

Full wwPDB NMR Structure Validation Report (i)

May 28, 2020 – 09:01 pm BST

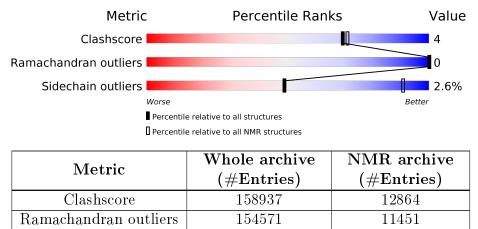
PDB ID	:	1YEZ
Title	:	Solution structure of the conserved protein from the gene locus MM1357 of
		Methanosarcina mazei. Northeast Structural Genomics target MaR30.
Authors	:	Rossi, P.; Aramini, J.M.; Swapna, G.V.T.; Huang, Y.P.; Xiao, R.; Ho, C.K.;
		Ma, L.C.; Acton, T.B.; Montelione, G.T.; Northeast Structural Genomics Con-
		sortium (NESG)
Deposited on	:	2004-12-29

This is a Full wwPDB NMR Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/NMRValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

Cyrange	:	Kirchner and Güntert (2011)
$\operatorname{NmrClust}$:	Kelley et al. (1996)
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
RCI	:	v $1n_11_5_13_A$ (Berjanski et al., 2005)
PANAV	:	Wang et al. (2010)
${ m ShiftChecker}$:	2.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.11


Sidechain outliers

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $SOLUTION \ NMR$

The overall completeness of chemical shifts assignment was not calculated.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

154315

The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

11428

Mol	Chain	Length	Quality of chain		
1	А	68	78%	•	18%

2 Ensemble composition and analysis (i)

This entry contains 10 models. Model 5 is the overall representative, medoid model (most similar to other models). The authors have identified model 1 as representative, based on the following criterion: *lowest target function*.

The following residues are included in the computation of the global validation metrics.

Well-defined (core) protein residues						
Well-defined core	Residue range (total)	Backbone RMSD (Å)	Medoid model			
1	A:10-A:25, A:29-A:68 (56)	0.35	5			

Ill-defined regions of proteins are excluded from the global statistics.

Ligands and non-protein polymers are included in the analysis.

The models can be grouped into 2 clusters and 3 single-model clusters were found.

Cluster number	Models
1	3, 5, 6, 7, 10
2	1, 9
Single-model clusters	2; 4; 8

3 Entry composition (i)

There is only 1 type of molecule in this entry. The entry contains 1078 atoms, of which 541 are hydrogens and 0 are deuteriums.

• Molecule 1 is a protein called MM1357.

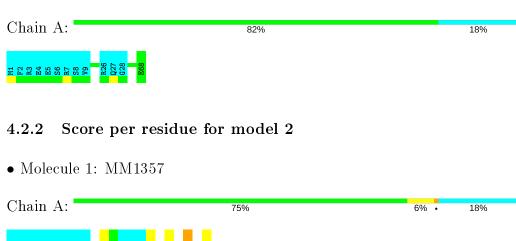
Mol	Chain	Residues	Atoms				Trace	
1 A	69	Total	С	Η	Ν	Ο	S	0
	A 68	1078	342	541	91	103	1	0

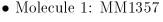


4 Residue-property plots (i)

4.1 Average score per residue in the NMR ensemble

These plots are provided for all protein, RNA and DNA chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.


• Molecule 1: MM1357



4.2 Scores per residue for each member of the ensemble

Colouring as in section 4.1 above.

4.2.1 Score per residue for model 1

2 22 23 23 23 23 23 28 24 25 25 25 25

4.2.3 Score per residue for model 3

 \bullet Molecule 1: MM1357

Chain A: 71%	12%	18%
M F 7 F 7 F 7 F 7 F 7 F 7 F 7 F 7		
4.2.4 Score per residue for model 4		
• Molecule 1: MM1357		
Chain A: 72%	9% •	18%
M1 85 85 86 86 86 86 86 86 86 86 86 86 86 86 86		
4.2.5 Score per residue for model 5 (medoid)		
• Molecule 1: MM1357		
Chain A: 72%	10%	18%
133 133 133 133 133 133 133 133 133 1		
4.2.6 Score per residue for model 6		
• Molecule 1: MM1357		
Chain A: 76%	••	18%
122 日本 122 日本 122 日本 122 日本 123 日本 1		
4.2.7 Score per residue for model 7		
• Molecule 1: MM1357		
Chain A: 63% 16	%•	18%
M 1 8 2 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5		

4.2.8 Score per residue for model 8

 \bullet Molecule 1: MM1357

Chain A:	74%	9%	18%
M 72 85 85 85 85 85 85 85 85 85 85 85 85 85	K63 A62 B68		
4.2.9 Score per residue	for model 9		
• Molecule 1: MM1357			
Chain A:	72%	10%	18%
M R 2 R 4 R 7 R 7 R 7 R 7 R 7 R 7 R 7 R 7 R 7 R 7	6 443 1 443 1 668		
4.2.10 Score per residue	e for model 10		
• Molecule 1: MM1357			
Chain A:	69%	12% •	18%
28 28 8 28 28 28 28 28 28 28 28 28 28 28	D29 (330 174.45 174.45 174.45 174.45 174.65 174.65 176.65 176.65 176.65 176.65 176.65 176.65 176.75		

5 Refinement protocol and experimental data overview (i)

Of the 56 calculated structures, 10 were deposited, based on the following criterion: target function.

The following table shows the software used for structure solution, optimisation and refinement.

Software name	Classification	Version
AutoStructure	${ m refinement}$	2.1.0

No chemical shift data was provided. No validations of the models with respect to experimental NMR restraints is performed at this time.

6 Model quality (i)

6.1 Standard geometry (i)

There are no covalent bond-length or bond-angle outliers.

There are no bond-length outliers.

There are no bond-angle outliers.

There are no chirality outliers.

There are no planarity outliers.

6.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble.

Mol	Chain	Non-H	H(model)	H(added)	Clashes
1	А	435	440	440	3 ± 2
All	All	4350	4400	4400	32

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

Atom-1	Atom-2	Clash(Å)	Distance(Å)	Moo	dels
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
1:A:22:GLN:HE21	1:A:22:GLN:HA	0.60	1.55	7	1
1:A:29:ASP:HA	1:A:42:PRO:HA	0.59	1.72	9	2
1:A:33:ARG:HA	1:A:37:PHE:O	0.55	2.00	7	1
1:A:66:VAL:HG22	1:A:68:GLU:H	0.52	1.64	3	1
1:A:29:ASP:OD1	1:A:42:PRO:HA	0.51	2.05	3	2
1:A:30:GLY:HA3	1:A:44:THR:OG1	0.51	2.06	7	4
1:A:45:LYS:HE3	1:A:45:LYS:HA	0.50	1.82	10	1
1:A:15:GLU:O	1:A:53:LYS:HA	0.49	2.07	7	3
1:A:16:VAL:HB	1:A:53:LYS:HE3	0.48	1.84	6	1
1:A:12:GLU:CG	1:A:15:GLU:HG3	0.47	2.38	7	1
1:A:12:GLU:HG3	1:A:15:GLU:HG3	0.47	1.85	7	2
1:A:20:THR:HG23	1:A:49:GLU:HG2	0.46	1.88	3	1
1:A:51:ARG:HB2	1:A:68:GLU:OXT	0.45	2.11	2	1
1:A:45:LYS:HB3	1:A:48:ASP:OD1	0.44	2.11	5	1

All unique clashes are listed below, sorted by their clash magnitude.

Continued on next page...

$1 \mathrm{YEZ}$	
------------------	--

Atom-1	Atom-2	$\operatorname{Clash}(\operatorname{\AA})$	Distance(Å)	Models	
Atom-1	Atom-2		Distance(A)	Worst	Total
1:A:37:PHE:CE2	1:A:62:ALA:HB2	0.44	2.47	8	1
1:A:21:ILE:HG13	1:A:44:THR:HB	0.44	1.89	10	2
1:A:13:GLU:OE1	1:A:56:ARG:HD3	0.43	2.14	10	1
1:A:16:VAL:HA	1:A:52:ILE:O	0.43	2.13	7	1
1:A:58:LEU:HB3	1:A:59:PRO:HD2	0.42	1.90	4	1
1:A:31:ILE:HG22	1:A:33:ARG:HD3	0.41	1.93	7	1
1:A:45:LYS:O	1:A:48:ASP:HB2	0.41	2.16	4	1
1:A:50:VAL:HA	1:A:68:GLU:HG3	0.40	1.93	7	1
1:A:24:ILE:HD13	1:A:30:GLY:HA2	0.40	1.92	10	1

Continued from previous page...

6.3 Torsion angles (i)

6.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	55/68~(81%)	$52\pm1 (95\pm2\%)$	$3\pm1~(5\pm2\%)$	$0{\pm}0~(0{\pm}0\%)$	100	100
All	All	550/680~(81%)	523~(95%)	27~(5%)	0 (0%)	100	100

There are no Ramachandran outliers.

6.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the sidechain conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	47/58~(81%)	$46\pm1 (97\pm2\%)$	$1 \pm 1 (3 \pm 2\%)$	49	91
All	All	470/580 (81%)	458~(97%)	12 (3%)	49	91

All 10 unique residues with a non-rotameric sidechain are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	\mathbf{Res}	Type	Models (Total)
1	А	35	GLU	2
1	А	48	ASP	2
1	А	60	LYS	1
1	А	45	LYS	1
1	А	49	GLU	1
1	А	22	GLN	1
1	А	53	LYS	1
1	А	12	GLU	1
1	А	51	ARG	1
1	А	33	ARG	1

6.3.3 RNA (i)

There are no RNA molecules in this entry.

6.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.5 Carbohydrates (i)

There are no carbohydrates in this entry.

6.6 Ligand geometry (i)

There are no ligands in this entry.

6.7 Other polymers (i)

There are no such molecules in this entry.

6.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

7 Chemical shift validation (i)

No chemical shift data were provided

