

# Full wwPDB X-ray Structure Validation Report (i)

#### Nov 13, 2023 – 01:42 PM JST

| PDB ID       | : | 5XB7                                                                     |
|--------------|---|--------------------------------------------------------------------------|
| Title        | : | GH42 alpha-L-arabinopyranosidase from Bifidobacterium animalis subsp.    |
|              |   | lactis Bl-04                                                             |
| Authors      | : | Viborg, A.H.; Katayama, T.; Arakawa, T.; Abou Hachem, M.; Lo Leggio, L.; |
|              |   | Kitaoka, M.; Svensson, B.; Fushinobu, S.                                 |
| Deposited on | : | 2017-03-16                                                               |
| Resolution   | : | 2.00  Å(reported)                                                        |

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| Xtriage (Phenix)               | : | 1.13                                                               |
| EDS                            | : | 2.36                                                               |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| Refmac                         | : | 5.8.0158                                                           |
| CCP4                           | : | 7.0.044 (Gargrove)                                                 |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.36                                                               |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $X\text{-}RAY \, DIFFRACTION$ 

The reported resolution of this entry is 2.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | $egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$ | ${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$ |
|-----------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| $R_{free}$            | 130704                                                               | 8085 (2.00-2.00)                                                          |
| Clashscore            | 141614                                                               | 9178 (2.00-2.00)                                                          |
| Ramachandran outliers | 138981                                                               | 9054 (2.00-2.00)                                                          |
| Sidechain outliers    | 138945                                                               | 9053 (2.00-2.00)                                                          |
| RSRZ outliers         | 127900                                                               | 7900 (2.00-2.00)                                                          |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain  |         |
|-----|-------|--------|-------------------|---------|
| 1   | А     | 712    | 88%               | 8% • •  |
|     |       | 1      |                   | 0,0 1 1 |
| 1   | В     | 712    | 86%               | 9% • •  |
| 1   | С     | 712    | 2%<br><b>8</b> 8% | 7% • •  |
| 1   | D     | 712    | %<br>             | 7% • •  |
| 1   | Е     | 712    | %<br><b>89</b> %  | 7% • •  |
| 1   | F     | 712    | %<br>90%          | 7% ••   |



The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

| Mol | Type | Chain | Res | Chirality | Geometry | Clashes | Electron density |
|-----|------|-------|-----|-----------|----------|---------|------------------|
| 3   | GOL  | С     | 803 | -         | -        | Х       | -                |
| 3   | GOL  | Е     | 803 | -         | Х        | -       | -                |



## 2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 35416 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues |       | A    | toms |      |              | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|------|------|------|--------------|---------|---------|-------|
| 1   | Δ     | 685      | Total | С    | Ν    | Ο    | $\mathbf{S}$ | 0       | 0       | 0     |
| 1   | Л     | 085      | 5404  | 3429 | 933  | 1021 | 21           | 0       | 0       | 0     |
| 1   | В     | 685      | Total | С    | Ν    | Ο    | S            | 0       | 0       | 0     |
| 1   | D     | 085      | 5399  | 3425 | 930  | 1023 | 21           | 0       |         | 0     |
| 1   | С     | 682      | Total | С    | Ν    | Ο    | S            | 0       | 0       | 0     |
| 1   |       | 082      | 5381  | 3415 | 929  | 1016 | 21           |         |         | 0     |
| 1   | а     | 685      | Total | С    | Ν    | Ο    | $\mathbf{S}$ | 0       | 0       | 0     |
| 1   | D     | 000      | 5404  | 3429 | 933  | 1021 | 21           | 0       | 0       | U     |
| 1   | F     | 684      | Total | С    | Ν    | Ο    | $\mathbf{S}$ | 0       | 0       | 0     |
| 1   |       | 004      | 5397  | 3425 | 932  | 1019 | 21           | 0       | 0       | 0     |
| 1   | F     | 608      | Total | С    | Ν    | Ο    | S            | 0       | 0       | 0     |
|     | T,    | 090      | 5493  | 3480 | 948  | 1043 | 22           | 0       |         | 0     |

• Molecule 1 is a protein called Beta-galactosidase.

There are 66 discrepancies between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment        | Reference      |
|-------|---------|----------|--------|----------------|----------------|
| А     | 702     | ALA      | -      | expression tag | UNP A0A1M2TTS0 |
| А     | 703     | ALA      | -      | expression tag | UNP A0A1M2TTS0 |
| А     | 704     | ALA      | -      | expression tag | UNP A0A1M2TTS0 |
| А     | 705     | LEU      | -      | expression tag | UNP A0A1M2TTS0 |
| А     | 706     | GLU      | -      | expression tag | UNP A0A1M2TTS0 |
| А     | 707     | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| А     | 708     | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| А     | 709     | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| А     | 710     | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| А     | 711     | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| А     | 712     | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| В     | 702     | ALA      | -      | expression tag | UNP A0A1M2TTS0 |
| В     | 703     | ALA      | -      | expression tag | UNP A0A1M2TTS0 |
| В     | 704     | ALA      | -      | expression tag | UNP A0A1M2TTS0 |
| В     | 705     | LEU      | -      | expression tag | UNP A0A1M2TTS0 |
| В     | 706     | GLU      | -      | expression tag | UNP A0A1M2TTS0 |
| В     | 707     | HIS      | _      | expression tag | UNP A0A1M2TTS0 |



| Chain | Residue | Modelled | Actual | Comment        | Reference      |
|-------|---------|----------|--------|----------------|----------------|
| В     | 708     | HIS      | _      | expression tag | UNP A0A1M2TTS0 |
| В     | 709     | HIS      | _      | expression tag | UNP A0A1M2TTS0 |
| В     | 710     | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| В     | 711     | HIS      | _      | expression tag | UNP A0A1M2TTS0 |
| В     | 712     | HIS      | _      | expression tag | UNP A0A1M2TTS0 |
| С     | 702     | ALA      | _      | expression tag | UNP A0A1M2TTS0 |
| С     | 703     | ALA      | -      | expression tag | UNP A0A1M2TTS0 |
| С     | 704     | ALA      | -      | expression tag | UNP A0A1M2TTS0 |
| С     | 705     | LEU      | -      | expression tag | UNP A0A1M2TTS0 |
| С     | 706     | GLU      | -      | expression tag | UNP A0A1M2TTS0 |
| С     | 707     | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| С     | 708     | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| С     | 709     | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| С     | 710     | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| С     | 711     | HIS      | _      | expression tag | UNP A0A1M2TTS0 |
| С     | 712     | HIS      | _      | expression tag | UNP A0A1M2TTS0 |
| D     | 702     | ALA      | -      | expression tag | UNP A0A1M2TTS0 |
| D     | 703     | ALA      | -      | expression tag | UNP A0A1M2TTS0 |
| D     | 704     | ALA      | _      | expression tag | UNP A0A1M2TTS0 |
| D     | 705     | LEU      | -      | expression tag | UNP A0A1M2TTS0 |
| D     | 706     | GLU      | -      | expression tag | UNP A0A1M2TTS0 |
| D     | 707     | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| D     | 708     | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| D     | 709     | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| D     | 710     | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| D     | 711     | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| D     | 712     | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| Е     | 702     | ALA      | -      | expression tag | UNP A0A1M2TTS0 |
| E     | 703     | ALA      | -      | expression tag | UNP A0A1M2TTS0 |
| Ε     | 704     | ALA      | -      | expression tag | UNP A0A1M2TTS0 |
| Ε     | 705     | LEU      | -      | expression tag | UNP A0A1M2TTS0 |
| Е     | 706     | GLU      | -      | expression tag | UNP A0A1M2TTS0 |
| E     | 707     | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| Ε     | 708     | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| E     | 709     | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| E     | 710     | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| E     | 711     | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| E     | 712     | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| F     | 702     | ALA      | -      | expression tag | UNP A0A1M2TTS0 |
| F     | 703     | ALA      | -      | expression tag | UNP A0A1M2TTS0 |
| F     | 704     | ALA      | -      | expression tag | UNP A0A1M2TTS0 |
| F     | 705     | LEU      | -      | expression tag | UNP A0A1M2TTS0 |

Continued from previous page...



| Chain Residue Mo |     | Modelled | Actual | Comment        | Reference      |
|------------------|-----|----------|--------|----------------|----------------|
| F                | 706 | GLU      | -      | expression tag | UNP A0A1M2TTS0 |
| F                | 707 | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| F                | 708 | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| F                | 709 | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| F                | 710 | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| F                | 711 | HIS      | -      | expression tag | UNP A0A1M2TTS0 |
| F                | 712 | HIS      | -      | expression tag | UNP A0A1M2TTS0 |

• Molecule 2 is SULFATE ION (three-letter code: SO4) (formula:  $O_4S$ ).



| Mol | Chain | Residues | Atoms                                                                            | ZeroOcc | AltConf |
|-----|-------|----------|----------------------------------------------------------------------------------|---------|---------|
| 2   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | В     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | В     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | В     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | В     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | С     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | С     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |



Continued from previous page...

| Mol | Chain | Residues | Atoms                                                                            | ZeroOcc | AltConf |
|-----|-------|----------|----------------------------------------------------------------------------------|---------|---------|
| 2   | D     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | D     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | Е     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | Е     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | Е     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | F     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | F     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | F     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |

• Molecule 3 is GLYCEROL (three-letter code: GOL) (formula:  $C_3H_8O_3$ ).



| Mol | Chain | Residues | Atoms                                                                            | ZeroOcc | AltConf |
|-----|-------|----------|----------------------------------------------------------------------------------|---------|---------|
| 3   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 3   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 3   | А     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$     | 0       | 0       |



Continued from previous page...

| Mol | Chain | Residues | Atoms                                                                                           | ZeroOcc | AltConf |
|-----|-------|----------|-------------------------------------------------------------------------------------------------|---------|---------|
| 3   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$                | 0       | 0       |
| 3   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$                | 0       | 0       |
| 3   | А     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$                    | 0       | 0       |
| 3   | А     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$                    | 0       | 0       |
| 3   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$                | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$                | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$                | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$                | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$                | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$                | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$                | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$                    | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$                    | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$                    | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$                    | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$                | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$                | 0       | 0       |
| 3   | С     | 1        | $\begin{array}{c cc} \hline {\rm Total} & {\rm C} & {\rm O} \\ \hline 6 & 3 & 3 \end{array}$    | 0       | 0       |
| 3   | С     | 1        | $\begin{array}{c cc} \hline \text{Total} & \text{C} & \text{O} \\ \hline 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 3   | С     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$                | 0       | 0       |
| 3   | С     | 1        | $\begin{array}{c cc} \hline \text{Total} & \text{C} & \text{O} \\ \hline 6 & 3 & 3 \end{array}$ | 0       | 0       |



Continued from previous page...

| Mol | Chain | Residues | Atoms                                                                            | ZeroOcc | AltConf |
|-----|-------|----------|----------------------------------------------------------------------------------|---------|---------|
| 3   | С     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 3   | С     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 3   | С     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 3   | С     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$     | 0       | 0       |
| 3   | С     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 3   | D     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 3   | D     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 3   | D     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 3   | D     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 3   | D     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 3   | D     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$     | 0       | 0       |
| 3   | D     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 3   | Ε     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$     | 0       | 0       |
| 3   | Ε     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$     | 0       | 0       |
| 3   | Ε     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$     | 0       | 0       |
| 3   | Е     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$     | 0       | 0       |
| 3   | Е     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$     | 0       | 0       |
| 3   | Е     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$     | 0       | 0       |
| 3   | Е     | 1        | $\begin{array}{ccc} \text{Total}  \text{C}  \text{O} \\ 6  3  3 \end{array}$     | 0       | 0       |
| 3   | Е     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 3   | F     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |



Continued from previous page...

| Mol | Chain | Residues | Atoms                                                                            | ZeroOcc | AltConf |
|-----|-------|----------|----------------------------------------------------------------------------------|---------|---------|
| 3   | F     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 3   | F     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 3   | F     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 3   | F     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 3   | F     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 3   | F     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 3   | F     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 3   | F     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 3   | F     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |
| 3   | F     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$ | 0       | 0       |

• Molecule 4 is water.

| Mol | Chain | Residues | Atoms              | ZeroOcc | AltConf |
|-----|-------|----------|--------------------|---------|---------|
| 4   | А     | 435      | Total O<br>435 435 | 0       | 0       |
| 4   | В     | 459      | Total O<br>459 459 | 0       | 0       |
| 4   | С     | 388      | Total O<br>388 388 | 0       | 0       |
| 4   | D     | 383      | Total O<br>383 383 | 0       | 0       |
| 4   | Ε     | 386      | Total O<br>386 386 | 0       | 0       |
| 4   | F     | 477      | Total O<br>477 477 | 0       | 0       |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.



• Molecule 1: Beta-galactosidase







## 4 Data and refinement statistics (i)

| Property                                    | Value                       | Source    |
|---------------------------------------------|-----------------------------|-----------|
| Space group                                 | P 41 21 2                   | Depositor |
| Cell constants                              | 177.95Å 177.95Å 375.70Å     | Depositor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$      | 90.00° 90.00° 90.00°        | Depositor |
| Bosolution (Å)                              | 49.37 - 2.00                | Depositor |
| Resolution (A)                              | 49.37 - 2.00                | EDS       |
| % Data completeness                         | $100.0 \ (49.37 - 2.00)$    | Depositor |
| (in resolution range)                       | $100.0 \ (49.37 - 2.00)$    | EDS       |
| $R_{merge}$                                 | (Not available)             | Depositor |
| $R_{sym}$                                   | 0.13                        | Depositor |
| $< I/\sigma(I) > 1$                         | $3.31 (at 2.00 \text{\AA})$ | Xtriage   |
| Refinement program                          | REFMAC 5.8.0073             | Depositor |
| P. P.                                       | 0.155 , $0.191$             | Depositor |
| $n, n_{free}$                               | 0.166 , $0.198$             | DCC       |
| $R_{free}$ test set                         | 20004  reflections  (4.99%) | wwPDB-VP  |
| Wilson B-factor $(Å^2)$                     | 25.1                        | Xtriage   |
| Anisotropy                                  | 0.031                       | Xtriage   |
| Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$ | 0.38 , $47.5$               | EDS       |
| L-test for $twinning^2$                     | $ < L >=0.48, < L^2>=0.30$  | Xtriage   |
| Estimated twinning fraction                 | No twinning to report.      | Xtriage   |
| $F_o, F_c$ correlation                      | 0.96                        | EDS       |
| Total number of atoms                       | 35416                       | wwPDB-VP  |
| Average B, all atoms $(Å^2)$                | 27.0                        | wwPDB-VP  |

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 1.69% of the height of the origin peak. No significant pseudotranslation is detected.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

# 5 Model quality (i)

## 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: SO4, GOL

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol | Chain | Bo   | ond lengths     | Bond angles |                  |  |
|-----|-------|------|-----------------|-------------|------------------|--|
|     |       | RMSZ | # Z  > 5        | RMSZ        | # Z  > 5         |  |
| 1   | А     | 1.19 | 12/5558~(0.2%)  | 1.06        | 21/7588~(0.3%)   |  |
| 1   | В     | 1.10 | 6/5552~(0.1%)   | 1.05        | 30/7580~(0.4%)   |  |
| 1   | С     | 1.08 | 4/5534~(0.1%)   | 1.02        | 18/7554~(0.2%)   |  |
| 1   | D     | 1.13 | 9/5558~(0.2%)   | 1.05        | 28/7588~(0.4%)   |  |
| 1   | Е     | 1.07 | 3/5551~(0.1%)   | 1.02        | 26/7578~(0.3%)   |  |
| 1   | F     | 1.05 | 4/5648~(0.1%)   | 1.08        | 33/7712~(0.4%)   |  |
| All | All   | 1.10 | 38/33401~(0.1%) | 1.05        | 156/45600~(0.3%) |  |

All (38) bond length outliers are listed below:

| Mol | Chain        | Res | Type | Atoms  | Z     | Observed(Å) | Ideal(Å) |
|-----|--------------|-----|------|--------|-------|-------------|----------|
| 1   | С            | 171 | ARG  | CZ-NH2 | 7.97  | 1.43        | 1.33     |
| 1   | С            | 523 | TYR  | CE1-CZ | 7.14  | 1.47        | 1.38     |
| 1   | D            | 225 | GLU  | CG-CD  | 7.07  | 1.62        | 1.51     |
| 1   | А            | 381 | GLU  | CD-OE2 | -6.72 | 1.18        | 1.25     |
| 1   | А            | 225 | GLU  | CG-CD  | 6.66  | 1.61        | 1.51     |
| 1   | D            | 590 | TRP  | CB-CG  | 6.37  | 1.61        | 1.50     |
| 1   | D            | 381 | GLU  | CD-OE2 | 6.26  | 1.32        | 1.25     |
| 1   | А            | 372 | TYR  | CE1-CZ | 6.07  | 1.46        | 1.38     |
| 1   | В            | 307 | TYR  | CE1-CZ | -6.07 | 1.30        | 1.38     |
| 1   | А            | 109 | TYR  | CE1-CZ | 5.95  | 1.46        | 1.38     |
| 1   | А            | 22  | ARG  | CZ-NH1 | 5.95  | 1.40        | 1.33     |
| 1   | А            | 585 | SER  | CB-OG  | -5.76 | 1.34        | 1.42     |
| 1   | D            | 171 | ARG  | CZ-NH2 | 5.72  | 1.40        | 1.33     |
| 1   | Ε            | 572 | TRP  | CB-CG  | 5.66  | 1.60        | 1.50     |
| 1   | А            | 373 | GLU  | CD-OE2 | 5.60  | 1.31        | 1.25     |
| 1   | Ε            | 413 | SER  | CB-OG  | 5.59  | 1.49        | 1.42     |
| 1   | $\mathbf{F}$ | 22  | ARG  | CZ-NH1 | 5.56  | 1.40        | 1.33     |
| 1   | В            | 236 | GLU  | CD-OE1 | -5.55 | 1.19        | 1.25     |
| 1   | В            | 547 | SER  | CB-OG  | 5.55  | 1.49        | 1.42     |
| 1   | С            | 585 | SER  | CB-OG  | -5.48 | 1.35        | 1.42     |



| Mol | Chain | Res | Type | Atoms  | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|--------|-------|-------------|----------|
| 1   | D     | 18  | GLU  | CD-OE1 | 5.45  | 1.31        | 1.25     |
| 1   | F     | 225 | GLU  | CG-CD  | 5.39  | 1.60        | 1.51     |
| 1   | В     | 253 | ARG  | CZ-NH1 | 5.37  | 1.40        | 1.33     |
| 1   | В     | 19  | TYR  | CE1-CZ | -5.37 | 1.31        | 1.38     |
| 1   | D     | 253 | ARG  | CZ-NH1 | 5.34  | 1.40        | 1.33     |
| 1   | А     | 253 | ARG  | CZ-NH1 | 5.33  | 1.40        | 1.33     |
| 1   | С     | 253 | ARG  | CZ-NH1 | 5.32  | 1.40        | 1.33     |
| 1   | F     | 253 | ARG  | CZ-NH1 | 5.32  | 1.40        | 1.33     |
| 1   | В     | 628 | SER  | CB-OG  | -5.30 | 1.35        | 1.42     |
| 1   | Ε     | 253 | ARG  | CZ-NH1 | 5.28  | 1.40        | 1.33     |
| 1   | А     | 355 | GLU  | CD-OE2 | 5.24  | 1.31        | 1.25     |
| 1   | А     | 590 | TRP  | CB-CG  | 5.21  | 1.59        | 1.50     |
| 1   | D     | 344 | TYR  | CE1-CZ | 5.11  | 1.45        | 1.38     |
| 1   | F     | 530 | MET  | CG-SD  | 5.08  | 1.94        | 1.81     |
| 1   | D     | 567 | TYR  | CE1-CZ | -5.08 | 1.31        | 1.38     |
| 1   | А     | 525 | GLN  | CD-NE2 | 5.06  | 1.45        | 1.32     |
| 1   | A     | 639 | TYR  | CG-CD1 | -5.05 | 1.32        | 1.39     |
| 1   | D     | 311 | GLU  | CD-OE1 | 5.01  | 1.31        | 1.25     |

All (156) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms     | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|-------|------------------|---------------|
| 1   | А     | 22  | ARG  | NE-CZ-NH2 | -9.79 | 115.41           | 120.30        |
| 1   | С     | 123 | ARG  | NE-CZ-NH1 | 9.75  | 125.17           | 120.30        |
| 1   | С     | 496 | ARG  | NE-CZ-NH1 | -9.17 | 115.72           | 120.30        |
| 1   | D     | 123 | ARG  | NE-CZ-NH1 | 9.11  | 124.85           | 120.30        |
| 1   | Ε     | 687 | ARG  | NE-CZ-NH2 | -8.97 | 115.82           | 120.30        |
| 1   | С     | 483 | ARG  | NE-CZ-NH1 | 8.96  | 124.78           | 120.30        |
| 1   | F     | 359 | ARG  | NE-CZ-NH2 | -8.94 | 115.83           | 120.30        |
| 1   | Ε     | 123 | ARG  | NE-CZ-NH2 | -8.93 | 115.84           | 120.30        |
| 1   | D     | 123 | ARG  | NE-CZ-NH2 | -8.84 | 115.88           | 120.30        |
| 1   | В     | 123 | ARG  | NE-CZ-NH2 | -8.71 | 115.94           | 120.30        |
| 1   | F     | 28  | ASP  | CB-CG-OD1 | 8.70  | 126.13           | 118.30        |
| 1   | В     | 598 | ASP  | CB-CG-OD1 | 8.69  | 126.12           | 118.30        |
| 1   | D     | 253 | ARG  | NE-CZ-NH1 | 8.59  | 124.59           | 120.30        |
| 1   | Ε     | 253 | ARG  | NE-CZ-NH1 | 8.57  | 124.59           | 120.30        |
| 1   | С     | 253 | ARG  | NE-CZ-NH1 | 8.54  | 124.57           | 120.30        |
| 1   | А     | 253 | ARG  | NE-CZ-NH1 | 8.53  | 124.56           | 120.30        |
| 1   | В     | 386 | ARG  | NE-CZ-NH1 | 8.53  | 124.56           | 120.30        |
| 1   | В     | 253 | ARG  | NE-CZ-NH1 | 8.43  | 124.52           | 120.30        |
| 1   | F     | 598 | ASP  | CB-CG-OD1 | 8.41  | 125.87           | 118.30        |
| 1   | Е     | 22  | ARG  | NE-CZ-NH2 | -8.41 | 116.10           | 120.30        |



| Mol | Chain | Res | Type | Atoms                  | Z     | $Observed(^{o})$    | $Ideal(^{o})$ |
|-----|-------|-----|------|------------------------|-------|---------------------|---------------|
| 1   | F     | 131 | ARG  | NE-CZ-NH1              | 8.40  | 124.50              | 120.30        |
| 1   | F     | 253 | ARG  | NE-CZ-NH1              | 8.40  | 124.50              | 120.30        |
| 1   | D     | 253 | ARG  | NE-CZ-NH2              | -8.21 | 116.19              | 120.30        |
| 1   | Е     | 253 | ARG  | NE-CZ-NH2              | -8.19 | 116.21              | 120.30        |
| 1   | С     | 123 | ARG  | NE-CZ-NH2              | -8.17 | 116.22              | 120.30        |
| 1   | С     | 253 | ARG  | NE-CZ-NH2              | -8.17 | 116.22              | 120.30        |
| 1   | А     | 253 | ARG  | NE-CZ-NH2              | -8.15 | 116.22              | 120.30        |
| 1   | Е     | 580 | ARG  | NE-CZ-NH2              | -8.12 | 116.24              | 120.30        |
| 1   | В     | 528 | ARG  | NE-CZ-NH1              | 8.08  | 124.34              | 120.30        |
| 1   | F     | 580 | ARG  | NE-CZ-NH2              | -8.07 | 116.26              | 120.30        |
| 1   | F     | 253 | ARG  | NE-CZ-NH2              | -8.06 | 116.27              | 120.30        |
| 1   | В     | 253 | ARG  | NE-CZ-NH2              | -8.05 | 116.27              | 120.30        |
| 1   | F     | 580 | ARG  | NE-CZ-NH1              | 8.03  | 124.32              | 120.30        |
| 1   | В     | 36  | ARG  | NE-CZ-NH1              | 7.99  | 124.30              | 120.30        |
| 1   | С     | 580 | ARG  | NE-CZ-NH2              | -7.96 | 116.32              | 120.30        |
| 1   | В     | 377 | ARG  | NE-CZ-NH2              | -7.86 | 116.37              | 120.30        |
| 1   | В     | 123 | ARG  | NE-CZ-NH1              | 7.84  | 124.22              | 120.30        |
| 1   | Е     | 328 | ARG  | NE-CZ-NH2              | -7.78 | 116.41              | 120.30        |
| 1   | Е     | 580 | ARG  | NE-CZ-NH1              | 7.67  | 124.13              | 120.30        |
| 1   | А     | 22  | ARG  | NE-CZ-NH1              | 7.66  | 124.13              | 120.30        |
| 1   | С     | 496 | ARG  | NE-CZ-NH2              | 7.58  | 124.09              | 120.30        |
| 1   | F     | 696 | ARG  | NE-CZ-NH1              | 7.55  | 124.07              | 120.30        |
| 1   | F     | 264 | ASP  | CB-CG-OD1              | 7.54  | 125.09              | 118.30        |
| 1   | F     | 264 | ASP  | CB-CG-OD2              | -7.54 | 111.52              | 118.30        |
| 1   | Е     | 214 | ARG  | NE-CZ-NH1              | 7.52  | 124.06              | 120.30        |
| 1   | F     | 530 | MET  | CA-CB-CG               | 7.51  | 126.07              | 113.30        |
| 1   | В     | 212 | ARG  | NE-CZ-NH1              | 7.48  | 124.04              | 120.30        |
| 1   | D     | 434 | ARG  | NE-CZ-NH1              | 7.43  | 124.01              | 120.30        |
| 1   | А     | 538 | ASP  | CB-CG-OD1              | 7.41  | 124.96              | 118.30        |
| 1   | А     | 598 | ASP  | CB-CG-OD1              | 7.37  | 124.93              | 118.30        |
| 1   | F     | 212 | ARG  | NE-CZ-NH1              | 7.36  | 123.98              | 120.30        |
| 1   | F     | 285 | ASP  | $CB-CG-\overline{OD2}$ | -7.33 | $111.7\overline{0}$ | 118.30        |
| 1   | F     | 43  | ARG  | NE-CZ-NH2              | -7.30 | 116.65              | 120.30        |
| 1   | F     | 202 | ASP  | CB-CG-OD2              | -7.27 | 111.75              | 118.30        |
| 1   | F     | 598 | ASP  | CB-CG-OD2              | -7.27 | 111.76              | 118.30        |
| 1   | F     | 202 | ASP  | CB-CG-OD1              | 7.18  | 124.76              | 118.30        |
| 1   | В     | 241 | ASP  | CB-CG-OD1              | 7.15  | 124.73              | 118.30        |
| 1   | D     | 112 | ARG  | NE-CZ-NH1              | 7.04  | 123.82              | 120.30        |
| 1   | В     | 300 | ARG  | NE-CZ-NH1              | 7.04  | 123.82              | 120.30        |
| 1   | D     | 598 | ASP  | CB-CG-OD1              | 7.04  | 124.63              | 118.30        |
| 1   | F     | 601 | ARG  | NE-CZ-NH1              | 6.97  | 123.78              | 120.30        |
| 1   | С     | 168 | LYS  | CD-CE-NZ               | -6.96 | 95.69               | 111.70        |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms                             | Ζ     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------------------------------|-------|------------------|---------------|
| 1   | А     | 249 | ASP  | CB-CG-OD2                         | -6.84 | 112.14           | 118.30        |
| 1   | В     | 43  | ARG  | NE-CZ-NH2                         | -6.83 | 116.88           | 120.30        |
| 1   | F     | 479 | ASP  | CB-CG-OD1                         | 6.81  | 124.43           | 118.30        |
| 1   | В     | 377 | ARG  | CG-CD-NE                          | -6.80 | 97.53            | 111.80        |
| 1   | А     | 219 | ARG  | NE-CZ-NH1                         | 6.77  | 123.69           | 120.30        |
| 1   | В     | 300 | ARG  | NE-CZ-NH2                         | -6.77 | 116.92           | 120.30        |
| 1   | В     | 627 | ARG  | NE-CZ-NH2                         | -6.77 | 116.92           | 120.30        |
| 1   | D     | 235 | ARG  | NE-CZ-NH2                         | -6.73 | 116.94           | 120.30        |
| 1   | D     | 359 | ARG  | NE-CZ-NH2                         | -6.72 | 116.94           | 120.30        |
| 1   | В     | 496 | ARG  | NE-CZ-NH1                         | -6.69 | 116.95           | 120.30        |
| 1   | А     | 434 | ARG  | NE-CZ-NH1                         | 6.64  | 123.62           | 120.30        |
| 1   | В     | 168 | LYS  | CD-CE-NZ                          | -6.64 | 96.42            | 111.70        |
| 1   | А     | 28  | ASP  | CB-CG-OD1                         | 6.64  | 124.27           | 118.30        |
| 1   | А     | 225 | GLU  | OE1-CD-OE2                        | -6.63 | 115.34           | 123.30        |
| 1   | С     | 598 | ASP  | CB-CG-OD1                         | 6.62  | 124.25           | 118.30        |
| 1   | F     | 220 | ARG  | NE-CZ-NH1                         | 6.58  | 123.59           | 120.30        |
| 1   | D     | 483 | ARG  | NE-CZ-NH1                         | 6.53  | 123.56           | 120.30        |
| 1   | Ε     | 601 | ARG  | NE-CZ-NH1                         | 6.51  | 123.56           | 120.30        |
| 1   | В     | 202 | ASP  | CB-CG-OD1                         | 6.49  | 124.14           | 118.30        |
| 1   | F     | 214 | ARG  | NE-CZ-NH1                         | 6.49  | 123.54           | 120.30        |
| 1   | В     | 220 | ARG  | NE-CZ-NH2                         | -6.41 | 117.10           | 120.30        |
| 1   | Е     | 193 | ARG  | NE-CZ-NH1                         | 6.37  | 123.48           | 120.30        |
| 1   | D     | 214 | ARG  | NE-CZ-NH1                         | 6.36  | 123.48           | 120.30        |
| 1   | Е     | 202 | ASP  | CB-CG-OD1                         | 6.34  | 124.00           | 118.30        |
| 1   | С     | 173 | GLU  | OE1-CD-OE2                        | 6.32  | 130.89           | 123.30        |
| 1   | Ε     | 212 | ARG  | NE-CZ-NH1                         | 6.31  | 123.45           | 120.30        |
| 1   | D     | 239 | ARG  | NE-CZ-NH2                         | -6.30 | 117.15           | 120.30        |
| 1   | F     | 22  | ARG  | NE-CZ-NH2                         | -6.29 | 117.15           | 120.30        |
| 1   | В     | 580 | ARG  | NE-CZ-NH2                         | -6.27 | 117.17           | 120.30        |
| 1   | Е     | 598 | ASP  | CB-CG-OD1                         | 6.23  | 123.91           | 118.30        |
| 1   | D     | 448 | ASP  | CB-CG-OD2                         | -6.21 | 112.71           | 118.30        |
| 1   | D     | 22  | ARG  | NE-CZ-NH2                         | -6.17 | 117.22           | 120.30        |
| 1   | Е     | 28  | ASP  | CB-CG-OD1                         | 6.14  | 123.83           | 118.30        |
| 1   | E     | 123 | ARG  | NE-CZ-NH1                         | 6.11  | 123.36           | 120.30        |
| 1   | Е     | 22  | ARG  | NE-CZ-NH1                         | 6.08  | 123.34           | 120.30        |
| 1   | Е     | 530 | MET  | CA-CB-CG                          | 6.08  | 123.63           | 113.30        |
| 1   | D     | 239 | ARG  | NE-CZ-NH1                         | 6.07  | 123.33           | 120.30        |
| 1   | D     | 202 | ASP  | CB-CG-OD1                         | 6.01  | 123.71           | 118.30        |
| 1   | F     | 407 | GLU  | OE1-CD-OE2                        | -5.99 | 116.12           | 123.30        |
| 1   | D     | 225 | GLU  | OE1-CD-OE2                        | -5.98 | 116.12           | 123.30        |
| 1   | A     | 202 | ASP  | $CB-\overline{CG}-\overline{OD1}$ | 5.98  | 123.68           | 118.30        |
| 1   | С     | 188 | ASP  | CB-CG-OD1                         | -5.97 | 112.92           | 118.30        |



| Mol | Chain | Res              | Type | Atoms                             | Z                 | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------------------|------|-----------------------------------|-------------------|------------------|---------------|
| 1   | В     | 384              | ASP  | CB-CG-OD2                         | -5.96             | 112.94           | 118.30        |
| 1   | Е     | 193              | ARG  | NE-CZ-NH2                         | -5.93             | 117.33           | 120.30        |
| 1   | D     | 162              | MET  | CG-SD-CE                          | -5.93             | 90.71            | 100.20        |
| 1   | А     | 123              | ARG  | NE-CZ-NH2                         | -5.93             | 117.34           | 120.30        |
| 1   | D     | 25               | ASP  | CB-CG-OD1                         | 5.93              | 123.63           | 118.30        |
| 1   | D     | 112              | ARG  | NE-CZ-NH2                         | -5.88             | 117.36           | 120.30        |
| 1   | Ε     | 530              | MET  | CG-SD-CE                          | -5.88             | 90.79            | 100.20        |
| 1   | А     | 438              | ASP  | CB-CG-OD2                         | -5.87             | 113.01           | 118.30        |
| 1   | F     | 112              | ARG  | NE-CZ-NH1                         | 5.86              | 123.23           | 120.30        |
| 1   | А     | 377              | ARG  | NE-CZ-NH1                         | 5.84              | 123.22           | 120.30        |
| 1   | В     | 474              | ASP  | CB-CG-OD1                         | 5.81              | 123.53           | 118.30        |
| 1   | Е     | 235              | ARG  | NE-CZ-NH1                         | -5.75             | 117.43           | 120.30        |
| 1   | С     | 691              | ASP  | CB-CG-OD1                         | 5.74              | 123.47           | 118.30        |
| 1   | F     | 298              | MET  | CG-SD-CE                          | -5.74             | 91.02            | 100.20        |
| 1   | А     | 285              | ASP  | CB-CG-OD2                         | -5.72             | 113.15           | 118.30        |
| 1   | В     | 681              | ASP  | CB-CG-OD1                         | 5.70              | 123.43           | 118.30        |
| 1   | С     | 438              | ASP  | CB-CG-OD1                         | 5.68              | 123.42           | 118.30        |
| 1   | F     | 28               | ASP  | CB-CG-OD2                         | -5.67             | 113.19           | 118.30        |
| 1   | С     | 112              | ARG  | NE-CZ-NH1                         | 5.62              | 123.11           | 120.30        |
| 1   | А     | 696              | ARG  | NE-CZ-NH1                         | 5.59              | 123.10           | 120.30        |
| 1   | Ε     | 328              | ARG  | NE-CZ-NH1                         | 5.57              | 123.08           | 120.30        |
| 1   | В     | 203              | LEU  | CA-CB-CG                          | -5.54             | 102.55           | 115.30        |
| 1   | А     | 528              | ARG  | NE-CZ-NH2                         | -5.53             | 117.53           | 120.30        |
| 1   | В     | 407              | GLU  | OE1-CD-OE2                        | -5.53             | 116.67           | 123.30        |
| 1   | С     | 380              | ARG  | NE-CZ-NH1                         | 5.53              | 123.06           | 120.30        |
| 1   | F     | 377              | ARG  | NE-CZ-NH1                         | 5.51              | 123.06           | 120.30        |
| 1   | С     | 580              | ARG  | NE-CZ-NH1                         | 5.50              | 123.05           | 120.30        |
| 1   | В     | 97               | ASP  | CB-CG-OD2                         | -5.47             | 113.38           | 118.30        |
| 1   | А     | 587              | ASP  | CB-CG-OD1                         | 5.47              | 123.22           | 118.30        |
| 1   | E     | 431              | ASP  | CB-CG-OD1                         | 5.45              | 123.20           | 118.30        |
| 1   | В     | 380              | ARG  | NE-CZ-NH1                         | 5.43              | 123.02           | 120.30        |
| 1   | F     | 131              | ARG  | NE-CZ-NH2                         | -5.39             | 117.61           | 120.30        |
| 1   | E     | $20\overline{2}$ | ASP  | $CB-CG-\overline{OD2}$            | -5.35             | 113.48           | 118.30        |
| 1   | F     | 285              | ASP  | CB-CG-OD1                         | 5.30              | 123.07           | 118.30        |
| 1   | E     | 43               | ARG  | NE-CZ-NH2                         | -5.30             | 117.65           | 120.30        |
| 1   | D     | 285              | ASP  | CB-CG-OD2                         | -5.27             | 113.56           | 118.30        |
| 1   | D     | 221              | ASP  | CB-CG-OD1                         | 5.27              | 123.04           | 118.30        |
| 1   | В     | $53\overline{0}$ | MET  | CA-CB-CG                          | $5.2\overline{6}$ | 122.25           | 113.30        |
| 1   | D     | 285              | ASP  | CB-CG-OD1                         | 5.25              | 123.03           | 118.30        |
| 1   | Ε     | 496              | ARG  | NE-CZ-NH1                         | -5.25             | 117.67           | 120.30        |
| 1   | A     | 538              | ASP  | $CB-\overline{CG}-\overline{OD2}$ | -5.23             | 113.59           | 118.30        |
| 1   | В     | 97               | ASP  | CB-CG-OD1                         | 5.19              | 122.97           | 118.30        |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms      | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|-------|------------------|---------------|
| 1   | D     | 28  | ASP  | CB-CG-OD2  | -5.15 | 113.66           | 118.30        |
| 1   | D     | 550 | ASP  | CB-CG-OD2  | 5.15  | 122.94           | 118.30        |
| 1   | F     | 171 | ARG  | NE-CZ-NH2  | 5.14  | 122.87           | 120.30        |
| 1   | F     | 173 | GLU  | OE1-CD-OE2 | 5.13  | 129.46           | 123.30        |
| 1   | D     | 217 | ARG  | NE-CZ-NH2  | -5.06 | 117.77           | 120.30        |
| 1   | D     | 627 | ARG  | NE-CZ-NH2  | -5.04 | 117.78           | 120.30        |
| 1   | А     | 474 | ASP  | CB-CG-OD1  | 5.04  | 122.83           | 118.30        |
| 1   | D     | 28  | ASP  | CB-CG-OD1  | 5.03  | 122.83           | 118.30        |
| 1   | C     | 212 | ARG  | NE-CZ-NH1  | 5.01  | 122.81           | 120.30        |
| 1   | F     | 496 | ARG  | NE-CZ-NH1  | -5.00 | 117.80           | 120.30        |

There are no chirality outliers.

There are no planarity outliers.

#### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 5404  | 0        | 5117     | 24      | 0            |
| 1   | В     | 5399  | 0        | 5106     | 39      | 0            |
| 1   | С     | 5381  | 0        | 5095     | 24      | 0            |
| 1   | D     | 5404  | 0        | 5117     | 20      | 0            |
| 1   | Е     | 5397  | 0        | 5110     | 21      | 0            |
| 1   | F     | 5493  | 0        | 5196     | 29      | 0            |
| 2   | А     | 10    | 0        | 0        | 0       | 0            |
| 2   | В     | 20    | 0        | 0        | 0       | 0            |
| 2   | С     | 10    | 0        | 0        | 0       | 0            |
| 2   | D     | 10    | 0        | 0        | 0       | 0            |
| 2   | Е     | 15    | 0        | 0        | 0       | 0            |
| 2   | F     | 15    | 0        | 0        | 0       | 0            |
| 3   | А     | 48    | 0        | 64       | 2       | 0            |
| 3   | В     | 72    | 0        | 96       | 10      | 0            |
| 3   | С     | 54    | 0        | 72       | 7       | 0            |
| 3   | D     | 42    | 0        | 56       | 1       | 0            |
| 3   | Е     | 48    | 0        | 63       | 1       | 0            |
| 3   | F     | 66    | 0        | 88       | 3       | 0            |
| 4   | A     | 435   | 0        | 0        | 4       | 0            |



|     | J 1 1 $J$ |       |          |          |         |              |
|-----|-----------|-------|----------|----------|---------|--------------|
| Mol | Chain     | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
| 4   | В         | 459   | 0        | 0        | 3       | 0            |
| 4   | С         | 388   | 0        | 0        | 7       | 0            |
| 4   | D         | 383   | 0        | 0        | 4       | 0            |
| 4   | Е         | 386   | 0        | 0        | 2       | 0            |
| 4   | F         | 477   | 0        | 0        | 5       | 0            |
| All | All       | 35416 | 0        | 31180    | 153     | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

All (153) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom 1           | Atom 2           | Interatomic             | Clash       |
|------------------|------------------|-------------------------|-------------|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |
| 1:F:614:HIS:HB3  | 4:F:1289:HOH:O   | 1.57                    | 1.02        |
| 1:B:155:TYR:HA   | 3:B:806:GOL:H32  | 1.55                    | 0.88        |
| 3:C:803:GOL:H32  | 4:C:1041:HOH:O   | 1.73                    | 0.86        |
| 1:A:373:GLU:HG2  | 4:A:1286:HOH:O   | 1.81                    | 0.79        |
| 1:A:173:GLU:HB2  | 4:A:908:HOH:O    | 1.82                    | 0.78        |
| 1:B:284:GLU:HB3  | 1:F:530:MET:HE1  | 1.63                    | 0.78        |
| 1:A:380:ARG:HH21 | 3:A:806:GOL:H32  | 1.47                    | 0.77        |
| 1:E:655:SER:OG   | 1:E:679:VAL:HG23 | 1.86                    | 0.76        |
| 1:A:622:GLY:H    | 3:A:803:GOL:C1   | 1.99                    | 0.74        |
| 3:C:803:GOL:H11  | 4:C:1041:HOH:O   | 1.86                    | 0.74        |
| 1:A:615:THR:N    | 1:A:618:MET:HE3  | 2.02                    | 0.74        |
| 1:B:155:TYR:HA   | 3:B:806:GOL:C3   | 2.18                    | 0.73        |
| 1:B:171:ARG:HH11 | 1:B:176:ASN:ND2  | 1.90                    | 0.69        |
| 1:E:311:GLU:OE1  | 3:E:803:GOL:H11  | 1.94                    | 0.68        |
| 1:B:436:ILE:HD11 | 1:B:600:TRP:CH2  | 2.28                    | 0.67        |
| 1:E:173:GLU:HB2  | 4:E:905:HOH:O    | 1.95                    | 0.67        |
| 1:C:373:GLU:HG2  | 4:C:1276:HOH:O   | 1.92                    | 0.67        |
| 1:B:303:GLY:HA3  | 4:B:1079:HOH:O   | 1.96                    | 0.64        |
| 1:D:540:LEU:HD12 | 1:D:564:LEU:HB3  | 1.78                    | 0.64        |
| 1:E:540:LEU:HD12 | 1:E:564:LEU:HB3  | 1.79                    | 0.63        |
| 1:F:115:MET:CE   | 4:F:1261:HOH:O   | 2.48                    | 0.62        |
| 1:F:240:ASP:H    | 3:F:805:GOL:H2   | 1.63                    | 0.62        |
| 1:A:563:VAL:HG11 | 1:A:566:TRP:CE2  | 2.37                    | 0.60        |
| 1:F:518:ILE:CD1  | 1:F:583:PHE:CE2  | 2.84                    | 0.59        |
| 1:B:436:ILE:HD11 | 1:B:600:TRP:CZ2  | 2.37                    | 0.59        |
| 1:E:530:MET:HE1  | 1:F:285:ASP:H    | 1.67                    | 0.58        |
| 1:F:563:VAL:HG11 | 1:F:566:TRP:CE2  | 2.37                    | 0.58        |
| 1:F:377:ARG:HG2  | 3:F:806:GOL:H12  | 1.84                    | 0.58        |



|                  |                  | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 3:C:809:GOL:O1   | 3:C:810:GOL:C1   | 2.52         | 0.58        |
| 1:F:115:MET:HE3  | 4:F:1261:HOH:O   | 2.03         | 0.58        |
| 1:F:303:GLY:HA3  | 4:F:1012:HOH:O   | 2.05         | 0.56        |
| 1:D:173:GLU:OE2  | 1:D:214:ARG:NH2  | 2.32         | 0.55        |
| 1:B:189:TYR:HA   | 1:E:19:TYR:CE1   | 2.41         | 0.55        |
| 3:F:809:GOL:C3   | 4:F:1006:HOH:O   | 2.53         | 0.55        |
| 1:B:377:ARG:NH2  | 4:B:903:HOH:O    | 2.40         | 0.55        |
| 1:C:151:GLU:OE1  | 3:C:806:GOL:H2   | 2.06         | 0.55        |
| 1:E:303:GLY:HA3  | 4:E:1113:HOH:O   | 2.06         | 0.55        |
| 1:E:530:MET:HE1  | 1:F:284:GLU:HB3  | 1.89         | 0.54        |
| 1:C:169:GLN:O    | 1:C:173:GLU:HG3  | 2.08         | 0.54        |
| 1:A:615:THR:HG22 | 1:A:618:MET:HE2  | 1.89         | 0.54        |
| 1:F:614:HIS:NE2  | 1:F:619:GLU:OE2  | 2.36         | 0.53        |
| 1:C:396:LYS:NZ   | 1:C:446:GLU:OE1  | 2.39         | 0.53        |
| 1:C:483:ARG:HD2  | 4:C:954:HOH:O    | 2.07         | 0.53        |
| 3:C:803:GOL:C3   | 4:C:1041:HOH:O   | 2.43         | 0.53        |
| 1:D:484:TYR:CZ   | 1:D:489:GLY:HA3  | 2.44         | 0.53        |
| 1:C:19:TYR:CE1   | 1:D:189:TYR:HA   | 2.44         | 0.52        |
| 1:C:518:ILE:HD12 | 1:C:583:PHE:CE2  | 2.45         | 0.52        |
| 1:A:615:THR:H    | 1:A:618:MET:HE3  | 1.72         | 0.52        |
| 1:B:562:HIS:ND1  | 3:B:807:GOL:H12  | 2.24         | 0.52        |
| 1:B:155:TYR:CA   | 3:B:806:GOL:H32  | 2.35         | 0.52        |
| 1:B:239:ARG:HB3  | 3:B:809:GOL:H2   | 1.92         | 0.52        |
| 1:A:85:TYR:CD2   | 1:A:150:ASN:HB3  | 2.45         | 0.52        |
| 1:D:657:THR:CG2  | 1:D:674:GLU:HA   | 2.39         | 0.52        |
| 1:A:284:GLU:OE2  | 1:A:321:LEU:O    | 2.28         | 0.51        |
| 1:A:615:THR:HG22 | 1:A:618:MET:CE   | 2.40         | 0.51        |
| 1:D:115:MET:HE3  | 4:D:1159:HOH:O   | 2.10         | 0.51        |
| 1:C:540:LEU:HD12 | 1:C:564:LEU:HB3  | 1.93         | 0.51        |
| 1:F:85:TYR:CD2   | 1:F:150:ASN:HB3  | 2.45         | 0.51        |
| 1:A:189:TYR:HA   | 1:D:19:TYR:CE1   | 2.46         | 0.51        |
| 1:B:563:VAL:HG11 | 1:B:566:TRP:CE2  | 2.47         | 0.50        |
| 1:B:171:ARG:HH11 | 1:B:176:ASN:HD22 | 1.60         | 0.50        |
| 1:E:85:TYR:CD2   | 1:E:150:ASN:HB3  | 2.46         | 0.49        |
| 1:F:655:SER:OG   | 1:F:679:VAL:HG23 | 2.12         | 0.49        |
| 1:D:173:GLU:OE1  | 3:D:809:GOL:O1   | 2.29         | 0.49        |
| 1:D:115:MET:CE   | 4:D:1159:HOH:O   | 2.60         | 0.49        |
| 1:B:53:GLU:OE2   | 1:B:128:ARG:NH2  | 2.45         | 0.49        |
| 1:B:240:ASP:HB2  | 3:B:809:GOL:H11  | 1.94         | 0.49        |
| 1:D:12:GLY:HA2   | 1:D:39:ILE:HG12  | 1.95         | 0.49        |
| 1:B:580:ARG:HE   | 3:B:807:GOL:H11  | 1.78         | 0.48        |



|                  |                  | Interatomic  | Clash       |  |
|------------------|------------------|--------------|-------------|--|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |  |
| 1:D:85:TYR:CD2   | 1:D:150:ASN:HB3  | 2.48         | 0.48        |  |
| 1:B:284:GLU:CB   | 1:F:530:MET:HE1  | 2.37         | 0.48        |  |
| 1:C:12:GLY:HA2   | 1:C:39:ILE:HG23  | 1.96         | 0.48        |  |
| 1:B:547:SER:OG   | 1:B:596:GLN:OE1  | 2.29         | 0.47        |  |
| 1:E:697:GLN:H    | 1:E:697:GLN:CD   | 2.16         | 0.47        |  |
| 1:B:85:TYR:CE2   | 1:B:112:ARG:HD2  | 2.50         | 0.47        |  |
| 1:A:19:TYR:CE1   | 1:C:189:TYR:HA   | 2.50         | 0.47        |  |
| 1:C:436:ILE:HD11 | 1:C:600:TRP:CZ2  | 2.49         | 0.47        |  |
| 1:B:85:TYR:CD2   | 1:B:150:ASN:HB3  | 2.49         | 0.47        |  |
| 1:C:535:LYS:HG3  | 1:C:568:ASP:HB2  | 1.95         | 0.47        |  |
| 3:C:809:GOL:O1   | 3:C:810:GOL:H11  | 2.14         | 0.47        |  |
| 1:C:563:VAL:HG11 | 1:C:566:TRP:CE2  | 2.50         | 0.47        |  |
| 1:E:657:THR:CG2  | 1:E:674:GLU:HA   | 2.45         | 0.47        |  |
| 1:E:85:TYR:CE2   | 1:E:112:ARG:HD2  | 2.50         | 0.46        |  |
| 1:A:85:TYR:CE2   | 1:A:112:ARG:HD2  | 2.51         | 0.45        |  |
| 3:C:803:GOL:C2   | 4:C:1041:HOH:O   | 2.64         | 0.45        |  |
| 1:B:19:TYR:CE1   | 1:F:189:TYR:HA   | 2.51         | 0.45        |  |
| 1:A:535:LYS:HG3  | 1:A:568:ASP:HB2  | 1.99         | 0.45        |  |
| 1:E:253:ARG:NH2  | 1:E:431:ASP:OD1  | 2.50         | 0.45        |  |
| 1:A:12:GLY:HA2   | 1:A:39:ILE:HG23  | 1.99         | 0.45        |  |
| 1:D:85:TYR:CE2   | 1:D:112:ARG:HD2  | 2.52         | 0.45        |  |
| 1:D:543:LEU:HD11 | 1:D:599:ALA:HB1  | 1.99         | 0.45        |  |
| 1:F:492:LEU:C    | 1:F:492:LEU:HD23 | 2.37         | 0.45        |  |
| 1:F:495:MET:O    | 1:F:496:ARG:HB2  | 2.17         | 0.45        |  |
| 1:F:657:THR:CG2  | 1:F:674:GLU:HA   | 2.47         | 0.45        |  |
| 1:A:285:ASP:HB2  | 1:C:530:MET:CE   | 2.46         | 0.44        |  |
| 1:C:284:GLU:OE2  | 1:C:321:LEU:O    | 2.34         | 0.44        |  |
| 1:C:678:THR:O    | 1:C:679:VAL:C    | 2.56         | 0.44        |  |
| 1:B:354:PHE:CZ   | 3:B:808:GOL:H31  | 2.53         | 0.44        |  |
| 1:F:540:LEU:HD12 | 1:F:564:LEU:HB3  | 1.98         | 0.44        |  |
| 1:B:543:LEU:HD11 | 1:B:599:ALA:HB1  | 2.00         | 0.44        |  |
| 1:D:687:ARG:HG2  | 4:D:1189:HOH:O   | 2.18         | 0.44        |  |
| 1:E:189:TYR:HA   | 1:F:19:TYR:CE1   | 2.52         | 0.44        |  |
| 1:A:207:ILE:HD12 | 1:A:207:ILE:C    | 2.38         | 0.44        |  |
| 1:D:172:HIS:ND1  | 4:D:902:HOH:O    | 2.37         | 0.43        |  |
| 1:C:85:TYR:CD1   | 1:C:85:TYR:C     | 2.92         | 0.43        |  |
| 1:A:537:PRO:HD2  | 4:A:1181:HOH:O   | 2.19         | 0.43        |  |
| 1:C:649:THR:HA   | 1:C:683:VAL:O    | 2.17         | 0.43        |  |
| 1:C:85:TYR:CD2   | 1:C:150:ASN:HB3  | 2.53         | 0.43        |  |
| 1:D:154:TYR:CG   | 1:D:219:ARG:HB3  | 2.53         | 0.43        |  |
| 1:F:267:ARG:HH11 | 1:F:267:ARG:HG3  | 1.84         | 0.43        |  |



|                  |                  | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:B:579:THR:O    | 1:B:589:GLN:HA   | 2.19         | 0.43        |
| 1:B:46:GLU:O     | 1:B:83:PRO:HA    | 2.19         | 0.43        |
| 1:E:54:PRO:HD2   | 1:E:58:HIS:O     | 2.18         | 0.43        |
| 1:E:455:SER:OG   | 1:E:458:GLN:HG3  | 2.19         | 0.43        |
| 1:B:422:PRO:HG2  | 1:B:423:MET:CE   | 2.48         | 0.43        |
| 1:E:102:THR:HB   | 1:E:103:PRO:CD   | 2.48         | 0.43        |
| 1:B:535:LYS:HG3  | 1:B:568:ASP:HB2  | 2.00         | 0.42        |
| 1:F:518:ILE:HD13 | 1:F:583:PHE:CE2  | 2.53         | 0.42        |
| 1:A:166:PHE:CD2  | 1:A:203:LEU:HD11 | 2.55         | 0.42        |
| 1:C:115:MET:CE   | 4:C:1106:HOH:O   | 2.66         | 0.42        |
| 1:E:563:VAL:HG11 | 1:E:566:TRP:CE2  | 2.53         | 0.42        |
| 1:C:495:MET:O    | 1:C:496:ARG:HB2  | 2.19         | 0.42        |
| 1:B:240:ASP:H    | 3:B:809:GOL:H2   | 1.84         | 0.42        |
| 1:D:181:LEU:C    | 1:D:181:LEU:HD23 | 2.40         | 0.42        |
| 1:D:535:LYS:HE3  | 1:D:535:LYS:HB2  | 1.88         | 0.42        |
| 1:E:495:MET:O    | 1:E:496:ARG:HB2  | 2.19         | 0.42        |
| 1:B:253:ARG:NH2  | 1:B:431:ASP:OD1  | 2.52         | 0.42        |
| 1:B:632:THR:HG23 | 4:B:981:HOH:O    | 2.19         | 0.42        |
| 1:F:115:MET:HG3  | 1:F:122:TYR:CZ   | 2.55         | 0.42        |
| 1:A:649:THR:HA   | 1:A:683:VAL:O    | 2.19         | 0.42        |
| 1:B:248:PHE:HB3  | 1:B:265:HIS:CE1  | 2.55         | 0.42        |
| 1:B:422:PRO:HG2  | 1:B:423:MET:HE3  | 2.02         | 0.42        |
| 1:F:564:LEU:N    | 1:F:564:LEU:HD12 | 2.34         | 0.42        |
| 1:B:580:ARG:HG2  | 3:B:807:GOL:H2   | 2.02         | 0.41        |
| 1:D:495:MET:O    | 1:D:496:ARG:HB2  | 2.20         | 0.41        |
| 1:F:484:TYR:CZ   | 1:F:489:GLY:HA3  | 2.55         | 0.41        |
| 1:A:303:GLY:HA3  | 4:A:971:HOH:O    | 2.19         | 0.41        |
| 1:C:85:TYR:CE2   | 1:C:112:ARG:HD2  | 2.54         | 0.41        |
| 1:F:515:LEU:HD23 | 1:F:518:ILE:HG13 | 2.02         | 0.41        |
| 1:E:678:THR:O    | 1:E:679:VAL:C    | 2.59         | 0.41        |
| 1:C:276:GLY:HA2  | 1:C:308:LEU:O    | 2.20         | 0.41        |
| 1:B:154:TYR:CG   | 1:B:219:ARG:HB3  | 2.55         | 0.41        |
| 1:D:625:CYS:HB3  | 1:D:641:LEU:HB2  | 2.02         | 0.41        |
| 1:B:518:ILE:HD12 | 1:B:518:ILE:N    | 2.36         | 0.41        |
| 1:A:115:MET:HG3  | 1:A:122:TYR:CZ   | 2.55         | 0.41        |
| 1:B:495:MET:O    | 1:B:496:ARG:HB2  | 2.21         | 0.41        |
| 1:B:207:ILE:C    | 1:B:207:ILE:HD12 | 2.41         | 0.41        |
| 1:B:80:VAL:O     | 1:B:146:TYR:HA   | 2.20         | 0.40        |
| 1:E:445:VAL:HG21 | 1:E:608:LEU:HD13 | 2.03         | 0.40        |
| 1:F:85:TYR:CE2   | 1:F:112:ARG:HD2  | 2.56         | 0.40        |
| 1:A:253:ARG:NH2  | 1:A:431:ASP:OD1  | 2.54         | 0.40        |



| Atom-1           | Atom-2          | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|------------------|-----------------|-----------------------------|----------------------|
| 1:C:9:ILE:HG13   | 1:C:392:SER:HB3 | 2.03                        | 0.40                 |
| 1:F:518:ILE:HD13 | 1:F:583:PHE:CZ  | 2.56                        | 0.40                 |

There are no symmetry-related clashes.

#### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Favoured   | Allowed  | Outliers | Perce | ntiles |
|-----|-------|-----------------|------------|----------|----------|-------|--------|
| 1   | А     | 681/712~(96%)   | 651 (96%)  | 29 (4%)  | 1 (0%)   | 51    | 49     |
| 1   | В     | 681/712~(96%)   | 654 (96%)  | 26 (4%)  | 1 (0%)   | 51    | 49     |
| 1   | С     | 678/712~(95%)   | 652 (96%)  | 25 (4%)  | 1 (0%)   | 51    | 49     |
| 1   | D     | 681/712~(96%)   | 652 (96%)  | 28 (4%)  | 1 (0%)   | 51    | 49     |
| 1   | Е     | 680/712~(96%)   | 654 (96%)  | 24 (4%)  | 2 (0%)   | 41    | 37     |
| 1   | F     | 696/712~(98%)   | 668 (96%)  | 26 (4%)  | 2(0%)    | 41    | 37     |
| All | All   | 4097/4272 (96%) | 3931 (96%) | 158 (4%) | 8 (0%)   | 47    | 44     |

All (8) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | С     | 353 | SER  |
| 1   | В     | 353 | SER  |
| 1   | Е     | 538 | ASP  |
| 1   | F     | 353 | SER  |
| 1   | А     | 353 | SER  |
| 1   | D     | 353 | SER  |
| 1   | Е     | 353 | SER  |
| 1   | F     | 538 | ASP  |



#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Rotameric  | Outliers | Percenti | iles |
|-----|-------|-----------------|------------|----------|----------|------|
| 1   | А     | 560/580~(97%)   | 551 (98%)  | 9~(2%)   | 62 6     | 7    |
| 1   | В     | 559/580~(96%)   | 552 (99%)  | 7 (1%)   | 69 74    | 4    |
| 1   | С     | 557/580~(96%)   | 548 (98%)  | 9 (2%)   | 62 6     | 7    |
| 1   | D     | 560/580~(97%)   | 553~(99%)  | 7 (1%)   | 69 74    | 4    |
| 1   | Ε     | 559/580~(96%)   | 552 (99%)  | 7 (1%)   | 69 74    | 4    |
| 1   | F     | 568/580~(98%)   | 560 (99%)  | 8 (1%)   | 67 72    | 2    |
| All | All   | 3363/3480~(97%) | 3316 (99%) | 47 (1%)  | 67 72    | 2    |

All (47) residues with a non-rotameric side chain are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 85  | TYR  |
| 1   | А     | 115 | MET  |
| 1   | А     | 150 | ASN  |
| 1   | А     | 396 | LYS  |
| 1   | А     | 423 | MET  |
| 1   | А     | 496 | ARG  |
| 1   | А     | 521 | MET  |
| 1   | А     | 526 | PHE  |
| 1   | А     | 530 | MET  |
| 1   | В     | 85  | TYR  |
| 1   | В     | 115 | MET  |
| 1   | В     | 203 | LEU  |
| 1   | В     | 423 | MET  |
| 1   | В     | 496 | ARG  |
| 1   | В     | 521 | MET  |
| 1   | В     | 542 | ASP  |
| 1   | С     | 22  | ARG  |
| 1   | С     | 85  | TYR  |
| 1   | С     | 115 | MET  |
| 1   | С     | 423 | MET  |
| 1   | С     | 496 | ARG  |
| 1   | С     | 521 | MET  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | С     | 526 | PHE  |
| 1   | С     | 653 | PRO  |
| 1   | С     | 684 | THR  |
| 1   | D     | 85  | TYR  |
| 1   | D     | 115 | MET  |
| 1   | D     | 353 | SER  |
| 1   | D     | 423 | MET  |
| 1   | D     | 496 | ARG  |
| 1   | D     | 521 | MET  |
| 1   | D     | 526 | PHE  |
| 1   | Е     | 85  | TYR  |
| 1   | Е     | 115 | MET  |
| 1   | Е     | 150 | ASN  |
| 1   | Е     | 423 | MET  |
| 1   | Е     | 496 | ARG  |
| 1   | Е     | 521 | MET  |
| 1   | Е     | 526 | PHE  |
| 1   | F     | 85  | TYR  |
| 1   | F     | 115 | MET  |
| 1   | F     | 203 | LEU  |
| 1   | F     | 423 | MET  |
| 1   | F     | 496 | ARG  |
| 1   | F     | 521 | MET  |
| 1   | F     | 526 | PHE  |
| 1   | F     | 539 | THR  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (1) such sidechains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | В     | 176 | ASN  |

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

#### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.



#### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

#### 5.6 Ligand geometry (i)

#### 71 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal  | Tuno | Chain   | Dog | Tink | B           | ond leng | $\operatorname{gths}$ | Bond angles |      |         |
|------|------|---------|-----|------|-------------|----------|-----------------------|-------------|------|---------|
| WIOI | туре | Ullalli | nes |      | Counts      | RMSZ     | # Z >2                | Counts      | RMSZ | # Z >2  |
| 3    | GOL  | В       | 804 | -    | $5,\!5,\!5$ | 0.99     | 0                     | $5,\!5,\!5$ | 0.98 | 0       |
| 2    | SO4  | В       | 803 | -    | 4,4,4       | 0.34     | 0                     | $6,\!6,\!6$ | 0.78 | 0       |
| 3    | GOL  | А       | 804 | -    | $5,\!5,\!5$ | 0.94     | 0                     | $5,\!5,\!5$ | 1.14 | 1 (20%) |
| 3    | GOL  | В       | 815 | -    | $5,\!5,\!5$ | 0.70     | 0                     | $5,\!5,\!5$ | 1.30 | 0       |
| 3    | GOL  | F       | 809 | -    | $5,\!5,\!5$ | 0.29     | 0                     | $5,\!5,\!5$ | 1.33 | 1 (20%) |
| 3    | GOL  | С       | 810 | -    | $5,\!5,\!5$ | 0.64     | 0                     | $5,\!5,\!5$ | 1.46 | 1 (20%) |
| 2    | SO4  | В       | 802 | -    | 4,4,4       | 0.45     | 0                     | $6,\!6,\!6$ | 0.42 | 0       |
| 3    | GOL  | В       | 808 | -    | $5,\!5,\!5$ | 0.64     | 0                     | $5,\!5,\!5$ | 1.22 | 0       |
| 3    | GOL  | D       | 805 | -    | $5,\!5,\!5$ | 0.48     | 0                     | $5,\!5,\!5$ | 1.41 | 1 (20%) |
| 3    | GOL  | F       | 807 | -    | $5,\!5,\!5$ | 0.61     | 0                     | $5,\!5,\!5$ | 2.08 | 2 (40%) |
| 3    | GOL  | С       | 804 | -    | 5,5,5       | 0.63     | 0                     | $5,\!5,\!5$ | 1.56 | 1 (20%) |
| 3    | GOL  | С       | 808 | -    | 5,5,5       | 0.84     | 0                     | $5,\!5,\!5$ | 1.57 | 2 (40%) |
| 3    | GOL  | С       | 803 | -    | 5,5,5       | 1.36     | 1 (20%)               | $5,\!5,\!5$ | 1.10 | 0       |
| 2    | SO4  | С       | 801 | -    | 4,4,4       | 0.16     | 0                     | 6,6,6       | 1.46 | 1 (16%) |
| 3    | GOL  | Е       | 806 | -    | $5,\!5,\!5$ | 1.03     | 1 (20%)               | $5,\!5,\!5$ | 2.15 | 2 (40%) |
| 3    | GOL  | В       | 814 | -    | $5,\!5,\!5$ | 0.52     | 0                     | $5,\!5,\!5$ | 1.39 | 1 (20%) |
| 3    | GOL  | А       | 806 | -    | $5,\!5,\!5$ | 0.53     | 0                     | $5,\!5,\!5$ | 1.14 | 0       |
| 3    | GOL  | В       | 806 | -    | $5,\!5,\!5$ | 0.67     | 0                     | $5,\!5,\!5$ | 1.37 | 1 (20%) |
| 3    | GOL  | F       | 804 | -    | $5,\!5,\!5$ | 0.60     | 0                     | $5,\!5,\!5$ | 2.01 | 1 (20%) |
| 3    | GOL  | Е       | 804 | -    | $5,\!5,\!5$ | 0.33     | 0                     | $5,\!5,\!5$ | 1.45 | 1 (20%) |
| 3    | GOL  | F       | 803 | -    | $5,\!5,\!5$ | 1.36     | 1 (20%)               | $5,\!5,\!5$ | 1.17 | 1 (20%) |
| 2    | SO4  | F       | 801 | -    | 4,4,4       | 0.57     | 0                     | $6,\!6,\!6$ | 1.45 | 2(33%)  |
| 2    | SO4  | Е       | 801 | -    | 4,4,4       | 0.18     | 0                     | $6,\!6,\!6$ | 1.43 | 2(33%)  |



|      | <b>T</b> | Chain | Dag | T : 1- | B           | ond leng | $_{\rm gths}$ | Bond angles |      |          |
|------|----------|-------|-----|--------|-------------|----------|---------------|-------------|------|----------|
| NIOI | Type     | Chain | Res | LINK   | Counts      | RMSZ     | # Z  > 2      | Counts      | RMSZ | # Z  > 2 |
| 3    | GOL      | D     | 804 | -      | $5,\!5,\!5$ | 0.40     | 0             | $5,\!5,\!5$ | 0.57 | 0        |
| 3    | GOL      | A     | 807 | -      | 5,5,5       | 0.30     | 0             | $5,\!5,\!5$ | 0.49 | 0        |
| 3    | GOL      | A     | 809 | -      | 5,5,5       | 0.63     | 0             | $5,\!5,\!5$ | 0.46 | 0        |
| 2    | SO4      | D     | 801 | -      | 4,4,4       | 0.14     | 0             | $6,\!6,\!6$ | 1.21 | 1 (16%)  |
| 2    | SO4      | А     | 801 | -      | 4,4,4       | 0.38     | 0             | $6,\!6,\!6$ | 1.15 | 1 (16%)  |
| 3    | GOL      | В     | 809 | -      | 5,5,5       | 0.28     | 0             | $5,\!5,\!5$ | 1.58 | 1 (20%)  |
| 2    | SO4      | В     | 816 | -      | 4,4,4       | 0.39     | 0             | $6,\!6,\!6$ | 0.86 | 0        |
| 3    | GOL      | D     | 803 | -      | 5,5,5       | 1.05     | 0             | $5,\!5,\!5$ | 1.69 | 1 (20%)  |
| 3    | GOL      | D     | 807 | -      | 5,5,5       | 0.34     | 0             | $5,\!5,\!5$ | 0.45 | 0        |
| 3    | GOL      | Е     | 803 | -      | 5,5,5       | 1.39     | 1 (20%)       | $5,\!5,\!5$ | 3.10 | 3 (60%)  |
| 3    | GOL      | Е     | 809 | -      | 5,5,5       | 0.32     | 0             | $5,\!5,\!5$ | 0.41 | 0        |
| 3    | GOL      | В     | 811 | -      | 5,5,5       | 0.69     | 0             | $5,\!5,\!5$ | 0.90 | 0        |
| 3    | GOL      | F     | 810 | -      | 5,5,5       | 0.73     | 0             | $5,\!5,\!5$ | 0.90 | 0        |
| 2    | SO4      | А     | 810 | -      | 4,4,4       | 0.46     | 0             | $6,\!6,\!6$ | 0.48 | 0        |
| 3    | GOL      | Е     | 810 | -      | 5,5,5       | 0.54     | 0             | $5,\!5,\!5$ | 0.87 | 0        |
| 3    | GOL      | F     | 805 | -      | 5,5,5       | 0.60     | 0             | $5,\!5,\!5$ | 0.51 | 0        |
| 3    | GOL      | В     | 813 | -      | 5,5,5       | 0.88     | 0             | $5,\!5,\!5$ | 2.08 | 2 (40%)  |
| 2    | SO4      | Е     | 811 | -      | 4,4,4       | 0.41     | 0             | $6,\!6,\!6$ | 0.44 | 0        |
| 3    | GOL      | F     | 812 | -      | 5,5,5       | 0.43     | 0             | $5,\!5,\!5$ | 0.80 | 0        |
| 3    | GOL      | F     | 808 | -      | 5,5,5       | 0.64     | 0             | $5,\!5,\!5$ | 1.05 | 0        |
| 3    | GOL      | В     | 805 | -      | 5,5,5       | 0.75     | 0             | $5,\!5,\!5$ | 1.57 | 1 (20%)  |
| 3    | GOL      | А     | 803 | -      | 5,5,5       | 0.85     | 0             | $5,\!5,\!5$ | 2.78 | 3 (60%)  |
| 2    | SO4      | D     | 802 | -      | 4,4,4       | 0.42     | 0             | $6,\!6,\!6$ | 0.67 | 0        |
| 2    | SO4      | С     | 802 | -      | 4,4,4       | 0.40     | 0             | $6,\!6,\!6$ | 0.70 | 0        |
| 3    | GOL      | А     | 802 | -      | 5,5,5       | 1.29     | 1 (20%)       | $5,\!5,\!5$ | 0.89 | 0        |
| 3    | GOL      | Е     | 805 | -      | 5,5,5       | 0.81     | 0             | $5,\!5,\!5$ | 1.37 | 0        |
| 3    | GOL      | A     | 808 | -      | $5,\!5,\!5$ | 0.34     | 0             | $5,\!5,\!5$ | 0.63 | 0        |
| 3    | GOL      | С     | 807 | -      | $5,\!5,\!5$ | 0.71     | 0             | $5,\!5,\!5$ | 1.64 | 1 (20%)  |
| 2    | SO4      | Е     | 802 | -      | 4,4,4       | 0.42     | 0             | 6,6,6       | 1.27 | 1 (16%)  |
| 3    | GOL      | С     | 806 | -      | 5,5,5       | 1.21     | 1 (20%)       | $5,\!5,\!5$ | 1.31 | 1 (20%)  |
| 3    | GOL      | Е     | 808 | -      | 5,5,5       | 0.40     | 0             | $5,\!5,\!5$ | 0.60 | 0        |
| 3    | GOL      | F     | 806 | -      | 5,5,5       | 0.67     | 0             | $5,\!5,\!5$ | 1.24 | 1 (20%)  |
| 2    | SO4      | В     | 801 | -      | 4,4,4       | 0.61     | 0             | $6,\!6,\!6$ | 1.44 | 1 (16%)  |
| 3    | GOL      | D     | 808 | -      | 5,5,5       | 0.43     | 0             | $5,\!5,\!5$ | 0.82 | 0        |
| 3    | GOL      | F     | 813 | -      | 5,5,5       | 0.58     | 0             | $5,\!5,\!5$ | 0.84 | 0        |
| 3    | GOL      | В     | 807 | -      | 5,5,5       | 0.41     | 0             | $^{5,5,5}$  | 0.94 | 0        |
| 3    | GOL      | D     | 806 | -      | 5,5,5       | 0.56     | 0             | 5, 5, 5     | 1.82 | 2 (40%)  |
| 3    | GOL      | В     | 810 | -      | 5,5,5       | 0.76     | 0             | $5,\!5,\!5$ | 1.33 | 1 (20%)  |
| 3    | GOL      | C     | 811 | -      | 5,5,5       | 0.50     | 0             | $5,\!5,\!5$ | 0.84 | 0        |



| Mal   | Turne | Chain | Dec | Tiple | B           | ond leng | $_{ m gths}$ | Bond angles |      |         |
|-------|-------|-------|-----|-------|-------------|----------|--------------|-------------|------|---------|
| INIOI | туре  | Unam  | nes |       | Counts      | RMSZ     | # Z >2       | Counts      | RMSZ | # Z >2  |
| 3     | GOL   | F     | 811 | -     | $5,\!5,\!5$ | 1.05     | 1 (20%)      | $5,\!5,\!5$ | 2.44 | 2 (40%) |
| 2     | SO4   | F     | 802 | -     | 4,4,4       | 0.34     | 0            | $6,\!6,\!6$ | 0.33 | 0       |
| 3     | GOL   | Е     | 807 | -     | $5,\!5,\!5$ | 0.52     | 0            | $5,\!5,\!5$ | 1.94 | 2 (40%) |
| 2     | SO4   | F     | 814 | -     | 4,4,4       | 0.44     | 0            | 6,6,6       | 0.57 | 0       |
| 3     | GOL   | С     | 805 | -     | $5,\!5,\!5$ | 0.81     | 0            | $5,\!5,\!5$ | 0.91 | 0       |
| 3     | GOL   | D     | 809 | -     | $5,\!5,\!5$ | 0.45     | 0            | $5,\!5,\!5$ | 0.70 | 0       |
| 3     | GOL   | С     | 809 | -     | $5,\!5,\!5$ | 0.46     | 0            | $5,\!5,\!5$ | 1.39 | 1 (20%) |
| 3     | GOL   | В     | 812 | -     | $5,\!5,\!5$ | 0.39     | 0            | $5,\!5,\!5$ | 0.88 | 0       |
| 3     | GOL   | А     | 805 | -     | $5,\!5,\!5$ | 0.72     | 0            | $5,\!5,\!5$ | 2.17 | 2 (40%) |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res | Link | Chirals | Torsions | Rings |
|-----|------|-------|-----|------|---------|----------|-------|
| 3   | GOL  | В     | 804 | -    | -       | 0/4/4/4  | -     |
| 3   | GOL  | А     | 804 | -    | -       | 0/4/4/4  | -     |
| 3   | GOL  | В     | 815 | -    | -       | 2/4/4/4  | -     |
| 3   | GOL  | F     | 809 | -    | -       | 4/4/4/4  | -     |
| 3   | GOL  | С     | 810 | -    | -       | 3/4/4/4  | -     |
| 3   | GOL  | D     | 805 | -    | -       | 2/4/4/4  | -     |
| 3   | GOL  | В     | 808 | -    | -       | 2/4/4/4  | -     |
| 3   | GOL  | С     | 804 | -    | -       | 0/4/4/4  | -     |
| 3   | GOL  | С     | 808 | -    | -       | 2/4/4/4  | -     |
| 3   | GOL  | С     | 803 | -    | -       | 0/4/4/4  | -     |
| 3   | GOL  | Е     | 806 | -    | -       | 1/4/4/4  | -     |
| 3   | GOL  | В     | 814 | -    | -       | 2/4/4/4  | -     |
| 3   | GOL  | А     | 806 | -    | -       | 2/4/4/4  | -     |
| 3   | GOL  | В     | 806 | -    | -       | 4/4/4/4  | -     |
| 3   | GOL  | F     | 804 | -    | -       | 2/4/4/4  | -     |
| 3   | GOL  | Е     | 804 | -    | -       | 2/4/4/4  | -     |
| 3   | GOL  | F     | 803 | -    | -       | 0/4/4/4  | -     |
| 3   | GOL  | Е     | 803 | -    | -       | 3/4/4/4  | -     |
| 3   | GOL  | F     | 807 | -    | -       | 2/4/4/4  | -     |
| 3   | GOL  | D     | 804 | -    | -       | 1/4/4/4  | -     |
| 3   | GOL  | В     | 809 | -    | -       | 1/4/4/4  | -     |
| 3   | GOL  | A     | 809 | _    | -       | 0/4/4/4  | -     |
| 3   | GOL  | А     | 807 | -    | -       | 4/4/4/4  | _     |



| Continued from previous page |      |       |                |      |         |          |       |  |  |  |  |
|------------------------------|------|-------|----------------|------|---------|----------|-------|--|--|--|--|
| Mol                          | Type | Chain | $\mathbf{Res}$ | Link | Chirals | Torsions | Rings |  |  |  |  |
| 3                            | GOL  | D     | 803            | -    | -       | 0/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | D     | 807            | -    | -       | 0/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | Е     | 809            | -    | -       | 0/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | В     | 811            | -    | -       | 4/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | F     | 810            | -    | -       | 0/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | Е     | 810            | -    | -       | 4/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | F     | 805            | -    | -       | 2/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | В     | 813            | -    | -       | 3/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | F     | 812            | -    | -       | 2/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | F     | 808            | -    | -       | 2/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | В     | 805            | -    | -       | 2/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | А     | 803            | -    | -       | 2/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | А     | 802            | -    | -       | 0/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | Е     | 805            | -    | -       | 0/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | А     | 808            | -    | -       | 2/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | С     | 807            | -    | -       | 2/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | С     | 806            | -    | -       | 2/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | Е     | 808            | -    | -       | 2/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | F     | 806            | -    | -       | 4/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | D     | 808            | -    | -       | 3/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | F     | 813            | -    | -       | 0/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | В     | 807            | -    | -       | 3/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | D     | 806            | -    | -       | 2/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | В     | 810            | -    | -       | 4/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | С     | 811            | -    | -       | 2/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | F     | 811            | -    | -       | 2/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | Е     | 807            | -    | -       | 2/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | С     | 805            | -    | -       | 2/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | D     | 809            | -    | -       | 4/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | С     | 809            | -    | -       | 2/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | В     | 812            | -    | -       | 2/4/4/4  | -     |  |  |  |  |
| 3                            | GOL  | А     | 805            | -    | -       | 2/4/4/4  | -     |  |  |  |  |

 $\overline{}$ 1 C

All (7) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms | Z    | Observed(Å) | $\mathrm{Ideal}(\mathrm{\AA})$ |
|-----|-------|-----|------|-------|------|-------------|--------------------------------|
| 3   | А     | 802 | GOL  | C1-C2 | 2.49 | 1.62        | 1.51                           |



| Mol | Chain | Res | Type | Atoms | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|-------|-------|-------------|----------|
| 3   | F     | 803 | GOL  | O1-C1 | 2.34  | 1.52        | 1.42     |
| 3   | Ε     | 803 | GOL  | O3-C3 | 2.26  | 1.52        | 1.42     |
| 3   | С     | 803 | GOL  | C1-C2 | 2.19  | 1.60        | 1.51     |
| 3   | Ε     | 806 | GOL  | O2-C2 | -2.10 | 1.37        | 1.43     |
| 3   | F     | 811 | GOL  | O2-C2 | -2.05 | 1.37        | 1.43     |
| 3   | С     | 806 | GOL  | O1-C1 | 2.03  | 1.51        | 1.42     |

All (49) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms    | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|----------|-------|------------------|---------------|
| 3   | Е     | 803 | GOL  | O2-C2-C1 | 5.45  | 133.15           | 109.12        |
| 3   | А     | 803 | GOL  | O1-C1-C2 | -4.38 | 89.19            | 110.20        |
| 3   | А     | 805 | GOL  | O2-C2-C1 | -3.80 | 92.40            | 109.12        |
| 3   | F     | 807 | GOL  | O2-C2-C1 | -3.78 | 92.47            | 109.12        |
| 3   | F     | 811 | GOL  | C3-C2-C1 | 3.56  | 125.56           | 111.70        |
| 3   | Е     | 806 | GOL  | O2-C2-C1 | -3.34 | 94.42            | 109.12        |
| 3   | D     | 803 | GOL  | 01-C1-C2 | 3.30  | 126.01           | 110.20        |
| 3   | F     | 804 | GOL  | O3-C3-C2 | -3.24 | 94.69            | 110.20        |
| 3   | Е     | 807 | GOL  | O1-C1-C2 | -3.23 | 94.73            | 110.20        |
| 3   | Е     | 803 | GOL  | 01-C1-C2 | 3.11  | 125.10           | 110.20        |
| 3   | В     | 813 | GOL  | C3-C2-C1 | 3.10  | 123.78           | 111.70        |
| 3   | F     | 811 | GOL  | O2-C2-C1 | -3.10 | 95.47            | 109.12        |
| 3   | С     | 804 | GOL  | O3-C3-C2 | -3.07 | 95.50            | 110.20        |
| 3   | В     | 805 | GOL  | C3-C2-C1 | -3.04 | 99.87            | 111.70        |
| 2   | В     | 801 | SO4  | 04-S-01  | -2.98 | 93.78            | 109.31        |
| 3   | А     | 803 | GOL  | O2-C2-C1 | -2.97 | 96.02            | 109.12        |
| 3   | А     | 803 | GOL  | O2-C2-C3 | 2.95  | 122.09           | 109.12        |
| 3   | Е     | 806 | GOL  | C3-C2-C1 | 2.89  | 122.95           | 111.70        |
| 3   | Е     | 803 | GOL  | O3-C3-C2 | -2.85 | 96.53            | 110.20        |
| 3   | Е     | 807 | GOL  | O3-C3-C2 | -2.82 | 96.69            | 110.20        |
| 3   | F     | 806 | GOL  | O2-C2-C1 | -2.65 | 97.46            | 109.12        |
| 3   | D     | 806 | GOL  | C3-C2-C1 | 2.64  | 121.97           | 111.70        |
| 2   | С     | 801 | SO4  | O2-S-O1  | -2.60 | 90.20            | 109.43        |
| 3   | А     | 805 | GOL  | C3-C2-C1 | 2.49  | 121.40           | 111.70        |
| 2   | Ε     | 802 | SO4  | O4-S-O1  | 2.48  | 122.24           | 109.31        |
| 2   | А     | 801 | SO4  | O3-S-O1  | -2.46 | 96.45            | 109.31        |
| 3   | В     | 806 | GOL  | O3-C3-C2 | 2.46  | 121.99           | 110.20        |
| 3   | В     | 810 | GOL  | C3-C2-C1 | 2.42  | 121.13           | 111.70        |
| 3   | В     | 813 | GOL  | O2-C2-C3 | -2.42 | 98.44            | 109.12        |
| 3   | С     | 808 | GOL  | O2-C2-C1 | -2.41 | 98.49            | 109.12        |
| 2   | F     | 801 | SO4  | 03-S-01  | -2.35 | 97.06            | 109.31        |
| 3   | F     | 807 | GOL  | 01-C1-C2 | -2.33 | 99.03            | 110.20        |



| Mol | Chain | Res | Type | Atoms    |       | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|----------|-------|------------------|---------------|
| 3   | С     | 810 | GOL  | O1-C1-C2 | 2.32  | 121.34           | 110.20        |
| 3   | С     | 809 | GOL  | O1-C1-C2 | -2.27 | 99.30            | 110.20        |
| 3   | Ε     | 804 | GOL  | C3-C2-C1 | -2.24 | 102.98           | 111.70        |
| 2   | F     | 801 | SO4  | O3-S-O2  | 2.24  | 120.99           | 109.31        |
| 3   | С     | 806 | GOL  | O1-C1-C2 | 2.24  | 120.93           | 110.20        |
| 3   | В     | 814 | GOL  | O1-C1-C2 | -2.21 | 99.62            | 110.20        |
| 3   | В     | 809 | GOL  | O1-C1-C2 | -2.17 | 99.78            | 110.20        |
| 3   | D     | 805 | GOL  | C3-C2-C1 | -2.15 | 103.34           | 111.70        |
| 3   | F     | 809 | GOL  | O1-C1-C2 | -2.15 | 99.89            | 110.20        |
| 3   | D     | 806 | GOL  | O2-C2-C3 | -2.12 | 99.78            | 109.12        |
| 2   | Ε     | 801 | SO4  | O4-S-O2  | -2.11 | 98.31            | 109.31        |
| 2   | Ε     | 801 | SO4  | O4-S-O3  | 2.07  | 117.91           | 109.06        |
| 3   | F     | 803 | GOL  | O1-C1-C2 | 2.05  | 120.04           | 110.20        |
| 3   | C     | 808 | GOL  | O1-C1-C2 | -2.05 | 100.38           | 110.20        |
| 3   | А     | 804 | GOL  | O1-C1-C2 | 2.02  | 119.89           | 110.20        |
| 2   | D     | 801 | SO4  | O3-S-O2  | -2.01 | 98.81            | 109.31        |
| 3   | C     | 807 | GOL  | O2-C2-C3 | -2.00 | 100.29           | 109.12        |

There are no chirality outliers.

All (102) torsion outliers are listed below:

| Mol | Chain | Res | Type | Atoms       |
|-----|-------|-----|------|-------------|
| 3   | А     | 803 | GOL  | C1-C2-C3-O3 |
| 3   | А     | 805 | GOL  | O1-C1-C2-C3 |
| 3   | А     | 807 | GOL  | O1-C1-C2-C3 |
| 3   | А     | 807 | GOL  | C1-C2-C3-O3 |
| 3   | В     | 805 | GOL  | C1-C2-C3-O3 |
| 3   | В     | 806 | GOL  | O1-C1-C2-C3 |
| 3   | В     | 810 | GOL  | O1-C1-C2-C3 |
| 3   | В     | 810 | GOL  | C1-C2-C3-O3 |
| 3   | В     | 811 | GOL  | O1-C1-C2-C3 |
| 3   | В     | 811 | GOL  | C1-C2-C3-O3 |
| 3   | В     | 811 | GOL  | O2-C2-C3-O3 |
| 3   | В     | 812 | GOL  | C1-C2-C3-O3 |
| 3   | В     | 813 | GOL  | C1-C2-C3-O3 |
| 3   | В     | 814 | GOL  | C1-C2-C3-O3 |
| 3   | В     | 814 | GOL  | O2-C2-C3-O3 |
| 3   | В     | 815 | GOL  | C1-C2-C3-O3 |
| 3   | С     | 805 | GOL  | 01-C1-C2-C3 |
| 3   | С     | 806 | GOL  | C1-C2-C3-O3 |
| 3   | С     | 807 | GOL  | C1-C2-C3-O3 |
| 3   | С     | 808 | GOL  | C1-C2-C3-O3 |



| Mol | Chain        | Res | Type | Atoms       |
|-----|--------------|-----|------|-------------|
| 3   | С            | 808 | GOL  | O2-C2-C3-O3 |
| 3   | С            | 810 | GOL  | O1-C1-C2-C3 |
| 3   | С            | 811 | GOL  | O1-C1-C2-C3 |
| 3   | D            | 805 | GOL  | O1-C1-C2-C3 |
| 3   | D            | 806 | GOL  | C1-C2-C3-O3 |
| 3   | D            | 809 | GOL  | C1-C2-C3-O3 |
| 3   | Е            | 804 | GOL  | O1-C1-C2-C3 |
| 3   | Е            | 807 | GOL  | O1-C1-C2-C3 |
| 3   | Е            | 808 | GOL  | O1-C1-C2-O2 |
| 3   | Е            | 808 | GOL  | O1-C1-C2-C3 |
| 3   | Е            | 810 | GOL  | O1-C1-C2-C3 |
| 3   | F            | 804 | GOL  | O1-C1-C2-C3 |
| 3   | F            | 807 | GOL  | C1-C2-C3-O3 |
| 3   | F            | 809 | GOL  | C1-C2-C3-O3 |
| 3   | F            | 809 | GOL  | O2-C2-C3-O3 |
| 3   | F            | 811 | GOL  | O1-C1-C2-C3 |
| 3   | В            | 806 | GOL  | O1-C1-C2-O2 |
| 3   | В            | 806 | GOL  | O2-C2-C3-O3 |
| 3   | В            | 812 | GOL  | O2-C2-C3-O3 |
| 3   | В            | 815 | GOL  | O2-C2-C3-O3 |
| 3   | С            | 805 | GOL  | O1-C1-C2-O2 |
| 3   | D            | 806 | GOL  | O2-C2-C3-O3 |
| 3   | Е            | 803 | GOL  | O2-C2-C3-O3 |
| 3   | F            | 807 | GOL  | O2-C2-C3-O3 |
| 3   | А            | 806 | GOL  | O1-C1-C2-C3 |
| 3   | В            | 806 | GOL  | C1-C2-C3-O3 |
| 3   | В            | 807 | GOL  | O1-C1-C2-C3 |
| 3   | D            | 808 | GOL  | C1-C2-C3-O3 |
| 3   | D            | 809 | GOL  | O1-C1-C2-C3 |
| 3   | Е            | 803 | GOL  | C1-C2-C3-O3 |
| 3   | F            | 806 | GOL  | O1-C1-C2-C3 |
| 3   | F            | 806 | GOL  | C1-C2-C3-O3 |
| 3   | F            | 808 | GOL  | O1-C1-C2-C3 |
| 3   | F            | 809 | GOL  | O1-C1-C2-C3 |
| 3   | F            | 812 | GOL  | O1-C1-C2-C3 |
| 3   | А            | 803 | GOL  | O2-C2-C3-O3 |
| 3   | В            | 805 | GOL  | O2-C2-C3-O3 |
| 3   | В            | 810 | GOL  | O1-C1-C2-O2 |
| 3   | В            | 810 | GOL  | O2-C2-C3-O3 |
| 3   | В            | 811 | GOL  | O1-C1-C2-O2 |
| 3   | В            | 813 | GOL  | O2-C2-C3-O3 |
| 3   | $\mathbf{C}$ | 810 | GOL  | O1-C1-C2-O2 |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms       |
|-----|-------|-----|------|-------------|
| 3   | С     | 811 | GOL  | O1-C1-C2-O2 |
| 3   | D     | 805 | GOL  | O1-C1-C2-O2 |
| 3   | Е     | 804 | GOL  | O1-C1-C2-O2 |
| 3   | Е     | 810 | GOL  | O1-C1-C2-O2 |
| 3   | F     | 804 | GOL  | O1-C1-C2-O2 |
| 3   | F     | 808 | GOL  | O1-C1-C2-O2 |
| 3   | А     | 806 | GOL  | O1-C1-C2-O2 |
| 3   | А     | 807 | GOL  | O1-C1-C2-O2 |
| 3   | А     | 807 | GOL  | O2-C2-C3-O3 |
| 3   | С     | 806 | GOL  | O2-C2-C3-O3 |
| 3   | С     | 807 | GOL  | O2-C2-C3-O3 |
| 3   | D     | 808 | GOL  | O2-C2-C3-O3 |
| 3   | D     | 809 | GOL  | O2-C2-C3-O3 |
| 3   | Е     | 803 | GOL  | O1-C1-C2-O2 |
| 3   | F     | 806 | GOL  | O1-C1-C2-O2 |
| 3   | F     | 811 | GOL  | O1-C1-C2-O2 |
| 3   | В     | 807 | GOL  | O2-C2-C3-O3 |
| 3   | А     | 805 | GOL  | O1-C1-C2-O2 |
| 3   | А     | 808 | GOL  | O2-C2-C3-O3 |
| 3   | D     | 804 | GOL  | O1-C1-C2-O2 |
| 3   | D     | 808 | GOL  | O1-C1-C2-O2 |
| 3   | F     | 809 | GOL  | O1-C1-C2-O2 |
| 3   | F     | 812 | GOL  | O1-C1-C2-O2 |
| 3   | F     | 806 | GOL  | O2-C2-C3-O3 |
| 3   | В     | 808 | GOL  | O1-C1-C2-O2 |
| 3   | D     | 809 | GOL  | O1-C1-C2-O2 |
| 3   | Е     | 810 | GOL  | O2-C2-C3-O3 |
| 3   | В     | 809 | GOL  | O1-C1-C2-C3 |
| 3   | В     | 813 | GOL  | O1-C1-C2-C3 |
| 3   | F     | 805 | GOL  | 01-C1-C2-C3 |
| 3   | E     | 807 | GOL  | 01-C1-C2-O2 |
| 3   | F     | 805 | GOL  | 01-C1-C2-O2 |
| 3   | A     | 808 | GOL  | C1-C2-C3-O3 |
| 3   | В     | 807 | GOL  | C1-C2-C3-O3 |
| 3   | В     | 808 | GOL  | O1-C1-C2-C3 |
| 3   | C     | 809 | GOL  | C1-C2-C3-O3 |
| 3   | С     | 810 | GOL  | C1-C2-C3-O3 |
| 3   | E     | 806 | GOL  | C1-C2-C3-O3 |
| 3   | E     | 810 | GOL  | C1-C2-C3-O3 |
| 3   | С     | 809 | GOL  | O2-C2-C3-O3 |

Continued from previous page...

There are no ring outliers.



| Mol | Chain | Res | Type | Clashes | Symm-Clashes |
|-----|-------|-----|------|---------|--------------|
| 3   | F     | 809 | GOL  | 1       | 0            |
| 3   | С     | 810 | GOL  | 2       | 0            |
| 3   | В     | 808 | GOL  | 1       | 0            |
| 3   | С     | 803 | GOL  | 4       | 0            |
| 3   | А     | 806 | GOL  | 1       | 0            |
| 3   | В     | 806 | GOL  | 3       | 0            |
| 3   | В     | 809 | GOL  | 3       | 0            |
| 3   | Е     | 803 | GOL  | 1       | 0            |
| 3   | F     | 805 | GOL  | 1       | 0            |
| 3   | А     | 803 | GOL  | 1       | 0            |
| 3   | С     | 806 | GOL  | 1       | 0            |
| 3   | F     | 806 | GOL  | 1       | 0            |
| 3   | В     | 807 | GOL  | 3       | 0            |
| 3   | D     | 809 | GOL  | 1       | 0            |
| 3   | С     | 809 | GOL  | 2       | 0            |

15 monomers are involved in 24 short contacts:

### 5.7 Other polymers (i)

There are no such residues in this entry.

### 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



## 6 Fit of model and data (i)

### 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed        | <RSRZ $>$ | #RSRZ>2      |   | $OWAB(Å^2)$    | Q<0.9 |
|-----|-------|-----------------|-----------|--------------|---|----------------|-------|
| 1   | А     | 685/712~(96%)   | -0.46     | 2(0%) 94 93  | 3 | 17, 25, 38, 61 | 0     |
| 1   | В     | 685/712~(96%)   | -0.48     | 1 (0%) 95 98 | 5 | 17, 23, 36, 58 | 0     |
| 1   | С     | 682/712~(95%)   | -0.28     | 13 (1%) 66 6 | 5 | 16, 27, 43, 65 | 0     |
| 1   | D     | 685/712~(96%)   | -0.21     | 9 (1%) 77 70 | 6 | 17, 27, 44, 68 | 0     |
| 1   | Ε     | 684/712~(96%)   | -0.38     | 9 (1%) 77 70 | 6 | 17, 26, 41, 64 | 0     |
| 1   | F     | 698/712~(98%)   | -0.51     | 5 (0%) 87 8' | 7 | 16, 23, 39, 58 | 0     |
| All | All   | 4119/4272 (96%) | -0.39     | 39 (0%) 84 8 | 3 | 16, 25, 41, 68 | 0     |

All (39) RSRZ outliers are listed below:

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | D     | 697 | GLN  | 4.6  |
| 1   | А     | 697 | GLN  | 3.4  |
| 1   | С     | 651 | ARG  | 3.3  |
| 1   | Е     | 697 | GLN  | 3.3  |
| 1   | D     | 664 | THR  | 3.2  |
| 1   | Е     | 537 | PRO  | 3.1  |
| 1   | F     | 537 | PRO  | 3.1  |
| 1   | Е     | 695 | GLY  | 3.0  |
| 1   | F     | 703 | ALA  | 3.0  |
| 1   | С     | 678 | THR  | 2.9  |
| 1   | С     | 658 | PHE  | 2.8  |
| 1   | С     | 676 | PRO  | 2.8  |
| 1   | С     | 683 | VAL  | 2.7  |
| 1   | D     | 630 | THR  | 2.6  |
| 1   | F     | 702 | ALA  | 2.6  |
| 1   | D     | 696 | ARG  | 2.6  |
| 1   | А     | 699 | THR  | 2.5  |
| 1   | С     | 672 | THR  | 2.5  |
| 1   | С     | 682 | ALA  | 2.5  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | С     | 141 | PRO  | 2.4  |
| 1   | Е     | 696 | ARG  | 2.4  |
| 1   | С     | 675 | THR  | 2.3  |
| 1   | Е     | 656 | GLY  | 2.3  |
| 1   | В     | 669 | GLN  | 2.3  |
| 1   | D     | 695 | GLY  | 2.3  |
| 1   | С     | 649 | THR  | 2.2  |
| 1   | Е     | 698 | PRO  | 2.2  |
| 1   | D     | 397 | ARG  | 2.2  |
| 1   | Е     | 657 | THR  | 2.2  |
| 1   | F     | 539 | THR  | 2.2  |
| 1   | С     | 673 | ALA  | 2.2  |
| 1   | F     | 704 | ALA  | 2.2  |
| 1   | С     | 566 | TRP  | 2.1  |
| 1   | С     | 663 | PRO  | 2.1  |
| 1   | Е     | 676 | PRO  | 2.1  |
| 1   | D     | 537 | PRO  | 2.1  |
| 1   | Е     | 679 | VAL  | 2.1  |
| 1   | D     | 545 | GLY  | 2.1  |
| 1   | D     | 483 | ARG  | 2.0  |

#### 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

#### 6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

| Mol | Type | Chain | Res | Atoms | RSCC | RSR  | $\mathbf{B}	ext{-factors}(\mathbf{A}^2)$ | Q<0.9 |
|-----|------|-------|-----|-------|------|------|------------------------------------------|-------|
| 3   | GOL  | F     | 813 | 6/6   | 0.60 | 0.24 | $51,\!65,\!66,\!67$                      | 0     |
| 3   | GOL  | В     | 808 | 6/6   | 0.74 | 0.31 | 52,55,66,70                              | 0     |
| 3   | GOL  | D     | 804 | 6/6   | 0.76 | 0.25 | $53,\!57,\!59,\!62$                      | 0     |



| Mol | Type | Chain | Res | Atoms | RSCC | RSR  | $B$ -factors( $Å^2$ ) | Q<0.9 |
|-----|------|-------|-----|-------|------|------|-----------------------|-------|
| 3   | GOL  | В     | 811 | 6/6   | 0.77 | 0.23 | 48,54,57,62           | 0     |
| 3   | GOL  | В     | 809 | 6/6   | 0.78 | 0.28 | 41,46,52,55           | 0     |
| 3   | GOL  | С     | 806 | 6/6   | 0.78 | 0.27 | 38,47,53,56           | 0     |
| 3   | GOL  | С     | 805 | 6/6   | 0.81 | 0.18 | 38,61,62,62           | 0     |
| 3   | GOL  | А     | 809 | 6/6   | 0.81 | 0.20 | 55,59,63,65           | 0     |
| 3   | GOL  | D     | 807 | 6/6   | 0.82 | 0.21 | 52,57,61,63           | 0     |
| 3   | GOL  | F     | 810 | 6/6   | 0.83 | 0.32 | 49,54,58,60           | 0     |
| 3   | GOL  | Е     | 809 | 6/6   | 0.83 | 0.23 | 56,62,63,69           | 0     |
| 3   | GOL  | D     | 809 | 6/6   | 0.84 | 0.15 | 45,57,59,67           | 0     |
| 3   | GOL  | С     | 810 | 6/6   | 0.84 | 0.22 | 40,57,60,63           | 0     |
| 3   | GOL  | F     | 805 | 6/6   | 0.84 | 0.31 | 45,53,56,63           | 0     |
| 3   | GOL  | А     | 807 | 6/6   | 0.84 | 0.22 | 48,51,54,73           | 0     |
| 3   | GOL  | С     | 808 | 6/6   | 0.84 | 0.20 | 48,49,52,55           | 0     |
| 3   | GOL  | А     | 804 | 6/6   | 0.85 | 0.17 | 49,54,55,56           | 0     |
| 3   | GOL  | В     | 806 | 6/6   | 0.85 | 0.25 | 42,50,53,60           | 0     |
| 3   | GOL  | А     | 808 | 6/6   | 0.85 | 0.13 | 52,58,60,66           | 0     |
| 3   | GOL  | Е     | 808 | 6/6   | 0.85 | 0.15 | 48,52,60,62           | 0     |
| 3   | GOL  | В     | 807 | 6/6   | 0.86 | 0.17 | 43,56,61,62           | 0     |
| 3   | GOL  | Е     | 810 | 6/6   | 0.86 | 0.19 | 45,47,52,63           | 0     |
| 3   | GOL  | В     | 810 | 6/6   | 0.86 | 0.30 | 50,54,61,65           | 0     |
| 3   | GOL  | А     | 805 | 6/6   | 0.86 | 0.17 | 39,58,62,62           | 0     |
| 3   | GOL  | В     | 814 | 6/6   | 0.86 | 0.21 | 50,54,57,64           | 0     |
| 3   | GOL  | F     | 808 | 6/6   | 0.87 | 0.15 | 36,50,51,53           | 0     |
| 3   | GOL  | А     | 806 | 6/6   | 0.87 | 0.20 | 47,56,59,60           | 0     |
| 3   | GOL  | D     | 806 | 6/6   | 0.87 | 0.18 | 34,50,54,55           | 0     |
| 3   | GOL  | С     | 811 | 6/6   | 0.89 | 0.18 | 52,56,58,59           | 0     |
| 3   | GOL  | F     | 809 | 6/6   | 0.90 | 0.27 | $38,\!53,\!59,\!59$   | 0     |
| 3   | GOL  | В     | 815 | 6/6   | 0.90 | 0.26 | 32,53,57,65           | 0     |
| 3   | GOL  | С     | 804 | 6/6   | 0.90 | 0.15 | 38,41,45,47           | 0     |
| 3   | GOL  | В     | 812 | 6/6   | 0.91 | 0.27 | 36,42,52,56           | 0     |
| 3   | GOL  | F     | 806 | 6/6   | 0.91 | 0.12 | $35,\!46,\!56,\!57$   | 0     |
| 3   | GOL  | D     | 808 | 6/6   | 0.91 | 0.16 | 32,37,47,55           | 0     |
| 3   | GOL  | F     | 807 | 6/6   | 0.92 | 0.17 | 42,51,52,53           | 0     |
| 3   | GOL  | С     | 809 | 6/6   | 0.92 | 0.14 | 36,47,53,55           | 0     |
| 3   | GOL  | С     | 807 | 6/6   | 0.92 | 0.17 | 32,50,53,55           | 0     |
| 3   | GOL  | Е     | 805 | 6/6   | 0.92 | 0.20 | 35,42,46,50           | 0     |
| 3   | GOL  | F     | 812 | 6/6   | 0.92 | 0.18 | 33,38,49,67           | 0     |
| 3   | GOL  | A     | 803 | 6/6   | 0.92 | 0.20 | 34,47,49,54           | 0     |
| 3   | GOL  | D     | 803 | 6/6   | 0.93 | 0.15 | 22,22,23,29           | 0     |
| 2   | SO4  | A     | 810 | 5/5   | 0.93 | 0.27 | 56,60,73,75           | 0     |
| 3   | GOL  | D     | 805 | 6/6   | 0.93 | 0.15 | 37,42,46,54           | 0     |
| 3   | GOL  | F     | 804 | 6/6   | 0.93 | 0.14 | 29,35,41,45           | 0     |



| 5XB7 |
|------|
|------|

| Mol | Type | Chain | Res | Atoms | RSCC | RSR  | $B-factors(A^2)$    | Q<0.9 |
|-----|------|-------|-----|-------|------|------|---------------------|-------|
| 3   | GOL  | F     | 811 | 6/6   | 0.93 | 0.15 | $32,\!49,\!56,\!56$ | 0     |
| 2   | SO4  | D     | 802 | 5/5   | 0.93 | 0.30 | 60,61,65,77         | 0     |
| 3   | GOL  | Е     | 807 | 6/6   | 0.93 | 0.19 | 35,45,50,51         | 0     |
| 2   | SO4  | В     | 802 | 5/5   | 0.94 | 0.30 | 48,54,55,63         | 0     |
| 2   | SO4  | F     | 814 | 5/5   | 0.94 | 0.24 | 51,54,60,69         | 0     |
| 3   | GOL  | В     | 805 | 6/6   | 0.94 | 0.14 | 29,37,41,49         | 0     |
| 3   | GOL  | А     | 802 | 6/6   | 0.94 | 0.14 | 21,27,28,29         | 0     |
| 2   | SO4  | В     | 803 | 5/5   | 0.94 | 0.22 | 48,55,62,69         | 0     |
| 3   | GOL  | Е     | 804 | 6/6   | 0.94 | 0.13 | 34,41,44,48         | 0     |
| 3   | GOL  | В     | 813 | 6/6   | 0.94 | 0.14 | 32,48,52,59         | 0     |
| 3   | GOL  | Е     | 806 | 6/6   | 0.95 | 0.14 | $35,\!49,\!57,\!59$ | 0     |
| 3   | GOL  | F     | 803 | 6/6   | 0.95 | 0.14 | 20,24,24,29         | 0     |
| 2   | SO4  | В     | 816 | 5/5   | 0.95 | 0.20 | 54,57,66,71         | 0     |
| 3   | GOL  | С     | 803 | 6/6   | 0.96 | 0.12 | 23,27,29,34         | 0     |
| 3   | GOL  | Е     | 803 | 6/6   | 0.96 | 0.11 | 21,23,25,26         | 0     |
| 2   | SO4  | С     | 802 | 5/5   | 0.96 | 0.16 | 52,56,61,65         | 0     |
| 2   | SO4  | Е     | 802 | 5/5   | 0.96 | 0.15 | 36,42,48,52         | 0     |
| 2   | SO4  | Е     | 811 | 5/5   | 0.97 | 0.15 | $51,\!53,\!62,\!68$ | 0     |
| 3   | GOL  | В     | 804 | 6/6   | 0.97 | 0.15 | 20,24,25,28         | 0     |
| 2   | SO4  | F     | 802 | 5/5   | 0.97 | 0.23 | 54,62,66,71         | 0     |
| 2   | SO4  | Е     | 801 | 5/5   | 0.98 | 0.11 | $33,\!36,\!38,\!39$ | 0     |
| 2   | SO4  | D     | 801 | 5/5   | 0.98 | 0.08 | 35,42,49,51         | 0     |
| 2   | SO4  | A     | 801 | 5/5   | 0.99 | 0.08 | 36,37,41,45         | 0     |
| 2   | SO4  | С     | 801 | 5/5   | 0.99 | 0.08 | 31,37,41,44         | 0     |
| 2   | SO4  | F     | 801 | 5/5   | 0.99 | 0.08 | 31,36,39,40         | 0     |
| 2   | SO4  | В     | 801 | 5/5   | 0.99 | 0.07 | 30,38,42,43         | 0     |

## 6.5 Other polymers (i)

There are no such residues in this entry.

