

Full wwPDB X-ray Structure Validation Report (i)

May 25, 2020 – 12:52 pm BST

PDB ID	:	1YDE
Title	:	$Crystal\ Structure\ of\ Human\ Retinal\ Short-Chain\ Dehydrogenase/Reductase$
		3
Authors	:	Lukacik, P.; Bunkozci, G.; Kavanagh, K.; Sundstrom, M.; Arrowsmith, C.;
		Edwards, A.; von Delft, F.; Oppermann, U.; Structural Genomics Consortium
		(SGC)
Deposited on	:	2004-12-23
Resolution	:	2.40 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

M - 1D 1. :		
MolProbity		4.020-407
Xtriage (Phenix)	:	1.13
EDS	:	2.11
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
$\operatorname{CCP4}$:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.11

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries},{ m resolution\ range}({ m \AA}))$
R_{free}	130704	3907 (2.40-2.40)
Clashscore	141614	4398 (2.40-2.40)
Ramachandran outliers	138981	4318 (2.40-2.40)
Sidechain outliers	138945	4319 (2.40-2.40)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain		
1	А	270	77%	14% •	7%
1	В	270	78%	12% •	9%
1	С	270	76%	15% •	7%
1	D	270	83%	11%	• 6%
1	Е	270	78%	13% •	7%
1	F	270	81%	13%	• 5%
1	G	270	77%	13% •	9%

Mol	Chain	Length	Quality of chain	
1	Н	270	81%	11% • 6%
1	Ι	270	81%	9% • 9%
1	J	270	83%	11% 6%
1	K	270	79%	12% • 7%
1	L	270	82%	11% • 6%
1	М	270	77%	13% • 10%
1	Ν	270	82%	6% • 11%
1	0	270	77%	12% • 9%
1	Р	270	81%	11% • 6%

1YDE

2 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 30669 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
1	А	250	Total 1844	C 1162	N 324	O 349	S 9	0	1	0
1	В	247	Total 1816	C 1140	N 324	O 342	S 10	0	3	0
1	С	250	Total 1847	C 1162	N 327	O 349	S 9	0	0	0
1	D	255	Total 1876	C 1179	N 330	O 356	S 11	0	2	0
1	Е	250	Total 1850	C 1165	N 325	O 350	S 10	0	2	0
1	F	256	Total 1896	C 1191	N 337	O 358	S 10	0	2	0
1	G	247	Total 1820	C 1144	N 323	O 344	S 9	0	0	0
1	Н	254	Total 1861	C 1173	N 324	$O \\ 354$	S 10	0	1	0
1	Ι	247	Total 1825	C 1150	N 321	O 345	S 9	0	0	0
1	J	255	Total 1881	C 1182	N 331	$O \\ 357$	S 11	0	3	0
1	K	250	Total 1843	C 1161	N 324	O 349	S 9	0	0	0
1	L	255	Total 1870	C 1177	N 328	O 354	S 11	0	1	0
1	М	244	Total 1771	C 1120	N 303	O 339	${ m S}$ 9	0	0	0
1	N	240	Total 1754	C 1104	N 308	O 333	S 9	0	0	0
1	0	247	Total 1806	C 1140	N 313	O 344	S 9	0	0	0
1	Р	254	Total 1858	C 1169	N 327	O 352	S 10	0	0	0

• Molecule 1 is a protein called Retinal dehydrogenase/reductase 3.

• Molecule 2 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	133	Total O 133 133	0	0
2	В	121	Total O 121 121	0	0
2	С	123	Total O 123 123	0	0
2	D	130	Total O 130 130	0	0
2	Е	116	Total O 116 116	0	0
2	F	113	Total O 113 113	0	0
2	G	86	Total O 86 86	0	0
2	Н	78	Total O 78 78	0	0
2	Ι	54	Total O 54 54	0	0
2	J	68	Total O 68 68	0	0
2	K	89	Total O 89 89	0	0
2	L	78	Total O 78 78	0	0
2	М	22	TotalO2222	0	0
2	Ν	13	Total O 13 13	0	0
2	О	9	Total O 9 9	0	0
2	Р	18	Total O 18 18	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are colorcoded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Retinal dehydrogenase/reductase 3

• Molecule 1: Retinal dehydrogenase/reductase 3 Chain E: 78% 13% • Molecule 1: Retinal dehydrogenase/reductase 3 Chain F: 81% 13% • 5% MET ALA THB R259 SER THR PRO VAL ASP ALA ASP ASP ASP ASP SER SER • Molecule 1: Retinal dehydrogenase/reductase 3 Chain G: 77% 13% 9% EL HE • Molecule 1: Retinal dehydrogenase/reductase 3 Chain H: 81% 11% • 6% MET ALA THR GLY ARG SER THR PRO ALA ASP PRO ASP PRO SER SER • Molecule 1: Retinal dehydrogenase/reductase 3 Chain I: 81% 9% 9% GLY CYS CYS CYS ALA SER SER THR THR THR THR THR THR THR THR THR SER SER SER SER

• Molecule 1: Retinal dehydrogenase/reductase 3 Chain J: 83% 11% 6% ARG SER PRO VAL ASP PRO ASP PRO ASP PRO SER SER • Molecule 1: Retinal dehydrogenase/reductase 3 Chain K: 79% 12% 7% . MET ALA THR • Molecule 1: Retinal dehydrogenase/reductase 3 Chain L: 82% 11% • 6% ALA THR ARG SER THR PRO VAL ASP ASP PRO ASP ILE TLE SER • Molecule 1: Retinal dehydrogenase/reductase 3 Chain M: 77% 13% 10% MET THR GLY GLY ARG ARG ARG ALA GLY E250 (2552) (255 • Molecule 1: Retinal dehydrogenase/reductase 3 Chain N: 82% 6% • 11% MET ALA GLY GLY THR THR TYR ALA ALA PRO VAL ASP PRO ASP PRO FRO SER

A257 S258 R259 SER PRO VAL ASP ALA ASP PRO FRO SER SER

• Molecule 1: Retinal dehydrogenase/reductase 3

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	167.12Å 98.82Å 167.46 Å	Deperitor
a, b, c, α , β , γ	90.00° 115.87° 90.00°	Depositor
$\mathbf{P}_{\text{acclution}}(\hat{\mathbf{A}})$	30.00 - 2.40	Depositor
Resolution (A)	75.18 - 2.40	EDS
% Data completeness	91.9 (30.00-2.40)	Depositor
(in resolution range)	91.4(75.18-2.40)	EDS
R _{merge}	0.12	Depositor
R _{sym}	0.12	Depositor
$< I/\sigma(I) > 1$	$1.45 (at 2.40 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.2.0005	Depositor
D D .	0.181 , 0.229	Depositor
Π, Π_{free}	0.247 , 0.264	DCC
R_{free} test set	3562 reflections $(2.02%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	29.1	Xtriage
Anisotropy	0.398	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.34 , 2.6	EDS
L-test for twinning ²	$< L > = 0.46, < L^2 > = 0.29$	Xtriage
Estimated twinning fraction	0.368 for l,-k,h	Xtriage
F_o, F_c correlation	0.89	EDS
Total number of atoms	30669	wwPDB-VP
Average B, all atoms $(Å^2)$	5.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 16.97% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles		
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.91	0/1879	0.90	7/2555~(0.3%)	
1	В	0.94	4/1853~(0.2%)	0.88	3/2517~(0.1%)	
1	С	0.94	3/1878~(0.2%)	0.94	5/2553~(0.2%)	
1	D	0.85	1/1915~(0.1%)	0.86	3/2602~(0.1%)	
1	Е	0.89	0/1891	0.92	8/2570~(0.3%)	
1	F	0.78	1/1934~(0.1%)	0.80	3/2627~(0.1%)	
1	G	0.72	1/1850~(0.1%)	0.81	2/2516~(0.1%)	
1	Н	0.69	0/1896	0.77	3/2578~(0.1%)	
1	Ι	0.69	0/1856	0.79	3/2524~(0.1%)	
1	J	0.71	0/1924	0.77	1/2616~(0.0%)	
1	Κ	0.88	1/1874~(0.1%)	0.89	4/2548~(0.2%)	
1	L	0.76	1/1905~(0.1%)	0.75	0/2589	
1	М	0.49	0/1801	0.64	0/2455	
1	Ν	0.51	0/1782	0.60	0/2422	
1	0	0.51	0/1837	0.63	0/2502	
1	Р	0.51	0/1889	0.65	0/2569	
All	All	0.75	12/29964~(0.0%)	0.80	42/40743~(0.1%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	Р	0	2

All (12) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
1	Κ	123	LYS	CE-NZ	7.37	1.67	1.49
1	В	100	GLU	CB-CG	7.33	1.66	1.52
1	С	181	CYS	CB-SG	-6.85	1.70	1.82
1	D	181	CYS	CB-SG	-6.38	1.71	1.82

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
1	В	181	CYS	CB-SG	-6.18	1.71	1.82
1	F	238	CYS	CB-SG	-5.59	1.72	1.81
1	В	238	CYS	CB-SG	-5.41	1.73	1.81
1	С	193	GLU	CG-CD	5.40	1.60	1.51
1	В	28	ALA	CA-CB	-5.39	1.41	1.52
1	С	52	GLU	CB-CG	-5.38	1.42	1.52
1	L	181	CYS	CB-SG	-5.18	1.73	1.81
1	G	201	ASP	CB-CG	-5.08	1.41	1.51

All (42) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	С	178	ARG	NE-CZ-NH1	10.22	125.41	120.30
1	K	178	ARG	NE-CZ-NH2	-10.10	115.25	120.30
1	D	35	ARG	NE-CZ-NH2	-9.69	115.46	120.30
1	Е	178	ARG	NE-CZ-NH1	9.52	125.06	120.30
1	С	178	ARG	NE-CZ-NH2	-8.42	116.09	120.30
1	K	178	ARG	NE-CZ-NH1	8.18	124.39	120.30
1	В	178	ARG	NE-CZ-NH1	7.93	124.27	120.30
1	F	178	ARG	NE-CZ-NH2	-7.83	116.38	120.30
1	Е	62	ASP	CB-CG-OD1	7.82	125.34	118.30
1	В	178	ARG	NE-CZ-NH2	-7.81	116.40	120.30
1	Е	178	ARG	NE-CZ-NH2	-7.65	116.47	120.30
1	А	178	ARG	NE-CZ-NH2	-7.64	116.48	120.30
1	С	42	ASP	CB-CG-OD1	7.37	124.93	118.30
1	А	178	ARG	NE-CZ-NH1	7.33	123.96	120.30
1	D	35	ARG	NE-CZ-NH1	6.96	123.78	120.30
1	F	178	ARG	NE-CZ-NH1	6.94	123.77	120.30
1	Е	19	ARG	NE-CZ-NH1	6.58	123.59	120.30
1	С	42	ASP	CB-CG-OD2	-6.54	112.42	118.30
1	Е	62	ASP	CB-CG-OD2	-6.47	112.48	118.30
1	K	62	ASP	CB-CG-OD1	6.45	124.11	118.30
1	K	40	ASP	CB-CG-OD2	6.06	123.76	118.30
1	В	79	ARG	NE-CZ-NH1	5.89	123.25	120.30
1	Н	108	ARG	NE-CZ-NH2	-5.74	117.43	120.30
1	Е	218[A]	MET	CG-SD-CE	5.71	109.33	100.20
1	Е	218[B]	MET	CG-SD-CE	5.71	109.33	100.20
1	G	201	ASP	CB-CA-C	5.67	121.75	110.40
1	С	19	ARG	NE-CZ-NH2	-5.64	117.48	120.30
1	А	78	ARG	NE-CZ-NH1	5.63	123.11	120.30
1	Е	40	ASP	N-CA-CB	5.59	120.66	110.60
1	Ι	108	ARG	NE-CZ-NH1	5.53	123.06	120.30

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
1	Ι	203	ARG	NE-CZ-NH1	5.42	123.01	120.30
1	А	82	ARG	NE-CZ-NH2	5.39	122.99	120.30
1	А	62	ASP	CB-CG-OD2	-5.25	113.58	118.30
1	Н	178	ARG	NE-CZ-NH1	5.15	122.88	120.30
1	Н	201	ASP	CB-CG-OD2	-5.13	113.68	118.30
1	D	79	ARG	NE-CZ-NH1	5.13	122.86	120.30
1	А	42	ASP	CB-CG-OD2	-5.10	113.71	118.30
1	Ι	178	ARG	NE-CZ-NH1	5.08	122.84	120.30
1	G	201	ASP	CB-CG-OD1	-5.06	113.75	118.30
1	J	203	ARG	NE-CZ-NH1	5.05	122.82	120.30
1	А	42	ASP	CB-CG-OD1	5.04	122.84	118.30
1	F	255	CYS	CA-CB-SG	5.00	123.00	114.00

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	Р	198	LEU	Peptide
1	Р	257	ALA	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1844	0	1863	22	0
1	В	1816	0	1828	21	0
1	С	1847	0	1872	29	0
1	D	1876	0	1895	18	1
1	Е	1850	0	1870	24	0
1	F	1896	0	1922	18	0
1	G	1820	0	1842	23	0
1	Н	1861	0	1874	22	0
1	Ι	1825	0	1849	14	0
1	J	1881	0	1892	12	0
1	К	1843	0	1865	23	1
1	L	1870	0	1884	20	0
1	М	1771	0	1771	19	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	Ν	1754	0	1766	9	0
1	0	1806	0	1812	17	0
1	Р	1858	0	1868	19	0
2	А	133	0	0	5	0
2	В	121	0	0	1	0
2	С	123	0	0	4	0
2	D	130	0	0	1	0
2	Е	116	0	0	4	0
2	F	113	0	0	3	0
2	G	86	0	0	0	0
2	Н	78	0	0	1	0
2	Ι	54	0	0	3	0
2	J	68	0	0	1	0
2	Κ	89	0	0	3	0
2	L	78	0	0	3	0
2	М	22	0	0	1	0
2	N	13	0	0	0	0
2	0	9	0	0	0	0
2	Р	18	0	0	1	0
All	All	30669	0	29673	277	1

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

All (277) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
1:K:123:LYS:CE	1:K:123:LYS:NZ	1.67	1.53
1:B:109:GLN:NE2	1:P:200:PRO:O	1.93	1.02
1:B:255[B]:CYS:HB3	1:D:255[B]:CYS:SG	2.06	0.95
1:B:255[B]:CYS:CB	1:D:255[B]:CYS:SG	2.56	0.94
1:C:193:GLU:HG3	2:C:368:HOH:O	1.71	0.88
1:L:78:ARG:HD2	2:L:337:HOH:O	1.76	0.84
1:I:203:ARG:HG2	1:I:203:ARG:HH11	1.45	0.81
1:B:255[B]:CYS:HB2	1:D:255[B]:CYS:SG	2.20	0.81
1:M:162:THR:HB	2:M:274:HOH:O	1.82	0.80
1:K:6:ARG:H	1:K:6:ARG:HD2	1.46	0.79
1:P:193:GLU:O	1:P:196:ALA:N	2.15	0.79
1:C:105:GLN:O	1:C:109:GLN:HG3	1.84	0.78
1:C:193:GLU:CG	2:C:368:HOH:O	2.29	0.77
1:C:130:ARG:NH1	1:C:175:TYR:CE1	2.54	0.75

		Interatomic	Clash
Atom-1	Atom-2	$distance (m \AA)$	overlap (Å)
1:K:113:LEU:HD23	2:K:353:HOH:O	1.91	0.70
1:L:6:ARG:HD3	1:L:234:GLU:OE2	1.91	0.70
1:F:39:CYS:SG	1:F:61:CYS:HB3	2.31	0.70
1:E:113:LEU:O	2:E:382:HOH:O	2.10	0.69
1:B:193:GLU:HG2	2:B:283:HOH:O	1.92	0.69
1:C:4:GLY:HA2	2:C:380:HOH:O	1.93	0.68
1:E:178:ARG:NH2	1:E:231:LEU:O	2.25	0.68
1:K:152:VAL:HG22	1:K:153:PRO:HD3	1.76	0.68
1:G:130:ARG:NH1	1:G:172:GLU:OE2	2.28	0.66
1:G:130:ARG:NH1	1:G:175:TYR:CD1	2.64	0.65
1:E:4:GLY:HA3	2:E:366:HOH:O	1.97	0.64
1:C:19:ARG:HD2	1:C:42:ASP:OD2	1.98	0.64
1:A:168:LEU:CD1	2:A:399:HOH:O	2.46	0.64
1:N:39:CYS:SG	1:N:61:CYS:HB3	2.39	0.63
1:G:27:ARG:NH2	1:G:52:GLU:OE1	2.30	0.63
1:B:255[B]:CYS:CB	1:D:255[B]:CYS:HG	2.11	0.62
1:E:186:ASN:HB3	1:E:218[B]:MET:CE	2.29	0.62
1:M:210:MET:O	1:M:213:GLN:NE2	2.33	0.62
1:C:27:ARG:NH2	1:C:52:GLU:OE1	2.32	0.62
1:A:193:GLU:HG2	2:A:395:HOH:O	2.00	0.62
1:K:178:ARG:NH2	1:K:231:LEU:O	2.28	0.61
1:L:39:CYS:SG	1:L:61:CYS:HB3	2.40	0.61
1:H:5:THR:HG23	1:H:8:ALA:HB2	1.81	0.61
1:E:164:MET:HG3	1:H:152:VAL:HG13	1.83	0.61
1:E:146:ILE:HD12	1:G:252:GLY:HA2	1.83	0.60
1:A:98:ARG:HG3	1:A:150:GLN:HE21	1.66	0.60
1:A:168:LEU:HD11	2:A:399:HOH:O	2.02	0.59
1:B:178:ARG:NH2	1:B:231:LEU:O	2.34	0.59
1:J:258:SER:C	2:J:277:HOH:O	2.40	0.59
1:M:146:ILE:HD12	1:O:252:GLY:HA2	1.83	0.59
1:G:6:ARG:HG3	1:G:6:ARG:HH11	1.67	0.59
1:D:40:ASP:O	1:D:60:LEU:HD12	2.03	0.58
1:H:192:TRP:NE1	1:H:218:MET:HE3	2.19	0.58
1:P:178:ARG:NH2	1:P:231:LEU:O	2.36	0.58
1:G:52:GLU:HG2	1:G:53:LEU:HG	1.84	0.58
1:C:251:LEU:O	1:C:253:TYR:N	2.37	0.57
1:E:252:GLY:HA2	1:G:146:ILE:HD12	1.87	0.57
1:A:160:ALA:HB2	1:D:160:ALA:HB2	1.85	0.57
1:D:203:ARG:HB2	1:D:203:ARG:CZ	2.33	0.57
1:N:152:VAL:HG23	1:N:153:PRO:HD3	1.85	0.57
1:J:152:VAL:HG13	1:K:164:MET:HG3	1.85	0.57

		Interatomic	Clash
Atom-1	Atom-2	$distance ({ m \AA})$	overlap (Å)
1:C:178:ARG:NH2	1:C:231:LEU:O	2.29	0.57
1:L:105:GLN:H	1:L:105:GLN:CD	2.08	0.56
1:G:98:ARG:HB2	1:G:101:GLU:HG3	1.88	0.56
1:E:113:LEU:HD23	2:E:292:HOH:O	2.06	0.56
1:P:193:GLU:HG3	1:P:194:GLU:N	2.21	0.56
1:M:215:LEU:HD12	1:M:247:GLY:HA2	1.87	0.55
1:O:178:ARG:NH2	1:O:231:LEU:O	2.39	0.55
1:A:111:LEU:HD23	1:A:157:THR:HG22	1.89	0.55
1:E:186:ASN:HB3	1:E:218[B]:MET:HE1	1.89	0.55
1:H:100:GLU:HG3	2:H:281:HOH:O	2.05	0.55
1:L:47:ARG:HH11	1:L:47:ARG:HG3	1.72	0.55
1:C:173:SER:N	1:C:174:PRO:CD	2.69	0.54
1:K:15:THR:O	1:K:89:ASN:HB3	2.06	0.54
1:O:30:VAL:HG21	1:O:53:LEU:HD13	1.89	0.54
1:H:178:ARG:NH2	1:H:231:LEU:O	2.39	0.54
1:K:215:LEU:HD12	1:K:247:GLY:HA2	1.90	0.54
1:M:178:ARG:NH2	1:M:231:LEU:O	2.41	0.54
1:K:113:LEU:O	2:K:356:HOH:O	2.17	0.54
1:E:106:GLY:HA2	1:E:109[A]:GLN:HG3	1.91	0.53
1:I:7:TYR:N	2:I:324:HOH:O	2.42	0.53
1:M:30:VAL:HG21	1:M:53:LEU:HD13	1.91	0.53
1:A:15:THR:O	1:A:89:ASN:HB3	2.10	0.52
1:O:183:SER:HB2	1:O:244:LEU:HD23	1.90	0.52
1:C:75:GLU:OE1	1:C:78:ARG:HD3	2.09	0.52
1:E:152:VAL:HG13	1:H:164:MET:HG3	1.90	0.52
1:B:4:GLY:HA3	1:B:31:ASN:O	2.09	0.52
1:B:255[B]:CYS:HB2	1:D:255[B]:CYS:HG	1.73	0.52
1:K:5:THR:HG22	1:K:6:ARG:NH1	2.25	0.52
1:I:152:VAL:HG13	1:L:164:MET:HG3	1.92	0.52
1:G:98:ARG:HH11	1:G:98:ARG:HG2	1.74	0.52
1:H:5:THR:CG2	1:H:5:THR:O	2.58	0.52
1:P:258:SER:O	1:P:259:ARG:C	2.49	0.52
1:H:43:GLU:O	1:H:47:ARG:HB2	2.10	0.51
1:C:165:THR:HG23	1:C:179:VAL:HG12	1.92	0.51
1:C:251:LEU:C	1:C:253:TYR:H	2.13	0.51
1:E:165:THR:HG23	1:E:179:VAL:HG12	1.91	0.51
1:O:15:THR:O	1:O:89:ASN:HB3	2.10	0.51
1:M:152:VAL:HG22	1:M:153:PRO:HD3	1.93	0.51
1:I:252:GLY:HA2	1:K:146:ILE:HD12	1.91	0.51
1:M:142:LEU:HD11	1:M:250:GLU:HB3	1.93	0.51
1:P:39:CYS:SG	1:P:61:CYS:HB3	2.51	0.51

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:O:43:GLU:HA	1:O:58:PHE:CZ	2.45	0.51
1:C:4:GLY:N	1:C:31:ASN:O	2.43	0.51
1:I:152:VAL:HB	1:I:153:PRO:HD3	1.92	0.51
1:O:51:GLN:HA	1:O:51:GLN:HE21	1.75	0.51
1:D:22:GLY:O	1:D:26:VAL:HG23	2.11	0.50
1:F:142:LEU:HD13	1:F:246:THR:HG21	1.93	0.50
1:P:200:PRO:O	2:P:272:HOH:O	2.19	0.50
1:F:15:THR:O	1:F:89:ASN:HB3	2.11	0.50
1:P:122:THR:O	1:P:126:LEU:HG	2.11	0.50
2:I:313:HOH:O	1:L:152:VAL:HG13	2.10	0.50
1:F:178:ARG:NH2	1:F:231:LEU:O	2.40	0.50
1:E:186:ASN:HB3	1:E:218[B]:MET:HE2	1.92	0.50
1:M:130:ARG:NH2	1:M:172:GLU:OE1	2.44	0.50
1:M:62:ASP:OD1	1:M:64:THR:OG1	2.18	0.50
1:A:43:GLU:O	1:A:47:ARG:HG3	2.11	0.49
1:K:152:VAL:HG13	2:K:322:HOH:O	2.12	0.49
1:0:173:SER:N	1:0:174:PRO:HD2	2.27	0.49
1:O:169:ALA:HB1	1:O:239:THR:HG23	1.94	0.49
1:O:210:MET:HG2	1:0:217:ARG:HA	1.94	0.49
1:O:207:ARG:N	1:O:207:ARG:HD2	2.28	0.49
1:K:152:VAL:CG2	1:K:153:PRO:HD3	2.42	0.49
1:C:69:VAL:HG12	1:C:124:LEU:HD12	1.94	0.49
1:B:98:ARG:O	1:B:101:GLU:HG2	2.13	0.49
1:P:7:TYR:CD1	1:P:10:LYS:HG3	2.48	0.49
1:C:27:ARG:NH1	1:C:52:GLU:OE1	2.46	0.48
1:C:75:GLU:HA	1:C:78:ARG:HG2	1.95	0.48
1:M:165:THR:HG23	1:M:179:VAL:HG12	1.96	0.48
1:P:39:CYS:HG	1:P:61:CYS:HB3	1.78	0.48
1:G:98:ARG:CG	1:G:98:ARG:HH11	2.26	0.48
1:A:164:MET:HG3	1:D:152:VAL:HG13	1.95	0.48
1:G:75:GLU:HA	1:G:78:ARG:HG2	1.95	0.48
1:F:100:GLU:HG3	1:F:100:GLU:H	1.29	0.48
1:L:104:ALA:O	1:L:108:ARG:HG3	2.14	0.48
1:P:189:THR:HB	1:P:190:PRO:HD2	1.95	0.48
1:D:173:SER:N	1:D:174:PRO:CD	2.77	0.48
1:A:153:PRO:O	1:A:157:THR:HG23	2.13	0.48
1:I:178:ARG:NH2	1:I:231:LEU:O	2.33	0.48
1:O:66:GLU:OE1	1:O:70:LYS:HE2	2.14	0.48
1:K:88:ASN:OD1	1:K:121:LEU:HD23	2.13	0.47
1:A:98:ARG:CG	1:A:150:GLN:HE21	2.26	0.47
1:F:12:VAL:HG13	1:F:85:CYS:HB3	1.96	0.47

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	$distance ({ m \AA})$	overlap (Å)
1:B:109:GLN:HE22	1:P:201:ASP:HA	1.79	0.47
1:G:6:ARG:CG	1:G:6:ARG:HH11	2.26	0.47
1:H:39:CYS:SG	1:H:61:CYS:HB3	2.54	0.47
1:G:173:SER:N	1:G:174:PRO:CD	2.77	0.47
1:A:23:ALA:O	1:A:27:ARG:HG3	2.14	0.47
1:M:173:SER:N	1:M:174:PRO:HD2	2.30	0.47
1:D:43:GLU:OE2	1:D:47:ARG:HD2	2.15	0.47
1:J:201:ASP:OD1	1:J:203:ARG:NH2	2.48	0.47
1:G:173:SER:OG	1:G:174:PRO:HD3	2.13	0.47
1:B:61:CYS:SG	1:B:68:ASP:HB3	2.55	0.47
1:A:148:GLN:HG3	1:A:151:ALA:HB3	1.97	0.46
1:L:190:PRO:HD2	2:L:332:HOH:O	2.15	0.46
1:E:106:GLY:O	1:E:109[A]:GLN:OE1	2.32	0.46
1:H:191:LEU:HA	1:H:194:GLU:HG2	1.98	0.46
1:A:142:LEU:HD11	1:A:250:GLU:HB3	1.96	0.46
1:B:39:CYS:SG	1:B:61:CYS:HB3	2.55	0.46
1:E:40:ASP:HB2	2:E:302:HOH:O	2.15	0.46
1:K:240:GLY:HA3	1:L:251:LEU:HD11	1.97	0.46
1:C:15:THR:O	1:C:89:ASN:HB3	2.14	0.46
1:G:43:GLU:HA	1:G:58:PHE:CZ	2.51	0.46
1:L:47:ARG:NH1	1:L:47:ARG:HG3	2.30	0.46
1:C:251:LEU:C	1:C:253:TYR:N	2.70	0.46
1:N:98:ARG:O	1:N:101:GLU:HG2	2.16	0.46
1:D:98:ARG:O	1:D:101:GLU:HG2	2.16	0.46
1:D:32[A]:SER:OG	1:D:229:VAL:HG11	2.16	0.46
1:J:183:SER:OG	1:J:242:GLU:OE2	2.30	0.46
1:B:123:LYS:NZ	1:C:102:THR:O	2.48	0.45
1:A:173:SER:N	1:A:174:PRO:CD	2.80	0.45
1:P:7:TYR:N	1:P:32:SER:O	2.50	0.45
1:P:43:GLU:HG2	1:P:60:LEU:HD13	1.98	0.45
1:C:193:GLU:HG2	2:C:368:HOH:O	2.08	0.45
1:H:15:THR:O	1:H:89:ASN:HB3	2.16	0.45
1:F:46:GLY:N	2:F:381:HOH:O	2.33	0.45
1:F:123:LYS:NZ	1:G:102:THR:O	2.41	0.45
1:I:112:GLU:OE1	1:I:116:LEU:HD12	2.16	0.45
1:M:235:ALA:HB1	1:M:238:CYS:SG	2.56	0.45
1:E:106:GLY:O	1:E:109[A]:GLN:HG3	2.17	0.45
1:H:200:PRO:HG3	1:J:101:GLU:HA	1.99	0.45
1:I:141:SER:OG	1:I:143:VAL:HG22	2.16	0.45
1:P:12:VAL:HG21	1:P:29:PHE:CD1	2.52	0.45
1:I:207:ARG:HD3	1:I:211:LEU:CD1	2.47	0.45

	• • • • •	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:O:213:GLN:NE2	1:O:217:ARG:O	2.45	0.45	
1:N:249:ALA:O	1:P:256:LYS:NZ	2.43	0.44	
1:B:160:ALA:HB2	1:C:160:ALA:HB2	1.99	0.44	
1:J:165:THR:HG23	1:J:179:VAL:HG12	1.97	0.44	
1:L:243:LEU:C	1:L:243:LEU:HD23	2.38	0.44	
1:O:37:VAL:HG21	1:O:76:THR:HG23	2.00	0.44	
1:H:66:GLU:HG2	1:H:70:LYS:HZ2	1.81	0.44	
1:G:88:ASN:OD1	1:G:121:LEU:HD23	2.18	0.44	
1:M:148:GLN:HG2	1:M:151:ALA:HB3	2.00	0.44	
1:G:48:ALA:O	1:G:51:GLN:HG2	2.17	0.44	
1:M:251:LEU:O	1:M:253:TYR:N	2.51	0.44	
1:C:153:PRO:O	1:C:157:THR:HG23	2.18	0.44	
1:D:165:THR:HG23	1:D:179:VAL:HG12	1.99	0.44	
1:H:66:GLU:HG2	1:H:70:LYS:NZ	2.33	0.44	
1:I:53:LEU:O	2:I:322:HOH:O	2.21	0.44	
1:O:7:TYR:HB3	1:O:32:SER:HB3	1.99	0.44	
1:C:27:ARG:CZ	1:C:52:GLU:OE1	2.66	0.44	
1:H:101:GLU:HA	1:J:200:PRO:HG3	1.99	0.43	
1:D:105:GLN:NE2	2:D:363:HOH:O	2.50	0.43	
1:L:15:THR:O	1:L:89:ASN:HB3	2.18	0.43	
1:E:111:LEU:HD23	1:E:157:THR:HG22	2.01	0.43	
1:E:87:VAL:HA	1:E:137:ILE:O	2.18	0.43	
1:H:192:TRP:CE2	1:H:218:MET:HE3	2.54	0.43	
1:A:183:SER:HB2	1:A:244:LEU:HD23	2.01	0.43	
1:E:43:GLU:HA	1:E:58:PHE:CZ	2.54	0.43	
1:F:259:ARG:NH2	1:H:214:PRO:O	2.52	0.43	
1:G:126:LEU:HD11	1:G:168:LEU:HD21	2.00	0.43	
1:K:43:GLU:HA	1:K:58:PHE:CZ	2.53	0.43	
1:M:167:ALA:HB2	1:P:155:VAL:HG11	1.99	0.43	
1:C:99:PRO:HD2	1:C:100:GLU:OE2	2.18	0.43	
1:N:173:SER:N	1:N:174:PRO:CD	2.82	0.43	
1:P:196:ALA:HA	1:P:202:PRO:HB3	2.00	0.43	
1:J:160:ALA:HB2	1:K:160:ALA:HB2	2.00	0.43	
1:M:153:PRO:O	1:M:157:THR:HG23	2.18	0.43	
1:B:77:ILE:HG13	1:B:128:TYR:CE2	2.54	0.43	
1:J:75:GLU:HG3	1:J:79:ARG:HH11	1.84	0.43	
1:D:10:LYS:HD3	1:D:84:ASP:CG	2.40	0.43	
1:F:167:ALA:HB2	1:G:155:VAL:HG11	2.01	0.43	
1:B:79:ARG:HD3	1:E:80:PHE:O	2.19	0.43	
1:E:4:GLY:HA2	1:E:31:ASN:O	2.19	0.42	
1:H:165:THR:HG23	1:H:179:VAL:HG12	2.01	0.42	

		Interatomic	Clash	
Atom-1	Atom-2	$distance (m \AA)$	overlap (Å)	
1:N:133:GLN:HA	1:N:133:GLN:HE21	1.84	0.42	
1:A:178:ARG:NH2	1:A:231:LEU:O	2.41	0.42	
1:F:188:TRP:N	1:F:218:MET:HE2	2.34	0.42	
1:L:186:ASN:HB3	1:L:218:MET:HE3	2.01	0.42	
1:E:148:GLN:HG2	1:E:151:ALA:HB3	2.01	0.42	
1:K:173:SER:N	1:K:174:PRO:CD	2.82	0.42	
1:A:252:GLY:HA2	1:C:146:ILE:HD12	2.01	0.42	
1:K:148:GLN:HG2	1:K:151:ALA:HB3	2.00	0.42	
1:L:218:MET:HB3	1:L:218:MET:HE2	1.70	0.42	
1:L:64:THR:HA	2:L:326:HOH:O	2.18	0.42	
1:E:15:THR:O	1:E:89:ASN:HB3	2.19	0.42	
1:F:112:GLU:OE1	1:F:116:LEU:HD12	2.18	0.42	
1:I:173:SER:N	1:I:174:PRO:CD	2.82	0.42	
1:J:178:ARG:NH2	1:J:231:LEU:O	2.53	0.42	
1:O:152:VAL:HG22	1:O:153:PRO:HD3	2.00	0.42	
1:B:94:PRO:HB3	1:P:200:PRO:HD3	2.02	0.42	
1:K:87:VAL:HA	1:K:137:ILE:O	2.20	0.42	
1:D:41:LYS:O	1:D:60:LEU:HD11	2.20	0.41	
1:N:152:VAL:CG2	1:N:153:PRO:HD3	2.48	0.41	
1:O:235:ALA:HB1	1:O:238:CYS:HB2	2.02	0.41	
1:A:98:ARG:O	1:A:101:GLU:HG2	2.20	0.41	
1:F:54:PRO:HA	2:F:303:HOH:O	2.20	0.41	
1:H:207:ARG:HB2	1:H:207:ARG:HE	1.78	0.41	
1:F:13:VAL:HG22	1:F:37:VAL:HB	2.02	0.41	
1:G:240:GLY:HA3	1:H:251:LEU:HD11	2.01	0.41	
1:K:165:THR:HG23	1:K:179:VAL:HG12	2.03	0.41	
1:K:5:THR:HG22	1:K:6:ARG:HH11	1.84	0.41	
1:L:47:ARG:HH11	1:L:47:ARG:CG	2.33	0.41	
1:C:98:ARG:HG3	1:C:150:GLN:HE21	1.86	0.41	
1:M:26:VAL:O	1:M:30:VAL:HG22	2.20	0.41	
1:B:3:THR:O	1:B:31:ASN:O	2.39	0.41	
1:E:152:VAL:HB	1:E:153:PRO:HD3	2.02	0.41	
1:L:199:MET:HA	1:L:200:PRO:HD3	1.94	0.41	
1:I:98:ARG:HB2	1:I:101:GLU:HG2	2.03	0.41	
1:A:54:PRO:HD2	2:A:400:HOH:O	2.21	0.41	
1:F:57:VAL:HG13	2:F:318:HOH:O	2.21	0.41	
1:H:5:THR:HG22	1:H:5:THR:O	2.21	0.41	
1:C:122:THR:O	1:C:126:LEU:HG	2.20	0.41	
1:C:130:ARG:NH1	1:C:175:TYR:CD1	2.79	0.41	
1:N:39:CYS:SG	1:N:72:LEU:HD22	2.61	0.41	
1:A:6:ARG:HD3	2:A:383:HOH:O	2.21	0.40	

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:99:PRO:HD2	1:A:100:GLU:OE2	2.21	0.40
1:H:133:GLN:HA	1:H:133:GLN:HE21	1.85	0.40
1:I:240:GLY:HA3	1:J:251:LEU:HD11	2.03	0.40
1:K:215:LEU:HD23	1:K:215:LEU:HA	1.91	0.40
1:B:153:PRO:O	1:B:157:THR:HG23	2.20	0.40
1:G:133:GLN:NE2	1:G:175:TYR:O	2.54	0.40
1:I:43:GLU:HA	1:I:58:PHE:CZ	2.57	0.40
1:N:98:ARG:HB3	1:N:100:GLU:OE2	2.21	0.40
1:B:66:GLU:HG2	1:B:70:LYS:HE3	2.03	0.40
1:F:168:LEU:HB3	1:F:179:VAL:HG11	2.04	0.40
1:F:199:MET:HA	1:F:200:PRO:HD3	1.92	0.40
1:G:15:THR:O	1:G:89:ASN:HB3	2.21	0.40
1:M:37:VAL:HG21	1:M:76:THR:HG23	2.03	0.40
1:F:173:SER:N	1:F:174:PRO:CD	2.85	0.40
1:L:173:SER:OG	1:L:174:PRO:HD3	2.22	0.40

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:D:35:ARG:NH2	1:K:78:ARG:O[2_444]	2.11	0.09

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{ntiles}
1	А	249/270~(92%)	244 (98%)	5(2%)	0	100	100
1	В	246/270~(91%)	241 (98%)	5(2%)	0	100	100
1	С	248/270~(92%)	242 (98%)	5 (2%)	1 (0%)	34	48
1	D	255/270~(94%)	252 (99%)	3 (1%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	Ε	250/270~(93%)	245~(98%)	5(2%)	0	100	100
1	F	256/270~(95%)	252~(98%)	4 (2%)	0	100	100
1	G	245/270~(91%)	239~(98%)	6(2%)	0	100	100
1	Н	253/270~(94%)	249~(98%)	4 (2%)	0	100	100
1	Ι	245/270~(91%)	240 (98%)	5(2%)	0	100	100
1	J	256/270~(95%)	251 (98%)	5(2%)	0	100	100
1	K	248/270~(92%)	243~(98%)	5(2%)	0	100	100
1	L	254/270~(94%)	250~(98%)	4 (2%)	0	100	100
1	М	242/270~(90%)	237~(98%)	4 (2%)	1 (0%)	34	48
1	Ν	236/270~(87%)	233~(99%)	3 (1%)	0	100	100
1	О	245/270~(91%)	240~(98%)	4 (2%)	1 (0%)	34	48
1	Р	252/270 (93%)	243 (96%)	8 (3%)	1 (0%)	34	48
All	All	3980/4320~(92%)	3901 (98%)	75(2%)	4 (0%)	51	68

All (4) Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	М	252	GLY
1	Р	7	TYR
1	С	252	GLY
1	0	252	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	191/208~(92%)	183~(96%)	8 (4%)	30 47
1	В	188/208~(90%)	176~(94%)	12~(6%)	17 28
1	С	192/208~(92%)	184 (96%)	8 (4%)	30 47
1	D	196/208~(94%)	189 (96%)	7 (4%)	35 54

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	Е	193/208~(93%)	180~(93%)	13 (7%)	16	26
1	F	197/208~(95%)	189~(96%)	8 (4%)	30	48
1	G	189/208~(91%)	177 (94%)	12 (6%)	18	28
1	Н	192/208~(92%)	182 (95%)	10 (5%)	23	38
1	Ι	190/208~(91%)	179 (94%)	11 (6%)	20	32
1	J	196/208~(94%)	183 (93%)	13 (7%)	16	26
1	K	191/208~(92%)	182 (95%)	9 (5%)	26	42
1	L	193/208~(93%)	181 (94%)	12 (6%)	18	29
1	М	182/208~(88%)	178~(98%)	4 (2%)	52	71
1	Ν	182/208~(88%)	173~(95%)	9~(5%)	25	40
1	Ο	186/208~(89%)	173~(93%)	13 (7%)	15	24
1	Р	191/208 (92%)	181 (95%)	10 (5%)	23	38
All	All	3049/3328~(92%)	2890~(95%)	159 (5%)	23	38

All (159) residues with a non-rotameric sidechain are listed below:

\mathbf{Mol}	Chain	\mathbf{Res}	Type
1	А	44	SER
1	А	74	SER
1	А	105	GLN
1	А	107	PHE
1	А	109[A]	GLN
1	А	109[B]	GLN
1	А	123	LYS
1	А	168	LEU
1	В	5	THR
1	В	7	TYR
1	В	19	ARG
1	В	35	ARG
1	В	42	ASP
1	В	70	LYS
1	В	74	SER
1	В	78	ARG
1	В	100	GLU
1	В	107	PHE
1	В	192	TRP
1	В	207	ARG
1	С	5	THR

Mol	Chain	Res	Type
1	С	7	TYR
1	С	39	CYS
1	С	65	GLN
1	С	74	SER
1	С	107	PHE
1	С	168	LEU
1	С	203	ARG
1	D	7	TYR
1	D	42	ASP
1	D	107	PHE
1	D	192	TRP
1	D	195	LEU
1	D	203	ARG
1	D	256	LYS
1	Е	7	TYR
1	Е	39	CYS
1	Е	41	LYS
1	Е	44	SER
1	Е	51	GLN
1	Е	78	ARG
1	Е	105	GLN
1	Е	107	PHE
1	Е	109[A]	GLN
1	Е	109B	GLN
1	Е	113	LEU
1	Е	207	ARG
1	Е	221	PRO
1	F	35	ARG
1	F	42	ASP
1	F	43	GLU
1	F	100	GLU
1	F	107	PHE
1	F	192	TRP
1	F	203	ARG
1	F	259	ARG
1	G	6	ARG
1	G	52	GLU
1	G	97	GLN
1	G	98	ARG
1	G	105	GLN
1	G	107	PHE
1	G	112	GLU
		-	

1 G 194 GLU 1 G 201 ASP 1 G 203 ARG 1 G 205 SER 1 G 220 GLN 1 H 5 THR 1 H 7 TYR 1 H 7 TYR 1 H 7 TYR 1 H 75 GLU 1 H 75 GLU 1 H 75 GLU 1 H 75 GLU 1 H 100 GLU 1 H 107 PHE 1 H 107 PHE 1 I 7 TYR 1 I 107 PHE 1 I 107 PHE 1 I 107 PHE 1 I 107 <t< th=""><th>Mol</th><th>Chain</th><th>Res</th><th>Type</th></t<>	Mol	Chain	Res	Type
1 G 201 ASP 1 G 203 ARG 1 G 205 SER 1 G 220 GLN 1 H 5 THR 1 H 7 TYR 1 H 7 GLU 1 H 47 ARG 1 H 75 GLU 1 H 75 GLU 1 H 75 GLU 1 H 100 GLU 1 H 107 PHE 1 H 107 PHE 1 H 107 PHE 1 I 7 TYR 1 I 107 PHE 1 I 107 ARG 1 I	1	G	194	GLU
1 G 203 ARG 1 G 205 SER 1 G 220 GLN 1 H 5 THR 1 H 7 TYR 1 H 7 TYR 1 H 7 TYR 1 H 7 GLU 1 H 75 GLU 1 H 75 GLU 1 H 100 GLU 1 H 107 PHE 1 H 107 PHE 1 H 203 ARG 1 I 7 TYR 1 I 107 PHE 1 I 107 PHE 1 I 107 PHE 1 I 107 PHE 1 I 107 ARG 1 I 203 <t< td=""><td>1</td><td>G</td><td>201</td><td>ASP</td></t<>	1	G	201	ASP
1 G 205 SER 1 G 220 GLN 1 H 5 THR 1 H 7 TYR 1 H 42 ASP 1 H 47 ARG 1 H 75 GLU 1 H 75 GLU 1 H 75 GLU 1 H 100 GLU 1 H 107 PHE 1 H 102 TRP 1 H 203 ARG 1 I 7 TYR 1 I 39 CYS 1 I 07 PHE 1 I 107 PHE 1 I 107 PHE 1 I 107 PHE 1 I 107 ARG 1 I 203 <	1	G	203	ARG
1 G 220 GLN 1 H 5 THR 1 H 7 TYR 1 H 42 ASP 1 H 42 ASP 1 H 75 GLU 1 H 75 GLU 1 H 75 GLU 1 H 75 GLU 1 H 100 GLU 1 H 107 PHE 1 H 107 PHE 1 I 7 TYR 1 I 39 CYS 1 I 107 PHE 1 I 103 ARG 1 I 203 <	1	G	205	SER
1 H 5 THR 1 H 7 TYR 1 H 42 ASP 1 H 47 ARG 1 H 75 GLU 1 H 75 GLU 1 H 75 GLU 1 H 78 ARG 1 H 100 GLU 1 H 107 PHE 1 H 107 PHE 1 H 203 ARG 1 I 7 TYR 1 I 39 CYS 1 I 107 PHE 1 I 107 PHE 1 I 107 PHE 1 I 107 PHE 1 I 103 ARG 1 I 203 ARG 1 I 203	1	G	220	GLN
1 H 7 TYR 1 H 42 ASP 1 H 47 ARG 1 H 75 GLU 1 H 78 ARG 1 H 100 GLU 1 H 100 GLU 1 H 107 PHE 1 H 192 TRP 1 H 203 ARG 1 H 39 CYS 1 I 7 TYR 1 I 67 ASP 1 I 107 PHE 1 I 107 PHE 1 I 107 PHE 1 I 103 LYS 1 I 103 ARG 1 I 103 ARG 1 I 203 ARG 1 I 203 ARG 1 J 7 TYR 1 J	1	Н	5	THR
1 H 42 ASP 1 H 47 ARG 1 H 75 GLU 1 H 75 GLU 1 H 78 ARG 1 H 100 GLU 1 H 107 PHE 1 H 107 PHE 1 H 203 ARG 1 I 7 TYR 1 I 39 CYS 1 I 67 ASP 1 I 107 PHE 1 I 107 PHE 1 I 107 PHE 1 I 107 PHE 1 I 103 LYS 1 I 103 ARG 1 I 203 ARG 1 I 203 ARG 1 I 203 ARG 1 J 32 SER 1 J <td>1</td> <td>Н</td> <td>7</td> <td>TYR</td>	1	Н	7	TYR
1 H 47 ARG 1 H 75 GLU 1 H 75 GLU 1 H 78 ARG 1 H 100 GLU 1 H 107 PHE 1 H 192 TRP 1 H 203 ARG 1 I 7 TYR 1 I 7 TYR 1 I 67 ASP 1 I 107 PHE 1 I 123 LYS 1 I 203 ARG 1 I 203 ARG 1 I 203 ARG 1 J 32 SER 1 J 39 CYS 1 J	1	Н	42	ASP
1 H 75 GLU 1 H 78 ARG 1 H 100 GLU 1 H 100 GLU 1 H 107 PHE 1 H 192 TRP 1 H 203 ARG 1 H 203 ARG 1 H 203 ARG 1 H 203 ARG 1 I 7 TYR 1 I 67 ASP 1 I 107 PHE 1 I 107 PHE 1 I 123 LYS 1 I 123 LYS 1 I 203 ARG 1 I 203 ARG 1 I 203 ARG 1 I 203 ARG 1 J 32 SER 1 J 39 CYS 1 J<	1	Н	47	ARG
1H78ARG1H100GLU1H107PHE1H192TRP1H203ARG1I7TYR1I39CYS1I67ASP1I107PHE1I107PHE1I123LYS1I123LYS1I168LEU1I203ARG1I203ARG1I203ARG1I207ARG1I208GLU1J32SER1J39CYS1J47ARG1J107PHE1J107PHE1J191LEU1J192TRP1J192TRP1J205SER1J204ARG1J207ARG1J204GLU1J205SER1J234GLU1K5THR1K6ARG1K39CYS	1	Н	75	GLU
1 H 100 GLU 1 H 107 PHE 1 H 192 TRP 1 H 203 ARG 1 I 7 TYR 1 I 39 CYS 1 I 67 ASP 1 I 107 PHE 1 I 103 LYS 1 I 203 ARG 1 I 203 ARG 1 I 203 ARG 1 I 203 ARG 1 I 207 ARG 1 J 32 SER 1 J 39 CYS 1 J 107 PHE 1 J	1	Н	78	ARG
1H107PHE1H192TRP1H203ARG1I7TYR1I39CYS1I67ASP1I107PHE1I112GLU1I123LYS1I168LEU1I194GLU1I203ARG1I204ARG1I207ARG1I208GLU1J7TYR1J32SER1J39CYS1J47ARG1J107PHE1J191LEU1J192TRP1J198LEU1J205SER1J207ARG1J234GLU1K5THR1K6ARG1K5THR	1	Н	100	GLU
1 H 192 TRP 1 H 203 ARG 1 I 7 TYR 1 I 39 CYS 1 I 67 ASP 1 I 107 PHE 1 I 107 PHE 1 I 107 PHE 1 I 107 PHE 1 I 103 LYS 1 I 103 LYS 1 I 103 LYS 1 I 203 ARG 1 I 203 ARG 1 I 207 ARG 1 I 207 ARG 1 J 32 SER 1 J 39 CYS 1 J 39 CYS 1 J 107 PHE 1 J 191 LEU 1 J 192 TRP 1 J<	1	Н	107	PHE
1H203ARG1I7TYR1I39CYS1I67ASP1I107PHE1I112GLU1I123LYS1I168LEU1I203ARG1I203ARG1I203ARG1I207ARG1I208GLU1J7TYR1J32SER1J39CYS1J42ASP1J47ARG1J191LEU1J192TRP1J198LEU1J205SER1J207ARG1J207ARG1J207ARG1J207ARG1J207ARG1J207ARG1J207ARG1J234GLU1K5THR1K6ARG1K39CYS	1	Н	192	TRP
1 I 7 TYR 1 I 39 CYS 1 I 67 ASP 1 I 107 PHE 1 I 107 PHE 1 I 112 GLU 1 I 123 LYS 1 I 168 LEU 1 I 194 GLU 1 I 203 ARG 1 I 207 ARG 1 I 208 GLU 1 J 7 TYR 1 J 32 SER 1 J 35 ARG 1 J 39 CYS 1 J 47 ARG 1 J 107 PHE 1 J 191 LEU 1 J 192 TRP 1 J 198 LEU 1 J 205 SER 1 J <td>1</td> <td>Н</td> <td>203</td> <td>ARG</td>	1	Н	203	ARG
1I39CYS1I67ASP1I107PHE1I112GLU1I123LYS1I168LEU1I194GLU1I203ARG1I207ARG1I208GLU1J7TYR1J32SER1J35ARG1J39CYS1J47ARG1J107PHE1J191LEU1J192TRP1J205SER1J207ARG1J207ARG1J207ARG1J207ARG1J207ARG1J234GLU1K5THR1K6ARG1K39CYS	1	Ι	7	TYR
1I 67 ASP1I107PHE1I112GLU1I123LYS1I168LEU1I194GLU1I203ARG1I207ARG1I208GLU1J7TYR1J32SER1J35ARG1J39CYS1J47ARG1J107PHE1J191LEU1J192TRP1J205SER1J207ARG1J207ARG1J207ARG1JK51HR11K61K391K	1	Ι	39	CYS
1I107PHE1I112GLU1I123LYS1I168LEU1I194GLU1I203ARG1I207ARG1I208GLU1J7TYR1J32SER1J35ARG1J39CYS1J47ARG1J107PHE1J191LEU1J192TRP1J205SER1J207ARG1J207ARG1J234GLU1K5THR1K6ARG1K39CYS	1	Ι	67	ASP
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Ι	107	PHE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Ι	112	GLU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Ι	123	LYS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Ι	168	LEU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Ι	194	GLU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Ι	203	ARG
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Ι	207	ARG
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Ι	208	GLU
1 J 32 SER 1 J 35 ARG 1 J 39 CYS 1 J 42 ASP 1 J 47 ARG 1 J 107 PHE 1 J 191 LEU 1 J 192 TRP 1 J 198 LEU 1 J 205 SER 1 J 207 ARG 1 J 207 ARG 1 J 204 GLU 1 J 234 GLU 1 K 5 THR 1 K 6 ARG 1 K 39 CYS	1	J	7	TYR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	J	32	SER
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	J	35	ARG
1 J 42 ASP 1 J 47 ARG 1 J 107 PHE 1 J 191 LEU 1 J 192 TRP 1 J 192 TRP 1 J 205 SER 1 J 207 ARG 1 J 234 GLU 1 K 5 THR 1 K 6 ARG 1 K 39 CYS	1	J	39	CYS
1 J 47 ARG 1 J 107 PHE 1 J 191 LEU 1 J 192 TRP 1 J 192 TRP 1 J 192 SER 1 J 205 SER 1 J 207 ARG 1 J 234 GLU 1 K 5 THR 1 K 6 ARG 1 K 39 CYS	1	J	42	ASP
1 J 107 PHE 1 J 191 LEU 1 J 192 TRP 1 J 192 TRP 1 J 198 LEU 1 J 205 SER 1 J 207 ARG 1 J 234 GLU 1 K 5 THR 1 K 6 ARG 1 K 39 CYS	1	J	47	ARG
1 J 191 LEU 1 J 192 TRP 1 J 192 TRP 1 J 198 LEU 1 J 205 SER 1 J 207 ARG 1 J 234 GLU 1 K 5 THR 1 K 6 ARG 1 K 39 CYS	1	J	107	PHE
1 J 192 TRP 1 J 198 LEU 1 J 205 SER 1 J 207 ARG 1 J 234 GLU 1 K 5 THR 1 K 6 ARG 1 K 39 CYS	1	J	191	LEU
1 J 198 LEU 1 J 205 SER 1 J 207 ARG 1 J 234 GLU 1 K 5 THR 1 K 6 ARG 1 K 39 CYS	1	J	192	TRP
1 J 205 SER 1 J 207 ARG 1 J 234 GLU 1 K 5 THR 1 K 6 ARG 1 K 39 CYS	1	J	198	LEU
1 J 207 ARG 1 J 234 GLU 1 K 5 THR 1 K 6 ARG 1 K 39 CYS	1	J	205	SER
1 J 234 GLU 1 K 5 THR 1 K 6 ARG 1 K 39 CYS	1	J	207	ARG
1 K 5 THR 1 K 6 ARG 1 K 39 CYS	1	J	234	GLU
1 K 6 ARG 1 K 39 CYS	1	K	5	THR
1 K 39 CYS	1	K	6	ARG
	1	К	39	CYS

Mol	Chain	Res	Type
1	K	51	GLN
1	K	105	GLN
1	K	107	PHE
1	K	113	LEU
1	К	194	GLU
1	K	207	ARG
1	L	35	ARG
1	L	42	ASP
1	L	47	ARG
1	L	50	GLU
1	L	74	SER
1	L	78	ARG
1	L	105	GLN
1	L	107	PHE
1	L	152	VAL
1	L	192	TRP
1	L	203	ARG
1	L	207	ARG
1	М	66	GLU
1	М	107	PHE
1	М	148	GLN
1	М	152	VAL
1	Ν	35	ARG
1	N	44	SER
1	N	100	GLU
1	Ν	107	PHE
1	N	133	GLN
1	N	183	SER
1	N	192	TRP
1	N	203	ARG
1	N	207	ARG
1	0	39	CYS
1	0	51	GLN
1	O	52	GLU
1	0	65	GLN
1	0	66	GLU
1	0	107	PHE
1	0	113	LEU
1	0	135	ASN
1	0	194	GLU
1	0	207	ARG
1	0	210	MET

Mol	Chain	\mathbf{Res}	Type
1	0	239	THR
1	0	253	TYR
1	Р	10	LYS
1	Р	98	ARG
1	Р	101	GLU
1	Р	107	PHE
1	Р	123	LYS
1	Р	133	GLN
1	Р	183	SER
1	Р	193	GLU
1	Р	198	LEU
1	Р	203	ARG

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (28) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	150	GLN
1	С	97	GLN
1	С	133	GLN
1	С	148	GLN
1	С	150	GLN
1	D	65	GLN
1	D	97	GLN
1	D	133	GLN
1	D	150	GLN
1	Е	97	GLN
1	G	31	ASN
1	G	133	GLN
1	G	148	GLN
1	Н	150	GLN
1	J	109	GLN
1	Κ	150	GLN
1	М	97	GLN
1	М	213	GLN
1	М	220	GLN
1	Ν	97	GLN
1	Ν	133	GLN
1	N	150	GLN
1	0	51	GLN
1	0	65	GLN
1	0	89	ASN
1	Р	133	GLN

Continued from previous page...

Mol	Chain	Res	Type
1	Р	150	GLN
1	Р	236	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no carbohydrates in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.3 Carbohydrates (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.4 Ligands (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.5 Other polymers (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

