

Full wwPDB NMR Structure Validation Report (i)

Sep 6, 2023 – 10:10 PM JST

PDB ID	:	7ҮНН
BMRB ID	:	36499
Title	:	Solution structure of S-di-mannosylated S3C mutant of carbohydrate binding
		module (CBM) of the glycoside hydrolase Family 7 cellobiohydrolase from
		Trichoderma reesei
Authors	:	Chen, C.; Feng, Y.; Tan, Z.
Deposited on	:	2022-07-13

This is a Full wwPDB NMR Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/NMRValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:


Percentile statistics wwPDB-RCI PANAV wwPDB-ShiftChecker Ideal geometry (proteins)	: : : :	1.8.5 (274361), CSD as541be (2020) 20191225.v01 (using entries in the PDB archive December 25th 2019) v_1n_11_5_13_A (Berjanski et al., 2005) Wang et al. (2010) v1.2 Engh & Huber (2001)
Ideal geometry (DNA, RNA) Validation Pipeline (wwPDB-VP)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $SOLUTION\ NMR$

The overall completeness of chemical shifts assignment is 88%.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f NMR} { m archive} \ (\#{ m Entries})$
Clashscore	158937	12864
Ramachandran outliers	154571	11451
Sidechain outliers	154315	11428

The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain		
1	А	36	92%	6%	•
2	В	2	100%		-

2 Ensemble composition and analysis (i)

This entry contains 20 models. Model 3 is the overall representative, medoid model (most similar to other models). The authors have identified model 1 as representative, based on the following criterion: *lowest energy*.

The following residues are included in the computation of the global validation metrics.

Well-defined (core) protein residues				
Well-defined core Residue range (total) Backbone RMSD (Å) Medoid model				
1	A:2-A:36 (35)	0.24	3	

Ill-defined regions of proteins are excluded from the global statistics.

Ligands and non-protein polymers are included in the analysis.

The models can be grouped into 4 clusters and 2 single-model clusters were found.

Cluster number	Models
1	3, 4, 7, 8, 9, 13, 17, 18, 19
2	1, 6, 12, 14, 15
3	11, 16
4	2, 20
Single-model clusters	5; 10

3 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 538 atoms, of which 256 are hydrogens and 0 are deuteriums.

• Molecule 1 is a protein called Exoglucanase 1.

Mol	Chain	Residues	Atoms			Trace			
1	٨	26	Total	С	Η	Ν	0	S	0
	A	36	495	159	235	43	53	5	U

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	3	CYS	SER	engineered mutation	UNP P62694

• Molecule 2 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyran ose.

Mol	Chain	Residues		Ator	ns		Trace
2	В	2	Total	С	Η	Ο	0
			43	12	21	10	

4 Residue-property plots (i)

4.1 Average score per residue in the NMR ensemble

These plots are provided for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.

• Molecule 1: Exoglucanase 1

Chain A:	92%	6%	•
11 C35 L36			
• Molecule	e 2: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose		
Chain B:	100%		-
MAN1 MAN2			

4.2 Scores per residue for each member of the ensemble

Colouring as in section 4.1 above.

4.2.1 Score per residue for model 1

• Molecule 1: Exoglucanase 1

Chain A: 86% 11% .

• Molecule 2: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose

Chain B:

100%

.2.2 Score per residue for model 2
Molecule 1: Exoglucanase 1
Chain A: 78% 19% •
Molecule 2: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose
Thain B: 100%
MAN2
.2.3 Score per residue for model 3 (medoid)
Molecule 1: Exoglucanase 1
Chain A: 89% 8%
Molecule 2: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose
Chain B: 50% 50%
MAN 2
.2.4 Score per residue for model 4
Molecule 1: Exoglucanase 1
Chain A: 89% 8% ·
Molecule 2: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose
Thain B: 100%
MART2

4.2.5 Score per resi	idue for model 5	
• Molecule 1: Exogluca	nase 1	
Chain A:	83%	14% •
11 111 111 111 111 111 111 111 111 111		
• Molecule 2: alpha-D-1	mannopyranose-(1-2)-alph	a-D-mannopyranose
Chain B:	50%	50%
MAN 1 NAN2		
-		
4.2.6 Score per resi	idue for model 6	
• Molecule 1: Exogluca	nase 1	
Chain A:	89%	8% •
• Molecule 2: alpha-D-1	mannopyranose-(1-2)-alph	a-D-mannopyranose
Chain B:	100%	
MAN1		
-		
4.2.7 Score per resi	idue for model 7	
• Molecule 1: Exogluca	nase 1	
Chain A:	86%	11% •
11 C C 19 C C 19 C C 19 C C 19 C C 19 C C 19 C C C C C C C C C C C C C C C C C C C		
• Molecule 2: alpha-D-	mannopyranose-(1-2)-alph	a-D-mannopyranose
Chain B:	100%	
MAN 2 MAN2		

.2.8 Score pe	r residue for 1	model 8		
Molecule 1: Exc	oglucanase 1			
Chain A:		92%		6% •
Molecule 2: alp	ha-D-mannopyr	anose-(1-2)-alph	a-D-mannopyran	lose
Chain B:	50%		50%	
MANZ				
.2.9 Score pe	er residue for 1	model 9		
Molecule 1: Exc	oglucanase 1			
Chain A:		86%		11% •
38 38 39 39 39 39 39 39 39 39 39 39 39 39 39				
Molecule 2: alp	ha D mannonyr	anoso (1.2) alph	a-D-mannopyran	000
	na-D-mannopyn	anose-(1-2)-aipii	a-D-mannopyran	1056
Chain B:	50%		50%	
MAN2				
.2.10 Score p	er residue for	model 10		
Molecule 1: Exc	oglucanase 1			
Chain A:		89%		8% •
C8 117 V18 C19 C19 L36				
Molecule 2: alp	ha-D-mannopyra	anose-(1-2)-alph	a-D-mannopyran	lose
Chain B:		100%		
MAN2				
MA				

MAN1 MAN2

4.2.11 Score per residue for model 11

• Molecule 1: Exoglucanase 1

Chain A:	86%		11% •
T1 T17 T17 C35 C35 C35 C35			
• Molecule 2:	alpha-D-mannopyranose-(1-2)-alpha-D-mannopyrar	iose
Chain B:	50%	50%	
MAN 2 MAN 2			
4.2.12 Scor	e per residue for mode	l 12	
• Molecule 1:	Exoglucanase 1		
Chain A:	86%		11% •
11 02 035 035 035 035 035 035 035 035			
• Molecule 2:	alpha-D-mannopyranose-(1-2)-alpha-D-mannopyrar	iose
Chain B:	50%	50%	
MAN1 MAN2			
4.2.13 Scor	e per residue for mode	l 13	
• Molecule 1:	Exoglucanase 1		
Chain A:	86%		11% •
11 117 117 117 117 117 117 117 117 117			
• Molecule 2:	alpha-D-mannopyranose-(1-2)-alpha-D-mannopyrar	iose
Chain B:	50%	50%	

4.2.14 Score	per residue for	model 14		
• Molecule 1: E	xoglucanase 1			
Chain A:		89%		8% •
13 13 13 13 13 13 13 13 13 13 14 15 15 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17				
• Molecule 2: al	pha-D-mannopyra	anose-(1-2)-alpha	-D-mannopyrano	se
Chain B:	50%		50%	
MANZ				
4.2.15 Score	per residue for	model 15		
• Molecule 1: E	xoglucanase 1			
Chain A:		92%		6% •
11 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3				
• Molecule 2: al	pha-D-mannopyra	anose-(1-2)-alpha	I-D-mannopyrano	se
Chain B:	50%		50%	
MAN2				
•				
4.2.16 Score	per residue for	model 16		
• Molecule 1: E	xoglucanase 1			
Chain A:		92%		6% •
• Molecule 2: al	pha-D-mannopyra	anose-(1-2)-alpha	l-D-mannopyrano	se
Chain B:	50%		50%	
MAN1 MAN2				

4.2.17 Score p	er residue for mode	el 17	
• Molecule 1: Exe	oglucanase 1		
Chain A:	89%)	8% •
11 117 136 135 136			
• Molecule 2: alp	ha-D-mannopyranose-(1-2)-alpha-D-mannopyra	anose
Chain B:	50%	50%	
MAN2			
4.2.18 Score p	er residue for mode	el 18	
• Molecule 1: Exe	oglucanase 1		
Chain A:	89%	5	8% •
T1 T17 C35 C35 L36			
• Molecule 2: alp	ha-D-mannopyranose-((1-2)-alpha-D-mannopyra	anose
Chain B:	50%	50%	
	2017	50.0	
MAI			
4.2.19 Score p	er residue for mode	el 19	
• Molecule 1: Exc	oglucanase 1		
Chain A:	83%		14% •
T1717 C8 C19 N29 C19 C19 C19 C35 C35 C35 C35 C35 C35 C35 C35 C35 C35			
	ha-D-mannopyranose-((1-2)-alpha-D-mannopyra	anose
Chain B:	50%	50%	
MAN1 MAN2			

BANK

4.2.20 Score per residue for model 20

• Molecule 1: Exoglucanase 1

Chain A: 83% 14% ·

• Molecule 2: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose

Chain B:	50%	50%
AMA AMA AMA AMA AMA AMA AMA AMA AMA AMA		

5 Refinement protocol and experimental data overview (i)

The models were refined using the following method: *simulated annealing*.

Of the 100 calculated structures, 20 were deposited, based on the following criterion: *structures with the lowest energy*.

The following table shows the software used for structure solution, optimisation and refinement.

Software name	Classification	Version
CNS	refinement	
CNS	structure calculation	

The following table shows chemical shift validation statistics as aggregates over all chemical shift files. Detailed validation can be found in section 7 of this report.

Chemical shift file(s)	working_cs.cif
Number of chemical shift lists	1
Total number of shifts	392
Number of shifts mapped to atoms	392
Number of unparsed shifts	0
Number of shifts with mapping errors	0
Number of shifts with mapping warnings	0
Assignment completeness (well-defined parts)	88%

6 Model quality (i)

6.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MAN

There are no covalent bond-length or bond-angle outliers.

There are no bond-length outliers.

There are no bond-angle outliers.

There are no chirality outliers.

There are no planarity outliers.

6.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble.

Mol	Chain	Non-H	H(model)	H(added)	Clashes
1	А	253	226	225	2 ± 1
2	В	22	21	19	1±1
All	All	5500	4940	4880	56

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

All unique clashes are listed below, sorted by their clash magnitude.

A + a 1	A + a	$Clash(\lambda)$	\mathbf{D}	Models	
Atom-1	Atom-2	Clash(Å)	Distance(Å)	Worst	Total
1:A:8:CYS:HB3	1:A:35:CYS:SG	0.63	2.32	3	19
1:A:2:GLN:OE1	2:B:2:MAN:H4	0.59	1.97	2	1
2:B:1:MAN:H61	2:B:1:MAN:O3	0.55	2.02	2	6
1:A:8:CYS:O	1:A:17:THR:HA	0.52	2.04	5	10
1:A:8:CYS:HB3	1:A:19:CYS:SG	0.52	2.45	19	8
2:B:2:MAN:O3	2:B:2:MAN:H61	0.51	2.06	9	1
1:A:2:GLN:HA	1:A:2:GLN:OE1	0.49	2.07	12	1
1:A:3:CYS:SG	2:B:2:MAN:C1	0.49	3.01	2	1
1:A:26:GLN:NE2	1:A:36:LEU:HB2	0.49	2.23	20	1
2:B:1:MAN:O3	2:B:1:MAN:H62	0.47	2.10	16	3
1:A:2:GLN:OE1	2:B:2:MAN:H2	0.47	2.10	3	1

Continued on next page...

Atom-1	Atom-2	Clash(Å)	Distance(Å)	Models	
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
1:A:9:GLY:HA3	1:A:13:TYR:CD1	0.45	2.46	5	1
1:A:2:GLN:OE1	2:B:2:MAN:H62	0.42	2.15	4	1
1:A:6:GLY:O	1:A:34:GLN:HG3	0.41	2.15	2	1
1:A:24:THR:O	1:A:35:CYS:HA	0.40	2.17	9	1

Continued from previous page...

6.3 Torsion angles (i)

6.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	34/36~(94%)	$32\pm1~(93\pm3\%)$	$2\pm1~(7\pm3\%)$	0±0 (0±0%)	100 100
All	All	680/720~(94%)	634 (93%)	46 (7%)	0 (0%)	100 100

There are no Ramachandran outliers.

6.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the sidechain conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentile	es
1	А	28/29~(97%)	28 ± 0 (99 $\pm1\%$)	0±0 (1±1%)	84 97	
All	All	560/580~(97%)	556 (99%)	4 (1%)	84 97	

All 1 unique residues with a non-rotameric sidechain are listed below.

Mol	Chain	Res	Type	Models (Total)
1	А	29	ASN	4

6.3.3 RNA (i)

There are no RNA molecules in this entry.

6.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.5 Carbohydrates (i)

2 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds for which Mogul statistics could be retrieved, the number of bonds that are observed in the model and the number of bonds that are defined in the chemical component dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length is the number of standard deviations the observed value is removed from the expected value. A bond length with |Z| > 2 is considered an outlier worth inspection. RMSZ is the average root-mean-square of all Z scores of the bond lengths.

Mal	Turne	Chain	Dec	Tiple		Bond leng	gths
	туре	Chain	nes	LIIIK	Counts	RMSZ	#Z>2
2	MAN	В	1	2	11,11,12	$0.94{\pm}0.15$	$0\pm0~(2\pm4\%)$
2	MAN	В	2	2	11,11,12	$0.85 {\pm} 0.16$	0±0 (1±3%)

In the following table, the Counts columns list the number of angles for which Mogul statistics could be retrieved, the number of angles that are observed in the model and the number of angles that are defined in the chemical component dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond angle is the number of standard deviations the observed value is removed from the expected value. A bond angle with |Z| > 2 is considered an outlier worth inspection. RMSZ is the average root-mean-square of all Z scores of the bond angles.

Mal	Turne	Chain	Dec	Tiple		Bond ang	gles
10101	Type	Chain	nes	LIIIK	Counts	RMSZ	$\#Z{>}2$
2	MAN	В	1	2	$15,\!15,\!17$	$0.87 {\pm} 0.15$	$1 \pm 1 (5 \pm 4\%)$
2	MAN	В	2	2	$15,\!15,\!17$	$0.81 {\pm} 0.15$	0±1 (2±3%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the chemical component dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	MAN	В	1	2	-	$0\pm 0,2,19,22$	$1\pm0,1,1,1$
2	MAN	В	2	2	-	$0\pm0,2,19,22$	$0\pm 0,1,1,1$

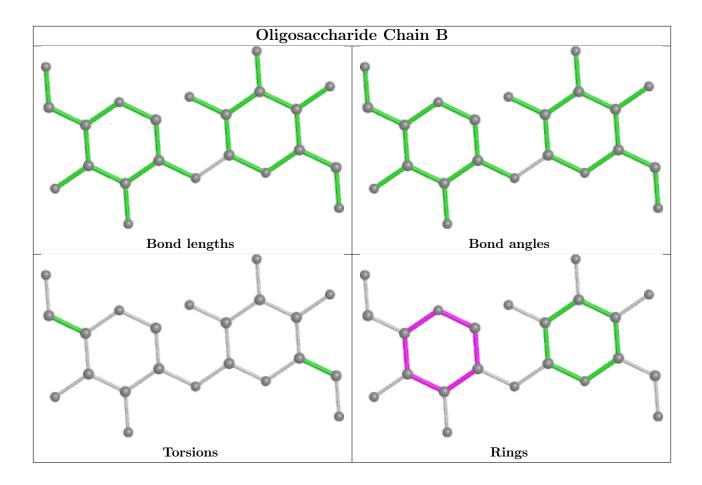
All unique bond outliers are listed below. They are sorted according to the Z-score of the worst occurrence in the ensemble.

Mal	Chain	Dec	Turne	Atoms	Z	Observed(Å)	Ideal(Å)	Moo	lels
10101	Chain	nes	Type	Atoms	L	Observed(A)	Iueai(A)	Worst	Total
2	В	1	MAN	C1-C2	2.51	1.57	1.52	10	3
2	В	2	MAN	O5-C5	2.30	1.48	1.43	7	3
2	В	1	MAN	C2-C3	2.11	1.55	1.52	19	2
2	В	1	MAN	O5-C5	2.07	1.47	1.43	14	1

All unique angle outliers are listed below. They are sorted according to the Z-score of the worst occurrence in the ensemble.

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$	Moo	dels
	Ullaili	nes	туре	Atoms		Observed()		Worst	Total
2	В	2	MAN	C1-O5-C5	3.18	116.50	112.19	12	6
2	В	1	MAN	O2-C2-C3	2.75	104.64	110.14	4	2
2	В	1	MAN	C1-O5-C5	2.53	115.62	112.19	13	13
2	В	2	MAN	C1-C2-C3	2.29	112.48	109.67	12	1
2	В	2	MAN	O3-C3-C4	2.28	105.09	110.35	5	1
2	В	1	MAN	O2-C2-C1	2.00	113.25	109.15	7	1

There are no chirality outliers.


There are no torsion outliers.

All unique ring outliers are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Atoms	Models (Total)
2	В	2	MAN	C1-C2-C3-C4-C5-O5	11
2	В	1	MAN	C1-C2-C3-C4-C5-O5	10

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

6.6 Ligand geometry (i)

There are no ligands in this entry.

6.7 Other polymers (i)

There are no such molecules in this entry.

6.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

7 Chemical shift validation (i)

The completeness of assignment taking into account all chemical shift lists is 88% for the well-defined parts and 88% for the entire structure.

7.1 Chemical shift list 1

File name: working_cs.cif

Chemical shift list name: assigned_chem_shift_list_0

7.1.1 Bookkeeping (i)

The following table shows the results of parsing the chemical shift list and reports the number of nuclei with statistically unusual chemical shifts.

Total number of shifts	392
Number of shifts mapped to atoms	392
Number of unparsed shifts	0
Number of shifts with mapping errors	0
Number of shifts with mapping warnings	0
Number of shift outliers (ShiftChecker)	1

7.1.2 Chemical shift referencing (i)

The following table shows the suggested chemical shift referencing corrections.

Nucleus	# values	${\rm Correction}\pm{\rm precision},ppm$	Suggested action
$^{13}C_{\alpha}$	36	0.07 ± 0.14	None needed (< 0.5 ppm)
$^{13}C_{\beta}$	30	-0.22 ± 0.58	None needed (< 0.5 ppm)
$^{13}C'$	0		None (insufficient data)
¹⁵ N	33	-1.64 ± 0.63	Should be applied

7.1.3 Completeness of resonance assignments (i)

The following table shows the completeness of the chemical shift assignments for the well-defined regions of the structure. The overall completeness is 88%, i.e. 358 atoms were assigned a chemical shift out of a possible 406. 0 out of 4 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}\mathbf{H}$	$^{13}\mathrm{C}$	$^{15}\mathbf{N}$
Backbone	142/177~(80%)	74/74~(100%)	35/70~(50%)	33/33~(100%)
Sidechain	180/185~(97%)	122/122~(100%)	53/58~(91%)	5/5~(100%)

Continued on next page...

	Total	${}^{1}\mathbf{H}$	$^{13}\mathrm{C}$	$^{15}\mathbf{N}$
Aromatic	36/44~(82%)	18/20~(90%)	18/22~(82%)	0/2~(0%)
Overall	358/406~(88%)	214/216~(99%)	106/150~(71%)	38/40~(95%)

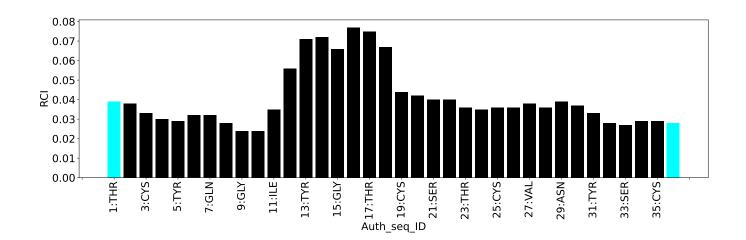
Continued from previous page...

The following table shows the completeness of the chemical shift assignments for the full structure. The overall completeness is 88%, i.e. 366 atoms were assigned a chemical shift out of a possible 417. 0 out of 4 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}\mathbf{H}$	$^{13}\mathrm{C}$	$^{15}\mathbf{N}$
Backbone	144/182~(79%)	75/76~(99%)	36/72~(50%)	33/34~(97%)
Sidechain	186/191~(97%)	126/126~(100%)	55/60~(92%)	5/5~(100%)
Aromatic	36/44~(82%)	18/20~(90%)	18/22~(82%)	0/2~(0%)
Overall	366/417~(88%)	219/222~(99%)	109/154~(71%)	38/41~(93%)

7.1.4 Statistically unusual chemical shifts (i)

The following table lists the statistically unusual chemical shifts. These are statistical measures, and large deviations from the mean do not necessarily imply incorrect assignments. Molecules containing paramagnetic centres or hemes are expected to give rise to anomalous chemical shifts.


List Id	Chain	Res	Type	Atom	Shift, ppm	Expected range, ppm	Z-score
1	А	15	GLY	Н	5.15	5.23 - 11.42	-5.1

7.1.5 Random Coil Index (RCI) plots (i)

The image below reports *random coil index* values for the protein chains in the structure. The height of each bar gives a probability of a given residue to be disordered, as predicted from the available chemical shifts and the amino acid sequence. A value above 0.2 is an indication of significant predicted disorder. The colour of the bar shows whether the residue is in the well-defined core (black) or in the ill-defined residue ranges (cyan), as described in section 2 on ensemble composition. If well-defined core and ill-defined regions are not identified then it is shown as gray bars.

Random coil index (RCI) for chain A:

