι	3	8	11,11,12	1.48	3 (27%)	15,15,17	0.70	0
8	MAN	Ι	4	8	11,11,12	1.99	5 (45%)	15,15,17	0.63	0
8	MAN	Ι	5	8	11,11,12	1.95	6 (54%)	15,15,17	0.73	0
9	NAG	J	1	9,1	14,14,15	1.88	4 (28%)	17,19,21	1.19	1 (5%)
9	NAG	J	2	9	14,14,15	2.04	6 (42%)	17,19,21	1.22	2 (11%)
9	BMA	J	3	9	11,11,12	1.43	3 (27%)	15,15,17	0.66	0
9	MAN	J	4	9	11,11,12	1.40	2 (18%)	15,15,17	0.64	0
9	MAN	J	5	9	11,11,12	1.92	5 (45%)	15,15,17	0.82	0
9	MAN	J	6	9	11,11,12	1.83	4 (36%)	15,15,17	0.81	0
9	MAN	J	7	9	11,11,12	1.94	6 (54%)	15,15,17	0.77	0
10	NAG	К	1	10,1	14,14,15	2.06	7 (50%)	17,19,21	2.55	5 (29%)
10	NAG	K	2	10	14,14,15	1.97	5 (35%)	17,19,21	1.33	2 (11%)
10	BMA	К	3	10	11,11,12	0.75	0	15,15,17	0.94	0
10	MAN	К	4	10	11,11,12	2.00	6 (54%)	15,15,17	0.76	0
8	NAG	U	1	8,1	14,14,15	2.02	7 (50%)	17,19,21	1.26	2 (11%)
8	NAG	U	2	8	14,14,15	2.05	4 (28%)	17,19,21	1.14	3 (17%)
8	BMA	U	3	8	11,11,12	1.45	2 (18%)	15,15,17	0.68	0
8	MAN	U	4	8	11,11,12	2.00	6 (54%)	15,15,17	0.93	1 (6%)
8	MAN	U	5	8	11,11,12	1.90	6 (54%)	15,15,17	0.78	0
7	NAG	V	1	7,1	14,14,15	2.23	7 (50%)	17,19,21	1.29	2 (11%)
7	NAG	V	2	7	14,14,15	1.98	6 (42%)	17,19,21	0.91	1 (5%)
8	NAG	W	1	8,1	14,14,15	1.72	2 (14%)	17,19,21	1.11	1 (5%)

Mal	Trune	Chain	Dec	Tinle	Bo	ond leng	ths	Bond angles		
NIOI	Type	Chain	Res	LINK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
8	NAG	W	2	8	14,14,15	1.74	5 (35%)	17,19,21	0.99	1 (5%)
8	BMA	W	3	8	11,11,12	1.41	3 (27%)	15,15,17	0.68	0
8	MAN	W	4	8	11,11,12	1.86	4 (36%)	15,15,17	0.77	0
8	MAN	W	5	8	11,11,12	1.99	5 (45%)	15,15,17	0.72	0
9	NAG	Х	1	9,1	14,14,15	1.70	2 (14%)	17,19,21	1.17	2 (11%)
9	NAG	Х	2	9	14,14,15	1.76	4 (28%)	17,19,21	1.01	1 (5%)
9	BMA	Х	3	9	11,11,12	1.38	3 (27%)	15,15,17	0.63	0
9	MAN	Х	4	9	11,11,12	1.36	1 (9%)	15,15,17	0.70	0
9	MAN	Х	5	9	11,11,12	1.90	5 (45%)	15,15,17	0.78	0
9	MAN	Х	6	9	11,11,12	1.76	5(45%)	15,15,17	0.85	0
9	MAN	Х	7	9	11,11,12	1.98	5(45%)	15,15,17	0.69	0
8	NAG	Y	1	8,1	14,14,15	1.92	6 (42%)	17,19,21	1.06	1 (5%)
8	NAG	Y	2	8	14,14,15	1.80	5(35%)	17,19,21	1.02	1(5%)
8	BMA	Y	3	8	11,11,12	1.38	3 (27%)	15,15,17	0.63	0
8	MAN	Y	4	8	11,11,12	1.97	6 (54%)	15,15,17	0.74	0
8	MAN	Y	5	8	11,11,12	1.90	6 (54%)	15,15,17	0.73	0
8	NAG	Z	1	8,1	14,14,15	1.99	4 (28%)	17,19,21	1.15	3 (17%)
8	NAG	Z	2	8	14,14,15	1.91	4 (28%)	17,19,21	0.88	0
8	BMA	Z	3	8	11,11,12	1.56	3 (27%)	15,15,17	0.77	0
8	MAN	Z	4	8	11,11,12	2.07	5(45%)	15,15,17	0.75	0
8	MAN	Z	5	8	11,11,12	1.92	5(45%)	15,15,17	0.75	0
11	NAG	a	1	11,1	14,14,15	2.03	6 (42%)	17,19,21	1.01	0
11	NAG	a	2	11	14,14,15	2.00	5 (35%)	17,19,21	0.93	1 (5%)
11	BMA	a	3	11	11,11,12	2.02	6 (54%)	15,15,17	0.69	0
8	NAG	b	1	8,1	14,14,15	1.96	3 (21%)	17,19,21	0.98	1 (5%)
8	NAG	b	2	8	14,14,15	0.52	0	17,19,21	1.08	1 (5%)
8	BMA	b	3	8	11,11,12	1.44	3 (27%)	15,15,17	0.62	0
8	MAN	b	4	8	11,11,12	1.93	5 (45%)	15,15,17	0.77	0
8	MAN	b	5	8	11,11,12	2.00	6 (54%)	15,15,17	0.74	0
9	NAG	с	1	9,1	14,14,15	1.85	5 (35%)	17,19,21	1.17	1 (5%)
9	NAG	с	2	9	14,14,15	1.87	5 (35%)	17,19,21	1.02	1 (5%)
9	BMA	с	3	9	11,11,12	1.45	3 (27%)	15,15,17	0.66	0
9	MAN	с	4	9	11,11,12	1.54	2 (18%)	15,15,17	1.02	0
9	MAN	с	5	9	11,11,12	1.92	5 (45%)	15,15,17	0.73	0
9	MAN	с	6	9	11,11,12	1.94	5 (45%)	15,15,17	0.86	0

Mal	Tuno	Chain	Dog	Link	Bo	ond leng	$_{\rm sths}$	B	ond ang	les
	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
9	MAN	с	7	9	11,11,12	2.00	6 (54%)	$15,\!15,\!17$	0.72	0
12	NAG	d	1	12,1	14,14,15	1.90	7 (50%)	17,19,21	1.31	2 (11%)
12	NAG	d	2	12	14,14,15	1.92	5 (35%)	17,19,21	0.92	0
12	BMA	d	3	12	11,11,12	1.41	3 (27%)	15,15,17	0.72	0
12	MAN	d	4	12	11,11,12	1.03	2 (18%)	15,15,17	1.72	2 (13%)
12	MAN	d	5	12	11,11,12	1.99	5 (45%)	15,15,17	0.83	1 (6%)
12	MAN	d	6	12	11,11,12	1.44	2 (18%)	15,15,17	0.77	0
12	MAN	d	7	12	11,11,12	2.01	6 (54%)	15,15,17	0.62	0
12	MAN	d	8	12	11,11,12	1.97	6 (54%)	15,15,17	0.73	0
7	NAG	е	1	7,1	14,14,15	1.99	5 (35%)	17,19,21	0.99	0
7	NAG	е	2	7	14,14,15	1.94	6 (42%)	17,19,21	0.98	1 (5%)
8	NAG	f	1	8,1	14,14,15	2.03	6 (42%)	17,19,21	1.09	1 (5%)
8	NAG	f	2	8	14,14,15	1.83	5 (35%)	17,19,21	0.91	1 (5%)
8	BMA	f	3	8	11,11,12	1.45	3 (27%)	15,15,17	0.63	0
8	MAN	f	4	8	11,11,12	2.02	5 (45%)	15,15,17	0.69	0
8	MAN	f	5	8	11,11,12	1.90	5 (45%)	15,15,17	0.74	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
7	NAG	G	1	7,1	-	0/6/23/26	0/1/1/1
7	NAG	G	2	7	-	0/6/23/26	0/1/1/1
8	NAG	Ι	1	8,1	-	0/6/23/26	0/1/1/1
8	NAG	Ι	2	8	-	0/6/23/26	0/1/1/1
8	BMA	Ι	3	8	-	0/2/19/22	0/1/1/1
8	MAN	Ι	4	8	-	2/2/19/22	0/1/1/1
8	MAN	Ι	5	8	-	1/2/19/22	0/1/1/1
9	NAG	J	1	9,1	-	0/6/23/26	0/1/1/1
9	NAG	J	2	9	-	1/6/23/26	0/1/1/1
9	BMA	J	3	9	-	0/2/19/22	0/1/1/1
9	MAN	J	4	9	-	0/2/19/22	0/1/1/1
9	MAN	J	5	9	-	1/2/19/22	0/1/1/1
9	MAN	J	6	9	-	1/2/19/22	0/1/1/1
9	MAN	J	7	9	-	1/2/19/22	0/1/1/1
10	NAG	K	1	10,1	_	3/6/23/26	0/1/1/1

Mol	Type	Chain	\mathbf{Res}	Link	Chirals	Torsions	Rings
10	NAG	K	2	10	-	1/6/23/26	0/1/1/1
10	BMA	K	3	10	-	2/2/19/22	0/1/1/1
10	MAN	K	4	10	-	0/2/19/22	0/1/1/1
8	NAG	U	1	8,1	-	0/6/23/26	0/1/1/1
8	NAG	U	2	8	-	0/6/23/26	0/1/1/1
8	BMA	U	3	8	-	2/2/19/22	0/1/1/1
8	MAN	U	4	8	-	1/2/19/22	0/1/1/1
8	MAN	U	5	8	-	0/2/19/22	0/1/1/1
7	NAG	V	1	7,1	-	1/6/23/26	0/1/1/1
7	NAG	V	2	7	-	0/6/23/26	0/1/1/1
8	NAG	W	1	8,1	-	0/6/23/26	0/1/1/1
8	NAG	W	2	8	-	0/6/23/26	0/1/1/1
8	BMA	W	3	8	-	0/2/19/22	0/1/1/1
8	MAN	W	4	8	-	1/2/19/22	0/1/1/1
8	MAN	W	5	8	-	1/2/19/22	0/1/1/1
9	NAG	Х	1	9,1	-	0/6/23/26	0/1/1/1
9	NAG	Х	2	9	-	0/6/23/26	0/1/1/1
9	BMA	Х	3	9	-	0/2/19/22	0/1/1/1
9	MAN	Х	4	9	-	2/2/19/22	0/1/1/1
9	MAN	Х	5	9	-	0/2/19/22	0/1/1/1
9	MAN	Х	6	9	-	0/2/19/22	0/1/1/1
9	MAN	Х	7	9	-	0/2/19/22	0/1/1/1
8	NAG	Y	1	8,1	-	0/6/23/26	0/1/1/1
8	NAG	Y	2	8	-	1/6/23/26	0/1/1/1
8	BMA	Y	3	8	-	0/2/19/22	0/1/1/1
8	MAN	Y	4	8	-	0/2/19/22	0/1/1/1
8	MAN	Y	5	8	-	0/2/19/22	0/1/1/1
8	NAG	Z	1	8,1	-	0/6/23/26	0/1/1/1
8	NAG	Z	2	8	-	0/6/23/26	0/1/1/1
8	BMA	Z	3	8	-	0/2/19/22	0/1/1/1
8	MAN	Z	4	8	-	1/2/19/22	0/1/1/1
8	MAN	Z	5	8	-	1/2/19/22	0/1/1/1
11	NAG	a	1	11,1	-	0/6/23/26	0/1/1/1
11	NAG	a	2	11	-	0/6/23/26	0/1/1/1
11	BMA	a	3	11	-	0/2/19/22	0/1/1/1
8	NAG	b	1	8,1	-	0/6/23/26	0/1/1/1
8	NAG	b	2	8	-	2/6/23/26	0/1/1/1
8	BMA	b	3	8	-	0/2/19/22	0/1/1/1
8	MAN	b	4	8	-	1/2/19/22	0/1/1/1
8	MAN	b	5	8	-	1/2/19/22	0/1/1/1
9	NAG	с	1	9,1	-	0/6/23/26	0/1/1/1

Continued on next page...

Conti	nucu jio	m previoi	is puye	• • •			
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
9	NAG	С	2	9	-	0/6/23/26	0/1/1/1
9	BMA	с	3	9	-	0/2/19/22	0/1/1/1
9	MAN	с	4	9	-	1/2/19/22	0/1/1/1
9	MAN	с	5	9	-	1/2/19/22	0/1/1/1
9	MAN	с	6	9	-	0/2/19/22	0/1/1/1
9	MAN	с	7	9	-	1/2/19/22	0/1/1/1
12	NAG	d	1	12,1	-	0/6/23/26	0/1/1/1
12	NAG	d	2	12	-	0/6/23/26	0/1/1/1
12	BMA	d	3	12	-	1/2/19/22	0/1/1/1
12	MAN	d	4	12	-	2/2/19/22	0/1/1/1
12	MAN	d	5	12	-	0/2/19/22	0/1/1/1
12	MAN	d	6	12	-	2/2/19/22	0/1/1/1
12	MAN	d	7	12	-	0/2/19/22	0/1/1/1
12	MAN	d	8	12	-	0/2/19/22	0/1/1/1
7	NAG	е	1	7,1	-	1/6/23/26	0/1/1/1
7	NAG	е	2	7	-	0/6/23/26	0/1/1/1
8	NAG	f	1	8,1	-	0/6/23/26	0/1/1/1
8	NAG	f	2	8	-	2/6/23/26	0/1/1/1
8	BMA	f	3	8	-	0/2/19/22	0/1/1/1
8	MAN	f	4	8	-	0/2/19/22	0/1/1/1
8	MAN	f	5	8	-	0/2/19/22	0/1/1/1

All (350) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
7	G	1	NAG	C1-C2	5.64	1.60	1.52
11	a	1	NAG	C1-C2	4.99	1.59	1.52
7	V	1	NAG	C1-C2	4.98	1.59	1.52
8	Ζ	1	NAG	C1-C2	4.93	1.59	1.52
8	U	2	NAG	C1-C2	4.91	1.59	1.52
8	Ι	2	NAG	C1-C2	4.81	1.59	1.52
8	b	1	NAG	C1-C2	4.76	1.59	1.52
8	Ι	1	NAG	C1-C2	4.75	1.59	1.52
8	f	1	NAG	C1-C2	4.73	1.59	1.52
9	с	1	NAG	C1-C2	4.64	1.59	1.52
9	J	2	NAG	C1-C2	4.62	1.59	1.52
7	G	2	NAG	C1-C2	4.60	1.59	1.52
8	W	1	NAG	C1-C2	4.56	1.59	1.52
10	Κ	1	NAG	C1-C2	4.49	1.59	1.52
8	Y	1	NAG	C1-C2	4.48	1.59	1.52
7	е	1	NAG	C1-C2	4.43	1.59	1.52
7	е	2	NAG	C1-C2	4.38	1.58	1.52

9

с

27

MAN

C2-C3

Continued from previous page									
Mol	Chain	Res	Type	Atoms		Observed(Å)	Ideal(Å)		
7	V	2	NAG	C1-C2	4.36	1.58	1.52		
12	d	2	NAG	C1-C2	4.32	1.58	1.52		
8	U	1	NAG	C1-C2	4.32	1.58	1.52		
12	d	1	NAG	C1-C2	4.28	1.58	1.52		
11	a	2	NAG	C1-C2	4.27	1.58	1.52		
9	J	1	NAG	C1-C2	4.20	1.58	1.52		
9	Х	1	NAG	C1-C2	4.14	1.58	1.52		
8	Ζ	2	NAG	C1-C2	4.11	1.58	1.52		
9	с	2	NAG	C1-C2	3.98	1.58	1.52		
8	f	2	NAG	C1-C2	3.98	1.58	1.52		
9	Х	2	NAG	C1-C2	3.93	1.58	1.52		
10	Κ	2	NAG	C1-C2	3.80	1.58	1.52		
8	Y	2	NAG	C1-C2	3.68	1.57	1.52		
8	W	2	NAG	C1-C2	3.55	1.57	1.52		
8	b	5	MAN	C2-C3	3.46	1.57	1.52		
8	Ι	5	MAN	C2-C3	3.40	1.57	1.52		
7	е	1	NAG	O5-C5	3.40	1.50	1.43		
8	Ζ	4	MAN	O5-C5	3.38	1.50	1.43		
8	U	4	MAN	O5-C5	3.33	1.50	1.43		
8	Y	4	MAN	C2-C3	3.32	1.57	1.52		
8	W	5	MAN	C2-C3	3.31	1.57	1.52		
11	a	3	BMA	C2-C3	3.29	1.57	1.52		
8	f	4	MAN	C2-C3	3.29	1.57	1.52		
8	Ζ	4	MAN	C1-C2	3.29	1.59	1.52		
9	Х	7	MAN	C2-C3	3.29	1.57	1.52		
12	d	8	MAN	C2-C3	3.27	1.57	1.52		
12	d	5	MAN	C2-C3	3.24	1.57	1.52		
8	U	4	MAN	C2-C3	3.23	1.57	1.52		
12	d	8	MAN	O5-C5	3.23	1.50	1.43		
7	V	1	NAG	O5-C5	3.22	1.50	1.43		
12	d	7	MAN	O5-C5	3.21	1.50	1.43		
9	Х	5	MAN	C2-C3	3.20	1.57	1.52		
12	d	7	MAN	C2-C3	3.19	1.57	1.52		
10	K	2	NAG	C4-C5	3.18	1.59	1.53		
9	J	7	MAN	C2-C3	3.17	1.57	1.52		
8	W	5	MAN	O5-C5	3.16	1.49	1.43		
11	a	3	BMA	O5-C5	3.16	1.49	1.43		
10	K	4	MAN	C2-C3	3.15	1.57	1.52		
10	K	4	MAN	O5-C5	3.15	1.49	1.43		
9	с	5	MAN	C2-C3	3.14	1.57	1.52		
7	V	2	NAG	O5-C5	3.13	1.49	1.43		

 α tio 1 [

Continued on next page...

1.52

1.57

3.13

Conti	nueu fron	i previ	ous page	•••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
9	с	7	MAN	O5-C5	3.12	1.49	1.43
8	Ι	5	MAN	O5-C5	3.12	1.49	1.43
8	U	5	MAN	C2-C3	3.12	1.57	1.52
8	f	5	MAN	C2-C3	3.11	1.57	1.52
8	f	4	MAN	C1-C2	3.11	1.59	1.52
8	b	5	MAN	O5-C5	3.11	1.49	1.43
9	Х	7	MAN	O5-C5	3.11	1.49	1.43
8	Ι	2	NAG	C3-C2	3.11	1.59	1.52
8	f	4	MAN	O5-C5	3.10	1.49	1.43
8	b	4	MAN	C2-C3	3.09	1.57	1.52
8	Ι	4	MAN	C1-C2	3.09	1.59	1.52
8	Ι	4	MAN	O5-C5	3.09	1.49	1.43
8	f	5	MAN	O5-C5	3.09	1.49	1.43
9	с	6	MAN	O5-C5	3.08	1.49	1.43
8	Ζ	5	MAN	C2-C3	3.07	1.57	1.52
8	Y	4	MAN	O5-C5	3.07	1.49	1.43
7	G	2	NAG	O5-C5	3.07	1.49	1.43
8	Ι	4	MAN	C2-C3	3.07	1.57	1.52
8	U	5	MAN	O5-C5	3.06	1.49	1.43
12	d	5	MAN	C1-C2	3.06	1.59	1.52
9	J	6	MAN	C2-C3	3.05	1.57	1.52
8	Y	5	MAN	O5-C5	3.05	1.49	1.43
11	a	2	NAG	O5-C5	3.05	1.49	1.43
8	U	2	NAG	O5-C5	3.04	1.49	1.43
9	J	5	MAN	O5-C5	3.03	1.49	1.43
8	Ζ	2	NAG	O5-C5	3.02	1.49	1.43
8	Y	5	MAN	C2-C3	3.02	1.57	1.52
10	Κ	2	NAG	O5-C5	3.01	1.49	1.43
8	Ζ	4	MAN	C2-C3	3.01	1.56	1.52
8	Ζ	5	MAN	O5-C5	3.00	1.49	1.43
9	с	6	MAN	C2-C3	3.00	1.56	1.52
12	d	5	MAN	O5-C5	2.99	1.49	1.43
9	J	5	MAN	C1-C2	2.99	1.59	1.52
8	W	4	MAN	C2-C3	2.99	1.56	1.52
9	J	7	MAN	O5-C5	2.97	1.49	1.43
9	Х	5	MAN	O5-C5	2.97	1.49	1.43
8	b	4	MAN	O5-C5	2.96	1.49	1.43
8	f	1	NAG	O5-C5	2.96	1.49	1.43
8	Ι	2	NAG	C2-N2	2.94	1.51	1.46
12	d	2	NAG	O5-C5	2.92	1.49	1.43
9	J	2	NAG	C3-C2	2.90	1.58	1.52
7	V	1	NAG	C4-C5	2.89	1.59	1.53

COntro	nucu jron	i preco	bus puye	• • •			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
8	b	1	NAG	O5-C5	2.89	1.49	1.43
9	с	5	MAN	O5-C5	2.89	1.49	1.43
9	J	6	MAN	O5-C5	2.88	1.49	1.43
7	е	2	NAG	O5-C5	2.88	1.49	1.43
8	W	4	MAN	O5-C5	2.86	1.49	1.43
8	Ι	1	NAG	O5-C5	2.86	1.49	1.43
11	a	3	BMA	C1-C2	2.86	1.58	1.52
7	G	1	NAG	O5-C5	2.86	1.49	1.43
12	d	7	MAN	C1-C2	2.86	1.58	1.52
10	Κ	1	NAG	O5-C5	2.85	1.49	1.43
11	a	1	NAG	O5-C5	2.85	1.49	1.43
8	Ζ	1	NAG	O5-C5	2.81	1.49	1.43
8	W	2	NAG	O5-C5	2.79	1.49	1.43
9	Х	6	MAN	C2-C3	2.79	1.56	1.52
9	с	7	MAN	C1-C2	2.79	1.58	1.52
9	J	5	MAN	C2-C3	2.78	1.56	1.52
8	b	4	MAN	C1-C2	2.77	1.58	1.52
8	W	5	MAN	C1-C2	2.76	1.58	1.52
9	Х	7	MAN	C1-C2	2.75	1.58	1.52
9	с	6	MAN	C1-C2	2.74	1.58	1.52
8	f	2	NAG	O5-C5	2.73	1.49	1.43
7	G	2	NAG	C3-C2	2.72	1.58	1.52
8	Ζ	3	BMA	C2-C3	2.71	1.56	1.52
9	Х	6	MAN	O5-C5	2.70	1.48	1.43
8	Ζ	5	MAN	C1-C2	2.70	1.58	1.52
7	е	1	NAG	C4-C5	2.70	1.58	1.53
8	U	1	NAG	O5-C5	2.70	1.48	1.43
8	Ι	1	NAG	O4-C4	2.67	1.49	1.43
8	Y	2	NAG	O5-C5	2.67	1.48	1.43
8	Ι	1	NAG	C4-C3	2.66	1.59	1.52
8	W	4	MAN	C1-C2	2.65	1.58	1.52
8	Y	4	MAN	C1-C2	2.65	1.58	1.52
8	b	5	MAN	C1-C2	2.65	1.58	1.52
9	с	5	MAN	C1-C2	2.64	1.58	1.52
10	Κ	1	NAG	C3-C2	2.63	1.58	1.52
9	J	7	MAN	C1-C2	2.62	1.58	1.52
9	J	6	MAN	C1-C2	2.61	1.58	1.52
9	J	1	NAG	C4-C3	2.61	1.59	1.52
10	K	4	MAN	C4-C5	2.61	1.58	1.53
8	b	4	MAN	C4-C5	2.60	1.58	1.53
9	с	2	NAG	O5-C5	2.60	1.48	1.43
7	G	1	NAG	$O_{\overline{5}-C1}$	2.60	1.47	1.43

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
9	с	7	MAN	C4-C5	2.60	1.58	1.53
8	f	1	NAG	O5-C1	2.59	1.47	1.43
8	Ι	2	NAG	C4-C3	2.59	1.58	1.52
12	d	1	NAG	O5-C5	2.58	1.48	1.43
9	J	2	NAG	C2-N2	2.58	1.50	1.46
9	Х	5	MAN	C1-C2	2.57	1.58	1.52
8	Y	1	NAG	O5-C5	2.56	1.48	1.43
11	a	2	NAG	C4-C5	2.56	1.58	1.53
10	Κ	4	MAN	C1-C2	2.56	1.58	1.52
8	U	1	NAG	C4-C5	2.55	1.58	1.53
10	Κ	2	NAG	C4-C3	2.54	1.58	1.52
8	Ι	1	NAG	C3-C2	2.53	1.57	1.52
8	Ζ	4	MAN	C4-C5	2.52	1.58	1.53
8	U	4	MAN	C1-C2	2.52	1.57	1.52
9	J	1	NAG	O5-C5	2.52	1.48	1.43
8	Ζ	2	NAG	C4-C5	2.51	1.58	1.53
9	J	7	MAN	C4-C5	2.51	1.58	1.53
8	U	2	NAG	O5-C1	2.51	1.47	1.43
7	V	1	NAG	C2-N2	2.51	1.50	1.46
9	с	6	MAN	C4-C5	2.51	1.58	1.53
9	J	5	MAN	C4-C5	2.50	1.58	1.53
8	U	2	NAG	C3-C2	2.49	1.57	1.52
9	Х	7	MAN	C4-C5	2.49	1.58	1.53
8	Ι	4	MAN	C4-C5	2.49	1.58	1.53
9	J	2	NAG	O5-C5	2.48	1.48	1.43
9	с	3	BMA	C2-C3	2.48	1.56	1.52
9	с	4	MAN	C2-C3	2.48	1.56	1.52
12	d	8	MAN	C1-C2	2.47	1.57	1.52
7	V	2	NAG	C3-C2	2.47	1.57	1.52
8	Ζ	5	MAN	C4-C5	2.47	1.58	1.53
8	f	2	NAG	C3-C2	2.46	1.57	1.52
11	a	2	NAG	C3-C2	2.46	1.57	1.52
8	Ι	2	NAG	O5-C5	2.46	1.48	1.43
8	Y	5	MAN	C1-C2	2.46	1.57	1.52
8	b	5	MAN	C4-C5	2.46	1.58	1.53
9	с	5	MAN	C4-C5	2.46	1.58	1.53
7	G	1	NAG	C4-C3	2.46	1.58	1.52
9	с	4	MAN	O5-C5	2.45	1.48	1.43
8	U	4	MAN	C4-C5	2.45	1.58	1.53
9	Х	1	NAG	C4-C3	2.45	1.58	1.52
8	Ι	3	BMA	C2-C3	2.45	1.56	1.52
7	P	1	NAG	O_{5-C1}	244	1 47	1 43

Continued on next page...

Conti		i preui	bus puye	•••			
Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
7	V	2	NAG	C4-C5	2.43	1.58	1.53
8	f	5	MAN	C4-C5	2.43	1.58	1.53
9	с	2	NAG	C4-C3	2.43	1.58	1.52
8	U	5	MAN	C4-C5	2.43	1.58	1.53
8	Y	5	MAN	C4-C5	2.42	1.58	1.53
9	с	1	NAG	C4-C3	2.41	1.58	1.52
12	d	7	MAN	C4-C5	2.41	1.58	1.53
7	е	2	NAG	C3-C2	2.41	1.57	1.52
8	Ζ	3	BMA	C1-C2	2.40	1.57	1.52
8	f	3	BMA	O5-C5	2.40	1.48	1.43
7	V	1	NAG	O5-C1	2.40	1.47	1.43
11	a	3	BMA	C4-C5	2.40	1.58	1.53
12	d	6	MAN	O5-C5	2.40	1.48	1.43
8	b	1	NAG	O5-C1	2.40	1.47	1.43
9	J	6	MAN	C4-C5	2.39	1.58	1.53
10	Κ	1	NAG	C4-C3	2.39	1.58	1.52
12	d	6	MAN	C2-C3	2.39	1.56	1.52
8	f	5	MAN	C1-C2	2.39	1.57	1.52
7	V	1	NAG	C3-C2	2.39	1.57	1.52
8	Ζ	1	NAG	O5-C1	2.38	1.47	1.43
8	Ι	5	MAN	C4-C5	2.38	1.58	1.53
12	d	2	NAG	C4-C5	2.37	1.58	1.53
8	Y	2	NAG	C3-C2	2.37	1.57	1.52
8	b	3	BMA	C2-C3	2.36	1.56	1.52
12	d	4	MAN	C1-C2	2.36	1.57	1.52
12	d	8	MAN	C4-C5	2.36	1.58	1.53
7	G	1	NAG	C4-C5	2.35	1.58	1.53
8	W	5	MAN	C4-C5	2.35	1.58	1.53
8	W	3	BMA	O5-C5	2.35	1.48	1.43
8	b	3	BMA	O5-C5	2.35	1.48	1.43
8	Ζ	2	NAG	C3-C2	2.34	1.57	1.52
8	W	4	MAN	C4-C5	2.34	1.58	1.53
9	Х	2	NAG	O5-C5	2.34	1.48	1.43
8	Ι	3	BMA	C1-C2	2.34	1.57	1.52
8	Ι	3	BMA	O5-C5	2.34	1.48	1.43
8	f	4	MAN	C4-C5	2.33	1.58	1.53
8	Y	4	MAN	C4-C5	2.33	1.57	1.53
10	K	4	MAN	O5-C1	2.33	1.47	1.43
8	U	3	BMA	O5-C5	2.33	1.48	1.43
9	J	2	NAG	C4-C3	2.33	1.58	1.52
8	Y	1	NAG	C4-C5	2.32	1.57	1.53

O5-C5

MAN

4

J

9

Continued from previous page...

Continued on next page...

1.43

1.48

2.32

Ă)

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(
8	U	1	NAG	C4-C3	2.32	1.58	1.52
10	K	1	NAG	C4-C5	2.32	1.57	1.53
8	U	5	MAN	C1-C2	2.32	1.57	1.52
9	Х	3	BMA	O5-C5	2.31	1.48	1.43
12	d	2	NAG	C3-C2	2.30	1.57	1.52
8	Y	2	NAG	C4-C3	2.30	1.58	1.52
8	Y	2	NAG	C4-C5	2.30	1.57	1.53
7	G	1	NAG	C3-C2	2.30	1.57	1.52
9	Х	4	MAN	O5-C5	2.30	1.48	1.43
10	K	2	NAG	C3-C2	2.29	1.57	1.52
9	Х	6	MAN	C1-C2	2.29	1.57	1.52
12	d	1	NAG	C2-N2	2.29	1.50	1.46
11	a	1	NAG	O5-C1	2.28	1.47	1.43
8	W	3	BMA	C2-C3	2.28	1.55	1.52
9	J	1	NAG	C4-C5	2.28	1.57	1.53
9	Х	5	MAN	C4-C5	2.28	1.57	1.53
7	е	2	NAG	C4-C5	2.27	1.57	1.53
8	f	3	BMA	C2-C3	2.27	1.55	1.52
9	J	3	BMA	O5-C5	2.27	1.48	1.43
9	Х	2	NAG	C3-C2	2.27	1.57	1.52
8	Ι	5	MAN	C1-C2	2.26	1.57	1.52
9	J	3	BMA	C1-C2	2.26	1.57	1.52
11	a	1	NAG	C4-C5	2.26	1.57	1.53
8	U	1	NAG	C3-C2	2.26	1.57	1.52
9	J	4	MAN	C2-C3	2.25	1.55	1.52
12	d	3	BMA	C1-C2	2.25	1.57	1.52
8	Ι	1	NAG	C4-C5	2.25	1.57	1.53
8	f	3	BMA	C1-C2	2.24	1.57	1.52
8	U	1	NAG	O4-C4	2.24	1.48	1.43
9	с	3	BMA	C1-C2	2.23	1.57	1.52
9	J	3	BMA	C2-C3	2.23	1.55	1.52
7	е	2	NAG	C4-C3	2.23	1.58	1.52
11	a	3	BMA	O5-C1	2.22	1.47	1.43
8	Ζ	3	BMA	O5-C5	2.22	1.47	1.43
8	Ζ	4	MAN	O5-C1	2.21	1.47	1.43
8	f	1	NAG	C4-C3	2.21	1.58	1.52
7	G	2	NAG	C4-C5	2.21	1.57	1.53
9	с	2	NAG	C4-C5	2.21	1.57	1.53
12	d	5	MAN	$C4-\overline{C5}$	2.21	1.57	1.53
8	U	3	BMA	C1-C2	2.20	1.57	1.52
9	X	6	MAN	C4-C3	2.20	1.57	1.52
8	Y	1	NAG	05-C1	$2.\overline{20}$	1.47	1.43

Continued from previous page...

Conti	nuea jron	n previ	ous page	•••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
7	V	1	NAG	C4-C3	2.20	1.57	1.52
8	Y	3	BMA	C1-C2	2.20	1.57	1.52
8	W	2	NAG	C4-C5	2.19	1.57	1.53
11	a	2	NAG	C4-C3	2.19	1.57	1.52
8	b	3	BMA	C1-C2	2.19	1.57	1.52
7	е	2	NAG	C2-N2	2.19	1.50	1.46
8	U	1	NAG	C2-N2	2.19	1.50	1.46
9	с	7	MAN	O5-C1	2.18	1.47	1.43
9	с	6	MAN	C4-C3	2.18	1.57	1.52
8	Y	4	MAN	O5-C1	2.17	1.47	1.43
12	d	1	NAG	O5-C1	2.17	1.47	1.43
10	K	1	NAG	C2-N2	2.17	1.50	1.46
12	d	5	MAN	C4-C3	2.17	1.57	1.52
8	W	5	MAN	C4-C3	2.16	1.57	1.52
8	Y	3	BMA	O5-C5	2.15	1.47	1.43
9	с	5	MAN	O5-C1	2.15	1.47	1.43
9	с	3	BMA	O5-C5	2.15	1.47	1.43
11	a	1	NAG	C4-C3	2.15	1.57	1.52
8	f	2	NAG	C4-C3	2.15	1.57	1.52
12	d	3	BMA	O5-C5	2.15	1.47	1.43
8	W	2	NAG	C3-C2	2.15	1.57	1.52
12	d	2	NAG	C4-C3	2.14	1.57	1.52
12	d	8	MAN	C4-C3	2.14	1.57	1.52
12	d	8	MAN	O5-C1	2.14	1.47	1.43
9	Х	3	BMA	C2-C3	2.14	1.55	1.52
8	Y	5	MAN	C4-C3	2.14	1.57	1.52
12	d	7	MAN	O5-C1	2.13	1.47	1.43
12	d	7	MAN	C4-C3	2.13	1.57	1.52
8	U	4	MAN	O5-C1	2.13	1.47	1.43
8	Ι	2	NAG	C4-C5	2.12	1.57	1.53
8	Y	3	BMA	C2-C3	2.12	1.55	1.52
10	K	1	NAG	O5-C1	2.12	1.47	1.43
8	f	5	MAN	C4-C3	2.12	1.57	1.52
8	U	4	MAN	C4-C3	2.11	1.57	1.52
8	f	4	MAN	C4-C3	2.11	1.57	1.52
8	f	1	NAG	C4-C5	2.11	1.57	1.53
8	W	2	NAG	C4-C3	2.11	1.57	1.52
8	Ι	4	MAN	05-C1	2.11	1.47	1.43
7	V	2	NAG	C4-C3	2.11	1.57	1.52
8	f	2	NAG	C4-C5	2.11	1.57	1.53
8	b	5	MAN	C4-C3	2.10	1.57	1.52
7	G	1	NAG	O4-C4	2.10	1.47	1.43

Continuea from previous page								
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)	
9	с	1	NAG	C4-C5	2.10	1.57	1.53	
9	J	5	MAN	C4-C3	2.10	1.57	1.52	
8	Ι	5	MAN	O5-C1	2.09	1.47	1.43	
8	W	1	NAG	O5-C5	2.09	1.47	1.43	
9	J	7	MAN	C4-C3	2.09	1.57	1.52	
9	J	2	NAG	C4-C5	2.09	1.57	1.53	
8	Ι	5	MAN	C4-C3	2.09	1.57	1.52	
12	d	1	NAG	C4-C5	2.08	1.57	1.53	
9	с	1	NAG	O5-C5	2.08	1.47	1.43	
8	U	5	MAN	C4-C3	2.08	1.57	1.52	
9	с	2	NAG	C3-C2	2.08	1.56	1.52	
8	W	3	BMA	C1-C2	2.08	1.56	1.52	
10	Κ	4	MAN	C4-C3	2.08	1.57	1.52	
8	b	4	MAN	C4-C3	2.08	1.57	1.52	
11	a	1	NAG	C3-C2	2.07	1.56	1.52	
9	с	7	MAN	C4-C3	2.07	1.57	1.52	
9	с	1	NAG	C3-C2	2.07	1.56	1.52	
9	Х	6	MAN	O5-C1	2.07	1.47	1.43	
8	Ζ	5	MAN	C4-C3	2.07	1.57	1.52	
8	Ζ	1	NAG	C4-C5	2.06	1.57	1.53	
12	d	1	NAG	C4-C3	2.05	1.57	1.52	
7	е	1	NAG	C4-C3	2.05	1.57	1.52	
12	d	1	NAG	C3-C2	2.05	1.56	1.52	
9	Х	3	BMA	C1-C2	2.04	1.56	1.52	
11	a	3	BMA	C4-C3	2.04	1.57	1.52	
8	Y	1	NAG	C4-C3	2.04	1.57	1.52	
8	b	5	MAN	O5-C1	2.04	1.47	1.43	
12	d	3	BMA	C2-C3	2.04	1.55	1.52	
9	Х	2	NAG	C4-C3	2.04	1.57	1.52	
8	Y	4	MAN	C4-C3	2.03	1.57	1.52	
8	U	5	MAN	O5-C1	2.03	1.47	1.43	
9	Х	7	MAN	C4-C3	2.02	1.57	1.52	
8	Y	1	NAG	C3-C2	2.02	1.56	1.52	
8	f	1	NAG	C3-C2	2.02	1.56	1.52	
12	d	4	MAN	O2-C2	2.02	1.47	1.43	
9	J	7	MAN	05-C1	2.02	1.46	1.43	
9	Х	5	MAN	C4-C3	2.01	1.57	1.52	
7	V	2	NAG	O5-C1	2.00	1.46	1.43	
8	Y	5	MAN	O5-C1	2.00	1.46	1.43	

All (51) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
10	Κ	1	NAG	C8-C7-N2	7.47	128.75	116.10
12	d	4	MAN	O2-C2-C1	5.22	119.84	109.15
10	Κ	1	NAG	O7-C7-N2	-4.54	113.60	121.95
8	Ι	1	NAG	O4-C4-C3	4.25	120.18	110.35
10	Κ	1	NAG	C2-N2-C7	4.13	128.79	122.90
8	b	2	NAG	C1-O5-C5	3.65	117.14	112.19
12	d	1	NAG	C8-C7-N2	3.36	121.79	116.10
12	d	4	MAN	O2-C2-C3	-3.01	104.10	110.14
10	Κ	2	NAG	O4-C4-C3	-3.00	103.42	110.35
8	Ι	1	NAG	C8-C7-N2	2.95	121.10	116.10
10	K	2	NAG	O5-C5-C6	-2.90	102.66	107.20
7	V	1	NAG	O4-C4-C3	-2.88	103.69	110.35
8	U	1	NAG	C8-C7-N2	2.82	120.87	116.10
8	Ι	1	NAG	O7-C7-C8	-2.78	116.89	122.06
8	W	2	NAG	C8-C7-N2	2.73	120.73	116.10
9	с	1	NAG	O4-C4-C5	-2.69	102.63	109.30
8	Ι	2	NAG	C8-C7-N2	2.65	120.59	116.10
9	Х	1	NAG	O4-C4-C5	-2.59	102.87	109.30
8	Ζ	1	NAG	C8-C7-N2	2.58	120.47	116.10
8	f	1	NAG	C8-C7-N2	2.57	120.45	116.10
10	Κ	1	NAG	C4-C3-C2	-2.54	107.30	111.02
9	J	2	NAG	C8-C7-N2	2.52	120.36	116.10
12	d	1	NAG	O7-C7-C8	-2.48	117.46	122.06
8	U	2	NAG	C8-C7-N2	2.42	120.19	116.10
8	Ι	2	NAG	C1-O5-C5	2.42	115.47	112.19
8	Y	1	NAG	C8-C7-N2	2.41	120.18	116.10
7	V	2	NAG	C8-C7-N2	2.37	120.12	116.10
10	Κ	1	NAG	O7-C7-C8	-2.37	117.65	122.06
8	U	1	NAG	O7-C7-C8	-2.34	117.72	122.06
9	J	2	NAG	C1-O5-C5	2.31	115.32	112.19
9	J	1	NAG	C8-C7-N2	2.30	120.00	116.10
7	G	2	NAG	C8-C7-N2	2.25	119.91	116.10
11	a	2	NAG	C8-C7-N2	2.21	119.84	116.10
9	Х	1	NAG	C8-C7-N2	2.20	119.82	116.10
8	Ζ	1	NAG	O7-C7-C8	-2.19	117.99	122.06
7	е	2	NAG	C8-C7-N2	2.17	119.77	116.10
7	G	1	NAG	C8-C7-N2	2.15	119.74	116.10
8	W	1	NAG	C1-O5-C5	2.13	115.08	112.19
7	V	1	NAG	C8-C7-N2	2.12	119.68	116.10
8	b	1	NAG	C8-C7-N2	2.11	119.68	116.10
9	с	2	NAG	C1-O5-C5	2.10	115.04	112.19
9	Х	2	NAG	C8-C7-N2	2.10	119.65	116.10
7	G	1	NAG	O4-C4-C3	2.09	115.19	110.35

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
8	Ι	2	NAG	O4-C4-C3	2.09	115.19	110.35
8	Y	2	NAG	C8-C7-N2	2.09	119.64	116.10
8	U	2	NAG	O4-C4-C5	-2.05	104.21	109.30
8	U	2	NAG	O7-C7-C8	-2.04	118.26	122.06
8	Ζ	1	NAG	C1-O5-C5	2.02	114.93	112.19
8	f	2	NAG	C8-C7-N2	2.02	119.52	116.10
12	d	5	MAN	C1-O5-C5	2.01	114.92	112.19
8	U	4	MAN	C1-O5-C5	2.01	114.92	112.19

There are no chirality outliers.

All (39) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
8	b	2	NAG	C8-C7-N2-C2
8	b	2	NAG	O7-C7-N2-C2
9	Х	4	MAN	C4-C5-C6-O6
9	Х	4	MAN	O5-C5-C6-O6
8	U	3	BMA	C4-C5-C6-O6
8	U	3	BMA	O5-C5-C6-O6
12	d	6	MAN	O5-C5-C6-O6
10	К	1	NAG	C8-C7-N2-C2
10	Κ	1	NAG	O7-C7-N2-C2
12	d	4	MAN	O5-C5-C6-O6
8	Ι	4	MAN	O5-C5-C6-O6
8	U	4	MAN	O5-C5-C6-O6
8	f	2	NAG	C4-C5-C6-O6
12	d	6	MAN	C4-C5-C6-O6
12	d	4	MAN	C4-C5-C6-O6
8	f	2	NAG	O5-C5-C6-O6
8	W	5	MAN	O5-C5-C6-O6
8	Ζ	5	MAN	O5-C5-C6-O6
8	b	5	MAN	O5-C5-C6-O6
9	J	5	MAN	O5-C5-C6-O6
9	J	7	MAN	O5-C5-C6-O6
10	Κ	2	NAG	O5-C5-C6-O6
10	Κ	3	BMA	C4-C5-C6-O6
8	Ι	5	MAN	O5-C5-C6-O6
12	d	3	BMA	O5-C5-C6-O6
9	с	4	MAN	O5-C5-C6-O6
9	с	7	MAN	O5-C5-C6-O6
8	W	4	MAN	O5-C5-C6-O6
8	Y	2	NAG	O5-C5-C6-O6

Mol	Chain	Res	Type	Atoms
8	b	4	MAN	O5-C5-C6-O6
9	J	6	MAN	O5-C5-C6-O6
9	с	5	MAN	O5-C5-C6-O6
8	Ζ	4	MAN	O5-C5-C6-O6
8	Ι	4	MAN	C4-C5-C6-O6
10	Κ	3	BMA	O5-C5-C6-O6
7	е	1	NAG	C4-C5-C6-O6
7	V	1	NAG	C3-C2-N2-C7
9	J	2	NAG	C3-C2-N2-C7
10	Κ	1	NAG	C3-C2-N2-C7

There are no ring outliers.

1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
8	Ζ	1	NAG	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

21 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Dog	Tipk	Bo	ond leng	ths	B	ond ang	gles
	Type	Unain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
13	NAG	А	602	1	14,14,15	2.08	5 (35%)	17,19,21	0.93	0
13	NAG	С	605	1	14,14,15	2.07	6 (42%)	17,19,21	0.98	1 (5%)
13	NAG	А	604	1	14,14,15	2.18	6 (42%)	17,19,21	0.94	1 (5%)
13	NAG	D	604	1	14,14,15	1.99	<mark>5 (35%)</mark>	17,19,21	1.09	1 (5%)
13	NAG	С	606	1	14,14,15	2.02	<mark>5 (35%)</mark>	17,19,21	0.91	1 (5%)
13	NAG	D	607	1	14,14,15	2.01	<mark>6 (42%)</mark>	17,19,21	1.03	1 (5%)
13	NAG	С	601	1	14,14,15	2.09	<mark>5 (35%)</mark>	17,19,21	0.95	1 (5%)
13	NAG	С	604	1	14,14,15	2.17	6 (42%)	17,19,21	1.02	1 (5%)
13	NAG	С	602	1	14,14,15	2.03	4 (28%)	17,19,21	0.91	0
13	NAG	D	603	1	14,14,15	0.46	0	17,19,21	0.76	0
13	NAG	С	607	1	14,14,15	1.99	<mark>5 (35%)</mark>	17,19,21	1.05	1 (5%)
13	NAG	D	606	1	14,14,15	2.09	7 (50%)	17,19,21	0.92	1 (5%)
13	NAG	D	602	1	14,14,15	2.09	6 (42%)	17,19,21	0.98	1 (5%)
13	NAG	D	608	1	14,14,15	0.40	0	17,19,21	0.81	1 (5%)
13	NAG	А	603	1	14,14,15	2.06	4 (28%)	17,19,21	1.05	0
13	NAG	С	603	1	14,14,15	2.08	5 (35%)	17,19,21	0.99	1 (5%)
13	NAG	А	605	1	14,14,15	2.09	6 (42%)	17,19,21	1.12	2 (11%)
13	NAG	А	601	1	14,14,15	2.12	5 (35%)	17,19,21	0.96	0
13	NAG	D	605	1	14,14,15	2.29	7 (50%)	17,19,21	1.13	1 (5%)
13	NAG	С	608	1	14,14,15	2.14	5 (35%)	17,19,21	0.98	1 (5%)
13	NAG	D	601	1	14,14,15	2.02	5 (35%)	17,19,21	0.93	1 (5%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
13	NAG	А	602	1	-	0/6/23/26	0/1/1/1
13	NAG	С	605	1	-	1/6/23/26	0/1/1/1
13	NAG	А	604	1	-	0/6/23/26	0/1/1/1
13	NAG	D	604	1	-	1/6/23/26	0/1/1/1
13	NAG	С	606	1	-	1/6/23/26	0/1/1/1
13	NAG	D	607	1	-	1/6/23/26	0/1/1/1
13	NAG	С	601	1	-	0/6/23/26	0/1/1/1
13	NAG	С	604	1	-	0/6/23/26	0/1/1/1
13	NAG	С	602	1	-	0/6/23/26	0/1/1/1
13	NAG	D	603	1	-	2/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
13	NAG	С	607	1	-	0/6/23/26	0/1/1/1
13	NAG	D	606	1	-	0/6/23/26	0/1/1/1
13	NAG	D	602	1	-	0/6/23/26	0/1/1/1
13	NAG	D	608	1	-	3/6/23/26	0/1/1/1
13	NAG	А	603	1	-	0/6/23/26	0/1/1/1
13	NAG	С	603	1	-	1/6/23/26	0/1/1/1
13	NAG	А	605	1	-	0/6/23/26	0/1/1/1
13	NAG	А	601	1	-	1/6/23/26	0/1/1/1
13	NAG	D	605	1	-	1/6/23/26	0/1/1/1
13	NAG	С	608	1	-	0/6/23/26	0/1/1/1
13	NAG	D	601	1	-	0/6/23/26	0/1/1/1

All (103) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(\text{\AA})$	Ideal(Å)
13	D	605	NAG	C1-C2	5.56	1.60	1.52
13	А	604	NAG	C1-C2	5.37	1.60	1.52
13	А	601	NAG	C1-C2	5.36	1.60	1.52
13	А	602	NAG	C1-C2	5.34	1.60	1.52
13	С	601	NAG	C1-C2	5.30	1.60	1.52
13	С	608	NAG	C1-C2	5.23	1.60	1.52
13	С	603	NAG	C1-C2	5.14	1.60	1.52
13	С	604	NAG	C1-C2	5.11	1.60	1.52
13	А	605	NAG	C1-C2	5.06	1.59	1.52
13	С	602	NAG	C1-C2	5.05	1.59	1.52
13	А	603	NAG	C1-C2	5.02	1.59	1.52
13	D	602	NAG	C1-C2	4.97	1.59	1.52
13	D	601	NAG	C1-C2	4.94	1.59	1.52
13	С	606	NAG	C1-C2	4.90	1.59	1.52
13	D	607	NAG	C1-C2	4.88	1.59	1.52
13	D	604	NAG	C1-C2	4.81	1.59	1.52
13	С	605	NAG	C1-C2	4.80	1.59	1.52
13	С	607	NAG	C1-C2	4.60	1.59	1.52
13	D	606	NAG	C1-C2	4.51	1.59	1.52
13	С	604	NAG	O5-C5	3.31	1.50	1.43
13	D	601	NAG	O5-C5	3.29	1.50	1.43
13	С	607	NAG	O5-C5	3.29	1.50	1.43
13	С	608	NAG	O5-C5	3.26	1.50	1.43
13	D	605	NAG	O5-C5	3.25	1.50	1.43
13	D	606	NAG	O5-C5	3.25	1.50	1.43
13	А	604	NAG	O5-C5	3.23	1.50	1.43
13	А	603	NAG	O5-C5	3.15	1.49	1.43

Continued	from	nrevious	naae
Continueu	jioni	pretious	page

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
13	С	606	NAG	O5-C5	3.13	1.49	1.43
13	А	602	NAG	O5-C5	3.09	1.49	1.43
13	D	602	NAG	O5-C5	3.08	1.49	1.43
13	С	605	NAG	O5-C5	3.08	1.49	1.43
13	D	605	NAG	C3-C2	3.07	1.59	1.52
13	А	605	NAG	O5-C5	3.06	1.49	1.43
13	С	603	NAG	O5-C5	3.06	1.49	1.43
13	А	601	NAG	O5-C5	3.05	1.49	1.43
13	С	602	NAG	O5-C5	3.03	1.49	1.43
13	D	607	NAG	O5-C5	3.01	1.49	1.43
13	С	601	NAG	O5-C5	3.00	1.49	1.43
13	D	606	NAG	O5-C1	2.96	1.48	1.43
13	D	604	NAG	O5-C5	2.92	1.49	1.43
13	С	607	NAG	O5-C1	2.90	1.48	1.43
13	С	605	NAG	O5-C1	2.87	1.48	1.43
13	А	604	NAG	O5-C1	2.85	1.48	1.43
13	А	601	NAG	O5-C1	2.81	1.48	1.43
13	С	604	NAG	O5-C1	2.80	1.48	1.43
13	С	608	NAG	O5-C1	2.77	1.48	1.43
13	D	605	NAG	O5-C1	2.74	1.48	1.43
13	А	605	NAG	O5-C1	2.73	1.48	1.43
13	С	604	NAG	C3-C2	2.71	1.58	1.52
13	А	603	NAG	O5-C1	2.69	1.48	1.43
13	D	602	NAG	C3-C2	2.68	1.58	1.52
13	D	602	NAG	O5-C1	2.64	1.47	1.43
13	С	601	NAG	O5-C1	2.60	1.47	1.43
13	С	606	NAG	O5-C1	2.60	1.47	1.43
13	С	603	NAG	O5-C1	2.59	1.47	1.43
13	D	604	NAG	O5-C1	2.54	1.47	1.43
13	С	602	NAG	C3-C2	2.50	1.57	1.52
13	С	602	NAG	O5-C1	2.49	1.47	1.43
13	D	601	NAG	O5-C1	2.46	1.47	1.43
13	D	606	NAG	C2-N2	2.46	1.50	1.46
13	А	602	NAG	O5-C1	2.35	1.47	1.43
13	D	606	NAG	C4-C5	2.34	1.58	1.53
13	С	603	NAG	C3-C2	2.34	1.57	1.52
13	D	604	NAG	C4-C5	2.30	1.57	1.53
13	D	607	NAG	C4-C5	2.29	1.57	1.53
13	А	604	NAG	C3-C2	2.29	1.57	1.52
13	С	605	NAG	C4-C5	2.29	1.57	1.53
13	А	605	NAG	C3-C2	2.27	1.57	1.52
13	D	605	NAG	C4-C3	2.27	1.58	1.52

COmu	Continuea from previous page							
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)	
13	D	607	NAG	O5-C1	2.25	1.47	1.43	
13	С	604	NAG	C4-C5	2.23	1.57	1.53	
13	D	601	NAG	C4-C5	2.23	1.57	1.53	
13	А	603	NAG	C3-C2	2.23	1.57	1.52	
13	А	602	NAG	C4-C5	2.23	1.57	1.53	
13	А	602	NAG	C3-C2	2.22	1.57	1.52	
13	С	608	NAG	C3-C2	2.22	1.57	1.52	
13	D	604	NAG	C3-C2	2.22	1.57	1.52	
13	С	601	NAG	C3-C2	2.22	1.57	1.52	
13	А	601	NAG	C4-C5	2.21	1.57	1.53	
13	D	601	NAG	C3-C2	2.20	1.57	1.52	
13	С	605	NAG	C3-C2	2.19	1.57	1.52	
13	А	604	NAG	C4-C5	2.19	1.57	1.53	
13	С	606	NAG	C4-C5	2.19	1.57	1.53	
13	D	605	NAG	C4-C5	2.18	1.57	1.53	
13	А	605	NAG	C4-C5	2.17	1.57	1.53	
13	А	601	NAG	C3-C2	2.17	1.57	1.52	
13	С	608	NAG	C4-C5	2.16	1.57	1.53	
13	С	603	NAG	C4-C5	2.15	1.57	1.53	
13	D	606	NAG	C4-C3	2.15	1.57	1.52	
13	С	601	NAG	C4-C5	2.14	1.57	1.53	
13	С	604	NAG	C4-C3	2.14	1.57	1.52	
13	С	607	NAG	C3-C2	2.13	1.57	1.52	
13	D	607	NAG	C3-C2	2.11	1.57	1.52	
13	D	602	NAG	C4-C5	2.09	1.57	1.53	
13	С	606	NAG	C3-C2	2.08	1.56	1.52	
13	D	606	NAG	C3-C2	2.05	1.56	1.52	
13	А	605	NAG	C2-N2	2.04	1.49	1.46	
13	D	607	NAG	C4-C3	2.03	1.57	1.52	
13	D	602	NAG	C4-C3	2.03	1.57	1.52	
13	С	607	NAG	C4-C5	2.03	1.57	1.53	
13	D	605	NAG	C2-N2	2.02	1.49	1.46	
13	А	604	NAG	C4-C3	2.01	1.57	1.52	
13	С	605	NAG	C4-C3	2.01	1.57	1.52	

Continued from previous page...

w:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
13	А	605	NAG	C8-C7-N2	2.80	120.83	116.10
13	D	602	NAG	C8-C7-N2	2.57	120.45	116.10
13	С	605	NAG	C8-C7-N2	2.46	120.26	116.10
13	С	607	NAG	C1-C2-N2	-2.45	106.30	110.49

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
13	А	605	NAG	O7-C7-C8	-2.45	117.52	122.06
13	С	604	NAG	C8-C7-N2	2.42	120.19	116.10
13	D	604	NAG	C1-C2-N2	-2.38	106.42	110.49
13	D	605	NAG	C1-C2-N2	-2.34	106.49	110.49
13	С	608	NAG	C8-C7-N2	2.29	119.98	116.10
13	С	606	NAG	C8-C7-N2	2.25	119.91	116.10
13	D	607	NAG	C8-C7-N2	2.20	119.82	116.10
13	D	606	NAG	C8-C7-N2	2.16	119.76	116.10
13	С	603	NAG	C8-C7-N2	2.12	119.69	116.10
13	А	604	NAG	C8-C7-N2	2.05	119.57	116.10
13	D	608	NAG	C2-N2-C7	-2.03	120.01	122.90
13	D	601	NAG	C8-C7-N2	2.03	119.54	116.10
13	С	601	NAG	C8-C7-N2	2.03	119.53	116.10

There are no chirality outliers.

All (12) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
13	D	603	NAG	C8-C7-N2-C2
13	D	603	NAG	O7-C7-N2-C2
13	D	608	NAG	C8-C7-N2-C2
13	D	608	NAG	O7-C7-N2-C2
13	С	605	NAG	O5-C5-C6-O6
13	D	604	NAG	O5-C5-C6-O6
13	А	601	NAG	O5-C5-C6-O6
13	D	607	NAG	O5-C5-C6-O6
13	С	606	NAG	O5-C5-C6-O6
13	D	608	NAG	O5-C5-C6-O6
13	С	603	NAG	O5-C5-C6-O6
13	D	605	NAG	C1-C2-N2-C7

There are no ring outliers.

1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
13	А	605	NAG	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-14783. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

This section was not generated.

6.2 Central slices (i)

This section was not generated.

6.3 Largest variance slices (i)

This section was not generated.

6.4 Orthogonal surface views (i)

This section was not generated.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

This section was not generated.

7.2 Volume estimate versus contour level (i)

This section was not generated.

7.3 Rotationally averaged power spectrum (i)

This section was not generated. The rotationally averaged power spectrum had issues being displayed.

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section was not generated.

