PDB ID : 7YWR
BMRB ID : 51325
Title : NMR structure of the N-terminal domain of Nsp8 from SARS-CoV-2
Authors : Mompean, M.; Laurents, D.V.; Pantoja-Uceda, D.; Trevino, M.A.
Deposited on : 2022-02-14

This is a Full wwPDB NMR Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
with specific help available everywhere you see the symbol.

The types of validation reports are described at
http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references) were used in the production of this report:

MolProbity : 4.02b-467
Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)
wwPDB-RCI : v_1n_11_5_13_A (Berjanski et al., 2005)
PANAV : Wang et al. (2010)
wwPDB-ShiftChecker : v1.2
BMRB Restraints Analysis : v1.2
Ideal geometry (proteins) : Engh & Huber (2001)
Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP) : 2.33
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

SOLUTION NMR

The overall completeness of chemical shifts assignment is 81%.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>NMR archive (#Entries)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clashscore</td>
<td>158937</td>
<td>12864</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>154571</td>
<td>11451</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>154315</td>
<td>11428</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>84</td>
<td>87% 12%</td>
</tr>
</tbody>
</table>
2 Ensemble composition and analysis

This entry contains 20 models. Model 5 is the overall representative, medoid model (most similar to other models). The authors have identified model 1 as representative, based on the following criterion: lowest energy.

The following residues are included in the computation of the global validation metrics.

<table>
<thead>
<tr>
<th>Well-defined (core) protein residues</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Well-defined core</td>
<td>Residue range (total)</td>
<td>Backbone RMSD (Å)</td>
<td>Medoid model</td>
</tr>
<tr>
<td>1</td>
<td>A:4-A:54 (51)</td>
<td>0.51</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>A:55-A:77 (23)</td>
<td>2.48</td>
<td>6</td>
</tr>
</tbody>
</table>

Ill-defined regions of proteins are excluded from the global statistics.
Ligands and non-protein polymers are included in the analysis.
The models can be grouped into 4 clusters. No single-model clusters were found.

<table>
<thead>
<tr>
<th>Cluster number</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2, 4, 5, 7, 8, 10, 15</td>
</tr>
<tr>
<td>2</td>
<td>6, 9, 11, 13, 16, 18</td>
</tr>
<tr>
<td>3</td>
<td>3, 12, 14, 17, 19</td>
</tr>
<tr>
<td>4</td>
<td>1, 20</td>
</tr>
</tbody>
</table>
3 Entry composition

There is only 1 type of molecule in this entry. The entry contains 1310 atoms, of which 658 are hydrogens and 0 are deuteriums.

- Molecule 1 is a protein called ORF1a polyprotein.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>84</td>
<td>Total 1310</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C 403</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H 658</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N 114</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O 131</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S 4</td>
<td></td>
</tr>
</tbody>
</table>
4 Residue-property plots

4.1 Average score per residue in the NMR ensemble

These plots are provided for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.

- Molecule 1: ORF1a polyprotein

Chain A:

4.2 Scores per residue for each member of the ensemble

Colouring as in section 4.1 above.

4.2.1 Score per residue for model 1

- Molecule 1: ORF1a polyprotein

Chain A:

4.2.2 Score per residue for model 2

- Molecule 1: ORF1a polyprotein

Chain A:
4.2.3 Score per residue for model 3

- Molecule 1: ORF1a polyprotein

Chain A:

4.2.4 Score per residue for model 4

- Molecule 1: ORF1a polyprotein

Chain A:

4.2.5 Score per residue for model 5 (medoid)

- Molecule 1: ORF1a polyprotein

Chain A:

4.2.6 Score per residue for model 6

- Molecule 1: ORF1a polyprotein

Chain A:

4.2.7 Score per residue for model 7

- Molecule 1: ORF1a polyprotein

Chain A:
4.2.8 Score per residue for model 8

- Molecule 1: ORF1a polyprotein

Chain A:

4.2.9 Score per residue for model 9

- Molecule 1: ORF1a polyprotein

Chain A:

4.2.10 Score per residue for model 10

- Molecule 1: ORF1a polyprotein

Chain A:

4.2.11 Score per residue for model 11

- Molecule 1: ORF1a polyprotein

Chain A:

4.2.12 Score per residue for model 12

- Molecule 1: ORF1a polyprotein

Chain A:
4.2.13 Score per residue for model 13

- Molecule 1: ORF1a polyprotein

Chain A:

![Bar graph for Chain A of model 13]

85% 12%

4.2.14 Score per residue for model 14

- Molecule 1: ORF1a polyprotein

Chain A:

![Bar graph for Chain A of model 14]

85% 12%

4.2.15 Score per residue for model 15

- Molecule 1: ORF1a polyprotein

Chain A:

![Bar graph for Chain A of model 15]

85% 12%

4.2.16 Score per residue for model 16

- Molecule 1: ORF1a polyprotein

Chain A:

![Bar graph for Chain A of model 16]

76% 12% 12%

4.2.17 Score per residue for model 17

- Molecule 1: ORF1a polyprotein

Chain A:

![Bar graph for Chain A of model 17]

83% 5% 12%
4.2.18 Score per residue for model 18

- Molecule 1: ORF1a polyprotein

Chain A:

![Score per residue for model 18]

4.2.19 Score per residue for model 19

- Molecule 1: ORF1a polyprotein

Chain A:

![Score per residue for model 19]

4.2.20 Score per residue for model 20

- Molecule 1: ORF1a polyprotein

Chain A:

![Score per residue for model 20]
5 Refinement protocol and experimental data overview

The models were refined using the following method: *molecular dynamics*.

Of the 100 calculated structures, 20 were deposited, based on the following criterion: *target function*.

The following table shows the software used for structure solution, optimisation and refinement.

<table>
<thead>
<tr>
<th>Software name</th>
<th>Classification</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYANA</td>
<td>structure calculation</td>
<td></td>
</tr>
<tr>
<td>Amber</td>
<td>refinement</td>
<td></td>
</tr>
</tbody>
</table>

The following table shows chemical shift validation statistics as aggregates over all chemical shift files. Detailed validation can be found in section 7 of this report.

<table>
<thead>
<tr>
<th>Chemical shift file(s)</th>
<th>working_cs.cif</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of chemical shift lists</td>
<td>1</td>
</tr>
<tr>
<td>Total number of shifts</td>
<td>923</td>
</tr>
<tr>
<td>Number of shifts mapped to atoms</td>
<td>923</td>
</tr>
<tr>
<td>Number of unparsed shifts</td>
<td>0</td>
</tr>
<tr>
<td>Number of shifts with mapping errors</td>
<td>0</td>
</tr>
<tr>
<td>Number of shifts with mapping warnings</td>
<td>0</td>
</tr>
<tr>
<td>Assignment completeness (well-defined parts)</td>
<td>81%</td>
</tr>
</tbody>
</table>
6 Model quality

6.1 Standard geometry

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the (average) root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSS</td>
<td>Z > 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.70 ± 0.01</td>
<td>0 ± 0/584 (0.0 ± 0.0%)</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0.70</td>
<td>0/11680 (0.0%)</td>
</tr>
</tbody>
</table>

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Chirality</th>
<th>Planarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>0.0 ± 0.0</td>
<td>0 ± 0.2</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

There are no bond-length outliers.

All unique angle outliers are listed below.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NE-CZ-NH1</td>
<td>5.24</td>
<td>122.92</td>
<td>120.30</td>
<td>4</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

All unique planar outliers are listed below.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Group</th>
<th>Models (Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>22</td>
<td>TYR</td>
<td>Sidechain</td>
<td>1</td>
</tr>
</tbody>
</table>

6.2 Too-close contacts
The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 0.

All unique clashes are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Clash(Å)</th>
<th>Distance(Å)</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:26:VAL:HG12</td>
<td>1:A:35:LEU:HG</td>
<td>0.49</td>
<td>1.83</td>
<td>16</td>
</tr>
<tr>
<td>1:A:22:TYR:O</td>
<td>1:A:26:VAL:HG23</td>
<td>0.41</td>
<td>2.16</td>
<td>18</td>
</tr>
</tbody>
</table>

6.3 Torsion angles

6.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>74/84 (88%)</td>
<td>72±1 (98±1%)</td>
<td>2±1 (2±1%)</td>
<td>0±0 (0±0%)</td>
<td>54 85</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1480/1680 (88%)</td>
<td>1445 (98%)</td>
<td>34 (2%)</td>
<td>1 (0%)</td>
<td>54 85</td>
</tr>
</tbody>
</table>

All 1 unique Ramachandran outliers are listed below.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Models (Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>74</td>
<td>ALA</td>
<td>1</td>
</tr>
</tbody>
</table>

6.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the sidechain conformation was analysed and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>60/67 (90%)</td>
<td>56±1 (94±2%)</td>
<td>4±1 (6±2%)</td>
<td>21 69</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1200/1340 (90%)</td>
<td>1122 (94%)</td>
<td>78 (6%)</td>
<td>21 69</td>
</tr>
</tbody>
</table>
All 27 unique residues with a non-rotameric sidechain are listed below. They are sorted by the frequency of occurrence in the ensemble.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Models (Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>19</td>
<td>GLN</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>49</td>
<td>PHE</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>72</td>
<td>LYS</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>36</td>
<td>LYS</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>37</td>
<td>LYS</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>42</td>
<td>LEU</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>75</td>
<td>ARG</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>67</td>
<td>MET</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>34</td>
<td>VAL</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>46</td>
<td>LYS</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>58</td>
<td>LYS</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>55</td>
<td>MET</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>52</td>
<td>ASP</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>59</td>
<td>LEU</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>56</td>
<td>GLN</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>65</td>
<td>GLN</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>4</td>
<td>SER</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>28</td>
<td>ASN</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>40</td>
<td>LYS</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>73</td>
<td>GLN</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>50</td>
<td>ASP</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>11</td>
<td>SER</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>64</td>
<td>ASP</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>61</td>
<td>LYS</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>32</td>
<td>GLU</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>48</td>
<td>GLU</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>68</td>
<td>THR</td>
<td>1</td>
</tr>
</tbody>
</table>

6.3.3 RNA

There are no RNA molecules in this entry.

6.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

6.5 Carbohydrates

There are no monosaccharides in this entry.
6.6 Ligand geometry

There are no ligands in this entry.

6.7 Other polymers

There are no such molecules in this entry.

6.8 Polymer linkage issues

There are no chain breaks in this entry.
7 Chemical shift validation

The completeness of assignment taking into account all chemical shift lists is 81% for the well-defined parts and 82% for the entire structure.

7.1 Chemical shift list 1

File name: working_cs.cif
Chemical shift list name: nsp8_NTD_cs.str

7.1.1 Bookkeeping

The following table shows the results of parsing the chemical shift list and reports the number of nuclei with statistically unusual chemical shifts.

<table>
<thead>
<tr>
<th>Total number of shifts</th>
<th>923</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of shifts mapped to atoms</td>
<td>923</td>
</tr>
<tr>
<td>Number of unparsed shifts</td>
<td>0</td>
</tr>
<tr>
<td>Number of shifts with mapping errors</td>
<td>0</td>
</tr>
<tr>
<td>Number of shifts with mapping warnings</td>
<td>0</td>
</tr>
<tr>
<td>Number of shift outliers (ShiftChecker)</td>
<td>0</td>
</tr>
</tbody>
</table>

7.1.2 Chemical shift referencing

The following table shows the suggested chemical shift referencing corrections.

<table>
<thead>
<tr>
<th>Nucleus</th>
<th># values</th>
<th>Correction ± precision, ppm</th>
<th>Suggested action</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{13}\text{C}_\alpha$</td>
<td>79</td>
<td>-0.77 ± 0.06</td>
<td>Should be checked</td>
</tr>
<tr>
<td>$^{13}\text{C}_\beta$</td>
<td>78</td>
<td>0.40 ± 0.07</td>
<td>None needed (< 0.5 ppm)</td>
</tr>
<tr>
<td>$^{13}\text{C}'$</td>
<td>76</td>
<td>-1.04 ± 0.13</td>
<td>Should be applied</td>
</tr>
<tr>
<td>^{15}N</td>
<td>80</td>
<td>-0.85 ± 0.17</td>
<td>Should be applied</td>
</tr>
</tbody>
</table>

7.1.3 Completeness of resonance assignments

The following table shows the completeness of the chemical shift assignments for the well-defined regions of the structure. The overall completeness is 81%, i.e. 797 atoms were assigned a chemical shift out of a possible 983. 0 out of 9 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

<table>
<thead>
<tr>
<th>Region</th>
<th>Total</th>
<th>^1H</th>
<th>^{13}C</th>
<th>^{15}N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backbone</td>
<td>348/369 (94%)</td>
<td>143/148 (97%)</td>
<td>135/148 (91%)</td>
<td>70/73 (96%)</td>
</tr>
<tr>
<td>Sidechain</td>
<td>424/557 (76%)</td>
<td>296/359 (82%)</td>
<td>128/173 (74%)</td>
<td>0/25 (0%)</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>1H</th>
<th>13C</th>
<th>15N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aromatic</td>
<td>25/57 (44%)</td>
<td>25/27 (93%)</td>
<td>0/30 (0%)</td>
<td>0/0 (—%)</td>
</tr>
<tr>
<td>Overall</td>
<td>797/983 (81%)</td>
<td>464/534 (87%)</td>
<td>263/351 (75%)</td>
<td>70/98 (71%)</td>
</tr>
</tbody>
</table>

The following table shows the completeness of the chemical shift assignments for the full structure. The overall completeness is 82%, i.e. 922 atoms were assigned a chemical shift out of a possible 1122. 0 out of 10 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>1H</th>
<th>13C</th>
<th>15N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backbone</td>
<td>397/419 (95%)</td>
<td>162/168 (96%)</td>
<td>155/168 (92%)</td>
<td>80/83 (96%)</td>
</tr>
<tr>
<td>Sidechain</td>
<td>500/646 (77%)</td>
<td>349/417 (84%)</td>
<td>151/199 (76%)</td>
<td>0/30 (0%)</td>
</tr>
<tr>
<td>Aromatic</td>
<td>25/57 (44%)</td>
<td>25/27 (93%)</td>
<td>0/30 (0%)</td>
<td>0/0 (—%)</td>
</tr>
<tr>
<td>Overall</td>
<td>922/1122 (82%)</td>
<td>536/612 (88%)</td>
<td>306/397 (77%)</td>
<td>80/113 (71%)</td>
</tr>
</tbody>
</table>

7.1.4 Statistically unusual chemical shifts

There are no statistically unusual chemical shifts.

7.1.5 Random Coil Index (RCI) plots

The image below reports random coil index values for the protein chains in the structure. The height of each bar gives a probability of a given residue to be disordered, as predicted from the available chemical shifts and the amino acid sequence. A value above 0.2 is an indication of significant predicted disorder. The colour of the bar shows whether the residue is in the well-defined core (black) or in the ill-defined residue ranges (cyan), as described in section 2 on ensemble composition. If well-defined core and ill-defined regions are not identified then it is shown as gray bars.

Random coil index (RCI) for chain A:
8 NMR restraints analysis

8.1 Conformationally restricting restraints

The following table provides the summary of experimentally observed NMR restraints in different categories. Restraints are classified into different categories based on the sequence separation of the atoms involved.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total distance restraints</td>
<td>587</td>
</tr>
<tr>
<td>Intra-residue ([i-j]=0)</td>
<td>165</td>
</tr>
<tr>
<td>Sequential ([i-j]=1)</td>
<td>172</td>
</tr>
<tr>
<td>Medium range ([i-j]>1 and [i-j]<5)</td>
<td>128</td>
</tr>
<tr>
<td>Long range ([i-j]≥5)</td>
<td>122</td>
</tr>
<tr>
<td>Inter-chain</td>
<td>0</td>
</tr>
<tr>
<td>Hydrogen bond restraints</td>
<td>0</td>
</tr>
<tr>
<td>Disulfide bond restraints</td>
<td>0</td>
</tr>
<tr>
<td>Total dihedral-angle restraints</td>
<td>0</td>
</tr>
<tr>
<td>Number of unmapped restraints</td>
<td>2</td>
</tr>
<tr>
<td>Number of restraints per residue</td>
<td>7.0</td>
</tr>
<tr>
<td>Number of long range restraints per residue</td>
<td>1.5</td>
</tr>
</tbody>
</table>

1Long range hydrogen bonds and disulfide bonds are counted as long range restraints while calculating the number of long range restraints per residue

8.2 Residual restraint violations

This section provides the overview of the restraint violations analysis. The violations are binned as small, medium and large violations based on its absolute value. Average number of violations per model is calculated by dividing the total number of violations in each bin by the size of the ensemble.

8.2.1 Average number of distance violations per model

Distance violations less than 0.1 Å are not included in the calculation.

<table>
<thead>
<tr>
<th>Bins (Å)</th>
<th>Average number of violations per model</th>
<th>Max (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1-0.2 (Small)</td>
<td>2.8</td>
<td>0.2</td>
</tr>
<tr>
<td>0.2-0.5 (Medium)</td>
<td>1.9</td>
<td>0.41</td>
</tr>
<tr>
<td>>0.5 (Large)</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
8.2.2 Average number of dihedral-angle violations per model

Dihedral-angle violations less than 1° are not included in the calculation. There are no dihedral-angle violations.
9 Distance violation analysis

9.1 Summary of distance violations

The following table shows the summary of distance violations in different restraint categories based on the sequence separation of the atoms involved. Each category is further sub-divided into three sub-categories based on the atoms involved. Violations less than 0.1 Å are not included in the statistics.

<table>
<thead>
<tr>
<th>Restraints type</th>
<th>Count</th>
<th>%(^1)</th>
<th>Violated(^2)</th>
<th>Consistently Violated(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Count</td>
<td>%(^1) %(^2)</td>
<td>%(^1) %(^2)</td>
</tr>
<tr>
<td>Intra-residue (</td>
<td>i-j</td>
<td>=0)</td>
<td>165</td>
<td>28.1</td>
</tr>
<tr>
<td>Backbone-Backbone</td>
<td>0</td>
<td>0.0</td>
<td>0 0.0 0.0</td>
<td>0 0.0</td>
</tr>
<tr>
<td>Backbone-Sidechain</td>
<td>161</td>
<td>27.4</td>
<td>1 0.6 0.2</td>
<td>0 0.0</td>
</tr>
<tr>
<td>Sidechain-Sidechain</td>
<td>4</td>
<td>0.7</td>
<td>0 0.0 0.0</td>
<td>0 0.0</td>
</tr>
<tr>
<td>Sequential (</td>
<td>i-j</td>
<td>=1)</td>
<td>172</td>
<td>29.3</td>
</tr>
<tr>
<td>Backbone-Backbone</td>
<td>61</td>
<td>10.4</td>
<td>1 1.6 0.2</td>
<td>0 0.0</td>
</tr>
<tr>
<td>Backbone-Sidechain</td>
<td>102</td>
<td>17.4</td>
<td>4 3.9 0.7</td>
<td>0 0.0</td>
</tr>
<tr>
<td>Sidechain-Sidechain</td>
<td>9</td>
<td>1.5</td>
<td>0 0.0 0.0</td>
<td>0 0.0</td>
</tr>
<tr>
<td>Medium range (</td>
<td>i-j</td>
<td>>1 &</td>
<td>i-j</td>
<td><5)</td>
</tr>
<tr>
<td>Backbone-Backbone</td>
<td>45</td>
<td>7.7</td>
<td>0 0.0 0.0</td>
<td>0 0.0</td>
</tr>
<tr>
<td>Backbone-Sidechain</td>
<td>50</td>
<td>8.5</td>
<td>3 6.0 0.5</td>
<td>0 0.0</td>
</tr>
<tr>
<td>Sidechain-Sidechain</td>
<td>33</td>
<td>5.6</td>
<td>3 9.1 0.5</td>
<td>0 0.0</td>
</tr>
<tr>
<td>Long range (</td>
<td>i-j</td>
<td>≥5)</td>
<td>122</td>
<td>20.8</td>
</tr>
<tr>
<td>Backbone-Backbone</td>
<td>0</td>
<td>0.0</td>
<td>0 0.0 0.0</td>
<td>0 0.0</td>
</tr>
<tr>
<td>Backbone-Sidechain</td>
<td>54</td>
<td>9.2</td>
<td>5 9.3 0.9</td>
<td>0 0.0</td>
</tr>
<tr>
<td>Sidechain-Sidechain</td>
<td>68</td>
<td>11.6</td>
<td>7 10.3 1.2</td>
<td>0 0.0</td>
</tr>
<tr>
<td>Inter-chain</td>
<td>0</td>
<td>0.0</td>
<td>0 0.0 0.0</td>
<td>0 0.0</td>
</tr>
<tr>
<td>Backbone-Backbone</td>
<td>0</td>
<td>0.0</td>
<td>0 0.0 0.0</td>
<td>0 0.0</td>
</tr>
<tr>
<td>Backbone-Sidechain</td>
<td>0</td>
<td>0.0</td>
<td>0 0.0 0.0</td>
<td>0 0.0</td>
</tr>
<tr>
<td>Sidechain-Sidechain</td>
<td>0</td>
<td>0.0</td>
<td>0 0.0 0.0</td>
<td>0 0.0</td>
</tr>
<tr>
<td>Hydrogen bond</td>
<td>0</td>
<td>0.0</td>
<td>0 0.0 0.0</td>
<td>0 0.0</td>
</tr>
<tr>
<td>Disulfide bond</td>
<td>0</td>
<td>0.0</td>
<td>0 0.0 0.0</td>
<td>0 0.0</td>
</tr>
<tr>
<td>Total</td>
<td>587</td>
<td>100.0</td>
<td>24 4.1 4.1</td>
<td>0 0.0</td>
</tr>
</tbody>
</table>

\(^1\) percentage calculated with respect to the total number of distance restraints, \(^2\) percentage calculated with respect to the number of restraints in a particular restraint category, \(^3\) violated in at least one model, \(^4\) violated in all the models
9.1.1 Bar chart: Distribution of distance restraints and violations

Violated and consistently violated restraints are shown using different hatch patterns in their respective categories. The hydrogen bonds and disulfide bonds are counted in their appropriate category on the x-axis.

9.2 Distance violation statistics for each model

The following table provides the distance violation statistics for each model in the ensemble. Violations less than 0.1 Å are not included in the statistics.

<table>
<thead>
<tr>
<th>Model ID</th>
<th>Number of violations</th>
<th>Mean (Å)</th>
<th>Max (Å)</th>
<th>SD (Å)</th>
<th>Median (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR^1</td>
<td>SQ^2</td>
<td>MR^3</td>
<td>LR^4</td>
<td>IC^5</td>
<td>Total</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>1</td>
<td>0 0 1 3 0 4</td>
<td>0.17</td>
<td>0.21</td>
<td>0.04</td>
<td>0.18</td>
</tr>
<tr>
<td>2</td>
<td>0 2 1 2 0 5</td>
<td>0.22</td>
<td>0.4</td>
<td>0.1</td>
<td>0.22</td>
</tr>
<tr>
<td>3</td>
<td>0 0 2 4 0 6</td>
<td>0.15</td>
<td>0.21</td>
<td>0.04</td>
<td>0.14</td>
</tr>
<tr>
<td>4</td>
<td>1 0 1 2 0 4</td>
<td>0.22</td>
<td>0.3</td>
<td>0.04</td>
<td>0.21</td>
</tr>
<tr>
<td>5</td>
<td>0 0 1 2 0 3</td>
<td>0.27</td>
<td>0.28</td>
<td>0.01</td>
<td>0.27</td>
</tr>
<tr>
<td>6</td>
<td>0 1 1 5 0 7</td>
<td>0.22</td>
<td>0.31</td>
<td>0.06</td>
<td>0.22</td>
</tr>
<tr>
<td>7</td>
<td>0 1 0 3 0 4</td>
<td>0.15</td>
<td>0.21</td>
<td>0.04</td>
<td>0.14</td>
</tr>
<tr>
<td>8</td>
<td>1 0 1 3 0 5</td>
<td>0.15</td>
<td>0.24</td>
<td>0.05</td>
<td>0.11</td>
</tr>
<tr>
<td>9</td>
<td>0 0 1 3 0 4</td>
<td>0.22</td>
<td>0.35</td>
<td>0.08</td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>0 0 0 2 0 2</td>
<td>0.18</td>
<td>0.24</td>
<td>0.06</td>
<td>0.18</td>
</tr>
<tr>
<td>11</td>
<td>0 1 1 3 0 5</td>
<td>0.18</td>
<td>0.3</td>
<td>0.08</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Model ID</th>
<th>IR¹</th>
<th>SQ²</th>
<th>MR³</th>
<th>LR⁴</th>
<th>IC⁵</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

¹Intra-residue restraints, ²Sequential restraints, ³Medium range restraints, ⁴Long range restraints, ⁵Inter-chain restraints, ⁶Standard deviation

9.2.1 Bar graph: Distance Violation statistics for each model

The mean(dot), median(x) and the standard deviation are shown in blue with respect to the y axis on the right.
9.3 Distance violation statistics for the ensemble

Violation analysis may find that some restraints are violated in few models and some are violated in most of models. The following table provides this information as number of violated restraints for a given fraction of the ensemble. In total, 563 (IR:164, SQ:167, MR:122, LR:110, IC:0) restraints are not violated in the ensemble.

<table>
<thead>
<tr>
<th>Number of violated restraints</th>
<th>Fraction of the ensemble</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR(^1)</td>
<td>SQ(^2)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^1\) Intra-residue restraints, \(^2\) Sequential restraints, \(^3\) Medium range restraints, \(^4\) Long range restraints, \(^5\) Inter-chain restraints, \(^6\) Number of models with violations
9.3.1 Bar graph: Distance violation statistics for the ensemble

9.4 Most violated distance restraints in the ensemble

9.4.1 Histogram: Distribution of mean distance violations

The following histogram shows the distribution of the average value of the violation. The average is calculated for each restraint that is violated in more than one model over all the violated models in the ensemble.
9.4.2 Table: Most violated distance restraints

The following table provides the mean and the standard deviation of the violation for each restraint sorted by number of violated models and the mean value. The Key (restraint list ID, restraint ID) is the unique identifier for a given restraint. Rows with same key represent combinatorial or ambiguous restraints and are counted as a single restraint.

<table>
<thead>
<tr>
<th>Key</th>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Models</th>
<th>Mean (Å)</th>
<th>SD (Å)</th>
<th>Median (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD11</td>
<td></td>
<td>0.23</td>
<td>0.05</td>
<td>0.24</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD12</td>
<td></td>
<td>0.23</td>
<td>0.05</td>
<td>0.24</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD13</td>
<td></td>
<td>0.23</td>
<td>0.05</td>
<td>0.24</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD21</td>
<td></td>
<td>0.23</td>
<td>0.05</td>
<td>0.24</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD22</td>
<td></td>
<td>0.23</td>
<td>0.05</td>
<td>0.24</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD23</td>
<td></td>
<td>0.23</td>
<td>0.05</td>
<td>0.24</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD11</td>
<td></td>
<td>0.23</td>
<td>0.05</td>
<td>0.24</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD12</td>
<td></td>
<td>0.23</td>
<td>0.05</td>
<td>0.24</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD13</td>
<td></td>
<td>0.23</td>
<td>0.05</td>
<td>0.24</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD21</td>
<td></td>
<td>0.23</td>
<td>0.05</td>
<td>0.24</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD22</td>
<td></td>
<td>0.23</td>
<td>0.05</td>
<td>0.24</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD23</td>
<td></td>
<td>0.23</td>
<td>0.05</td>
<td>0.24</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD11</td>
<td></td>
<td>0.21</td>
<td>0.08</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD12</td>
<td></td>
<td>0.21</td>
<td>0.08</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD13</td>
<td></td>
<td>0.21</td>
<td>0.08</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD21</td>
<td></td>
<td>0.21</td>
<td>0.08</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Key</th>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Models</th>
<th>Mean (Å)</th>
<th>SD (Å)</th>
<th>Median (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,33)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD22</td>
<td>11</td>
<td>0.21</td>
<td>0.08</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,33)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD23</td>
<td>11</td>
<td>0.21</td>
<td>0.08</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,36)</td>
<td>1:A:9:LEU:HD11</td>
<td>1:A:53:ALA:H</td>
<td>10</td>
<td>0.27</td>
<td>0.09</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,36)</td>
<td>1:A:9:LEU:HD12</td>
<td>1:A:53:ALA:H</td>
<td>10</td>
<td>0.27</td>
<td>0.09</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,36)</td>
<td>1:A:9:LEU:HD13</td>
<td>1:A:53:ALA:H</td>
<td>10</td>
<td>0.27</td>
<td>0.09</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,36)</td>
<td>1:A:9:LEU:HD21</td>
<td>1:A:53:ALA:H</td>
<td>10</td>
<td>0.27</td>
<td>0.09</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,36)</td>
<td>1:A:9:LEU:HD22</td>
<td>1:A:53:ALA:H</td>
<td>10</td>
<td>0.27</td>
<td>0.09</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,36)</td>
<td>1:A:9:LEU:HD23</td>
<td>1:A:53:ALA:H</td>
<td>10</td>
<td>0.27</td>
<td>0.09</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,63)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:40:LYS:H</td>
<td>10</td>
<td>0.14</td>
<td>0.03</td>
<td>0.13</td>
</tr>
<tr>
<td>(1,63)</td>
<td>1:A:22:TYR:HE2</td>
<td>1:A:40:LYS:H</td>
<td>10</td>
<td>0.14</td>
<td>0.03</td>
<td>0.13</td>
</tr>
<tr>
<td>(1,49)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD11</td>
<td>8</td>
<td>0.22</td>
<td>0.07</td>
<td>0.21</td>
</tr>
<tr>
<td>(1,49)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD12</td>
<td>8</td>
<td>0.22</td>
<td>0.07</td>
<td>0.21</td>
</tr>
<tr>
<td>(1,63)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD1</td>
<td>10</td>
<td>0.22</td>
<td>0.07</td>
<td>0.21</td>
</tr>
<tr>
<td>(1,63)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD2</td>
<td>10</td>
<td>0.22</td>
<td>0.07</td>
<td>0.21</td>
</tr>
<tr>
<td>(1,49)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD12</td>
<td>8</td>
<td>0.22</td>
<td>0.07</td>
<td>0.21</td>
</tr>
<tr>
<td>(1,49)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD13</td>
<td>8</td>
<td>0.22</td>
<td>0.07</td>
<td>0.21</td>
</tr>
<tr>
<td>(1,63)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD12</td>
<td>8</td>
<td>0.22</td>
<td>0.07</td>
<td>0.21</td>
</tr>
<tr>
<td>(1,63)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD13</td>
<td>8</td>
<td>0.22</td>
<td>0.07</td>
<td>0.21</td>
</tr>
<tr>
<td>(1,49)</td>
<td>1:A:15:PHE:HE1</td>
<td>1:A:42:LEU:HD1</td>
<td>5</td>
<td>0.24</td>
<td>0.09</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,49)</td>
<td>1:A:15:PHE:HE1</td>
<td>1:A:42:LEU:HD12</td>
<td>5</td>
<td>0.24</td>
<td>0.09</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,49)</td>
<td>1:A:15:PHE:HE1</td>
<td>1:A:42:LEU:HD13</td>
<td>5</td>
<td>0.24</td>
<td>0.09</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,49)</td>
<td>1:A:15:PHE:HE1</td>
<td>1:A:42:LEU:HD21</td>
<td>5</td>
<td>0.24</td>
<td>0.09</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,49)</td>
<td>1:A:15:PHE:HE1</td>
<td>1:A:42:LEU:HD22</td>
<td>5</td>
<td>0.24</td>
<td>0.09</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,49)</td>
<td>1:A:15:PHE:HE1</td>
<td>1:A:42:LEU:HD23</td>
<td>5</td>
<td>0.24</td>
<td>0.09</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,49)</td>
<td>1:A:15:PHE:HE2</td>
<td>1:A:42:LEU:HD1</td>
<td>5</td>
<td>0.24</td>
<td>0.09</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,49)</td>
<td>1:A:15:PHE:HE2</td>
<td>1:A:42:LEU:HD12</td>
<td>5</td>
<td>0.24</td>
<td>0.09</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,49)</td>
<td>1:A:15:PHE:HE2</td>
<td>1:A:42:LEU:HD13</td>
<td>5</td>
<td>0.24</td>
<td>0.09</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,49)</td>
<td>1:A:15:PHE:HE2</td>
<td>1:A:42:LEU:HD21</td>
<td>5</td>
<td>0.24</td>
<td>0.09</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,49)</td>
<td>1:A:15:PHE:HE2</td>
<td>1:A:42:LEU:HD22</td>
<td>5</td>
<td>0.24</td>
<td>0.09</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,49)</td>
<td>1:A:15:PHE:HE2</td>
<td>1:A:42:LEU:HD23</td>
<td>5</td>
<td>0.24</td>
<td>0.09</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,49)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HG</td>
<td>4</td>
<td>0.16</td>
<td>0.04</td>
<td>0.14</td>
</tr>
<tr>
<td>(1,49)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HG</td>
<td>4</td>
<td>0.16</td>
<td>0.04</td>
<td>0.14</td>
</tr>
<tr>
<td>(1,19)</td>
<td>1:A:77:GLU:H</td>
<td>1:A:78:ASP:H</td>
<td>4</td>
<td>0.12</td>
<td>0.01</td>
<td>0.12</td>
</tr>
<tr>
<td>(1,297)</td>
<td>1:A:80:ARG:H</td>
<td>1:A:80:ARG:HG2</td>
<td>3</td>
<td>0.2</td>
<td>0.01</td>
<td>0.2</td>
</tr>
<tr>
<td>(1,297)</td>
<td>1:A:80:ARG:H</td>
<td>1:A:80:ARG:HG3</td>
<td>3</td>
<td>0.2</td>
<td>0.01</td>
<td>0.2</td>
</tr>
<tr>
<td>(1,478)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:53:ALA:H</td>
<td>3</td>
<td>0.17</td>
<td>0.02</td>
<td>0.17</td>
</tr>
<tr>
<td>(1,478)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:53:ALA:H</td>
<td>3</td>
<td>0.17</td>
<td>0.02</td>
<td>0.17</td>
</tr>
<tr>
<td>(1,377)</td>
<td>1:A:1:ALA:HB1</td>
<td>1:A:2:ILE:H</td>
<td>3</td>
<td>0.13</td>
<td>0.0</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Continued on next page...
Key

<table>
<thead>
<tr>
<th>Key</th>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Models (^1)</th>
<th>Mean (Å)</th>
<th>SD (^1) (Å)</th>
<th>Median (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,377)</td>
<td>1:A:1:ALA:HB2</td>
<td>1:A:2:ILE:H</td>
<td>3</td>
<td>0.13</td>
<td>0.0</td>
<td>0.13</td>
</tr>
<tr>
<td>(1,377)</td>
<td>1:A:1:ALA:HB3</td>
<td>1:A:2:ILE:H</td>
<td>3</td>
<td>0.13</td>
<td>0.0</td>
<td>0.13</td>
</tr>
<tr>
<td>(1,434)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:39:LYS:HD2</td>
<td>3</td>
<td>0.11</td>
<td>0.0</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,434)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:39:LYS:HD3</td>
<td>3</td>
<td>0.11</td>
<td>0.0</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,434)</td>
<td>1:A:22:TYR:HE2</td>
<td>1:A:39:LYS:HD2</td>
<td>3</td>
<td>0.11</td>
<td>0.0</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,434)</td>
<td>1:A:22:TYR:HE2</td>
<td>1:A:39:LYS:HD3</td>
<td>3</td>
<td>0.11</td>
<td>0.0</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,546)</td>
<td>1:A:30:ASP:H</td>
<td>1:A:35:LEU:HD11</td>
<td>2</td>
<td>0.16</td>
<td>0.06</td>
<td>0.16</td>
</tr>
<tr>
<td>(1,546)</td>
<td>1:A:30:ASP:H</td>
<td>1:A:35:LEU:HD12</td>
<td>2</td>
<td>0.16</td>
<td>0.06</td>
<td>0.16</td>
</tr>
<tr>
<td>(1,546)</td>
<td>1:A:30:ASP:H</td>
<td>1:A:35:LEU:HD13</td>
<td>2</td>
<td>0.16</td>
<td>0.06</td>
<td>0.16</td>
</tr>
<tr>
<td>(1,546)</td>
<td>1:A:30:ASP:H</td>
<td>1:A:35:LEU:HD21</td>
<td>2</td>
<td>0.16</td>
<td>0.06</td>
<td>0.16</td>
</tr>
<tr>
<td>(1,546)</td>
<td>1:A:30:ASP:H</td>
<td>1:A:35:LEU:HD22</td>
<td>2</td>
<td>0.16</td>
<td>0.06</td>
<td>0.16</td>
</tr>
<tr>
<td>(1,546)</td>
<td>1:A:30:ASP:H</td>
<td>1:A:35:LEU:HD23</td>
<td>2</td>
<td>0.16</td>
<td>0.06</td>
<td>0.16</td>
</tr>
<tr>
<td>(1,422)</td>
<td>1:A:6:PHE:HD1</td>
<td>1:A:9:LEU:HG</td>
<td>2</td>
<td>0.11</td>
<td>0.0</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,422)</td>
<td>1:A:6:PHE:HD2</td>
<td>1:A:9:LEU:HG</td>
<td>2</td>
<td>0.11</td>
<td>0.0</td>
<td>0.11</td>
</tr>
</tbody>
</table>

\(^1\)Number of violated models, \(^2\)Standard deviation

9.5 All violated distance restraints

9.5.1 Histogram: Distribution of distance violations

The following histogram shows the distribution of the absolute value of the violation for all violated restraints in the ensemble.

[Histogram Image]
9.5.2 Table: All distance violations

The following table lists the absolute value of the violation for each restraint in the ensemble sorted by its value. The Key (restraint list ID, restraint ID) is the unique identifier for a given restraint. Rows with same key represent combinatorial or ambiguous restraints and are counted as a single restraint.

<table>
<thead>
<tr>
<th>Key</th>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Model ID</th>
<th>Violation (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD11</td>
<td>15</td>
<td>0.41</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD12</td>
<td>15</td>
<td>0.41</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD13</td>
<td>15</td>
<td>0.41</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD21</td>
<td>15</td>
<td>0.41</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD22</td>
<td>15</td>
<td>0.41</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD23</td>
<td>15</td>
<td>0.41</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD1</td>
<td>1:A:42:LEU:HD11</td>
<td>20</td>
<td>0.41</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD1</td>
<td>1:A:42:LEU:HD12</td>
<td>20</td>
<td>0.41</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD1</td>
<td>1:A:42:LEU:HD13</td>
<td>20</td>
<td>0.41</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD1</td>
<td>1:A:42:LEU:HD21</td>
<td>20</td>
<td>0.41</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD1</td>
<td>1:A:42:LEU:HD22</td>
<td>20</td>
<td>0.41</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD1</td>
<td>1:A:42:LEU:HD23</td>
<td>20</td>
<td>0.41</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD2</td>
<td>1:A:42:LEU:HD11</td>
<td>20</td>
<td>0.41</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD2</td>
<td>1:A:42:LEU:HD12</td>
<td>20</td>
<td>0.41</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD2</td>
<td>1:A:42:LEU:HD13</td>
<td>20</td>
<td>0.41</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD2</td>
<td>1:A:42:LEU:HD21</td>
<td>20</td>
<td>0.41</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD2</td>
<td>1:A:42:LEU:HD22</td>
<td>20</td>
<td>0.41</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD2</td>
<td>1:A:42:LEU:HD23</td>
<td>20</td>
<td>0.41</td>
</tr>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD11</td>
<td>1:A:53:ALA:H</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD12</td>
<td>1:A:53:ALA:H</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD13</td>
<td>1:A:53:ALA:H</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD21</td>
<td>1:A:53:ALA:H</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD22</td>
<td>1:A:53:ALA:H</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD23</td>
<td>1:A:53:ALA:H</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD11</td>
<td>16</td>
<td>0.38</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD12</td>
<td>16</td>
<td>0.38</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD13</td>
<td>16</td>
<td>0.38</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD21</td>
<td>16</td>
<td>0.38</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD22</td>
<td>16</td>
<td>0.38</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD23</td>
<td>16</td>
<td>0.38</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD11</td>
<td>16</td>
<td>0.38</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD12</td>
<td>16</td>
<td>0.38</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD13</td>
<td>16</td>
<td>0.38</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD21</td>
<td>16</td>
<td>0.38</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD22</td>
<td>16</td>
<td>0.38</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD23</td>
<td>16</td>
<td>0.38</td>
</tr>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD11</td>
<td>1:A:53:ALA:H</td>
<td>9</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Key</th>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Model ID</th>
<th>Violation (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD12</td>
<td>1:A:53:ALA:H</td>
<td>9</td>
<td>0.35</td>
</tr>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD13</td>
<td>1:A:53:ALA:H</td>
<td>9</td>
<td>0.35</td>
</tr>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD21</td>
<td>1:A:53:ALA:H</td>
<td>9</td>
<td>0.35</td>
</tr>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD22</td>
<td>1:A:53:ALA:H</td>
<td>9</td>
<td>0.35</td>
</tr>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD23</td>
<td>1:A:53:ALA:H</td>
<td>9</td>
<td>0.35</td>
</tr>
<tr>
<td>(1,300)</td>
<td>1:A:7:SER:H</td>
<td>1:A:9:LEU:HD11</td>
<td>18</td>
<td>0.31</td>
</tr>
<tr>
<td>(1,300)</td>
<td>1:A:7:SER:H</td>
<td>1:A:9:LEU:HD12</td>
<td>18</td>
<td>0.31</td>
</tr>
<tr>
<td>(1,300)</td>
<td>1:A:7:SER:H</td>
<td>1:A:9:LEU:HD13</td>
<td>18</td>
<td>0.31</td>
</tr>
<tr>
<td>(1,300)</td>
<td>1:A:7:SER:H</td>
<td>1:A:9:LEU:HD21</td>
<td>18</td>
<td>0.31</td>
</tr>
<tr>
<td>(1,300)</td>
<td>1:A:7:SER:H</td>
<td>1:A:9:LEU:HD22</td>
<td>18</td>
<td>0.31</td>
</tr>
<tr>
<td>(1,300)</td>
<td>1:A:7:SER:H</td>
<td>1:A:9:LEU:HD23</td>
<td>18</td>
<td>0.31</td>
</tr>
<tr>
<td>(1,36)</td>
<td>1:A:9:LEU:HD11</td>
<td>1:A:53:ALA:H</td>
<td>6</td>
<td>0.31</td>
</tr>
<tr>
<td>(1,36)</td>
<td>1:A:9:LEU:HD12</td>
<td>1:A:53:ALA:H</td>
<td>6</td>
<td>0.31</td>
</tr>
<tr>
<td>(1,36)</td>
<td>1:A:9:LEU:HD13</td>
<td>1:A:53:ALA:H</td>
<td>6</td>
<td>0.31</td>
</tr>
<tr>
<td>(1,36)</td>
<td>1:A:9:LEU:HD21</td>
<td>1:A:53:ALA:H</td>
<td>6</td>
<td>0.31</td>
</tr>
<tr>
<td>(1,36)</td>
<td>1:A:9:LEU:HD22</td>
<td>1:A:53:ALA:H</td>
<td>6</td>
<td>0.31</td>
</tr>
<tr>
<td>(1,36)</td>
<td>1:A:9:LEU:HD23</td>
<td>1:A:53:ALA:H</td>
<td>6</td>
<td>0.31</td>
</tr>
<tr>
<td>(1,36)</td>
<td>1:A:9:LEU:HD11</td>
<td>1:A:53:ALA:H</td>
<td>13</td>
<td>0.31</td>
</tr>
<tr>
<td>(1,36)</td>
<td>1:A:9:LEU:HD12</td>
<td>1:A:53:ALA:H</td>
<td>13</td>
<td>0.31</td>
</tr>
<tr>
<td>(1,36)</td>
<td>1:A:9:LEU:HD13</td>
<td>1:A:53:ALA:H</td>
<td>13</td>
<td>0.31</td>
</tr>
<tr>
<td>(1,36)</td>
<td>1:A:9:LEU:HD21</td>
<td>1:A:53:ALA:H</td>
<td>13</td>
<td>0.31</td>
</tr>
<tr>
<td>(1,36)</td>
<td>1:A:9:LEU:HD22</td>
<td>1:A:53:ALA:H</td>
<td>13</td>
<td>0.31</td>
</tr>
<tr>
<td>(1,36)</td>
<td>1:A:9:LEU:HD23</td>
<td>1:A:53:ALA:H</td>
<td>13</td>
<td>0.31</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD11</td>
<td>16</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD12</td>
<td>16</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD13</td>
<td>16</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD21</td>
<td>16</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD22</td>
<td>16</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD23</td>
<td>16</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD11</td>
<td>4</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD12</td>
<td>4</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD13</td>
<td>4</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD21</td>
<td>4</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD22</td>
<td>4</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD23</td>
<td>4</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD11</td>
<td>4</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD12</td>
<td>4</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD13</td>
<td>4</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD22</td>
<td>4</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD11</td>
<td>1:A:53:ALA:H</td>
<td>11</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Key</th>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Model ID</th>
<th>Violation (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD12</td>
<td>1:A:53:ALA:H</td>
<td>11</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD13</td>
<td>1:A:53:ALA:H</td>
<td>11</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD21</td>
<td>1:A:53:ALA:H</td>
<td>11</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD22</td>
<td>1:A:53:ALA:H</td>
<td>11</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD23</td>
<td>1:A:53:ALA:H</td>
<td>11</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD11</td>
<td>1:A:53:ALA:H</td>
<td>12</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD12</td>
<td>1:A:53:ALA:H</td>
<td>12</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD21</td>
<td>1:A:53:ALA:H</td>
<td>12</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD22</td>
<td>1:A:53:ALA:H</td>
<td>12</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD23</td>
<td>1:A:53:ALA:H</td>
<td>12</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD11</td>
<td>13</td>
<td>0.29</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD12</td>
<td>13</td>
<td>0.29</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD13</td>
<td>13</td>
<td>0.29</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD21</td>
<td>13</td>
<td>0.29</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD22</td>
<td>13</td>
<td>0.29</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD23</td>
<td>13</td>
<td>0.29</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD12</td>
<td>13</td>
<td>0.29</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD13</td>
<td>13</td>
<td>0.29</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD21</td>
<td>13</td>
<td>0.29</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD22</td>
<td>13</td>
<td>0.29</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD23</td>
<td>13</td>
<td>0.29</td>
</tr>
<tr>
<td>(1,525)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:42:LEU:HD11</td>
<td>6</td>
<td>0.28</td>
</tr>
<tr>
<td>(1,525)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:42:LEU:HD12</td>
<td>6</td>
<td>0.28</td>
</tr>
<tr>
<td>(1,525)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:42:LEU:HD13</td>
<td>6</td>
<td>0.28</td>
</tr>
<tr>
<td>(1,525)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:42:LEU:HD21</td>
<td>6</td>
<td>0.28</td>
</tr>
<tr>
<td>(1,525)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:42:LEU:HD22</td>
<td>6</td>
<td>0.28</td>
</tr>
<tr>
<td>(1,525)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:42:LEU:HD23</td>
<td>6</td>
<td>0.28</td>
</tr>
<tr>
<td>(1,525)</td>
<td>1:A:22:TYR:HE2</td>
<td>1:A:42:LEU:HD12</td>
<td>6</td>
<td>0.28</td>
</tr>
<tr>
<td>(1,525)</td>
<td>1:A:22:TYR:HE2</td>
<td>1:A:42:LEU:HD21</td>
<td>6</td>
<td>0.28</td>
</tr>
<tr>
<td>(1,525)</td>
<td>1:A:22:TYR:HE2</td>
<td>1:A:42:LEU:HD22</td>
<td>6</td>
<td>0.28</td>
</tr>
<tr>
<td>(1,525)</td>
<td>1:A:22:TYR:HE2</td>
<td>1:A:42:LEU:HD23</td>
<td>6</td>
<td>0.28</td>
</tr>
<tr>
<td>(1,525)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD11</td>
<td>5</td>
<td>0.28</td>
</tr>
<tr>
<td>(1,525)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD12</td>
<td>5</td>
<td>0.28</td>
</tr>
<tr>
<td>(1,525)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD13</td>
<td>5</td>
<td>0.28</td>
</tr>
<tr>
<td>(1,525)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD21</td>
<td>5</td>
<td>0.28</td>
</tr>
<tr>
<td>(1,525)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD22</td>
<td>5</td>
<td>0.28</td>
</tr>
<tr>
<td>(1,525)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD23</td>
<td>5</td>
<td>0.28</td>
</tr>
<tr>
<td>(1,525)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD11</td>
<td>5</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Key</th>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Model ID</th>
<th>Violation (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD12</td>
<td>5</td>
<td>0.28</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD13</td>
<td>5</td>
<td>0.28</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD21</td>
<td>5</td>
<td>0.28</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD22</td>
<td>5</td>
<td>0.28</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD23</td>
<td>5</td>
<td>0.28</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD11</td>
<td>5</td>
<td>0.27</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD12</td>
<td>5</td>
<td>0.27</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD13</td>
<td>5</td>
<td>0.27</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD21</td>
<td>5</td>
<td>0.27</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD22</td>
<td>5</td>
<td>0.27</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD23</td>
<td>5</td>
<td>0.27</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD11</td>
<td>5</td>
<td>0.27</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD12</td>
<td>5</td>
<td>0.27</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD13</td>
<td>5</td>
<td>0.27</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD21</td>
<td>5</td>
<td>0.27</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD22</td>
<td>5</td>
<td>0.27</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD23</td>
<td>5</td>
<td>0.27</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD11</td>
<td>5</td>
<td>0.26</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD12</td>
<td>5</td>
<td>0.26</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD13</td>
<td>5</td>
<td>0.26</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD21</td>
<td>5</td>
<td>0.26</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD22</td>
<td>5</td>
<td>0.26</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD23</td>
<td>5</td>
<td>0.26</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD11</td>
<td>6</td>
<td>0.26</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD12</td>
<td>6</td>
<td>0.26</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD13</td>
<td>6</td>
<td>0.26</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD21</td>
<td>6</td>
<td>0.26</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD22</td>
<td>6</td>
<td>0.26</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD23</td>
<td>6</td>
<td>0.26</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD12</td>
<td>6</td>
<td>0.26</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD22</td>
<td>6</td>
<td>0.26</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD11</td>
<td>16</td>
<td>0.26</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD12</td>
<td>16</td>
<td>0.26</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD13</td>
<td>16</td>
<td>0.26</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD21</td>
<td>16</td>
<td>0.26</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD22</td>
<td>16</td>
<td>0.26</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD23</td>
<td>16</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Continued on next page...
Key

<table>
<thead>
<tr>
<th>Key</th>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Model ID</th>
<th>Violation (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD22</td>
<td>16</td>
<td>0.26</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD12</td>
<td>11</td>
<td>0.25</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD13</td>
<td>11</td>
<td>0.25</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD21</td>
<td>11</td>
<td>0.25</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD22</td>
<td>11</td>
<td>0.25</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD23</td>
<td>11</td>
<td>0.25</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD22</td>
<td>11</td>
<td>0.25</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD11</td>
<td>15</td>
<td>0.25</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD12</td>
<td>15</td>
<td>0.25</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD13</td>
<td>15</td>
<td>0.25</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD21</td>
<td>15</td>
<td>0.25</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD22</td>
<td>15</td>
<td>0.25</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD23</td>
<td>15</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Key</th>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Model ID</th>
<th>Violation (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,194)</td>
<td>1:A:9:LEU:HD22</td>
<td>1:A:53:ALA:H</td>
<td>10</td>
<td>0.24</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:9:LEU:HD23</td>
<td>1:A:53:ALA:H</td>
<td>10</td>
<td>0.24</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:9:LEU:HD12</td>
<td>1:A:53:ALA:H</td>
<td>19</td>
<td>0.24</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:9:LEU:HD13</td>
<td>1:A:53:ALA:H</td>
<td>19</td>
<td>0.24</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:9:LEU:HD21</td>
<td>1:A:53:ALA:H</td>
<td>19</td>
<td>0.24</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:9:LEU:HD22</td>
<td>1:A:53:ALA:H</td>
<td>19</td>
<td>0.24</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:9:LEU:HD23</td>
<td>1:A:53:ALA:H</td>
<td>19</td>
<td>0.24</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:35:LEU:HD11</td>
<td>16</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:35:LEU:HD12</td>
<td>16</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:35:LEU:HD13</td>
<td>16</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:35:LEU:HD21</td>
<td>16</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:35:LEU:HD22</td>
<td>16</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:35:LEU:HD23</td>
<td>16</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:22:TYR:HE2</td>
<td>1:A:35:LEU:HD11</td>
<td>16</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Key</th>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Model ID</th>
<th>Violation (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,523)</td>
<td>1:A:22:TYR:HE2</td>
<td>1:A:35:LEU:HD12</td>
<td>16</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,523)</td>
<td>1:A:22:TYR:HE2</td>
<td>1:A:35:LEU:HD13</td>
<td>16</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,523)</td>
<td>1:A:22:TYR:HE2</td>
<td>1:A:35:LEU:HD21</td>
<td>16</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,523)</td>
<td>1:A:22:TYR:HE2</td>
<td>1:A:35:LEU:HD22</td>
<td>16</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,523)</td>
<td>1:A:22:TYR:HE2</td>
<td>1:A:35:LEU:HD23</td>
<td>16</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD1</td>
<td>1:A:42:LEU:HD11</td>
<td>17</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD1</td>
<td>1:A:42:LEU:HD12</td>
<td>17</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD1</td>
<td>1:A:42:LEU:HD13</td>
<td>17</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD2</td>
<td>1:A:42:LEU:HD11</td>
<td>17</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD2</td>
<td>1:A:42:LEU:HD12</td>
<td>17</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD2</td>
<td>1:A:42:LEU:HD13</td>
<td>17</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD2</td>
<td>1:A:42:LEU:HD21</td>
<td>17</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD2</td>
<td>1:A:42:LEU:HD22</td>
<td>17</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD2</td>
<td>1:A:42:LEU:HD23</td>
<td>17</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD1</td>
<td>1:A:42:LEU:HD11</td>
<td>19</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD1</td>
<td>1:A:42:LEU:HD12</td>
<td>19</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD1</td>
<td>1:A:42:LEU:HD13</td>
<td>19</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD1</td>
<td>1:A:42:LEU:HD21</td>
<td>19</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD1</td>
<td>1:A:42:LEU:HD22</td>
<td>19</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD1</td>
<td>1:A:42:LEU:HD23</td>
<td>19</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,425)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HG</td>
<td>17</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,425)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HG</td>
<td>17</td>
<td>0.23</td>
</tr>
<tr>
<td>(1,546)</td>
<td>1:A:30:ASP:H</td>
<td>1:A:35:LEU:HD11</td>
<td>6</td>
<td>0.22</td>
</tr>
<tr>
<td>(1,546)</td>
<td>1:A:30:ASP:H</td>
<td>1:A:35:LEU:HD12</td>
<td>6</td>
<td>0.22</td>
</tr>
<tr>
<td>(1,546)</td>
<td>1:A:30:ASP:H</td>
<td>1:A:35:LEU:HD13</td>
<td>6</td>
<td>0.22</td>
</tr>
<tr>
<td>(1,546)</td>
<td>1:A:30:ASP:H</td>
<td>1:A:35:LEU:HD21</td>
<td>6</td>
<td>0.22</td>
</tr>
<tr>
<td>(1,546)</td>
<td>1:A:30:ASP:H</td>
<td>1:A:35:LEU:HD22</td>
<td>6</td>
<td>0.22</td>
</tr>
<tr>
<td>(1,546)</td>
<td>1:A:30:ASP:H</td>
<td>1:A:35:LEU:HD23</td>
<td>6</td>
<td>0.22</td>
</tr>
<tr>
<td>(1,541)</td>
<td>1:A:27:ALA:HA</td>
<td>1:A:28:ASN:HD21</td>
<td>2</td>
<td>0.22</td>
</tr>
<tr>
<td>(1,541)</td>
<td>1:A:27:ALA:HA</td>
<td>1:A:28:ASN:HD22</td>
<td>2</td>
<td>0.22</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD11</td>
<td>1</td>
<td>0.21</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD12</td>
<td>1</td>
<td>0.21</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD13</td>
<td>1</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Key</th>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Model ID</th>
<th>Violation (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD21</td>
<td>1</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD22</td>
<td>1</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD23</td>
<td>1</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD11</td>
<td>1</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD12</td>
<td>1</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD13</td>
<td>1</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD21</td>
<td>1</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD22</td>
<td>1</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD23</td>
<td>1</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD11</td>
<td>4</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD12</td>
<td>4</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD13</td>
<td>4</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD21</td>
<td>4</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD22</td>
<td>4</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD23</td>
<td>4</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD11</td>
<td>4</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD12</td>
<td>4</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD13</td>
<td>4</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD21</td>
<td>4</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD22</td>
<td>4</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD23</td>
<td>4</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD11</td>
<td>7</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD12</td>
<td>7</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD13</td>
<td>7</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD21</td>
<td>7</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD22</td>
<td>7</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD23</td>
<td>7</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD11</td>
<td>7</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD12</td>
<td>7</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD13</td>
<td>7</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD21</td>
<td>7</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD22</td>
<td>7</td>
<td>0.21</td>
</tr>
<tr>
<td>1,519</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD23</td>
<td>7</td>
<td>0.21</td>
</tr>
<tr>
<td>1,297</td>
<td>1:A:80:ARG:H</td>
<td>1:A:80:ARG:HG2</td>
<td>4</td>
<td>0.21</td>
</tr>
<tr>
<td>1,297</td>
<td>1:A:80:ARG:H</td>
<td>1:A:80:ARG:HG3</td>
<td>4</td>
<td>0.21</td>
</tr>
<tr>
<td>1,194</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD11</td>
<td>3</td>
<td>0.21</td>
</tr>
<tr>
<td>1,194</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD12</td>
<td>3</td>
<td>0.21</td>
</tr>
<tr>
<td>1,194</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD13</td>
<td>3</td>
<td>0.21</td>
</tr>
<tr>
<td>1,194</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD21</td>
<td>3</td>
<td>0.21</td>
</tr>
<tr>
<td>1,194</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD22</td>
<td>3</td>
<td>0.21</td>
</tr>
<tr>
<td>1,194</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD23</td>
<td>3</td>
<td>0.21</td>
</tr>
<tr>
<td>1,194</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD11</td>
<td>3</td>
<td>0.21</td>
</tr>
</tbody>
</table>
Key

<table>
<thead>
<tr>
<th>Key</th>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Model ID</th>
<th>Violation (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD12</td>
<td>3</td>
<td>0.21</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD13</td>
<td>3</td>
<td>0.21</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD21</td>
<td>3</td>
<td>0.21</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD22</td>
<td>3</td>
<td>0.21</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD23</td>
<td>3</td>
<td>0.21</td>
</tr>
<tr>
<td>(1,63)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:40:LYS:H</td>
<td>3</td>
<td>0.2</td>
</tr>
<tr>
<td>(1,63)</td>
<td>1:A:22:TYR:HE2</td>
<td>1:A:40:LYS:H</td>
<td>3</td>
<td>0.2</td>
</tr>
<tr>
<td>(1,297)</td>
<td>1:A:80:ARG:H</td>
<td>1:A:80:ARG:HG2</td>
<td>12</td>
<td>0.2</td>
</tr>
<tr>
<td>(1,297)</td>
<td>1:A:80:ARG:H</td>
<td>1:A:80:ARG:HG3</td>
<td>12</td>
<td>0.2</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD11</td>
<td>1</td>
<td>0.19</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD12</td>
<td>1</td>
<td>0.19</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD13</td>
<td>1</td>
<td>0.19</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD21</td>
<td>1</td>
<td>0.19</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD22</td>
<td>1</td>
<td>0.19</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD11</td>
<td>12</td>
<td>0.19</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD12</td>
<td>12</td>
<td>0.19</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD13</td>
<td>12</td>
<td>0.19</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD21</td>
<td>12</td>
<td>0.19</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD22</td>
<td>12</td>
<td>0.19</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD23</td>
<td>12</td>
<td>0.19</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD1</td>
<td>1:A:42:LEU:HD11</td>
<td>13</td>
<td>0.19</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD1</td>
<td>1:A:42:LEU:HD12</td>
<td>13</td>
<td>0.19</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD1</td>
<td>1:A:42:LEU:HD13</td>
<td>13</td>
<td>0.19</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD1</td>
<td>1:A:42:LEU:HD21</td>
<td>13</td>
<td>0.19</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD1</td>
<td>1:A:42:LEU:HD22</td>
<td>13</td>
<td>0.19</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD2</td>
<td>1:A:42:LEU:HD12</td>
<td>13</td>
<td>0.19</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD2</td>
<td>1:A:42:LEU:HD13</td>
<td>13</td>
<td>0.19</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD2</td>
<td>1:A:42:LEU:HD21</td>
<td>13</td>
<td>0.19</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD2</td>
<td>1:A:42:LEU:HD22</td>
<td>13</td>
<td>0.19</td>
</tr>
<tr>
<td>(1,478)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:53:ALA:H</td>
<td>14</td>
<td>0.19</td>
</tr>
<tr>
<td>(1,297)</td>
<td>1:A:80:ARG:H</td>
<td>1:A:80:ARG:HG2</td>
<td>8</td>
<td>0.19</td>
</tr>
<tr>
<td>(1,297)</td>
<td>1:A:80:ARG:H</td>
<td>1:A:80:ARG:HG3</td>
<td>8</td>
<td>0.19</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD11</td>
<td>4</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD12</td>
<td>4</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD13</td>
<td>4</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD21</td>
<td>4</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD22</td>
<td>4</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Key</th>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Model ID</th>
<th>Violation (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD23</td>
<td>4</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD11</td>
<td>18</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD12</td>
<td>18</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD13</td>
<td>18</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD21</td>
<td>18</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD22</td>
<td>18</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD23</td>
<td>18</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD11</td>
<td>15</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD12</td>
<td>15</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD13</td>
<td>15</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD21</td>
<td>15</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD22</td>
<td>15</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD23</td>
<td>15</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD11</td>
<td>15</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD12</td>
<td>15</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD13</td>
<td>15</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD21</td>
<td>15</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD22</td>
<td>15</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD23</td>
<td>15</td>
<td>0.18</td>
</tr>
<tr>
<td>(1,478)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:53:ALA:H</td>
<td>1</td>
<td>0.17</td>
</tr>
<tr>
<td>(1,478)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:53:ALA:H</td>
<td>1</td>
<td>0.17</td>
</tr>
<tr>
<td>(1,63)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:40:LYS:H</td>
<td>6</td>
<td>0.16</td>
</tr>
<tr>
<td>(1,63)</td>
<td>1:A:22:TYR:HE2</td>
<td>1:A:40:LYS:H</td>
<td>6</td>
<td>0.16</td>
</tr>
<tr>
<td>(1,63)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:40:LYS:H</td>
<td>14</td>
<td>0.16</td>
</tr>
<tr>
<td>(1,63)</td>
<td>1:A:22:TYR:HE2</td>
<td>1:A:40:LYS:H</td>
<td>14</td>
<td>0.16</td>
</tr>
<tr>
<td>(1,63)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:40:LYS:H</td>
<td>17</td>
<td>0.16</td>
</tr>
<tr>
<td>(1,63)</td>
<td>1:A:22:TYR:HE2</td>
<td>1:A:40:LYS:H</td>
<td>17</td>
<td>0.16</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD11</td>
<td>13</td>
<td>0.16</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD12</td>
<td>13</td>
<td>0.16</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD13</td>
<td>13</td>
<td>0.16</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD21</td>
<td>13</td>
<td>0.16</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD22</td>
<td>13</td>
<td>0.16</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD23</td>
<td>13</td>
<td>0.16</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD11</td>
<td>7</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD12</td>
<td>7</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD13</td>
<td>7</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD21</td>
<td>7</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD22</td>
<td>7</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD23</td>
<td>7</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD11</td>
<td>9</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD12</td>
<td>9</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD13</td>
<td>9</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Key</th>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Model ID</th>
<th>Violation (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD21</td>
<td>9</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD22</td>
<td>9</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD23</td>
<td>9</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD11</td>
<td>9</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD12</td>
<td>9</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD13</td>
<td>9</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD21</td>
<td>9</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD22</td>
<td>9</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD23</td>
<td>9</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD11</td>
<td>19</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD12</td>
<td>19</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD13</td>
<td>19</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HD21</td>
<td>19</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD11</td>
<td>19</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD12</td>
<td>19</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD13</td>
<td>19</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD21</td>
<td>19</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD22</td>
<td>19</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,194)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HD23</td>
<td>19</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,19)</td>
<td>1:A:77:GLU:H</td>
<td>1:A:78:ASP:H</td>
<td>6</td>
<td>0.15</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD11</td>
<td>9</td>
<td>0.14</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD12</td>
<td>9</td>
<td>0.14</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD13</td>
<td>9</td>
<td>0.14</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD21</td>
<td>9</td>
<td>0.14</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD22</td>
<td>9</td>
<td>0.14</td>
</tr>
<tr>
<td>(1,478)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:53:ALA:H</td>
<td>20</td>
<td>0.14</td>
</tr>
<tr>
<td>(1,478)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:53:ALA:H</td>
<td>20</td>
<td>0.14</td>
</tr>
<tr>
<td>(1,425)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HG</td>
<td>3</td>
<td>0.14</td>
</tr>
<tr>
<td>(1,425)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HG</td>
<td>3</td>
<td>0.14</td>
</tr>
<tr>
<td>(1,425)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HG</td>
<td>6</td>
<td>0.14</td>
</tr>
<tr>
<td>(1,425)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HG</td>
<td>6</td>
<td>0.14</td>
</tr>
<tr>
<td>(1,377)</td>
<td>1:A:1:ALA:HB1</td>
<td>1:A:2:ILE:H</td>
<td>19</td>
<td>0.14</td>
</tr>
<tr>
<td>(1,377)</td>
<td>1:A:1:ALA:HB2</td>
<td>1:A:2:ILE:H</td>
<td>19</td>
<td>0.14</td>
</tr>
<tr>
<td>(1,377)</td>
<td>1:A:1:ALA:HB3</td>
<td>1:A:2:ILE:H</td>
<td>19</td>
<td>0.14</td>
</tr>
<tr>
<td>(1,63)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:40:LYS:H</td>
<td>2</td>
<td>0.13</td>
</tr>
<tr>
<td>(1,63)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:40:LYS:H</td>
<td>11</td>
<td>0.13</td>
</tr>
<tr>
<td>(1,63)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:40:LYS:H</td>
<td>15</td>
<td>0.13</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Key</th>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Model ID</th>
<th>Violation (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,63)</td>
<td>1:A:22:TYR:HE2</td>
<td>1:A:40:LYS:H</td>
<td>15</td>
<td>0.13</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD11</td>
<td>19</td>
<td>0.13</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD12</td>
<td>19</td>
<td>0.13</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD13</td>
<td>19</td>
<td>0.13</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD21</td>
<td>19</td>
<td>0.13</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD22</td>
<td>19</td>
<td>0.13</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HD23</td>
<td>19</td>
<td>0.13</td>
</tr>
<tr>
<td>(1,519)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HD22</td>
<td>19</td>
<td>0.13</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD1</td>
<td>1:A:42:LEU:HD11</td>
<td>12</td>
<td>0.13</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD1</td>
<td>1:A:42:LEU:HD12</td>
<td>12</td>
<td>0.13</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD1</td>
<td>1:A:42:LEU:HD13</td>
<td>12</td>
<td>0.13</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD1</td>
<td>1:A:42:LEU:HD21</td>
<td>12</td>
<td>0.13</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD1</td>
<td>1:A:42:LEU:HD22</td>
<td>12</td>
<td>0.13</td>
</tr>
<tr>
<td>(1,504)</td>
<td>1:A:15:PHE:HD1</td>
<td>1:A:42:LEU:HD23</td>
<td>12</td>
<td>0.13</td>
</tr>
<tr>
<td>(1,377)</td>
<td>1:A:1:ALA:HB1</td>
<td>1:A:2:ILE:H</td>
<td>11</td>
<td>0.13</td>
</tr>
<tr>
<td>(1,377)</td>
<td>1:A:1:ALA:HB2</td>
<td>1:A:2:ILE:H</td>
<td>11</td>
<td>0.13</td>
</tr>
<tr>
<td>(1,377)</td>
<td>1:A:1:ALA:HB3</td>
<td>1:A:2:ILE:H</td>
<td>11</td>
<td>0.13</td>
</tr>
<tr>
<td>(1,377)</td>
<td>1:A:1:ALA:HB1</td>
<td>1:A:2:ILE:H</td>
<td>17</td>
<td>0.13</td>
</tr>
<tr>
<td>(1,377)</td>
<td>1:A:1:ALA:HB2</td>
<td>1:A:2:ILE:H</td>
<td>17</td>
<td>0.13</td>
</tr>
<tr>
<td>(1,377)</td>
<td>1:A:1:ALA:HB3</td>
<td>1:A:2:ILE:H</td>
<td>17</td>
<td>0.13</td>
</tr>
</tbody>
</table>
Key

<table>
<thead>
<tr>
<th>Key</th>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Model ID</th>
<th>Violation (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD22</td>
<td>1:A:53:ALA:H</td>
<td>3</td>
<td>0.13</td>
</tr>
<tr>
<td>(1,63)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:40:LYS:H</td>
<td>18</td>
<td>0.12</td>
</tr>
<tr>
<td>(1,63)</td>
<td>1:A:22:TYR:HE2</td>
<td>1:A:40:LYS:H</td>
<td>18</td>
<td>0.12</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD12</td>
<td>20</td>
<td>0.12</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD22</td>
<td>20</td>
<td>0.12</td>
</tr>
<tr>
<td>(1,533)</td>
<td>1:A:25:ALA:H</td>
<td>1:A:35:LEU:HD23</td>
<td>20</td>
<td>0.12</td>
</tr>
<tr>
<td>(1,352)</td>
<td>1:A:51:ARG:HG2</td>
<td>1:A:52:ASP:H</td>
<td>7</td>
<td>0.12</td>
</tr>
<tr>
<td>(1,352)</td>
<td>1:A:51:ARG:HG3</td>
<td>1:A:52:ASP:H</td>
<td>7</td>
<td>0.12</td>
</tr>
<tr>
<td>(1,19)</td>
<td>1:A:77:GLU:H</td>
<td>1:A:78:ASP:H</td>
<td>2</td>
<td>0.12</td>
</tr>
<tr>
<td>(1,19)</td>
<td>1:A:77:GLU:H</td>
<td>1:A:78:ASP:H</td>
<td>18</td>
<td>0.12</td>
</tr>
<tr>
<td>(1,63)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:40:LYS:H</td>
<td>7</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,63)</td>
<td>1:A:22:TYR:HE2</td>
<td>1:A:40:LYS:H</td>
<td>7</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,63)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:40:LYS:H</td>
<td>8</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,63)</td>
<td>1:A:22:TYR:HE2</td>
<td>1:A:40:LYS:H</td>
<td>8</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,546)</td>
<td>1:A:30:ASP:H</td>
<td>1:A:35:LEU:HD11</td>
<td>3</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,546)</td>
<td>1:A:30:ASP:H</td>
<td>1:A:35:LEU:HD12</td>
<td>3</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,546)</td>
<td>1:A:30:ASP:H</td>
<td>1:A:35:LEU:HD13</td>
<td>3</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Key</th>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Model ID</th>
<th>Violation (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,546)</td>
<td>1:A:30:ASP:H</td>
<td>1:A:35:LEU:HD21</td>
<td>3</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,546)</td>
<td>1:A:30:ASP:H</td>
<td>1:A:35:LEU:HD22</td>
<td>3</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,546)</td>
<td>1:A:30:ASP:H</td>
<td>1:A:35:LEU:HD23</td>
<td>3</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,538)</td>
<td>1:A:26:VAL:HG11</td>
<td>1:A:29:GLY:H</td>
<td>17</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,538)</td>
<td>1:A:26:VAL:HG12</td>
<td>1:A:29:GLY:H</td>
<td>17</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,538)</td>
<td>1:A:26:VAL:HG13</td>
<td>1:A:29:GLY:H</td>
<td>17</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,538)</td>
<td>1:A:26:VAL:HG21</td>
<td>1:A:29:GLY:H</td>
<td>17</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,538)</td>
<td>1:A:26:VAL:HG22</td>
<td>1:A:29:GLY:H</td>
<td>17</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,538)</td>
<td>1:A:26:VAL:HG23</td>
<td>1:A:29:GLY:H</td>
<td>17</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,472)</td>
<td>1:A:6:PHE:HE1</td>
<td>1:A:9:LEU:HG</td>
<td>14</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,472)</td>
<td>1:A:6:PHE:HE2</td>
<td>1:A:9:LEU:HG</td>
<td>14</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,442)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:26:VAL:HA</td>
<td>3</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,442)</td>
<td>1:A:22:TYR:HE2</td>
<td>1:A:26:VAL:HA</td>
<td>3</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,436)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:42:LEU:HG</td>
<td>10</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,436)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:42:LEU:HG</td>
<td>10</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,434)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:39:LYS:HD2</td>
<td>8</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,434)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:39:LYS:HD3</td>
<td>8</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,434)</td>
<td>1:A:22:TYR:HE2</td>
<td>1:A:39:LYS:HD2</td>
<td>8</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,434)</td>
<td>1:A:22:TYR:HE2</td>
<td>1:A:39:LYS:HD3</td>
<td>8</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,434)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:39:LYS:HD2</td>
<td>11</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,434)</td>
<td>1:A:22:TYR:HE1</td>
<td>1:A:39:LYS:HD3</td>
<td>11</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,434)</td>
<td>1:A:22:TYR:HE2</td>
<td>1:A:39:LYS:HD2</td>
<td>11</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,434)</td>
<td>1:A:22:TYR:HE2</td>
<td>1:A:39:LYS:HD3</td>
<td>11</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,425)</td>
<td>1:A:22:TYR:HD1</td>
<td>1:A:35:LEU:HG</td>
<td>14</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,425)</td>
<td>1:A:22:TYR:HD2</td>
<td>1:A:35:LEU:HG</td>
<td>14</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,422)</td>
<td>1:A:6:PHE:HD1</td>
<td>1:A:9:LEU:HG</td>
<td>1</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,422)</td>
<td>1:A:6:PHE:HD2</td>
<td>1:A:9:LEU:HG</td>
<td>1</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,422)</td>
<td>1:A:6:PHE:HD1</td>
<td>1:A:9:LEU:HG</td>
<td>20</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,422)</td>
<td>1:A:6:PHE:HD2</td>
<td>1:A:9:LEU:HG</td>
<td>20</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,380)</td>
<td>1:A:67:MET:HB2</td>
<td>1:A:68:THR:H</td>
<td>20</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,380)</td>
<td>1:A:67:MET:HB3</td>
<td>1:A:68:THR:H</td>
<td>20</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,19)</td>
<td>1:A:77:GLU:H</td>
<td>1:A:78:ASP:H</td>
<td>16</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD11</td>
<td>1:A:53:ALA:H</td>
<td>8</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD12</td>
<td>1:A:53:ALA:H</td>
<td>8</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD13</td>
<td>1:A:53:ALA:H</td>
<td>8</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD21</td>
<td>1:A:53:ALA:H</td>
<td>8</td>
<td>0.11</td>
</tr>
<tr>
<td>(1,136)</td>
<td>1:A:9:LEU:HD22</td>
<td>1:A:53:ALA:H</td>
<td>8</td>
<td>0.11</td>
</tr>
</tbody>
</table>
10 Dihedral-angle violation analysis

Dihedral angle analysis failed due to data error in the dihedral angle restraints, possibly missing target value