

# Full wwPDB X-ray Structure Validation Report (i)

#### May 22, 2020 – 11:26 pm BST

| : | 1XL7                                                     |
|---|----------------------------------------------------------|
| : | Crystal Structure of Mouse Carnitine Octanoyltransferase |
| : | Jogl, G.; Hsiao, Y.S.; Tong, L.                          |
| : | 2004-09-30                                               |
| : | 2.00  Å(reported)                                        |
|   | :<br>:<br>:                                              |

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as 541 be (2020)                               |
| Xtriage (Phenix)               | : | 1.13                                                               |
| $\mathrm{EDS}$                 | : | 2.11                                                               |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| $\operatorname{Refmac}$        | : | 5.8.0158                                                           |
| $\operatorname{CCP4}$          | : | 7.0.044  (Gargrove)                                                |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.11                                                               |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | $egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$ | ${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$ |
|-----------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| $R_{free}$            | 130704                                                               | 8085~(2.00-2.00)                                                          |
| Clashscore            | 141614                                                               | 9178 (2.00-2.00)                                                          |
| Ramachandran outliers | 138981                                                               | $9054 \ (2.00-2.00)$                                                      |
| Sidechain outliers    | 138945                                                               | 9053 (2.00-2.00)                                                          |
| RSRZ outliers         | 127900                                                               | $7900 \ (2.00-2.00)$                                                      |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain |     |     |
|-----|-------|--------|------------------|-----|-----|
| 1   | А     | 612    | 77%              | 19% | •   |
| 1   | В     | 612    | 3%<br>82%        | 15% | ••• |



# 2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 10260 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues | Atoms |      |     |     |              | ZeroOcc       | AltConf | Trace |   |
|-----|-------|----------|-------|------|-----|-----|--------------|---------------|---------|-------|---|
| 1   | Δ     | 591      | Total | С    | Ν   | Ο   | $\mathbf{S}$ | Se            | Ο       | 0     | 0 |
| L   |       |          | 4776  | 3042 | 829 | 872 | 16           | 17            | 0       |       |   |
| 1   | D     | B 600    | Total | С    | Ν   | Ο   | $\mathbf{S}$ | $\mathbf{Se}$ | 0       | 0     | 0 |
|     | 000   | 4843     | 3085  | 839  | 886 | 16  | 17           | 0             | 0       | 0     |   |

• Molecule 1 is a protein called Peroxisomal carnitine O-octanoyltransferase.

| Chain | Residue | Modelled | Actual | Comment          | Reference  |
|-------|---------|----------|--------|------------------|------------|
| A     | 127     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |
| A     | 128     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |
| A     | 156     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |
| A     | 161     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |
| A     | 177     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |
| A     | 296     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |
| A     | 333     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |
| A     | 335     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |
| A     | 443     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |
| А     | 469     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |
| A     | 483     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |
| A     | 493     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |
| А     | 494     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |
| A     | 558     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |
| A     | 595     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |
| A     | 603     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |
| A     | 607     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |
| В     | 127     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |
| В     | 128     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |
| В     | 156     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |
| В     | 161     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |
| В     | 177     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |
| В     | 296     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |
| В     | 333     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |
| В     | 335     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |

There are 34 discrepancies between the modelled and reference sequences:



| continuous jionte process as pagoni |         |          |        |                  |            |  |  |  |
|-------------------------------------|---------|----------|--------|------------------|------------|--|--|--|
| Chain                               | Residue | Modelled | Actual | Comment          | Reference  |  |  |  |
| В                                   | 443     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |  |  |  |
| В                                   | 469     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |  |  |  |
| В                                   | 483     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |  |  |  |
| В                                   | 493     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |  |  |  |
| В                                   | 494     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |  |  |  |
| В                                   | 558     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |  |  |  |
| В                                   | 595     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |  |  |  |
| В                                   | 603     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |  |  |  |
| В                                   | 607     | MSE      | MET    | MODIFIED RESIDUE | UNP Q9DC50 |  |  |  |

• Molecule 2 is 4-(2-HYDROXYETHYL)-1-PIPERAZINE ETHANESULFONIC ACID (three-letter code: EPE) (formula: C<sub>8</sub>H<sub>18</sub>N<sub>2</sub>O<sub>4</sub>S).



| Mol | Chain | Residues | Atoms |   |   |   | ZeroOcc | AltConf |   |
|-----|-------|----------|-------|---|---|---|---------|---------|---|
| 9   | Λ     | 1        | Total | С | Ν | Ο | S       | 0       | 0 |
|     |       | 1        | 15    | 8 | 2 | 4 | 1       | 0       | 0 |
| 0   | В     | 1        | Total | С | Ν | Ο | S       | 0       | 0 |
|     | L     | 15       | 8     | 2 | 4 | 1 | 0       | 0       |   |

• Molecule 3 is (4S)-2-METHYL-2,4-PENTANEDIOL (three-letter code: MPD) (formula:  $C_6H_{14}O_2$ ).





| Mol | Chain | Residues | Atoms                                                                         | ZeroOcc | AltConf |
|-----|-------|----------|-------------------------------------------------------------------------------|---------|---------|
| 3   | А     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 8  6  2 \end{array}$  | 0       | 0       |
| 3   | А     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 8  6  2 \end{array}$  | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 8  6  2 \end{array}$  | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 8  6  2 \end{array}$  | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 8  6  2 \end{array}$  | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccc} {\rm Total} & {\rm C} & {\rm O} \\ 8 & 6 & 2 \end{array}$ | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccc} {\rm Total} & {\rm C} & {\rm O} \\ 8 & 6 & 2 \end{array}$ | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 8  6  2 \end{array}$  | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 8  6  2 \end{array}$  | 0       | 0       |

• Molecule 4 is water.

| Mol | Chain | Residues | Atoms              | ZeroOcc | AltConf |
|-----|-------|----------|--------------------|---------|---------|
| 4   | А     | 229      | Total O<br>229 229 | 0       | 0       |
| 4   | В     | 310      | Total O<br>310 310 | 0       | 0       |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.



• Molecule 1: Peroxisomal carnitine O-octanoyltransferase



## 4 Data and refinement statistics (i)

| Property                                                  | Value                                            | Source         |
|-----------------------------------------------------------|--------------------------------------------------|----------------|
| Space group                                               | Н 3                                              | Depositor      |
| Cell constants                                            | 162.63Å $162.63$ Å $158.58$ Å                    | Deperitor      |
| $\mathrm{a,b,c,\alpha,\beta,\gamma}$                      | $90.00^{\circ}$ $90.00^{\circ}$ $120.00^{\circ}$ | Depositor      |
| $\mathbf{P}_{\text{assolution}}\left(\mathring{A}\right)$ | 29.92 - 2.00                                     | Depositor      |
| Resolution (A)                                            | 29.92 - 2.00                                     | $\mathrm{EDS}$ |
| % Data completeness                                       | $94.6\ (29.92-2.00)$                             | Depositor      |
| (in resolution range $)$                                  | $98.3\ (29.92-2.00)$                             | EDS            |
| R <sub>merge</sub>                                        | (Not available)                                  | Depositor      |
| $R_{sym}$                                                 | 0.10                                             | Depositor      |
| $< I/\sigma(I) > 1$                                       | $2.38 (at 2.00 \text{\AA})$                      | Xtriage        |
| Refinement program                                        | CNS 1.1                                          | Depositor      |
| B B.                                                      | 0.190 , $0.217$                                  | Depositor      |
| II, II, <i>free</i>                                       | 0.194 , $0.219$                                  | DCC            |
| $R_{free}$ test set                                       | 14604 reflections $(6.93\%)$                     | wwPDB-VP       |
| Wilson B-factor $(Å^2)$                                   | 20.9                                             | Xtriage        |
| Anisotropy                                                | 0.065                                            | Xtriage        |
| Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$               | 0.35 , 56.3                                      | EDS            |
| L-test for twinning <sup>2</sup>                          | $< L >=0.49, < L^2>=0.32$                        | Xtriage        |
| Estimated twinning fraction                               | 0.016 for h,-h-k,-l                              | Xtriage        |
| $F_o, F_c$ correlation                                    | 0.94                                             | EDS            |
| Total number of atoms                                     | 10260                                            | wwPDB-VP       |
| Average B, all atoms $(Å^2)$                              | 26.0                                             | wwPDB-VP       |

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.96% of the height of the origin peak. No significant pseudotranslation is detected.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

# 5 Model quality (i)

## 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MPD, EPE

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol | Chain | Bond lengths |          | Bond angles |                |  |
|-----|-------|--------------|----------|-------------|----------------|--|
|     |       | RMSZ         | # Z  > 5 | RMSZ        | # Z  > 5       |  |
| 1   | А     | 0.32         | 0/4884   | 0.57        | 1/6585~(0.0%)  |  |
| 1   | В     | 0.35         | 0/4952   | 0.59        | 2/6676~(0.0%)  |  |
| All | All   | 0.33         | 0/9836   | 0.58        | 3/13261~(0.0%) |  |

There are no bond length outliers.

All (3) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms  | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|--------|-------|------------------|---------------|
| 1   | В     | 564 | GLY  | N-CA-C | -6.04 | 98.00            | 113.10        |
| 1   | А     | 564 | GLY  | N-CA-C | -5.76 | 98.71            | 113.10        |
| 1   | В     | 150 | GLY  | N-CA-C | -5.63 | 99.04            | 113.10        |

There are no chirality outliers.

There are no planarity outliers.

### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 4776  | 0        | 4676     | 85      | 0            |
| 1   | В     | 4843  | 0        | 4750     | 84      | 0            |
| 2   | А     | 15    | 0        | 18       | 0       | 0            |
| 2   | В     | 15    | 0        | 18       | 1       | 0            |
| 3   | А     | 16    | 0        | 28       | 0       | 0            |
| 3   | В     | 56    | 0        | 98       | 8       | 0            |



The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 9.

All (171) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom 1           | Atom 2           | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:A:283:PRO:HA   | 1:A:292:GLN:HE21 | 1.28         | 0.93        |
| 2:B:701:EPE:H101 | 3:B:702:MPD:H51  | 1.49         | 0.93        |
| 1:B:604:ILE:HA   | 1:B:607:MSE:HE3  | 1.54         | 0.89        |
| 1:A:252:ARG:HH21 | 1:A:270:GLN:HE22 | 1.21         | 0.86        |
| 1:A:604:ILE:HA   | 1:A:607:MSE:HE3  | 1.58         | 0.85        |
| 1:B:252:ARG:HH21 | 1:B:270:GLN:HE22 | 1.24         | 0.85        |
| 1:A:416:PRO:HB2  | 1:A:569:ILE:HD13 | 1.64         | 0.78        |
| 1:B:406:LYS:HB3  | 1:B:569:ILE:HG21 | 1.67         | 0.77        |
| 1:A:568:HIS:HE1  | 1:A:570:ARG:HE   | 1.32         | 0.77        |
| 1:B:219:ARG:HH21 | 1:B:220:GLN:HE22 | 1.31         | 0.75        |
| 1:A:134:ASN:O    | 1:A:138:LEU:HD13 | 1.86         | 0.74        |
| 1:B:430:ARG:HE   | 1:B:470:GLN:HE22 | 1.36         | 0.74        |
| 1:A:52:GLU:O     | 1:A:56:GLN:HG3   | 1.89         | 0.73        |
| 1:B:112:HIS:CD2  | 1:B:113:TYR:H    | 2.07         | 0.73        |
| 1:B:404:PHE:CE2  | 1:B:604:ILE:HG13 | 2.25         | 0.72        |
| 1:A:465:TRP:CZ2  | 1:A:483:MSE:HE2  | 2.26         | 0.71        |
| 1:B:283:PRO:HA   | 1:B:292:GLN:HE21 | 1.56         | 0.71        |
| 1:A:430:ARG:HE   | 1:A:470:GLN:NE2  | 1.90         | 0.70        |
| 1:B:415:HIS:HD2  | 1:B:417:ASP:H    | 1.40         | 0.70        |
| 1:B:430:ARG:HE   | 1:B:470:GLN:NE2  | 1.89         | 0.69        |
| 1:B:568:HIS:HE1  | 1:B:570:ARG:HE   | 1.39         | 0.69        |
| 1:A:570:ARG:HD2  | 1:A:573:ARG:HH11 | 1.58         | 0.69        |
| 1:B:284:HIS:H    | 1:B:292:GLN:NE2  | 1.92         | 0.67        |
| 1:A:123:GLU:H    | 1:A:123:GLU:CD   | 1.97         | 0.66        |
| 1:A:430:ARG:HE   | 1:A:470:GLN:HE22 | 1.42         | 0.65        |
| 1:A:609:THR:O    | 1:A:612:LEU:HD13 | 1.97         | 0.65        |
| 1:A:465:TRP:HZ2  | 1:A:483:MSE:HE2  | 1.62         | 0.65        |
| 1:A:546:VAL:HG23 | 1:A:568:HIS:HB3  | 1.76         | 0.65        |
| 1:A:283:PRO:HA   | 1:A:292:GLN:NE2  | 2.06         | 0.63        |
| 1:A:252:ARG:NH2  | 1:A:270:GLN:HE22 | 1.95         | 0.62        |
| 1:A:463:VAL:O    | 1:A:467:GLN:HG3  | 2.01         | 0.61        |



Chain Non-H H(added) Clashes Symm-Clashes Mol H(model) 229 4 А 6 0 0 0 4 В 310 0 0 50 All All 102600 09588171

Continued from previous page...

|                  |                  | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:B:406:LYS:HB3  | 1:B:569:ILE:CG2  | 2.30         | 0.61        |
| 1:A:252:ARG:HH21 | 1:A:270:GLN:NE2  | 1.94         | 0.61        |
| 1:B:604:ILE:HD13 | 1:B:607:MSE:CE   | 2.31         | 0.60        |
| 1:A:604:ILE:HD13 | 1:A:607:MSE:CE   | 2.31         | 0.60        |
| 1:A:117:ARG:HE   | 1:A:120:THR:HG21 | 1.67         | 0.59        |
| 1:A:284:HIS:H    | 1:A:292:GLN:NE2  | 1.99         | 0.59        |
| 1:B:302:PRO:HG2  | 1:B:384:LYS:HG3  | 1.84         | 0.59        |
| 1:A:219:ARG:HH21 | 1:A:220:GLN:HE22 | 1.51         | 0.58        |
| 1:A:483:MSE:HE3  | 1:A:606:LEU:HD23 | 1.84         | 0.58        |
| 1:B:604:ILE:HD13 | 1:B:607:MSE:HE3  | 1.85         | 0.58        |
| 1:A:219:ARG:HH21 | 1:A:220:GLN:NE2  | 2.01         | 0.58        |
| 1:B:401:PHE:CE2  | 1:B:403:SER:HB2  | 2.39         | 0.57        |
| 1:A:545:LEU:HG   | 1:A:547:GLY:H    | 1.70         | 0.57        |
| 1:A:546:VAL:CG2  | 1:A:568:HIS:HB3  | 2.35         | 0.57        |
| 1:B:222:THR:O    | 1:B:226:LYS:HG2  | 2.04         | 0.57        |
| 1:A:600:PHE:O    | 1:A:604:ILE:HG12 | 2.05         | 0.57        |
| 1:A:112:HIS:CD2  | 1:A:113:TYR:H    | 2.22         | 0.57        |
| 1:A:604:ILE:HA   | 1:A:607:MSE:CE   | 2.32         | 0.56        |
| 1:A:604:ILE:HD13 | 1:A:607:MSE:HE1  | 1.88         | 0.56        |
| 1:B:33:LYS:HE2   | 3:B:705:MPD:H31  | 1.87         | 0.56        |
| 1:B:219:ARG:HH21 | 1:B:220:GLN:NE2  | 2.02         | 0.56        |
| 1:B:332:ALA:HB2  | 3:B:702:MPD:H13  | 1.87         | 0.56        |
| 1:B:154:LEU:HD13 | 1:B:443:MSE:HE1  | 1.86         | 0.56        |
| 1:B:59:GLN:NE2   | 3:B:705:MPD:H51  | 2.21         | 0.55        |
| 1:B:192:ILE:HD11 | 1:B:203:PHE:CZ   | 2.41         | 0.55        |
| 1:B:415:HIS:CD2  | 1:B:417:ASP:H    | 2.21         | 0.55        |
| 1:A:249:ALA:O    | 1:A:253:GLU:HG3  | 2.06         | 0.55        |
| 1:B:406:LYS:HG3  | 1:B:407:LYS:N    | 2.22         | 0.55        |
| 1:A:192:ILE:HD11 | 1:A:203:PHE:CZ   | 2.41         | 0.55        |
| 1:B:147:HIS:CD2  | 1:B:445:ARG:HH22 | 2.25         | 0.55        |
| 1:B:400:THR:CG2  | 1:B:573:ARG:HD3  | 2.37         | 0.54        |
| 1:A:443:MSE:HE2  | 1:A:445:ARG:HD3  | 1.89         | 0.54        |
| 1:B:524:LEU:HD23 | 1:B:524:LEU:C    | 2.28         | 0.54        |
| 1:B:404:PHE:CZ   | 1:B:604:ILE:HG13 | 2.42         | 0.54        |
| 1:A:167:LYS:HE3  | 1:A:326:ASP:OD2  | 2.08         | 0.54        |
| 1:B:546:VAL:HG12 | 1:B:546:VAL:O    | 2.06         | 0.54        |
| 1:B:112:HIS:HD2  | 1:B:113:TYR:H    | 1.56         | 0.53        |
| 1:B:254:TYR:CZ   | 1:B:375:LYS:HD3  | 2.44         | 0.53        |
| 1:B:265:LEU:HG   | 1:B:368:LEU:HB3  | 1.91         | 0.52        |
| 1:B:513:ILE:O    | 1:B:517:GLU:HG2  | 2.10         | 0.52        |
| 1:B:416:PRO:HB2  | 1:B:569:ILE:HD13 | 1.92         | 0.52        |



|                  |                  | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:A:263:LEU:O    | 1:A:267:GLU:HG3  | 2.09         | 0.52        |
| 1:B:358:LYS:HB3  | 1:B:358:LYS:NZ   | 2.25         | 0.52        |
| 1:A:345:ARG:HH21 | 1:A:348:GLU:CD   | 2.13         | 0.51        |
| 1:B:404:PHE:HB2  | 1:B:408:LEU:HD22 | 1.92         | 0.51        |
| 1:A:546:VAL:HG22 | 1:A:567:TYR:O    | 2.11         | 0.51        |
| 1:B:252:ARG:HH21 | 1:B:270:GLN:NE2  | 2.02         | 0.51        |
| 1:A:214:PRO:HB2  | 1:A:215:PRO:HD3  | 1.92         | 0.51        |
| 1:B:414:LEU:HD12 | 1:B:607:MSE:SE   | 2.60         | 0.51        |
| 1:A:483:MSE:CE   | 1:A:606:LEU:HD23 | 2.39         | 0.51        |
| 1:A:213:THR:OG1  | 1:A:215:PRO:HD2  | 2.11         | 0.50        |
| 1:B:517:GLU:HB2  | 1:B:519:LEU:HG   | 1.93         | 0.50        |
| 1:B:36:LEU:CD2   | 1:B:55:VAL:HG11  | 2.40         | 0.50        |
| 1:A:442:ALA:HB2  | 1:A:455:VAL:HG23 | 1.94         | 0.50        |
| 1:B:404:PHE:CB   | 1:B:408:LEU:HD22 | 2.42         | 0.50        |
| 1:B:463:VAL:O    | 1:B:467:GLN:HG3  | 2.11         | 0.50        |
| 1:B:117:ARG:HE   | 1:B:120:THR:HG21 | 1.77         | 0.49        |
| 1:B:419:PHE:HE1  | 1:B:607:MSE:HE1  | 1.77         | 0.49        |
| 1:B:263:LEU:O    | 1:B:267:GLU:HG3  | 2.13         | 0.49        |
| 1:B:401:PHE:CZ   | 1:B:403:SER:HB2  | 2.47         | 0.49        |
| 1:B:442:ALA:HB2  | 1:B:455:VAL:HG23 | 1.95         | 0.49        |
| 1:B:75:ARG:HA    | 3:B:706:MPD:HM1  | 1.94         | 0.49        |
| 1:A:121:GLN:NE2  | 1:A:317:ALA:HA   | 2.27         | 0.49        |
| 1:A:560:HIS:HE1  | 1:A:583:SER:OG   | 1.95         | 0.49        |
| 1:B:29:GLU:O     | 1:B:33:LYS:HG2   | 2.13         | 0.49        |
| 1:B:252:ARG:NH2  | 1:B:270:GLN:HE22 | 2.04         | 0.48        |
| 1:B:201:PHE:CE2  | 1:B:367:GLU:HB2  | 2.48         | 0.48        |
| 1:B:75:ARG:HG2   | 3:B:706:MPD:HM1  | 1.94         | 0.48        |
| 1:A:400:THR:CG2  | 1:A:573:ARG:HD3  | 2.42         | 0.48        |
| 1:A:517:GLU:HG3  | 4:A:825:HOH:O    | 2.13         | 0.48        |
| 1:A:254:TYR:CE2  | 1:A:375:LYS:HD3  | 2.49         | 0.47        |
| 1:B:214:PRO:HB2  | 1:B:215:PRO:HD3  | 1.95         | 0.47        |
| 1:A:402:THR:HG22 | 1:A:573:ARG:HB3  | 1.95         | 0.47        |
| 1:A:109:HIS:HD2  | 1:A:343:ASP:OD1  | 1.96         | 0.47        |
| 1:B:36:LEU:HD22  | 1:B:55:VAL:HG11  | 1.97         | 0.47        |
| 1:B:49:LYS:HE2   | 4:B:933:HOH:O    | 2.15         | 0.47        |
| 1:A:555:VAL:HG22 | 1:A:566:PHE:CZ   | 2.50         | 0.47        |
| 1:B:401:PHE:HE2  | 1:B:404:PHE:CZ   | 2.33         | 0.47        |
| 1:A:590:GLU:O    | 1:A:594:GLN:HG3  | 2.15         | 0.46        |
| 1:A:133:LEU:HD13 | 1:A:211:LEU:HD11 | 1.97         | 0.46        |
| 1:A:344:GLU:O    | 1:A:348:GLU:HG3  | 2.16         | 0.46        |
| 1:B:140:ARG:O    | 1:B:183:GLU:HG3  | 2.15         | 0.46        |



|                  | 1 - <u>1</u> - <u>7</u> | Interatomic  | Clash       |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|
| Atom-1           | Atom-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | distance (Å) | overlap (Å) |
| 1:B:406:LYS:C    | 1:B:408:LEU:H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.19         | 0.46        |
| 1:A:481:GLN:O    | 1:A:485:GLU:HG3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.15         | 0.46        |
| 1:B:64:LYS:O     | 1:B:68:GLN:HG3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.15         | 0.46        |
| 1:B:400:THR:HG21 | 1:B:573:ARG:HD3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.97         | 0.46        |
| 1:A:416:PRO:CB   | 1:A:569:ILE:HD13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.42         | 0.46        |
| 1:B:36:LEU:O     | 1:B:39:VAL:HG22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.16         | 0.46        |
| 1:A:302:PRO:HG3  | 1:A:387:HIS:ND1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.31         | 0.45        |
| 1:A:443:MSE:CE   | 1:A:445:ARG:HB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.46         | 0.45        |
| 1:A:182:THR:OG1  | 1:A:185:GLU:HG3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.17         | 0.45        |
| 1:A:51:THR:OG1   | 1:A:529:LEU:HD12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.17         | 0.45        |
| 1:A:45:GLU:O     | 1:A:49:LYS:HG2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.16         | 0.45        |
| 1:B:247:ARG:NH2  | 1:B:382:GLN:NE2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.65         | 0.45        |
| 3:B:702:MPD:H53  | 4:B:1018:HOH:O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.17         | 0.45        |
| 1:A:154:LEU:HD13 | 1:A:443:MSE:HE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.99         | 0.44        |
| 1:B:568:HIS:CE1  | 1:B:570:ARG:HE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.28         | 0.44        |
| 1:A:476:LEU:HD21 | 1:A:609:THR:HG22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.00         | 0.44        |
| 1:B:524:LEU:O    | 1:B:524:LEU:HD23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.16         | 0.44        |
| 1:A:131:HIS:HD2  | 4:A:770:HOH:O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.01         | 0.44        |
| 1:A:554:VAL:HG23 | 1:A:566:PHE:HD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.83         | 0.44        |
| 1:A:470:GLN:O    | 1:A:472:PRO:HD3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.17         | 0.44        |
| 1:B:12:ARG:NH2   | 1:B:142:GLU:OE2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.51         | 0.44        |
| 1:A:593:VAL:O    | 1:A:596:ILE:HG22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.18         | 0.43        |
| 1:B:439:TYR:HB2  | 1:B:539:PHE:CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.53         | 0.43        |
| 1:A:366:GLU:HG3  | 4:A:738:HOH:O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.17         | 0.43        |
| 1:B:415:HIS:HD2  | 1:B:417:ASP:N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.09         | 0.43        |
| 1:B:109:HIS:HD2  | 1:B:343:ASP:OD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.01         | 0.43        |
| 1:A:611:HIS:O    | 1:A:612:LEU:OXT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.36         | 0.43        |
| 1:A:309:LYS:HE3  | 4:A:622:HOH:O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.19         | 0.43        |
| 1:A:144:LEU:HD12 | 1:A:145:PRO:HD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.01         | 0.43        |
| 1:A:387:HIS:HD2  | 4:A:659:HOH:O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.02         | 0.43        |
| 1:B:604:ILE:HD13 | 1:B:607:MSE:HE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.00         | 0.43        |
| 1:A:36:LEU:O     | 1:A:39:VAL:HG22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.19         | 0.42        |
| 1:B:439:TYR:C    | 1:B:439:TYR:CD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.93         | 0.42        |
| 1:B:51:THR:OG1   | 1:B:529:LEU:HD12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.19         | 0.42        |
| 1:A:561:ASN:HA   | 1:A:584:CYS:SG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.59         | 0.42        |
| 1:A:439:TYR:C    | 1:A:439:TYR:CD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.93         | 0.42        |
| 1:A:254:TYR:CZ   | 1:A:375:LYS:HD3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.55         | 0.42        |
| 1:B:406:LYS:HB2  | 1:B:416:PRO:HG3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.02         | 0.42        |
| 1:A:423:ALA:HB2  | 1:A:603:MSE:SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.69         | 0.42        |
| 1:A:220:GLN:NE2  | 1:A:220:GLN:HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.34         | 0.42        |
| 1:A:439:TYR:HB2  | 1:A:539:PHE:CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.54         | 0.42        |



| Atom 1           | Atom D           | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:B:430:ARG:NE   | 1:B:470:GLN:HE22 | 2.11         | 0.42        |
| 1:B:552:GLN:OE1  | 1:B:568:HIS:HD2  | 2.03         | 0.42        |
| 1:A:603:MSE:O    | 1:A:607:MSE:HG3  | 2.19         | 0.41        |
| 1:B:419:PHE:CE1  | 1:B:607:MSE:HE1  | 2.54         | 0.41        |
| 1:B:555:VAL:HG22 | 1:B:566:PHE:CZ   | 2.55         | 0.41        |
| 1:B:414:LEU:CD1  | 1:B:607:MSE:SE   | 3.18         | 0.41        |
| 1:B:117:ARG:NH2  | 4:B:917:HOH:O    | 2.53         | 0.41        |
| 1:A:508:LEU:O    | 1:A:512:LEU:HG   | 2.20         | 0.41        |
| 1:B:327:HIS:NE2  | 3:B:702:MPD:H52  | 2.36         | 0.41        |
| 1:B:147:HIS:HE1  | 4:B:869:HOH:O    | 2.02         | 0.41        |
| 1:A:568:HIS:CE1  | 1:A:570:ARG:HE   | 2.24         | 0.41        |
| 1:B:604:ILE:HG22 | 1:B:608:ASN:ND2  | 2.36         | 0.41        |
| 1:A:131:HIS:HE1  | 4:A:732:HOH:O    | 2.04         | 0.41        |
| 1:A:297:LEU:HA   | 1:A:297:LEU:HD12 | 1.90         | 0.41        |
| 1:A:415:HIS:CD2  | 1:A:417:ASP:H    | 2.40         | 0.40        |
| 1:B:247:ARG:NH2  | 4:B:1013:HOH:O   | 2.55         | 0.40        |
| 1:A:610:ALA:O    | 1:A:611:HIS:C    | 2.60         | 0.40        |

There are no symmetry-related clashes.

#### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Favoured   | Allowed | Outliers | Percer | ntiles |
|-----|-------|-----------------|------------|---------|----------|--------|--------|
| 1   | А     | 587/612~(96%)   | 569~(97%)  | 17 (3%) | 1 (0%)   | 47     | 44     |
| 1   | В     | 598/612~(98%)   | 583~(98%)  | 14 (2%) | 1 (0%)   | 47     | 44     |
| All | All   | 1185/1224~(97%) | 1152 (97%) | 31 (3%) | 2(0%)    | 47     | 44     |

All (2) Ramachandran outliers are listed below:

| Mol                   | Chain | $\mathbf{Res}$ | Type |  |  |
|-----------------------|-------|----------------|------|--|--|
| 1                     | В     | 407            | LYS  |  |  |
| Quiting 1 and and and |       |                |      |  |  |



Continued from previous page...

| Mol | Chain | $\mathbf{Res}$ | Type |
|-----|-------|----------------|------|
| 1   | А     | 611            | HIS  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed         | Rotameric  | Outliers | Percentil | $\mathbf{es}$ |
|-----|-------|------------------|------------|----------|-----------|---------------|
| 1   | А     | 522/524~(100%)   | 511 (98%)  | 11 (2%)  | 53 57     |               |
| 1   | В     | 529/524~(101%)   | 519~(98%)  | 10~(2%)  | 57 61     |               |
| All | All   | 1051/1048~(100%) | 1030~(98%) | 21 (2%)  | 55 58     |               |

All (21) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 28  | LEU  |
| 1   | А     | 69  | LYS  |
| 1   | А     | 70  | LEU  |
| 1   | А     | 102 | ASN  |
| 1   | А     | 139 | LEU  |
| 1   | А     | 248 | TRP  |
| 1   | А     | 297 | LEU  |
| 1   | А     | 312 | ASN  |
| 1   | А     | 313 | LEU  |
| 1   | А     | 330 | TYR  |
| 1   | А     | 612 | LEU  |
| 1   | В     | 36  | LEU  |
| 1   | В     | 139 | LEU  |
| 1   | В     | 140 | ARG  |
| 1   | В     | 147 | HIS  |
| 1   | В     | 248 | TRP  |
| 1   | В     | 265 | LEU  |
| 1   | В     | 297 | LEU  |
| 1   | В     | 312 | ASN  |
| 1   | В     | 313 | LEU  |
| 1   | В     | 330 | TYR  |



Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (44) such sidechains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 59  | GLN  |
| 1   | А     | 87  | ASN  |
| 1   | А     | 102 | ASN  |
| 1   | А     | 109 | HIS  |
| 1   | А     | 112 | HIS  |
| 1   | А     | 121 | GLN  |
| 1   | А     | 131 | HIS  |
| 1   | А     | 157 | ASN  |
| 1   | А     | 178 | ASN  |
| 1   | А     | 220 | GLN  |
| 1   | А     | 225 | HIS  |
| 1   | А     | 270 | GLN  |
| 1   | А     | 292 | GLN  |
| 1   | А     | 378 | ASN  |
| 1   | А     | 382 | GLN  |
| 1   | А     | 387 | HIS  |
| 1   | А     | 415 | HIS  |
| 1   | А     | 470 | GLN  |
| 1   | А     | 480 | GLN  |
| 1   | А     | 490 | HIS  |
| 1   | А     | 560 | HIS  |
| 1   | А     | 568 | HIS  |
| 1   | А     | 594 | GLN  |
| 1   | В     | 56  | GLN  |
| 1   | В     | 87  | ASN  |
| 1   | В     | 102 | ASN  |
| 1   | В     | 109 | HIS  |
| 1   | В     | 112 | HIS  |
| 1   | В     | 121 | GLN  |
| 1   | В     | 131 | HIS  |
| 1   | В     | 147 | HIS  |
| 1   | В     | 151 | ASN  |
| 1   | В     | 178 | ASN  |
| 1   | В     | 220 | GLN  |
| 1   | В     | 270 | GLN  |
| 1   | В     | 292 | GLN  |
| 1   | В     | 382 | GLN  |
| 1   | В     | 395 | GLN  |
| 1   | В     | 415 | HIS  |
| 1   | В     | 470 | GLN  |
| 1   | В     | 490 | HIS  |



Continued from previous page...

| Mol | Chain | $\mathbf{Res}$ | Type |
|-----|-------|----------------|------|
| 1   | В     | 568            | HIS  |
| 1   | В     | 594            | GLN  |
| 1   | В     | 608            | ASN  |

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

### 5.5 Carbohydrates (i)

There are no carbohydrates in this entry.

## 5.6 Ligand geometry (i)

#### 11 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | True | Chain | Dec | T:nl. | Bo         | ond leng | $_{\rm sths}$ | B             | ond ang | les      |
|-----|------|-------|-----|-------|------------|----------|---------------|---------------|---------|----------|
|     | туре | Chain | nes |       | Counts     | RMSZ     | # Z  > 2      | Counts        | RMSZ    | # Z  > 2 |
| 3   | MPD  | В     | 705 | -     | 7,7,7      | 0.45     | 0             | $9,\!10,\!10$ | 0.44    | 0        |
| 3   | MPD  | В     | 704 | -     | 7,7,7      | 0.51     | 0             | $9,\!10,\!10$ | 0.43    | 0        |
| 3   | MPD  | В     | 703 | -     | 7,7,7      | 0.47     | 0             | $9,\!10,\!10$ | 0.51    | 0        |
| 3   | MPD  | В     | 707 | -     | 7,7,7      | 0.47     | 0             | $9,\!10,\!10$ | 0.43    | 0        |
| 3   | MPD  | В     | 708 | -     | 7,7,7      | 0.52     | 0             | $9,\!10,\!10$ | 0.44    | 0        |
| 2   | EPE  | В     | 701 | -     | 15, 15, 15 | 1.33     | 1(6%)         | 18,20,20      | 0.76    | 0        |
| 3   | MPD  | В     | 702 | -     | 7,7,7      | 0.47     | 0             | $9,\!10,\!10$ | 0.59    | 0        |
| 3   | MPD  | А     | 614 | -     | 7,7,7      | 0.47     | 0             | $9,\!10,\!10$ | 0.49    | 0        |
| 3   | MPD  | В     | 706 | -     | 7,7,7      | 0.54     | 0             | $9,\!10,\!10$ | 0.51    | 0        |
| 3   | MPD  | A     | 615 | -     | 7,7,7      | 0.49     | 0             | $9,\!10,\!10$ | 0.43    | 0        |
| 2   | EPE  | A     | 613 | -     | 15,15,15   | 1.34     | 1(6%)         | 18,20,20      | 0.66    | 0        |



In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res | Link | Chirals | Torsions                  | Rings   |
|-----|------|-------|-----|------|---------|---------------------------|---------|
| 3   | MPD  | В     | 705 | -    | -       | $\frac{3}{5}/\frac{5}{5}$ | -       |
| 3   | MPD  | В     | 704 | -    | -       | $\frac{3}{5}/\frac{5}{5}$ | -       |
| 3   | MPD  | В     | 703 | -    | -       | 0/5/5/5                   | -       |
| 3   | MPD  | В     | 707 | -    | -       | $\frac{3}{5}/\frac{5}{5}$ | -       |
| 3   | MPD  | В     | 708 | -    | -       | 1/5/5/5                   | -       |
| 2   | EPE  | В     | 701 | -    | -       | 0/9/19/19                 | 0/1/1/1 |
| 3   | MPD  | В     | 702 | -    | -       | 2/5/5/5                   | -       |
| 3   | MPD  | А     | 614 | -    | -       | 0/5/5/5                   | -       |
| 3   | MPD  | В     | 706 | -    | -       | 0/5/5/5                   | -       |
| 3   | MPD  | A     | 615 | -    | -       | 2/5/5/5                   | -       |
| 2   | EPE  | А     | 613 | -    | -       | 0/9/19/19                 | 0/1/1/1 |

All (2) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms | Z    | $\operatorname{Observed}(\operatorname{\AA})$ | $\operatorname{Ideal}(\operatorname{\AA})$ |
|-----|-------|-----|------|-------|------|-----------------------------------------------|--------------------------------------------|
| 2   | А     | 613 | EPE  | C10-S | 4.25 | 1.83                                          | 1.77                                       |
| 2   | В     | 701 | EPE  | C10-S | 4.15 | 1.83                                          | 1.77                                       |

There are no bond angle outliers.

There are no chirality outliers.

All (14) torsion outliers are listed below:

| Mol | Chain | Res | Type | Atoms       |
|-----|-------|-----|------|-------------|
| 3   | В     | 705 | MPD  | C2-C3-C4-O4 |
| 3   | В     | 702 | MPD  | C2-C3-C4-O4 |
| 3   | А     | 615 | MPD  | C2-C3-C4-O4 |
| 3   | В     | 704 | MPD  | O2-C2-C3-C4 |
| 3   | В     | 707 | MPD  | O2-C2-C3-C4 |
| 3   | В     | 705 | MPD  | C1-C2-C3-C4 |
| 3   | В     | 704 | MPD  | C1-C2-C3-C4 |
| 3   | В     | 704 | MPD  | CM-C2-C3-C4 |
| 3   | В     | 707 | MPD  | C1-C2-C3-C4 |
| 3   | В     | 707 | MPD  | CM-C2-C3-C4 |
| 3   | В     | 708 | MPD  | C1-C2-C3-C4 |
| 3   | В     | 705 | MPD  | O2-C2-C3-C4 |
| 3   | В     | 702 | MPD  | C2-C3-C4-C5 |



Continued from previous page...

| Mol | Chain | Res | Type | Atoms       |
|-----|-------|-----|------|-------------|
| 3   | А     | 615 | MPD  | C2-C3-C4-C5 |

There are no ring outliers.

4 monomers are involved in 8 short contacts:

| Mol | Chain | Res | Type | Clashes | Symm-Clashes |
|-----|-------|-----|------|---------|--------------|
| 3   | В     | 705 | MPD  | 2       | 0            |
| 2   | В     | 701 | EPE  | 1       | 0            |
| 3   | В     | 702 | MPD  | 4       | 0            |
| 3   | В     | 706 | MPD  | 2       | 0            |

### 5.7 Other polymers (i)

There are no such residues in this entry.

## 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



## 6 Fit of model and data (i)

### 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed        | <RSRZ $>$ | #RSRZ>2       | $OWAB(Å^2)$    | Q<0.9 |
|-----|-------|-----------------|-----------|---------------|----------------|-------|
| 1   | А     | 574/612~(93%)   | -0.18     | 8 (1%) 75 74  | 15, 28, 45, 70 | 0     |
| 1   | В     | 583/612~(95%)   | -0.36     | 16 (2%) 54 53 | 11, 19, 40, 99 | 0     |
| All | All   | 1157/1224~(94%) | -0.27     | 24 (2%) 63 62 | 11, 24, 43, 99 | 0     |

All (24) RSRZ outliers are listed below:

| Mol | Chain | Res              | Type | RSRZ |
|-----|-------|------------------|------|------|
| 1   | В     | 408              | LEU  | 8.4  |
| 1   | В     | 407              | LYS  | 7.8  |
| 1   | А     | 612              | LEU  | 5.6  |
| 1   | В     | 404              | PHE  | 5.1  |
| 1   | В     | 402              | THR  | 4.8  |
| 1   | В     | 413              | ALA  | 4.7  |
| 1   | А     | 611              | HIS  | 4.5  |
| 1   | В     | 411              | GLU  | 3.0  |
| 1   | В     | 409              | THR  | 3.0  |
| 1   | А     | 151              | ASN  | 2.9  |
| 1   | В     | 412              | GLU  | 2.9  |
| 1   | А     | 610              | ALA  | 2.9  |
| 1   | А     | 476              | LEU  | 2.8  |
| 1   | А     | 209              | GLY  | 2.6  |
| 1   | В     | 230              | ASN  | 2.6  |
| 1   | В     | 410              | LYS  | 2.6  |
| 1   | В     | 610              | ALA  | 2.5  |
| 1   | А     | 53               | GLU  | 2.4  |
| 1   | В     | 476              | LEU  | 2.1  |
| 1   | В     | 604              | ILE  | 2.1  |
| 1   | В     | 608              | ASN  | 2.1  |
| 1   | В     | 352              | ARG  | 2.1  |
| 1   | В     | 571              | ASP  | 2.0  |
| 1   | A     | $\overline{261}$ | GLU  | 2.0  |



### 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 6.3 Carbohydrates (i)

There are no carbohydrates in this entry.

### 6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

| Mol | Type | Chain | Res | Atoms | RSCC | RSR  | ${f B}	ext{-factors}({ m \AA}^2)$ | Q<0.9 |
|-----|------|-------|-----|-------|------|------|-----------------------------------|-------|
| 3   | MPD  | В     | 708 | 8/8   | 0.67 | 0.23 | $64,\!65,\!65,\!66$               | 0     |
| 3   | MPD  | В     | 707 | 8/8   | 0.80 | 0.17 | $49,\!50,\!50,\!51$               | 0     |
| 3   | MPD  | В     | 704 | 8/8   | 0.81 | 0.17 | 61,61,62,63                       | 0     |
| 3   | MPD  | A     | 615 | 8/8   | 0.81 | 0.17 | $28,\!31,\!33,\!35$               | 0     |
| 3   | MPD  | В     | 706 | 8/8   | 0.83 | 0.21 | 52,52,54,54                       | 0     |
| 3   | MPD  | В     | 705 | 8/8   | 0.85 | 0.16 | 40,42,44,45                       | 0     |
| 3   | MPD  | В     | 702 | 8/8   | 0.85 | 0.16 | $18,\!23,\!26,\!30$               | 0     |
| 3   | MPD  | А     | 614 | 8/8   | 0.89 | 0.22 | $34,\!36,\!39,\!40$               | 0     |
| 3   | MPD  | В     | 703 | 8/8   | 0.92 | 0.13 | $38,\!39,\!40,\!41$               | 0     |
| 2   | EPE  | В     | 701 | 15/15 | 0.96 | 0.14 | 17,24,38,42                       | 0     |
| 2   | EPE  | A     | 613 | 15/15 | 0.96 | 0.11 | 23,29,39,42                       | 0     |

#### 6.5 Other polymers (i)

There are no such residues in this entry.

