

wwPDB X-ray Structure Validation Summary Report (i)

Apr 27, 2024 – 10:00 pm BST

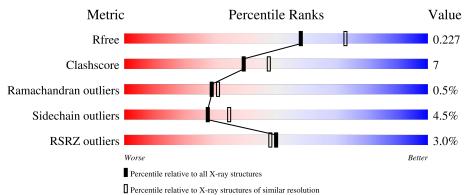
PDB ID	:	3ZKE
Title	:	Structure of LC8 in complex with Nek9 peptide
Authors	:	Gallego, P.; Velazquez-Campoy, A.; Regue, L.; Roig, J.; Reverter, D.
Deposited on		
Resolution	:	2.20 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:


MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.13
EDS	:	2.36.2
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$\begin{array}{c} \textbf{Whole archive} \\ \textbf{(\#Entries)} \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	4898 (2.20-2.20)
Clashscore	141614	5594 (2.20-2.20)
Ramachandran outliers	138981	5503 (2.20-2.20)
Sidechain outliers	138945	5504 (2.20-2.20)
RSRZ outliers	127900	4800 (2.20-2.20)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	89	% • 78%	18% •
1	С	89	^{2%} 79%	16% ••
1	Е	89	73%	18% • •
1	G	89	% 72%	18% •••
1	Ι	89	^{2%} 78%	16% ••••

Continued from previous page...

Mol	Chain	Length	Quality of chain					
1	K	89	6% 76% 159	6 • • •				
2	В	11	9%91%	9%				
2	D	11	82%	18%				
2	F	11	9% 73% 18%	9%				
2	Н	11	91%	9%				
2	J	11	9% 64% 18%	18%				
2	L	11	9%91%	9%				

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 4726 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
1	А	85	Total	С	Ν	0	S	0	0	0
	Л	85	695	447	115	129	4	0	0	0
1	С	85	Total	С	Ν	Ο	S	0	0	0
	U	85	695	447	115	129	4	0	0	0
1	Е	85	Total	С	Ν	Ο	S	0	0	0
	Ľ	85	695	447	115	129	4		0	
1	G	85	Total	С	Ν	Ο	S	0	0	0
	G	85	695	447	115	129	4	0	0	U
1	т	85	Total	С	Ν	Ο	S	0	0	0
	1	85	695	447	115	129	4	0	0	0
1	K	85	Total	С	Ν	0	S	0	0	0
	IX	00	695	447	115	129	4		0	0

• Molecule 1 is a protein called DYNEIN LIGHT CHAIN 1, CYTOPLASMIC.

• Molecule 2 is a protein called NEK9 PROTEIN.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
2	В	11	Total	С	Ν	Ο	S	0	0	0
	D	11	76	45	15	15	1	0	0	0
2	D	11	Total	С	Ν	Ο	S	0	0	0
	D	11	76	45	15	15	1	0	0	U
2	F	10	Total	С	Ν	Ο	S	0	0	0
	Г	10	69	40	14	14	1	0		
2	Н	11	Total	С	Ν	Ο	S	0	0	0
	11	11	76	45	15	15	1	0	0	0
2	J	11	Total	С	Ν	Ο	S	0	0	0
	J	11	76	45	15	15	1	0	0	0
2	L	11	Total	С	Ν	Ο	S	0	0	0
	L	11	76	45	15	15 15 1 0	0	0	0	

• Molecule 3 is water.

Report		

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	18	Total O 18 18	0	0
3	В	3	Total O 3 3	0	0
3	С	13	Total O 13 13	0	0
3	D	3	Total O 3 3	0	0
3	Е	18	Total O 18 18	0	0
3	F	3	Total O 3 3	0	0
3	G	18	Total O 18 18	0	0
3	Н	3	Total O 3 3	0	0
3	Ι	12	Total O 12 12	0	0
3	J	6	Total O 6 6	0	0
3	К	9	Total O 9 9	0	0
3	L	1	Total O 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Chain A: 78% 18% • Molecule 1: DYNEIN LIGHT CHAIN 1, CYTOPLASMIC Chain C: 79% 16% • Molecule 1: DYNEIN LIGHT CHAIN 1, CYTOPLASMIC Chain E: 73% 18% • Molecule 1: DYNEIN LIGHT CHAIN 1, CYTOPLASMIC Chain G: 72% 18% • Molecule 1: DYNEIN LIGHT CHAIN 1, CYTOPLASMIC Chain I: 78% 16%
- Molecule 1: DYNEIN LIGHT CHAIN 1, CYTOPLASMIC

• Molecule 1: DYNEIN LIGHT CHAIN 1, CYTOPLASMIC

Chain K:	76%	15%	•••
MET CYS ASP ASC ASC ASC A33 A13 C18 C18 C18 C18 C18 C18 C18 C18 C18 C18	E45 E45 K48 K48 K48 K48 K48 K48 K48 K48 K48 K48		
• Molecule 2: NEK9 F	PROTEIN		
Chain B:	91%		9%
× 0 40 ₩ 30 ₩			
• Molecule 2: NEK9 F	ROTEIN		
Chain D:	82%		18%
4940 4950			
• Molecule 2: NEK9 F	ROTEIN		
Chain F:	73%	18%	9%
VAL 6941 8950			
• Molecule 2: NEK9 F	PROTEIN		
Chain H:	91%		9%
1940 1982			
• Molecule 2: NEK9 F	ROTEIN		
9% Chain J:	64%	18%	18%
0940 0941 1945 1948 1948			
• Molecule 2: NEK9 F	ROTEIN		
Chain L:	91%		9%
V940 H943 A950			

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	39.98Å 105.12Å 133.90Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Resolution (Å)	82.69 - 2.20	Depositor
Resolution (A)	41.34 - 2.20	EDS
% Data completeness	96.9 (82.69-2.20)	Depositor
(in resolution range)	96.9(41.34-2.20)	EDS
R _{merge}	0.08	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.02 (at 2.20 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.6.0117	Depositor
D D	0.196 , 0.228	Depositor
R, R_{free}	0.195 , 0.227	DCC
R_{free} test set	1459 reflections (5.08%)	wwPDB-VP
Wilson B-factor $(Å^2)$	35.2	Xtriage
Anisotropy	0.363	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.37, 45.8	EDS
L-test for twinning ²	$ \langle L \rangle = 0.47, \langle L^2 \rangle = 0.30$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.95	EDS
Total number of atoms	4726	wwPDB-VP
Average B, all atoms $(Å^2)$	38.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 5.76% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bo	nd lengths	Bo	ond angles
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	1.09	1/711~(0.1%)	0.99	3/954~(0.3%)
1	С	0.98	0/711	0.92	1/954~(0.1%)
1	Ε	1.15	7/711~(1.0%)	1.07	6/954~(0.6%)
1	G	1.09	2/711~(0.3%)	1.06	6/954~(0.6%)
1	Ι	1.05	2/711~(0.3%)	0.92	1/954~(0.1%)
1	Κ	1.23	5/711~(0.7%)	1.15	6/954~(0.6%)
2	В	0.91	0/76	0.84	0/100
2	D	0.88	0/76	0.78	0/100
2	F	1.19	0/69	0.79	0/90
2	Н	0.88	0/76	0.69	0/100
2	J	1.09	0/76	0.74	0/100
2	L	1.29	2/76~(2.6%)	0.85	0/100
All	All	1.10	19/4715~(0.4%)	1.00	23/6314~(0.4%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers #Planarity outlier	
2	J	0	1

The worst 5 of 19 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	Κ	45	GLU	CD-OE1	-13.71	1.10	1.25
1	Κ	45	GLU	CD-OE2	-9.29	1.15	1.25
1	А	54	TRP	CD2-CE2	7.23	1.50	1.41
1	Ι	51	ASN	CG-ND2	-6.56	1.16	1.32
1	Ι	51	ASN	CG-OD1	-6.08	1.10	1.24

The worst 5 of 23 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$\mathbf{Ideal}(^{o})$
1	Κ	45	GLU	OE1-CD-OE2	-14.90	105.42	123.30
1	Е	20	ASP	CB-CG-OD1	8.84	126.25	118.30
1	G	81	VAL	CG1-CB-CG2	-8.25	97.70	110.90
1	Κ	45	GLU	CG-CD-OE2	7.83	133.95	118.30
1	Е	20	ASP	OD1-CG-OD2	-7.31	109.42	123.30

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
2	J	940	VAL	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	695	0	680	7	0
1	С	695	0	680	15	3
1	Е	695	0	680	19	3
1	G	695	0	680	11	2
1	Ι	695	0	680	12	0
1	K	695	0	680	11	2
2	В	76	0	75	0	0
2	D	76	0	75	3	0
2	F	69	0	66	3	0
2	Н	76	0	75	1	0
2	J	76	0	75	4	0
2	L	76	0	75	1	0
3	А	18	0	0	1	0
3	В	3	0	0	0	0
3	С	13	0	0	1	0
3	D	3	0	0	0	0
3	Е	18	0	0	2	0
3	F	3	0	0	0	0
3	G	18	0	0	1	0
3	Н	3	0	0	0	0
3	Ι	12	0	0	4	0
3	J	6	0	0	0	0

001000	Continued from precious page						
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes	
3	Κ	9	0	0	1	0	
3	L	1	0	0	0	0	
All	All	4726	0	4521	68	5	

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 7.

The worst 5 of 68 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:C:80:GLN:HE22	1:E:5:LYS:NZ	1.25	1.31
1:C:79:GLY:O	3:C:2012:HOH:O	1.58	1.22
1:I:78:LEU:O	3:I:2012:HOH:O	1.72	1.06
1:C:80:GLN:NE2	1:E:5:LYS:NZ	2.03	1.06
1:I:16:GLU:OE1	3:I:2004:HOH:O	1.81	0.97

All (5) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:G:31:LYS:NZ	1:K:20:ASP:OD2[3_455]	1.62	0.58
1:G:32:TYR:OH	1:K:23:GLU:OE1[3_455]	1.80	0.40
1:C:33:ASN:OD1	$1:E:33:ASN:OD1[4_545]$	2.02	0.18
1:C:33:ASN:OD1	1:E:33:ASN:ND2[4_545]	2.09	0.11
1:C:33:ASN:OD1	$1:E:33:ASN:CG[4_545]$	2.17	0.03

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

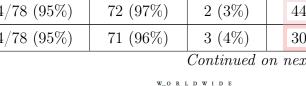
Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	83/89~(93%)	79~(95%)	4(5%)	0	100 100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	С	83/89~(93%)	80 (96%)	3~(4%)	0	100 100
1	Ε	83/89~(93%)	80 (96%)	3~(4%)	0	100 100
1	G	83/89~(93%)	80 (96%)	2(2%)	1 (1%)	13 10
1	Ι	83/89~(93%)	80 (96%)	2(2%)	1 (1%)	13 10
1	Κ	83/89~(93%)	80 (96%)	3~(4%)	0	100 100
2	В	9/11~(82%)	9 (100%)	0	0	100 100
2	D	9/11~(82%)	9 (100%)	0	0	100 100
2	F	8/11~(73%)	8 (100%)	0	0	100 100
2	Н	9/11~(82%)	9 (100%)	0	0	100 100
2	J	9/11~(82%)	8 (89%)	0	1 (11%)	0 0
2	L	9/11~(82%)	9 (100%)	0	0	100 100
All	All	551/600~(92%)	531 (96%)	17 (3%)	3~(0%)	29 31

Continued from previous page...

All (3) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	J	941	GLY
1	G	51	ASN
1	Ι	51	ASN


5.3.2Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	74/78~(95%)	72~(97%)	2(3%)	44 57
1	С	74/78~(95%)	72~(97%)	2(3%)	44 57
1	Е	74/78~(95%)	69~(93%)	5 (7%)	16 17
1	G	74/78~(95%)	70~(95%)	4(5%)	22 26
1	Ι	74/78~(95%)	72~(97%)	2(3%)	44 57
1	Κ	74/78~(95%)	71~(96%)	3~(4%)	30 39

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
2	В	8/8~(100%)	7~(88%)	1 (12%)	4	4
2	D	8/8 (100%)	7 (88%)	1 (12%)	4	4
2	F	7/8~(88%)	6 (86%)	1 (14%)	3	2
2	Н	8/8~(100%)	8 (100%)	0	100	100
2	J	8/8~(100%)	7~(88%)	1 (12%)	4	4
2	L	8/8 (100%)	8 (100%)	0	100	100
All	All	491/516~(95%)	469~(96%)	22~(4%)	27	34

Continued from previous page...

5 of 22 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	G	60	ARG
1	Ι	81	VAL
1	Ι	15	GLU
2	J	945	LYS
1	Е	5	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (2) such sidechains are listed below:

Mol	Chain	Res	Type
1	С	80	GLN
1	G	51	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	85/89~(95%)	-0.28	1 (1%) 79 77	23, 33, 52, 72	0
1	С	85/89~(95%)	-0.24	2 (2%) 59 56	23, 37, 57, 73	0
1	Ε	85/89~(95%)	-0.26	2 (2%) 59 56	24, 35, 52, 72	0
1	G	85/89~(95%)	-0.30	1 (1%) 79 77	22, 35, 54, 77	0
1	Ι	85/89~(95%)	-0.12	2 (2%) 59 56	24, 40, 65, 81	0
1	Κ	85/89~(95%)	-0.09	5 (5%) 22 21	26, 39, 62, 81	0
2	В	11/11 (100%)	-0.16	1 (9%) 9 8	26, 31, 49, 55	0
2	D	11/11 (100%)	-0.26	0 100 100	26, 34, 45, 61	0
2	F	10/11~(90%)	-0.17	1 (10%) 7 6	27, 31, 57, 62	0
2	Н	11/11 (100%)	-0.34	0 100 100	27, 33, 50, 56	0
2	J	11/11 (100%)	0.25	1 (9%) 9 8	28, 31, 56, 82	0
2	L	11/11 (100%)	0.23	1 (9%) 9 8	38, 42, 68, 69	0
All	All	575/600~(95%)	-0.20	17 (2%) 50 48	22, 37, 59, 82	0

The worst 5 of 17 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
2	J	940	VAL	6.5
1	Ι	5	LYS	4.0
1	С	80	GLN	3.4
1	Κ	5	LYS	3.2
1	Е	80	GLN	2.9

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

