

Full wwPDB X-ray Structure Validation Report (i)

Aug 8, 2020 - 09:26 AM BST

	s pathway
Title : Crystal structure of deacetylase-teicoplanin complex in biosynthesis	s paanway
of teicoplanin	
Authors : Chan, H.C.; Huang, Y.T.; Lyu, S.Y.; Huang, C.J.; Li, Y.S.; Liu, Y.	.C.; Chou,
C.C.; Tsai, M.D.; Li, T.L.	
Deposited on : 2010-03-31	
Resolution : 1.70 Å(reported)	

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.13.1
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
$\operatorname{CCP4}$:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.13.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 1.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	4298 (1.70-1.70)
Clashscore	141614	4695(1.70-1.70)
Ramachandran outliers	138981	4610 (1.70-1.70)
Sidechain outliers	138945	4610 (1.70-1.70)
RSRZ outliers	127900	4222 (1.70-1.70)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	273	6% 77%	16% • 5%
1	В	273	5%	10% • 5%
1	С	273	11%	19% • • 5%
1	D	273	5% 81%	13% • 6%
2	Е	7	71%	29%
2	F	7	43% 57%	

Mol	Chain	Length	Quality of chain				
2	G	7	57% 43%				
2	Н	7	57%	43%			

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
2	GHP	G	701	-	-	-	Х
4	NAG	Е	709	-	-	-	Х
4	NAG	F	709	Х	-	-	Х
4	NAG	G	709	-	-	-	Х
6	T55	Н	711	-	-	Х	-

2XAD

2 Entry composition (i)

There are 7 unique types of molecules in this entry. The entry contains 9379 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		Atoms					ZeroOcc	AltConf	Trace
1	Λ	250	Total	С	Ν	Ο	\mathbf{S}	\mathbf{Se}	0 0	0	0
1	л	209	2018	1263	366	385	1	3		0	0
1	В	258	Total	С	Ν	Ο	S	Se	0	0	1
1	D	200	2006	1255	365	382	1	3	0	0	T
1	C	258	Total	С	Ν	Ο	S	Se	0	0	1
1		200	2008	1257	365	382	1	3	0	0	L
1	1 D	257	Total	С	Ν	Ο	S	Se	0	0	0
		201	2006	1255	364	383	1	3	0	U	0

• Molecule 1 is a protein called N-ACYL GLM PEUDO-TEICOPLANIN DEACETYLASE.

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	164	ASN	HIS	engineered mutation	UNP Q6ZZJ1
В	164	ASN	HIS	engineered mutation	UNP Q6ZZJ1
С	164	ASN	HIS	engineered mutation	UNP Q6ZZJ1
D	164	ASN	HIS	engineered mutation	UNP Q6ZZJ1

• Molecule 2 is a protein called TEICOPLANIN.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
0	F	7	Total	С	Cl	Ν	Ο	0	0	0
		1	84	58	2	7	17	0	0	0
0	Б	7	Total	С	Cl	Ν	0	0	0	0
	Г	1	85	58	2	7	18	0	0	0
0	C	7	Total	С	Cl	Ν	0	0	0	0
	G	1	85	58	2	7	18	0	0	
0	о и	7	Total	С	Cl	Ν	0	0	0	0
	7	85	58	2	7	18	0	0	0	

• Molecule 3 is beta-D-mannopyranose (three-letter code: BMA) (formula: $C_6H_{12}O_6$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	Е	1	Total C O 11 6 5	0	0
3	F	1	Total C O 11 6 5	0	0
3	G	1	Total C O 11 6 5	0	0
3	Н	1	Total C O 11 6 5	0	0

• Molecule 4 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	Е	1	Total C N O 14 8 1 5	0	0
4	F	1	Total C N O 14 8 1 5	0	0
4	G	1	Total C N O 14 8 1 5	0	0
4	Н	1	Total C N O 14 8 1 5	0	0

• Molecule 5 is 2-amino-2-deoxy-beta-D-glucopyranose (three-letter code: GCS) (formula: $C_6H_{13}NO_5$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	Ε	1	Total C N O 11 6 1 4	0	0
5	F	1	Total C N O 11 6 1 4	0	0
5	G	1	Total C N O 11 6 1 4	0	0
5	Н	1	Total C N O 11 6 1 4	0	0

• Molecule 6 is 8-METHYLNONANOIC ACID (three-letter code: T55) (formula: $C_{10}H_{20}O_2$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	E	1	Total C O	0	0
0	Ľ	T	11 10 1	0	0
6	F	1	Total C O	0	0
0	Ľ	T	11 10 1	0	0
6	С	1	Total C O	0	0
0	G	I	11 10 1	0	0
6	Ц	1	Total C O	0	0
0	11	T	11 10 1	0	0

• Molecule 7 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	А	204	Total O 204 204	0	0
7	В	200	Total O 200 200	0	0
7	С	158	Total O 158 158	0	0
7	D	221	Total O 221 221	0	0
7	Ε	4	Total O 4 4	0	0
7	F	13	Total O 13 13	0	0
7	G	4	$\begin{array}{cc} \overline{\mathrm{Total}} & \mathrm{O} \\ 4 & 4 \end{array}$	0	0
7	Н	10	$\begin{array}{cc} \overline{\mathrm{Total}} & \mathrm{O} \\ 10 & 10 \end{array}$	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: N-ACYL GLM PEUDO-TEICOPLANIN DEACETYLASE

																	•		٠		٠	٠	٠	٠		٠			۲
M2.18	-	V226	Y229	S230	S231	Q232	M233	VAL	LEU	LEU	ASN	GLY	SER	GLU	ASN	ASN	L243	R246	1247	R252	Q 253	P256	H257	G258	G259	Y260	S270	-	S273

• Molecule 2: TEICOPLANIN

Chain E:	71%	29%
6701 7702 3FG703 6704 6704 7706 7706 3FG707		
• Molecule 2: 7	TEICOPLANIN	
Chain F:	43%	57%
6701 Y702 3F6703 6704 6705 Y705 3F6707		
• Molecule 2: ′	TEICOPLANIN	
Chain G:	57%	43%
6701 7702 3FG703 6704 6705 7705 3FG707 3FG707		
• Molecule 2:	TEICOPLANIN	
Chain H:	57%	43%
6701 1702 3FG703 6704 6705 1706 3FG707 3FG707		

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1	Depositor
Cell constants	58.77Å 70.71 Å 76.31 Å	Deperitor
a, b, c, α , β , γ	113.89° 108.29° 98.20°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	20.00 - 1.70	Depositor
Resolution (A)	19.94 - 1.70	EDS
% Data completeness	95.8 (20.00-1.70)	Depositor
(in resolution range)	93.7(19.94-1.70)	EDS
R _{merge}	0.04	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$4.37 (at 1.70 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.5.0109	Depositor
D D	0.201 , 0.237	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.200 , 0.236	DCC
R_{free} test set	5379 reflections $(5.04%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	18.4	Xtriage
Anisotropy	0.010	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.34 , 30.2	EDS
L-test for twinning ²	$< L > = 0.48, < L^2 > = 0.31$	Xtriage
Estimated twinning fraction	$0.125 { m ~for~-h,-k,h+k+l}$	Xtriage
F_o, F_c correlation	0.95	EDS
Total number of atoms	9379	wwPDB-VP
Average B, all atoms $(Å^2)$	24.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 59.45 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 1.7616e-05. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: BMA, GHP, NAG, 3MY, T55, GCS, 3FG, OMY

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	Bond angles			
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5		
1	А	1.25	8/2064~(0.4%)	1.34	12/2805~(0.4%)		
1	В	1.17	4/2052~(0.2%)	1.08	7/2789~(0.3%)		
1	С	1.20	3/2054~(0.1%)	1.13	11/2792~(0.4%)		
1	D	1.14	1/2052~(0.0%)	1.09	9/2788~(0.3%)		
All	All	1.19	16/8222~(0.2%)	1.16	39/11174~(0.3%)		

All (16) bond length outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
1	А	21	VAL	CB-CG1	7.31	1.68	1.52
1	А	265	TRP	CG-CD1	6.90	1.46	1.36
1	С	44	PHE	CE2-CZ	6.50	1.49	1.37
1	А	101	ARG	CD-NE	-6.16	1.35	1.46
1	А	41	TYR	CE1-CZ	6.12	1.46	1.38
1	А	273	SER	CB-OG	6.04	1.50	1.42
1	А	260	TYR	CE2-CZ	5.92	1.46	1.38
1	В	265	TRP	CE3-CZ3	5.32	1.47	1.38
1	В	41	TYR	CD1-CE1	5.30	1.47	1.39
1	D	108	TRP	CE3-CZ3	5.20	1.47	1.38
1	А	156	ALA	CA-CB	5.17	1.63	1.52
1	С	272	ASP	C-N	-5.16	1.22	1.34
1	А	41	TYR	CD2-CE2	5.12	1.47	1.39
1	C	95	PHE	CE2-CZ	5.10	1.47	1.37
1	В	180	VAL	CB-CG1	5.01	1.63	1.52
1	В	118	LYS	CE-NZ	5.00	1.61	1.49

All (39) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	101	ARG	NE-CZ-NH2	-31.52	104.54	120.30

ov	Λ1	\square
$\Delta \Lambda$	A.	\mathcal{D}

Mol	Chain	Res	Tvpe	Atoms	Z	$Observed(^{o})$	Ideal(°)
1	A	101	ARG	NE-CZ-NH1	24.14	132.37	120.30
1	A	101	ARG	CD-NE-CZ	10.92	138.88	123.60
1	C	205	ARG	NE-CZ-NH2	-10.55	115.02	120.30
1	C	205	ARG	NE-CZ-NH1	9.81	125.20	120.30
1	D	101	ARG	NE-CZ-NH2	-9.78	115.41	120.30
1	A	94	ARG	NE-CZ-NH2	8.25	124.43	120.30
1	A	79	ASP	CB-CG-OD2	8.12	125.61	118.30
1	С	84	ASP	CB-CG-OD2	-7.55	111.50	118.30
1	В	272	ASP	O-C-N	-6.99	111.53	122.70
1	D	145	ASP	CB-CG-OD1	6.84	124.46	118.30
1	А	169	ASP	CB-CG-OD2	-6.62	112.34	118.30
1	С	168	ARG	NE-CZ-NH2	-6.60	117.00	120.30
1	D	145	ASP	CB-CG-OD2	-6.58	112.38	118.30
1	А	79	ASP	CB-CG-OD1	-6.58	112.38	118.30
1	В	118	LYS	CD-CE-NZ	6.57	126.82	111.70
1	В	101	ARG	NE-CZ-NH2	-6.31	117.15	120.30
1	С	18	ASP	CB-CG-OD1	6.22	123.90	118.30
1	А	101	ARG	CG-CD-NE	-5.80	99.61	111.80
1	С	210	ASP	CB-CG-OD2	5.77	123.49	118.30
1	С	84	ASP	CB-CG-OD1	5.75	123.47	118.30
1	D	169	ASP	CB-CG-OD1	5.63	123.37	118.30
1	D	138	ASP	CB-CG-OD1	5.61	123.35	118.30
1	В	18	ASP	CB-CG-OD1	5.54	123.29	118.30
1	А	141	ARG	NE-CZ-NH1	5.53	123.07	120.30
1	В	136	VAL	CG1-CB-CG2	-5.46	102.17	110.90
1	D	210	ASP	CB-CG-OD1	-5.41	113.43	118.30
1	A	18	ASP	CB-CG-OD2	-5.36	113.47	118.30
1	D	101	ARG	NE-CZ-NH1	5.32	122.96	120.30
1	В	218	MSE	CG-SE-CE	-5.30	87.23	98.90
1	С	87	ARG	NE-CZ-NH2	-5.30	117.65	120.30
1	С	68	ASP	CB-CG-OD2	-5.25	113.57	118.30
1	D	107	ARG	NE-CZ-NH2	5.23	122.91	120.30
1	D	107	ARG	NE-CZ-NH1	-5.22	117.69	120.30
1	С	40	VAL	N-CA-C	-5.18	97.00	111.00
1	В	205	ARG	NE-CZ-NH2	-5.14	117.73	120.30
1	C	94	ARG	NE-CZ-NH1	-5.11	117.74	120.30
1	A	129	ASP	CB-CG-OD2	-5.06	113.75	118.30
1	A	163	ASP	CB-CG-OD2	-5.04	113.76	118.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2018	0	1935	30	1
1	В	2006	0	1921	19	0
1	С	2008	0	1925	66	1
1	D	2006	0	1921	30	0
2	Е	84	0	34	2	0
2	F	85	0	35	4	0
2	G	85	0	35	3	0
2	Н	85	0	34	5	0
3	Е	11	0	10	0	0
3	F	11	0	10	1	0
3	G	11	0	10	0	0
3	Н	11	0	10	4	0
4	Е	14	0	13	2	0
4	F	14	0	11	0	0
4	G	14	0	13	1	0
4	Н	14	0	13	0	0
5	Е	11	0	9	0	0
5	F	11	0	9	0	0
5	G	11	0	9	0	0
5	Н	11	0	9	0	0
6	Е	11	0	19	4	0
6	F	11	0	19	4	0
6	G	11	0	19	3	0
6	Н	11	0	19	12	0
7	А	204	0	0	4	0
7	В	200	0	0	0	0
7	С	158	0	0	2	0
7	D	221	0	0	4	0
7	Е	4	0	0	0	0
7	F	13	0	0	2	0
7	G	4	0	0	0	0
7	Н	10	0	0	0	0
All	All	9379	0	8042	154	1

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 9.

All (154) close contacts within the same asymmetric unit are listed below, sorted by their clash

magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	${ m distance}~({ m \AA})$	overlap (Å)
1:C:29:ALA:CB	1:C:218:MSE:HE2	1.57	1.34
1:C:29:ALA:HB1	1:C:218:MSE:CE	1.66	1.26
1:D:233:MSE:HE2	7:D:2200:HOH:O	1.45	1.17
1:D:233:MSE:HE3	6:H:711:T55:CAF	1.76	1.15
1:C:243:LEU:HD22	6:G:711:T55:HAF1	1.32	1.11
1:A:233:MSE:HE3	6:E:711:T55:HAF3	1.12	1.08
1:A:233:MSE:HE3	6:E:711:T55:CAF	1.82	1.07
1:C:29:ALA:HB3	1:C:218:MSE:HE2	1.37	1.05
1:D:233:MSE:HE3	6:H:711:T55:HAF2	1.06	1.02
1:C:87:ARG:HD3	1:C:87:ARG:O	1.61	1.01
1:C:29:ALA:CB	1:C:218:MSE:CE	2.31	1.00
1:C:246:ARG:HH11	1:C:246:ARG:HG2	1.30	0.96
1:A:68:ASP:OD1	7:A:2048:HOH:O	1.86	0.93
1:C:58:ARG:CD	1:C:112:HIS:ND1	2.33	0.91
1:D:22:LEU:HD21	6:H:711:T55:HAE	1.52	0.91
1:D:233:MSE:CE	6:H:711:T55:HAF2	2.00	0.89
2:F:702:3MY:O	7:F:2006:HOH:O	1.88	0.89
1:A:233:MSE:CE	6:E:711:T55:HAF3	2.01	0.89
1:D:226:VAL:HG13	6:H:711:T55:HAF3	1.56	0.87
1:C:29:ALA:HB1	1:C:218:MSE:HE1	1.56	0.87
1:C:243:LEU:HG	1:C:246:ARG:HD2	1.57	0.86
2:H:707:3FG:HZ	3:H:708:BMA:H2	1.56	0.84
1:C:214:VAL:HG13	1:C:218:MSE:HB3	1.62	0.82
1:D:192:VAL:HG11	1:D:246:ARG:HD2	1.59	0.81
1:C:58:ARG:HD2	1:C:112:HIS:ND1	1.95	0.81
1:C:29:ALA:HB1	1:C:218:MSE:HE2	1.26	0.78
1:C:62:ILE:HD11	1:C:118:LYS:HD2	1.66	0.77
1:C:58:ARG:NE	1:C:112:HIS:ND1	2.33	0.77
1:C:161:HIS:HD2	1:C:163:ASP:H	1.33	0.76
1:C:214:VAL:CG1	1:C:218:MSE:HB3	2.15	0.76
1:C:87:ARG:CD	1:C:87:ARG:O	2.34	0.75
1:C:87:ARG:HD3	1:C:87:ARG:C	2.04	0.75
1:A:161:HIS:HD2	1:A:163:ASP:H	1.35	0.74
1:C:58:ARG:NE	1:C:112:HIS:CE1	2.56	0.73
1:D:233:MSE:CE	6:H:711:T55:CAF	2.60	0.72
1:D:192:VAL:HG11	1:D:246:ARG:CD	2.19	0.72
1:C:58:ARG:NE	1:C:112:HIS:CG	2.58	0.71
1:D:161:HIS:HD2	1:D:163:ASP:H	1.38	0.71
1:B:59:MSE:SE	1:B:118:LYS:HG3	2.40	0.71
1:A:69:ASP:OD2	7:A:2049:HOH:O	2.09	0.70
1:B:118:LYS:HE3	2:F:705:GHP:O	1.91	0.70

		Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)		
1:C:246:ARG:HH11	1:C:246:ARG:CG	2.03	0.70		
1:C:85:HIS:HE1	7:C:2038:HOH:O	1.73	0.70		
1:C:87:ARG:NH1	1:C:87:ARG:O	2.25	0.69		
1:B:22:LEU:HD21	6:F:711:T55:HAE	1.74	0.69		
1:C:218:MSE:HE1	1:C:221:GLN:OE1	1.96	0.66		
1:C:58:ARG:HE	1:C:112:HIS:CG	2.14	0.65		
1:D:226:VAL:CG1	6:H:711:T55:HAF3	2.25	0.65		
1:B:233:MSE:SE	6:F:711:T55:CAF	2.95	0.64		
1:B:249:GLU:O	1:B:252:ARG:HG3	1.97	0.64		
1:A:73:LEU:O	1:A:73:LEU:HD23	1.98	0.64		
1:C:58:ARG:CZ	1:C:112:HIS:CE1	2.82	0.64		
1:C:218:MSE:HA	1:C:218:MSE:HE3	1.80	0.62		
1:C:62:ILE:CD1	1:C:118:LYS:HD2	2.27	0.62		
1:A:117:GLN:O	1:A:118:LYS:HB2	1.99	0.62		
1:B:249:GLU:O	1:B:252:ARG:CG	2.47	0.61		
1:C:58:ARG:CD	1:C:112:HIS:CE1	2.83	0.61		
1:C:58:ARG:CZ	1:C:58:ARG:HB3	2.29	0.60		
1:C:243:LEU:HG	1:C:246:ARG:CD	2.30	0.60		
1:B:249:GLU:HA	1:B:252:ARG:HG2	1.84	0.60		
3:F:708:BMA:H4	7:F:2011:HOH:O	2.01	0.60		
1:D:22:LEU:HD21	6:H:711:T55:CAE	2.29	0.58		
1:D:243:LEU:HD13	7:D:2203:HOH:O	2.03	0.58		
1:D:270:SER:HB2	1:D:273:SER:HB3	1.86	0.58		
1:B:103:LEU:HD11	1:B:109:LEU:HA	1.87	0.57		
1:A:164:ASN:N	1:A:164:ASN:HD22	2.05	0.55		
1:C:94:ARG:NH2	7:C:2046:HOH:O	2.23	0.55		
1:B:233:MSE:SE	6:F:711:T55:HAF2	2.57	0.54		
1:C:59:MSE:SE	1:C:119:LEU:HD23	2.58	0.54		
1:C:29:ALA:HB3	1:C:218:MSE:CE	2.21	0.54		
1:A:233:MSE:CE	6:E:711:T55:CAF	2.72	0.54		
1:D:194:LYS:HE3	7:D:2146:HOH:O	2.08	0.53		
1:D:58:ARG:HD3	1:D:112:HIS:NE2	2.23	0.53		
1:C:161:HIS:CD2	1:C:163:ASP:H	2.21	0.52		
1:C:152:VAL:HG23	1:C:180:VAL:HG11	1.91	0.52		
2:G:701:GHP:C2	2:G:703:3FG:HG1	2.40	0.52		
1:A:186:GLU:HG2	1:A:191:ALA:CB	2.41	0.51		
1:B:66:ALA:HB3	1:B:69:ASP:HB2	1.91	0.51		
1:C:65:LEU:HD21	1:C:74:TYR:CD2	2.45	0.51		
1:D:252:ARG:NH2	7:D:2206:HOH:O	2.44	0.51		
1:A:246:ARG:HH12	4:E:709:NAG:H82	1.76	0.51		
1:B:258:GLY:H	1:D:230:SER:HB3	1.77	0.51		

		Interatomic	Clash	
Atom-1	Atom-2	distance $(Å)$	overlap (Å)	
2:H:707:3FG:CZ	3:H:708:BMA:C2	2.88	0.50	
1:D:22:LEU:CD2	6:H:711:T55:HAE	2.34	0.50	
1:D:233:MSE:HE3	6:H:711:T55:HAF1	1.83	0.50	
1:C:210:ASP:O	1:C:263:THR:HA	2.13	0.49	
1:D:62:ILE:CD1	1:D:118:LYS:HD3	2.42	0.49	
1:C:110:THR:HB	1:C:119:LEU:HD12	1.94	0.49	
1:D:18:ASP:HA	1:D:229:TYR:CZ	2.48	0.49	
1:D:192:VAL:CG1	1:D:246:ARG:HD2	2.37	0.49	
1:A:186:GLU:HG2	1:A:191:ALA:HB2	1.94	0.49	
1:C:58:ARG:CB	1:C:58:ARG:CZ	2.90	0.49	
1:A:118:LYS:HE3	2:E:705:GHP:O	2.13	0.49	
2:F:705:GHP:C2	2:F:707:3FG:N	2.76	0.49	
1:A:243:LEU:HB2	7:A:2183:HOH:O	2.13	0.48	
1:C:63:TRP:HB3	1:C:231:SER:HB2	1.95	0.48	
1:B:113:VAL:HG21	1:B:117:GLN:HG2	1.96	0.48	
1:B:212:SER:O	1:B:261:GLY:HA3	2.14	0.48	
1:C:161:HIS:HD2	1:C:163:ASP:N	2.08	0.48	
1:D:192:VAL:HG21	1:D:246:ARG:HD2	1.95	0.47	
1:C:76:ARG:HG2	1:C:92:HIS:ND1	2.29	0.47	
1:C:186:GLU:HG2	1:C:191:ALA:HB2	1.97	0.47	
1:C:58:ARG:HH11	1:C:58:ARG:HB2	1.80	0.47	
1:D:233:MSE:CE	6:H:711:T55:HAF1	2.42	0.47	
2:E:707:3FG:OXT	4:E:709:NAG:H81	2.16	0.46	
1:A:192:VAL:HG11	1:A:246:ARG:CG	2.45	0.46	
1:C:65:LEU:HD21	1:C:74:TYR:CG	2.50	0.46	
1:A:192:VAL:HG11	1:A:246:ARG:HG2	1.97	0.46	
1:B:249:GLU:O	1:B:252:ARG:HG2	2.15	0.46	
1:C:87:ARG:CZ	1:C:87:ARG:O	2.63	0.46	
1:C:218:MSE:HA	1:C:218:MSE:CE	2.42	0.46	
2:H:703:3FG:OD2	3:H:708:BMA:H5	2.16	0.46	
2:H:707:3FG:HZ	3:H:708:BMA:C2	2.34	0.46	
1:C:58:ARG:CB	1:C:58:ARG:NH1	2.79	0.45	
1:D:73:LEU:HG	1:D:77:LYS:NZ	2.31	0.45	
1:A:39:LEU:HD11	1:A:91:ARG:HB2	1.99	0.45	
1:A:49:GLN:HG3	1:C:176:HIS:O	2.16	0.45	
1:C:211:VAL:HG11	1:C:254:ASN:HB3	1.98	0.45	
1:A:249:GLU:OE2	1:A:252:ARG:NH1	2.47	0.45	
1:B:103:LEU:CD1	1:B:109:LEU:HA	2.46	0.45	
1:C:214:VAL:HG13	1:C:218:MSE:CB	2.42	0.45	
1:C:58:ARG:NH1	1:C:58:ARG:HB2	2.31	0.44	
1:C:55:ALA:O	1:C:58:ARG:HG2	2.17	0.44	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:C:184:LEU:HG	1:C:267:VAL:CG2	2.48	0.44	
1:A:256:PRO:O	1:A:257:HIS:CG	2.71	0.44	
1:A:33:GLN:NE2	7:A:2017:HOH:O	2.51	0.44	
1:B:103:LEU:N	1:B:103:LEU:CD1	2.81	0.44	
1:A:73:LEU:CD2	1:A:77:LYS:HE2	2.47	0.43	
1:C:116:ARG:O	2:G:705:GHP:H6	2.18	0.43	
1:C:14:SER:HB2	1:C:20:ALA:HB2	2.00	0.43	
1:A:211:VAL:HG11	1:A:255:ALA:HB2	2.00	0.43	
1:C:31:ALA:O	1:C:36:ALA:HB3	2.18	0.43	
1:C:80:ILE:HG12	1:C:90:HIS:CE1	2.54	0.43	
1:C:152:VAL:O	1:C:182:VAL:HA	2.19	0.43	
6:G:711:T55:HAH1	6:G:711:T55:HAK1	1.81	0.43	
1:D:232:GLN:HB2	6:H:711:T55:HAD2	2.01	0.42	
1:C:156:ALA:HA	1:C:184:LEU:HD13	2.02	0.42	
1:C:186:GLU:HG2	1:C:191:ALA:CB	2.50	0.42	
1:A:73:LEU:HD23	1:A:73:LEU:C	2.40	0.42	
1:B:22:LEU:HD11	6:F:711:T55:HAD3	2.01	0.42	
1:C:53:SER:O	1:C:57:GLN:HG3	2.20	0.42	
1:A:103:LEU:HA	1:A:103:LEU:HD23	1.84	0.42	
1:B:119:LEU:O	2:F:703:3FG:HA	2.19	0.42	
1:A:102:LYS:HE2	1:A:108:TRP:CH2	2.55	0.41	
1:C:233:MSE:HG2	6:G:711:T55:HAD2	2.03	0.41	
1:A:73:LEU:HD22	1:A:77:LYS:HE2	2.02	0.41	
1:C:17:LEU:O	1:C:18:ASP:CB	2.68	0.41	
1:A:249:GLU:O	1:A:253:GLN:HB3	2.21	0.41	
1:D:120:ALA:HA	2:H:702:3MY:O	2.21	0.41	
2:G:706:OMY:N	4:G:709:NAG:O5	2.54	0.40	
1:D:62:ILE:HD13	1:D:118:LYS:HD3	2.02	0.40	
1:A:243:LEU:HB3	1:A:244:PHE:H	1.63	0.40	
1:B:249:GLU:CA	1:B:252:ARG:HG2	2.49	0.40	
1:D:26:ALA:HB1	1:D:214:VAL:HG11	2.04	0.40	

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-1 Atom-2		Clash overlap (Å)	
1:A:195:SER:O	$1:C:58:ARG:NH2[1_544]$	2.15	0.05	

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percen	tiles
1	А	255/273~(93%)	247 (97%)	6 (2%)	2(1%)	19	6
1	В	254/273~(93%)	249~(98%)	3~(1%)	2(1%)	19	6
1	С	254/273~(93%)	241 (95%)	12~(5%)	1 (0%)	34	18
1	D	253/273~(93%)	246 (97%)	5(2%)	2(1%)	19	6
All	All	1016/1092~(93%)	983 (97%)	26(3%)	7 (1%)	22	8

All (7) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	18	ASP
1	В	18	ASP
1	В	257	HIS
1	С	18	ASP
1	D	18	ASP
1	D	257	HIS
1	А	118	LYS

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	alysed Rotameric Outliers			Percentiles		
1	А	210/218~(96%)	201~(96%)	9 (4%)	29	11		
1	В	208/218~(95%)	200~(96%)	8 (4%)	33	14		
1	С	209/218~(96%)	199~(95%)	10~(5%)	25	9		

Conti	Continuea from previous page										
Mol	Chain	Analysed	Rotameric	Outliers	Percentiles						
1	D	209/218~(96%)	204~(98%)	5(2%)	49 31						
All	All	836/872~(96%)	804 (96%)	32~(4%)	33 14						

All (32) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	22	LEU
1	А	37	ASN
1	А	58	ARG
1	А	65	LEU
1	А	113	VAL
1	А	164	ASN
1	А	187	ASP
1	А	195	SER
1	А	233	MSE
1	В	112	HIS
1	В	118	LYS
1	В	119	LEU
1	В	123	ASP
1	В	187	ASP
1	В	217	GLU
1	В	252	ARG
1	В	253	GLN
1	С	8	THR
1	С	69	ASP
1	С	87	ARG
1	С	119	LEU
1	С	187	ASP
1	С	218	MSE
1	С	233	MSE
1	С	243	LEU
1	С	246	ARG
1	С	257	HIS
1	D	54	PRO
1	D	58	ARG
1	D	187	ASP
1	D	208	SER
1	D	218	MSE

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (18) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	37	ASN
1	А	57	GLN
1	А	117	GLN
1	А	161	HIS
1	А	164	ASN
1	А	176	HIS
1	С	90	HIS
1	С	117	GLN
1	С	122	ASN
1	С	161	HIS
1	С	202	GLN
1	С	232	GLN
1	С	254	ASN
1	D	33	GLN
1	D	122	ASN
1	D	161	HIS
1	D	202	GLN
1	D	253	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

28 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mal Turna Chain		Deg Link		Bond lengths			Bond angles		
Moi Type C	Chain	nes	$\mathbf{S} \mid \mathbf{L} \mathbf{I} \mathbf{I} \mathbf{K}$	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
2	GHP	Е	704	2,5	10,11,12	2.51	4 (40%)	11,14,16	1.22	1 (9%)
2	3FG	Н	707	3,2	9,13,13	1.10	1 (11%)	13,18,18	2.80	4 (30%)
2	3FG	F	703	2	11,12,13	1.53	1 (9%)	13,16,18	1.16	2 (15%)
2	3FG	Е	703	2	10, 11, 13	1.22	1 (10%)	11,14,18	1.74	4 (36%)
2	GHP	Е	705	2	10, 11, 12	1.77	4 (40%)	11,14,16	2.14	<mark>3 (27%)</mark>

Mal	Type	Chain	Bos	Link	Link Bond lengths		Bond angles			
WIOI	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	GHP	F	704	2,5	10, 11, 12	2.75	4 (40%)	11,14,16	2.33	4(36%)
2	3MY	Е	702	2	12, 13, 14	1.47	2(16%)	$14,\!17,\!19$	3.31	8 (57%)
2	3MY	Н	702	2	12,13,14	1.33	1 (8%)	14,17,19	2.67	6 (42%)
2	GHP	F	701	2	10, 11, 12	1.03	0	11,14,16	1.28	1 (9%)
2	GHP	Н	705	2	10, 11, 12	1.65	2 (20%)	11,14,16	2.48	4 (36%)
2	3FG	Е	707	3,2	9,13,13	1.25	2 (22%)	13,18,18	1.50	2 (15%)
2	3MY	F	702	2	12,13,14	1.19	1 (8%)	14,17,19	<mark>3.29</mark>	5 (35%)
2	3FG	Н	703	2	11,12,13	1.25	1 (9%)	13,16,18	0.85	1 (7%)
2	3MY	G	702	2	12,13,14	0.90	0	14,17,19	2.78	9 (64%)
2	GHP	G	704	2,5	10, 11, 12	2.65	3 (30%)	11,14,16	1.67	3 (27%)
2	3FG	F	707	3,2	9,13,13	1.36	1 (11%)	13,18,18	2.54	5 (38%)
2	GHP	Н	704	2,5	10, 11, 12	1.62	3 (30%)	11,14,16	0.87	0
2	OMY	G	706	2,4	12,14,15	1.32	2(16%)	17,19,21	<mark>3.58</mark>	4 (23%)
2	3FG	G	707	3,2	9,13,13	1.37	2 (22%)	13,18,18	2.57	5 (38%)
2	GHP	Е	701	2	10, 11, 12	1.29	1 (10%)	11,14,16	1.03	1 (9%)
2	GHP	G	701	2	10, 11, 12	1.41	1 (10%)	11,14,16	1.42	2 (18%)
2	OMY	Е	706	2,4	12,14,15	1.87	3 (25%)	17,19,21	<mark>3.66</mark>	4 (23%)
2	GHP	F	705	2	10, 11, 12	1.65	3 (30%)	11,14,16	2.16	6 (54%)
2	OMY	Н	706	2,4	12,14,15	2.14	6 (50%)	17,19,21	<mark>3.34</mark>	6(35%)
2	GHP	Н	701	2	10,11,12	1.45	2 (20%)	11,14,16	1.56	2 (18%)
2	OMY	F	706	2,4	12,14,15	1.48	1 (8%)	17,19,21	<mark>3.53</mark>	2 (11%)
2	GHP	G	705	2	10,11,12	2.59	2 (20%)	11,14,16	2.47	4 (36%)
2	3FG	G	703	2	$11,\!12,\!13$	0.75	0	$13,\!16,\!18$	0.72	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	\mathbf{Res}	Link	Chirals	Torsions	Rings
2	GHP	Е	704	2,5	-	2/4/6/8	0/1/1/1
2	3FG	Н	707	3,2	-	1/4/8/8	0/1/1/1
2	$3 \mathrm{FG}$	F	703	2	-	2/4/6/8	0/1/1/1
2	$3 \mathrm{FG}$	Е	703	2	-	2/4/6/8	0/1/1/1
2	GHP	Е	705	2	-	0/4/6/8	0/1/1/1
2	GHP	F	704	2,5	-	4/4/6/8	0/1/1/1
2	3MY	Е	702	2	-	0/5/6/8	0/1/1/1

$Z \Lambda A D$

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	3MY	Н	702	2	-	2/5/6/8	0/1/1/1
2	GHP	F	701	2	_	0/4/6/8	0/1/1/1
2	GHP	Н	705	2	-	0/4/6/8	0/1/1/1
2	3FG	Е	707	3,2	-	0/4/8/8	0/1/1/1
2	3MY	F	702	2	_	0/5/6/8	0/1/1/1
2	$3 \mathrm{FG}$	Н	703	2	_	2/4/6/8	0/1/1/1
2	3MY	G	702	2	-	2/5/6/8	0/1/1/1
2	GHP	G	704	2,5	-	3/4/6/8	0/1/1/1
2	3FG	F	707	3,2	-	2/4/8/8	0/1/1/1
2	GHP	Н	704	2,5	-	2/4/6/8	0/1/1/1
2	OMY	G	706	2,4	-	1/9/10/12	0/1/1/1
2	3FG	G	707	3,2	-	0/4/8/8	0/1/1/1
2	GHP	Е	701	2	-	0/4/6/8	0/1/1/1
2	GHP	G	701	2	_	1/4/6/8	0/1/1/1
2	OMY	E	706	2,4	-	1/9/10/12	0/1/1/1
2	GHP	F	705	2	_	0/4/6/8	0/1/1/1
2	OMY	Н	706	2,4	-	1/9/10/12	0/1/1/1
2	GHP	Н	701	2	-	0/4/6/8	0/1/1/1
2	OMY	F	706	2,4	_	1/9/10/12	0/1/1/1
2	GHP	G	705	2	-	0/4/6/8	0/1/1/1
2	3FG	G	703		-	2/4/6/8	0/1/1/1

All (54) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
2	F	704	GHP	C1-CA	7.26	1.60	1.52
2	G	704	GHP	C1-CA	6.93	1.59	1.52
2	G	705	GHP	C1-CA	6.65	1.59	1.52
2	Е	704	GHP	C1-CA	5.95	1.58	1.52
2	Е	706	OMY	CG-CB	4.48	1.58	1.51
2	Н	706	OMY	CG-CB	3.89	1.57	1.51
2	F	703	3FG	CA-C	3.57	1.58	1.51
2	Е	705	GHP	C1-CA	3.48	1.56	1.52
2	Н	703	3FG	CB-CA	3.37	1.56	1.52
2	Е	704	GHP	C6-C5	3.36	1.44	1.38
2	Н	705	GHP	CA-C	3.32	1.57	1.51
2	F	706	OMY	CG-CB	3.30	1.56	1.51
2	F	707	3FG	CB-CA	3.27	1.56	1.52
2	Н	706	OMY	OCZ-CZ	3.19	1.42	1.36
2	Н	706	OMY	CZ-CE1	-3.12	1.36	1.39
2	G	704	GHP	CA-C	3.09	1.57	1.51

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	F	704	GHP	CA-C	3.08	1.57	1.51
2	G	705	GHP	C3-C2	3.01	1.44	1.38
2	Н	704	GHP	CA-C	2.97	1.57	1.51
2	Е	704	GHP	C6-C1	2.86	1.43	1.39
2	Е	706	OMY	OCZ-CZ	2.84	1.42	1.36
2	Н	701	GHP	CA-C	2.81	1.56	1.51
2	G	706	OMY	CG-CB	2.76	1.55	1.51
2	F	705	GHP	CA-C	2.71	1.56	1.51
2	Н	704	GHP	C1-CA	2.70	1.55	1.52
2	Ε	701	GHP	CA-C	2.68	1.56	1.51
2	Н	706	OMY	CD2-CG	2.67	1.43	1.39
2	F	705	GHP	C1-CA	2.63	1.55	1.52
2	Н	704	GHP	C6-C1	2.55	1.43	1.39
2	Е	705	GHP	C6-C5	2.55	1.43	1.38
2	Е	702	3MY	OBD-CZ	2.51	1.41	1.36
2	Н	702	3MY	CE1-CZ	2.51	1.44	1.39
2	Е	706	OMY	CD2-CE2	2.49	1.43	1.38
2	Н	706	OMY	CD2-CE2	2.42	1.43	1.38
2	Η	705	GHP	C1-CA	2.41	1.55	1.52
2	Н	706	OMY	CD1-CG	-2.38	1.35	1.39
2	F	704	GHP	C6-C5	2.36	1.43	1.38
2	G	707	3FG	CG1-CD1	2.35	1.42	1.39
2	Ε	702	3MY	CZ-CE2	2.32	1.41	1.39
2	F	704	GHP	C6-C1	2.31	1.42	1.39
2	Ε	705	GHP	C5-C4	2.30	1.43	1.38
2	G	706	OMY	ODE-CB	2.24	1.47	1.42
2	Ε	703	3FG	CA-C	2.24	1.55	1.51
2	G	701	GHP	C1-CA	2.21	1.54	1.52
2	F	705	GHP	C3-C2	2.20	1.42	1.38
2	F	702	3MY	CB-CG	2.16	1.56	1.51
2	Е	707	3FG	CB-CA	2.16	1.54	1.52
2	G	704	GHP	C5-C4	2.15	1.43	1.38
2	H	701	GHP	C6-C1	2.15	1.42	1.39
2	Е	704	GHP	C3-C2	2.13	1.42	1.38
2	G	707	3FG	CB-CA	2.11	1.54	1.52
2	H	707	3FG	OD2-CD2	2.10	1.41	1.37
2	Ε	707	3FG	CG1-CD1	2.09	1.42	1.39
2	Е	705	GHP	C6-C1	2.02	1.42	1.39

All (98) bond angle outliers are listed below:

2X	A.	D
		_

Conti	nued fron	n previ	ous page				
Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
<u>р</u> и.	Cl	Der			77	$O_{1} = 1(0)$	$T_{1} = 1(0)$
		Res	1ype OMV	Atoms	L 12.47	Observed(*)	10eal(3)
2		706		CG-CB-CA	-13.47	93.45	111.49
2	F	706	OMY	CG-CB-CA	-12.05	95.36	111.49
2	G	706	OMY	CG-CB-CA	-11.83	95.65	111.49
2	H	706	OMY	CG-CB-CA	-9.25	99.11	111.49
2	H	707	3FG	C-CA-CB	7.41	120.86	111.28
2		706	OMY	CDI-CEI-CZ	7.19	125.08	120.91
2	F'	707	3FG	C-CA-CB	7.16	120.53	111.28
2	G	706	OMY	ODE-CB-CA	6.95	121.93	107.28
2	H	702	3MY	CD2-CE2-CZ	6.64	124.76	120.91
2	F	702	3MY	CD1-CE1-CZ	-6.43	113.90	120.50
2	F	702	3MY	CG-CB-CA	-6.23	101.50	114.10
2	G	707	3FG	C-CA-CB	5.94	118.96	111.28
2	Е	702	3MY	CE1-CZ-CE2	5.85	124.22	118.55
2	Н	706	OMY	CE2-CD2-CG	-5.62	115.54	121.20
2	G	707	3FG	CD1-CG1-CB	-5.19	115.66	120.11
2	E	702	3MY	CE2-CD2-CG	-5.03	117.02	120.46
2	Н	705	GHP	C5-C6-C1	-5.03	116.13	121.20
2	Н	706	OMY	ODE-CB-CG	-4.96	100.37	111.19
2	G	705	GHP	C2-C3-C4	-4.94	114.46	119.88
2	Е	702	3MY	CD1-CG-CD2	4.93	125.45	118.54
2	F	704	GHP	C6-C5-C4	-4.91	114.49	119.88
2	F	702	3MY	CB-CA-C	-4.85	102.37	111.47
2	G	705	GHP	C1-CA-N	4.82	123.94	112.40
2	Е	702	3MY	CG-CB-CA	-4.78	104.42	114.10
2	G	702	3MY	CE1-CZ-CE2	4.75	123.16	118.55
2	Е	705	GHP	C2-C1-CA	-4.70	113.08	120.65
2	Н	702	3MY	CE2-CD2-CG	-4.54	117.36	120.46
2	F	702	3MY	CE1-CZ-CE2	4.54	122.95	118.55
2	Н	706	OMY	CD2-CG-CD1	4.39	123.83	118.76
2	Н	707	3FG	OD1-CD1-CG1	-4.29	108.69	119.84
2	Е	706	OMY	CD1-CE1-CZ	4.29	123.40	120.91
2	G	702	3MY	CE2-CD2-CG	-4.09	117.67	120.46
2	F	704	GHP	C3-C2-C1	-4.01	117.16	121.20
2	E	707	3FG	C-CA-CB	-3.96	106.16	111.28
2	H	707	3FG	OD1-CD1-CZ	3.96	130.13	119.84
2	Е	702	3MY	CD2-CE2-CZ	-3.95	118.62	120.91
2	G	702	3MY	CG-CB-CA	-3.70	106.60	114.10
2	F	705	GHP	C5-C6-C1	-3,69	117.49	121.20
2	G	702	3MY	CD2-CE2-CZ	-3.69	118 78	120.91
$\frac{-}{2}$	E	705	GHP	C6-C1-CA	3.68	126 59	120.65
$\frac{-}{2}$	F	702	3MY	CE2-CD2-CG	-3 53	118.05	120.46
$ \begin{array}{c} 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ $	н	705 706 705 702 704 702 705 702 705 702 705 702 705 702 705 702 705 702 705 707 706 707 704 707 707 707 707 702 703 704 707 702 703 705 702 705 705 705 705 705 705 705 705 705	GHP OMY GHP 3MY GHP 3MY GHP 3MY 3MY 3MY 3MY 3MY 3FG 0MY 3FG 3FG 3FG 3FG 3FG 3FG 3FG 3FG 3FG 3FG	C5-C6-C1 ODE-CB-CG C2-C3-C4 CD1-CG-CD2 C6-C5-C4 CB-CA-C C1-CA-N CG-CB-CA CE1-CZ-CE2 C2-C1-CA CE2-CD2-CG CE1-CZ-CE2 CD2-CG-CD1 OD1-CD1-CG1 CD1-CE1-CZ CE2-CD2-CG C3-C2-C1 C-CA-CB OD1-CD1-CZ CD2-CE2-CZ CG-CB-CA C5-C6-C1 CD2-CE2-CZ C6-C1-CA CE2-CD2-CG	$\begin{array}{r} -5.03\\ -4.96\\ -4.94\\ 4.93\\ -4.91\\ -4.85\\ 4.82\\ -4.78\\ 4.75\\ -4.70\\ -4.54\\ 4.54\\ 4.39\\ -4.29\\ 4.29\\ -4.09\\ -4.09\\ -4.09\\ -3.96\\ 3.96\\ -3.95\\ -3.70\\ -3.69\\ -3.69\\ 3.68\\ -3.53\end{array}$	$\begin{array}{c} 116.13\\ 100.37\\ 114.46\\ 125.45\\ 114.49\\ 102.37\\ 123.94\\ 104.42\\ 123.16\\ 113.08\\ 117.36\\ 122.95\\ 123.83\\ 108.69\\ 123.40\\ 117.67\\ 117.16\\ 106.16\\ 130.13\\ 118.62\\ 106.60\\ 117.49\\ 118.78\\ 126.59\\ 118.05\\ \end{array}$	$\begin{array}{c} 121.2\\ 111.1\\ 119.8\\ 118.5\\ 119.8\\ 111.4\\ 112.4\\ 112.4\\ 112.4\\ 114.1\\ 118.5\\ 120.6\\ 120.4\\ 118.5\\ 118.7\\ 119.8\\ 120.9\\ 120.4\\ 121.2\\ 119.8\\ 120.9\\ 120.4\\ 121.2\\ 119.8\\ 120.9\\ 114.1\\ 121.2\\ 119.8\\ 120.9\\ 114.1\\ 121.2\\ 120.9\\ 114.1\\ 121.2\\ 120.9\\ 114.1\\ 121.2\\ 120.9\\ 120.6\\ 120.4\\ 12$

2X	A	D

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	G	702	3MY	CD1-CG-CD2	3.53	123.48	118.54
2	G	706	OMY	CD1-CE1-CZ	3.52	122.95	120.91
2	Н	701	GHP	C6-C5-C4	-3.49	116.05	119.88
2	Н	705	GHP	C6-C5-C4	3.44	123.65	119.88
2	G	704	GHP	C5-C6-C1	3.40	124.62	121.20
2	F	705	GHP	C1-CA-N	3.36	120.44	112.40
2	Н	705	GHP	C1-CA-N	3.35	120.42	112.40
2	Е	703	3FG	CG2-CB-CG1	3.22	122.48	118.76
2	Н	702	3MY	CG-CB-CA	-3.21	107.59	114.10
2	Н	705	GHP	C2-C3-C4	-3.18	116.38	119.88
2	F	707	3FG	CG1-CB-CA	-3.09	114.82	119.71
2	Н	706	OMY	CD1-CG-CB	-3.02	114.40	119.55
2	F	704	GHP	C2-C3-C4	2.99	123.16	119.88
2	Е	702	3MY	CE1-CD1-CG	-2.90	117.04	121.03
2	Е	702	3MY	CD1-CE1-CZ	-2.86	117.56	120.50
2	Н	702	3MY	CD1-CE1-CZ	-2.83	117.59	120.50
2	G	705	GHP	C3-C2-C1	2.83	124.04	121.20
2	G	704	GHP	C6-C5-C4	-2.82	116.78	119.88
2	G	702	3MY	CB-CA-C	2.78	116.68	111.47
2	F	707	3FG	CG2-CB-CA	2.72	124.02	119.71
2	Н	702	3MY	CB-CA-C	2.71	116.55	111.47
2	F	705	GHP	C6-C1-C2	2.71	121.67	118.29
2	Н	701	GHP	C3-C2-C1	-2.68	118.50	121.20
2	Е	705	GHP	C5-C6-C1	-2.65	118.53	121.20
2	F	707	3FG	CD2-CG2-CB	-2.64	117.84	120.11
2	Е	703	3FG	CD2-CG2-CB	-2.63	117.39	120.65
2	Е	706	OMY	CD2-CG-CB	2.63	124.65	120.73
2	Е	703	3FG	CZ-CD1-CG1	-2.62	117.30	120.17
2	G	707	3FG	CD2-CG2-CB	2.45	122.21	120.11
2	G	702	3MY	CE1-CD1-CG	-2.43	117.68	121.03
2	F	705	GHP	C2-C3-C4	-2.42	117.22	119.88
2	G	702	3MY	CD2-CE2-CL	2.42	122.39	118.49
2	F	704	GHP	C5-C6-C1	2.41	123.62	121.20
2	F	703	3FG	CB-CA-N	2.39	118.13	112.40
2	G	707	3FG	CG2-CB-CG1	2.39	121.48	118.08
2	G	701	GHP	C6-C1-C2	2.37	121.24	118.29
2	Н	703	3FG	CB-CA-N	-2.36	106.74	112.40
2	Н	706	OMY	CE2-CZ-CE1	2.36	120.84	118.55
2	G	705	GHP	C5-C6-C1	-2.34	118.84	121.20
2	G	701	GHP	C5-C6-C1	-2.33	118.85	121.20
2	G	706	OMY	CD2-CG-CD1	2.32	121.44	118.76
2	E	706	OMY	CD1-CE1-CL	-2.31	114.76	118.49

Mol	Chain	\mathbf{Res}	Type	\mathbf{Atoms}	Z	$Observed(^{o})$	$Ideal(^{o})$
2	Е	701	GHP	C1-CA-N	-2.30	106.90	112.40
2	F	701	GHP	C3-C2-C1	-2.29	118.89	121.20
2	F	705	GHP	C6-C1-CA	-2.23	117.06	120.65
2	Н	702	3MY	CZ-CE2-CL	-2.23	115.35	119.53
2	G	702	3MY	CB-CG-CD1	-2.21	116.52	120.91
2	Н	707	3FG	CG2-CB-CA	2.18	123.17	119.71
2	Е	703	3FG	CD2-CZ-CD1	2.17	122.38	119.31
2	Е	704	GHP	O4-C4-C5	-2.16	113.86	120.02
2	G	704	GHP	C2-C3-C4	2.16	122.24	119.88
2	Ε	707	3FG	CG1-CB-CA	2.14	123.11	119.71
2	G	707	3FG	CG2-CD2-CZ	-2.08	117.56	120.43
2	F	705	GHP	C6-C5-C4	2.07	122.15	119.88
2	Ε	702	3MY	CB-CG-CD2	-2.05	116.92	120.44
2	F	707	3FG	CG2-CB-CG1	2.03	120.98	118.08
2	F	703	3FG	CD2-CG2-CB	2.03	121.85	120.11

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
2	Е	706	OMY	O-C-CA-CB
2	F	707	3FG	C-CA-CB-CG2
2	Н	702	3MY	CA-CB-CG-CD2
2	G	702	3MY	CA-CB-CG-CD2
2	Н	702	3MY	CA-CB-CG-CD1
2	F	704	GHP	C2-C1-CA-C
2	Н	707	3FG	C-CA-CB-CG1
2	F	707	3FG	C-CA-CB-CG1
2	Е	704	GHP	C2-C1-CA-N
2	G	706	OMY	O-C-CA-CB
2	Н	706	OMY	O-C-CA-CB
2	F	706	OMY	O-C-CA-CB
2	Е	704	GHP	C6-C1-CA-C
2	F	703	3FG	C-CA-CB-CG1
2	F	703	3FG	C-CA-CB-CG2
2	Е	703	3FG	C-CA-CB-CG1
2	Е	703	3FG	C-CA-CB-CG2
2	F	704	GHP	C6-C1-CA-C
2	Н	703	3FG	C-CA-CB-CG1
2	Н	703	3FG	C-CA-CB-CG2
2	G	704	GHP	C2-C1-CA-C
2	G	704	GHP	C6-C1-CA-C

All (31) torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
2	Н	704	GHP	C2-C1-CA-C
2	G	703	3FG	C-CA-CB-CG1
2	G	703	3FG	C-CA-CB-CG2
2	F	704	GHP	C2-C1-CA-N
2	F	704	GHP	C6-C1-CA-N
2	G	704	GHP	C6-C1-CA-N
2	Н	704	GHP	C6-C1-CA-N
2	G	701	GHP	C2-C1-CA-N
2	G	702	3MY	CA-CB-CG-CD1

There are no ring outliers.

13 monomers are involved in 14 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	Н	707	3FG	3	0
2	F	703	3FG	1	0
2	Е	705	GHP	1	0
2	Н	702	3MY	1	0
2	Е	707	3FG	1	0
2	F	702	3MY	1	0
2	Н	703	3FG	1	0
2	F	707	3FG	1	0
2	G	706	OMY	1	0
2	G	701	GHP	1	0
2	F	705	GHP	2	0
2	G	705	GHP	1	0
2	G	703	3FG	1	0

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

16 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the

Mal	Tune	Chain	Dog	Link	Bo	ond leng	ths	B	ond ang	les
	Type	Cham	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
6	T55	Ε	711	5	10,10,11	0.68	0	$10,\!10,\!12$	1.62	2 (20%)
6	T55	F	711	5	10, 10, 11	0.42	0	$10,\!10,\!12$	0.77	0
3	BMA	G	708	2	11,11,12	2.19	4 (36%)	$15,\!15,\!17$	2.51	6 (40%)
4	NAG	G	709	2	14,14,15	2.69	3 (21%)	17,19,21	2.67	3 (17%)
3	BMA	Е	708	2	11,11,12	1.69	4 (36%)	15,15,17	1.84	4 (26%)
4	NAG	F	709	2	14,14,15	<mark>3.33</mark>	6 (42%)	17,19,21	4.38	8 (47%)
3	BMA	F	708	2	11,11,12	1.58	3 (27%)	15,15,17	1.16	1 (6%)
5	GCS	G	710	2,6	11,11,12	1.53	3 (27%)	12,15,17	1.24	1 (8%)
6	T55	Н	711	5	10,10,11	0.74	0	$10,\!10,\!12$	0.46	0
4	NAG	Н	709	2	14,14,15	1.50	2 (14%)	17,19,21	2.26	7 (41%)
5	GCS	Е	710	2,6	11,11,12	1.42	2 (18%)	12,15,17	2.27	5 (41%)
3	BMA	Н	708	2	11,11,12	1.82	3 (27%)	15,15,17	4.10	9 (60%)
4	NAG	Е	709	2	14,14,15	1.56	3 (21%)	17,19,21	1.43	3 (17%)
5	GCS	F	710	2,6	11,11,12	1.83	2 (18%)	12,15,17	2.10	5 (41%)
6	T55	G	711	5	10,10,11	0.62	0	$10,\!10,\!12$	1.16	1 (10%)
5	GCS	Н	710	2,6	11,11,12	1.54	3 (27%)	12,15,17	1.87	4 (33%)

expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
6	T55	Е	711	5	-	6/7/8/9	-
6	T55	F	711	5	-	2/7/8/9	-
3	BMA	G	708	2	-	2/2/19/22	0/1/1/1
4	NAG	G	709	2	-	2/6/23/26	0/1/1/1
3	BMA	Е	708	2	-	0/2/19/22	0/1/1/1
4	NAG	F	709	2	1/1/5/7	3/6/23/26	0/1/1/1
3	BMA	F	708	2	-	2/2/19/22	0/1/1/1
5	GCS	G	710	2,6	-	0/2/19/22	0/1/1/1
6	T55	Н	711	5	-	1/7/8/9	-
4	NAG	H	709	2	-	2/6/23/26	0/1/1/1
5	GCS	Е	710	2,6	-	0/2/19/22	0/1/1/1
3	BMA	Н	708	2	-	1/2/19/22	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	NAG	Е	709	2	-	4/6/23/26	0/1/1/1
5	GCS	F	710	2,6	-	0/2/19/22	0/1/1/1
6	T55	G	711	5	-	3/7/8/9	-
5	GCS	Н	710	2,6	-	0/2/19/22	0/1/1/1

All (38) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
4	F	709	NAG	O5-C1	10.14	1.59	1.43
4	G	709	NAG	O5-C1	8.68	1.57	1.43
5	F	710	GCS	O5-C5	4.52	1.52	1.43
3	G	708	BMA	C4-C5	4.13	1.61	1.53
4	Е	709	NAG	C1-C2	4.07	1.58	1.52
3	Н	708	BMA	O5-C1	4.03	1.50	1.43
4	F	709	NAG	C4-C3	-3.66	1.43	1.52
3	G	708	BMA	C6-C5	3.49	1.63	1.51
4	F	709	NAG	C3-C2	3.45	1.59	1.52
3	G	708	BMA	O5-C5	3.42	1.50	1.43
4	G	709	NAG	O5-C5	3.31	1.50	1.43
4	Н	709	NAG	C2-N2	3.31	1.52	1.46
3	F	708	BMA	O5-C1	3.04	1.48	1.43
3	Е	708	BMA	O5-C5	2.79	1.49	1.43
5	G	710	GCS	O5-C1	-2.73	1.39	1.43
5	Е	710	GCS	O5-C5	2.70	1.48	1.43
5	Н	710	GCS	C3-C2	-2.69	1.48	1.53
5	G	710	GCS	O5-C5	2.67	1.48	1.43
3	Н	708	BMA	C1-C2	-2.64	1.46	1.52
4	F	709	NAG	C1-C2	2.62	1.56	1.52
3	Ε	708	BMA	O5-C1	2.58	1.47	1.43
5	Е	710	GCS	O5-C1	-2.53	1.39	1.43
5	Н	710	GCS	C1-C2	2.48	1.55	1.52
3	Н	708	BMA	C2-C3	2.47	1.56	1.52
4	F	709	NAG	O3-C3	2.46	1.48	1.43
3	Ε	708	BMA	C4-C5	2.35	1.58	1.53
3	F	708	BMA	C1-C2	2.33	1.57	1.52
4	G	709	NAG	C6-C5	2.31	1.59	1.51
3	G	708	BMA	C4-C3	2.19	1.57	1.52
4	F	709	NAG	C6-C5	2.19	1.59	1.51
5	Н	710	GCS	04-C4	2.17	1.48	1.43
4	Ε	709	NAG	C3-C2	2.13	1.57	1.52
5	G	710	GCS	O6-C6	2.12	1.51	1.42
4	Е	709	NAG	C2-N2	2.07	1.49	1.46

		1	1 0			. 0 .	. 0 .
Mol	Chain	\mathbf{Res}	Type	Atoms		Observed(A)	Ideal(A)
3	F	708	BMA	C4-C5	2.03	1.57	1.53
3	Е	708	BMA	C1-C2	2.02	1.56	1.52
5	F	710	GCS	O5-C1	-2.00	1.40	1.43
4	Н	709	NAG	O5-C5	2.00	1.47	1.43

All (59) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	Н	708	BMA	C1-C2-C3	-11.90	95.03	109.67
4	F	709	NAG	C3-C4-C5	9.39	126.99	110.24
4	F	709	NAG	C2-N2-C7	8.73	135.34	122.90
4	G	709	NAG	C1-O5-C5	7.76	122.70	112.19
4	F	709	NAG	C1-O5-C5	7.44	122.27	112.19
4	G	709	NAG	O5-C5-C6	6.57	117.50	107.20
4	F	709	NAG	O3-C3-C2	6.20	122.30	109.47
3	Н	708	BMA	O2-C2-C3	5.94	122.05	110.14
4	F	709	NAG	O3-C3-C4	5.72	123.58	110.35
3	G	708	BMA	C1-C2-C3	-5.07	103.43	109.67
4	Н	709	NAG	C6-C5-C4	-4.92	101.47	113.00
3	E	708	BMA	C1-O5-C5	4.62	118.44	112.19
5	F	710	GCS	C6-C5-C4	4.54	123.63	113.00
3	G	708	BMA	O5-C1-C2	-4.46	103.88	110.77
6	Е	711	T55	CAI-CAH-CAG	-4.12	99.06	113.62
3	Н	708	BMA	O2-C2-C1	-3.96	101.05	109.15
3	Н	708	BMA	C3-C4-C5	-3.63	103.76	110.24
4	Н	709	NAG	O5-C5-C6	3.50	112.69	107.20
3	G	708	BMA	C1-O5-C5	3.39	116.79	112.19
5	Е	710	GCS	O3-C3-C2	-3.35	103.67	109.81
3	Н	708	BMA	O3-C3-C4	3.30	117.99	110.35
5	Е	710	GCS	C4-C3-C2	-3.28	105.82	111.37
4	Е	709	NAG	O5-C5-C6	-3.27	102.08	107.20
4	F	709	NAG	C8-C7-N2	3.16	121.45	116.10
5	Е	710	GCS	O4-C4-C3	-3.15	103.08	110.35
4	F	709	NAG	O5-C1-C2	3.12	116.22	111.29
3	Н	708	BMA	O3-C3-C2	3.12	115.97	109.99
4	Е	709	NAG	O5-C5-C4	-3.08	103.34	110.83
5	Н	710	GCS	C4-C3-C2	-3.07	106.19	111.37
3	G	708	BMA	C3-C4-C5	2.92	115.45	110.24
4	Н	709	NAG	C3-C4-C5	2.92	115.45	110.24
3	G	708	BMA	C6-C5-C4	2.88	119.75	113.00
5	Н	710	GCS	O3-C3-C2	-2.82	104.65	109.81
4	Н	709	NAG	C4-C3-C2	2.81	115.14	111.02

2XA	/I)

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	Н	710	GCS	C1-O5-C5	-2.80	108.40	112.19
4	Н	709	NAG	O7-C7-C8	-2.78	116.90	122.06
3	Е	708	BMA	O5-C5-C4	2.77	117.57	110.83
3	Н	708	BMA	O5-C1-C2	-2.74	106.55	110.77
5	Е	710	GCS	O5-C5-C4	-2.73	104.19	110.83
3	F	708	BMA	C1-O5-C5	2.71	115.87	112.19
5	F	710	GCS	O4-C4-C5	-2.61	102.80	109.30
4	G	709	NAG	C6-C5-C4	-2.60	106.92	113.00
5	Н	710	GCS	C6-C5-C4	2.52	118.91	113.00
5	F	710	GCS	O5-C5-C6	-2.45	103.36	107.20
5	F	710	GCS	O3-C3-C4	-2.37	104.87	110.35
4	Н	709	NAG	O5-C1-C2	2.36	115.01	111.29
4	Н	709	NAG	C1-C2-N2	2.36	114.51	110.49
3	Н	708	BMA	O5-C5-C6	-2.33	103.55	107.20
3	Е	708	BMA	O5-C1-C2	2.31	114.34	110.77
5	Е	710	GCS	C6-C5-C4	2.30	118.40	113.00
4	F	709	NAG	O5-C5-C4	2.28	116.37	110.83
6	Е	711	T55	CAK-CAJ-CAI	-2.26	102.97	114.42
3	G	708	BMA	O2-C2-C1	2.24	113.74	109.15
3	Е	708	BMA	C2-C3-C4	-2.19	107.10	110.89
5	G	710	GCS	C6-C5-C4	2.12	117.97	113.00
6	G	711	T55	CAJ-CAK-CAL	-2.10	104.64	113.79
5	F	710	GCS	O3-C3-C2	-2.08	106.01	109.81
3	Н	708	BMA	O6-C6-C5	-2.07	104.20	111.29
4	Е	709	NAG	O7-C7-N2	2.04	125.70	121.95

All (1) chirality outliers are listed below:

Mol	Chain	Res	Type	Atom	
4	F	709	NAG	C3	

All (28) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	F	708	BMA	C4-C5-C6-O6
3	F	708	BMA	O5-C5-C6-O6
3	G	708	BMA	O5-C5-C6-O6
4	Е	709	NAG	O5-C5-C6-O6
3	G	708	BMA	C4-C5-C6-O6
4	G	709	NAG	C8-C7-N2-C2
4	G	709	NAG	O7-C7-N2-C2
4	F	709	NAG	C8-C7-N2-C2

Mol	Chain	Res	Type	Atoms
4	F	709	NAG	O7-C7-N2-C2
4	Н	709	NAG	C8-C7-N2-C2
4	Н	709	NAG	O7-C7-N2-C2
4	Ε	709	NAG	C8-C7-N2-C2
4	Ε	709	NAG	O7-C7-N2-C2
6	Ε	711	T55	CAE-CAG-CAH-CAI
6	G	711	T55	CAI-CAJ-CAK-CAL
3	Н	708	BMA	O5-C5-C6-O6
6	F	711	T55	CAI-CAJ-CAK-CAL
6	Ε	711	T55	CAG-CAH-CAI-CAJ
6	Е	711	T55	CAI-CAJ-CAK-CAL
4	F	709	NAG	O5-C5-C6-O6
6	Е	711	T55	CAD-CAE-CAG-CAH
6	Н	711	T55	CAI-CAJ-CAK-CAL
4	Е	709	NAG	C4-C5-C6-O6
6	F	711	T55	CAH-CAI-CAJ-CAK
6	G	711	T55	CAJ-CAK-CAL-C
6	Е	711	T55	CAF-CAE-CAG-CAH
6	Е	711	T55	CAH-CAI-CAJ-CAK
6	G	711	T55	CAE-CAG-CAH-CAI

There are no ring outliers.

Mol	Chain	\mathbf{Res}	Type	Clashes	Symm-Clashes
6	Е	711	T55	4	0
6	F	711	T55	4	0
4	G	709	NAG	1	0
3	F	708	BMA	1	0
6	Н	711	T55	12	0
3	Н	708	BMA	4	0
4	Е	709	NAG	2	0
6	G	711	T55	3	0

8 monomers are involved in 31 short contacts:

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	256/273~(93%)	0.28	16 (6%) 20 22	8, 18, 45, 61	0
1	В	255/273~(93%)	0.22	13 (5%) 28 31	9, 19, 45, 60	0
1	С	255/273~(93%)	0.70	31 (12%) 4 4	10, 26, 47, 63	0
1	D	254/273~(93%)	0.22	14 (5%) 25 27	8, 19, 37, 62	0
2	Е	0/7	-	_	-	-
2	F	0/7	-	_	-	-
2	G	0/7	-	-	-	-
2	Н	0/7	-	-	-	-
All	All	1020/1120 (91%)	0.36	74 (7%) 15 17	8, 20, 45, 63	0

All (74) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	С	234	VAL	9.2
1	С	243	LEU	8.3
1	С	259	GLY	6.3
1	С	257	HIS	6.3
1	А	256	PRO	6.0
1	D	256	PRO	5.8
1	А	234	VAL	5.7
1	В	259	GLY	5.7
1	С	116	ARG	5.6
1	А	7	ALA	5.5
1	А	257	HIS	5.2
1	А	116	ARG	4.8
1	А	113	VAL	4.7
1	D	257	HIS	4.6
1	D	243	LEU	4.5
1	А	255	ALA	4.5
1	В	7	ALA	4.4

Mol	Chain	Res	Type	RSRZ
1	А	117	GLN	4.3
1	С	258	GLY	4.0
1	А	243	LEU	3.9
1	В	257	HIS	3.8
1	А	115	GLY	3.7
1	D	260	TYR	3.7
1	А	112	HIS	3.5
1	С	118	LYS	3.4
1	D	73	LEU	3.3
1	D	258	GLY	3.3
1	В	243	LEU	3.3
1	В	256	PRO	3.3
1	С	8	THR	3.2
1	С	81	ALA	3.2
1	В	73	LEU	3.2
1	С	113	VAL	3.2
1	С	35	GLY	3.2
1	С	58	ARG	3.1
1	В	255	ALA	3.1
1	А	259	GLY	3.1
1	С	22	LEU	3.0
1	С	255	ALA	3.0
1	А	273	SER	3.0
1	С	256	PRO	3.0
1	D	214	VAL	3.0
1	А	260	TYR	2.9
1	С	67	PRO	2.9
1	С	87	ARG	2.9
1	В	258	GLY	2.7
1	С	107	ARG	2.7
1	С	74	TYR	2.7
1	В	246	ARG	2.6
1	С	32	ALA	2.6
1	А	258	GLY	2.5
1	С	115	GLY	2.5
1	D	247	LEU	2.5
1	В	112	HIS	2.5
1	А	249	GLU	2.5
1	В	244	PHE	2.5
1	D	252	ARG	2.4
1	В	245	ASP	2.4
1	С	89	ALA	2.4

Mol	Chain	Res	Type	RSRZ
1	С	252	ARG	2.4
1	В	217	GLU	2.4
1	С	213	SER	2.4
1	С	73	LEU	2.4
1	D	273	SER	2.3
1	С	223	PHE	2.3
1	D	35	GLY	2.3
1	С	88	VAL	2.2
1	С	245	ASP	2.2
1	D	74	TYR	2.2
1	С	261	GLY	2.2
1	D	253	GLN	2.1
1	С	112	HIS	2.1
1	С	123	ASP	2.0
1	D	246	ARG	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q < 0.9
2	GHP	G	701	11/12	0.55	0.58	$37,\!50,\!56,\!56$	0
2	GHP	E	701	11/12	0.77	0.17	$32,\!33,\!37,\!40$	0
2	OMY	G	706	14/15	0.79	0.16	$23,\!28,\!41,\!43$	0
2	OMY	E	706	14/15	0.79	0.16	$18,\!29,\!39,\!43$	0
2	GHP	E	705	11/12	0.80	0.18	$30,\!34,\!42,\!45$	0
2	3FG	E	707	13/13	0.82	0.14	$38,\!41,\!44,\!49$	0
2	3FG	G	703	12/13	0.83	0.14	$27,\!39,\!48,\!50$	0
2	OMY	F	706	14/15	0.86	0.15	$21,\!28,\!35,\!38$	0
2	3FG	F	703	12/13	0.87	0.12	$19,\!31,\!36,\!38$	0
2	GHP	F	705	11/12	0.87	0.15	22,30,34,34	0
2	GHP	G	705	11/12	0.88	0.11	$25,\!31,\!34,\!36$	0
2	3FG	Е	703	11/13	0.89	0.12	$26,\!30,\!39,\!41$	0
2	3FG	G	707	13/13	0.89	0.13	$28,\!32,\!39,\!43$	0
2	OMY	Н	706	14/15	0.89	0.11	$14,\!20,\!26,\!42$	0
2	3FG	F	707	13/13	0.90	0.11	$30,\!33,\!38,\!42$	0
2	3FG	Н	707	13/13	0.90	0.11	20,24,31,32	0
2	3MY	E	702	13/14	0.91	0.11	$13,\!19,\!29,\!30$	0
2	GHP	F	701	11/12	0.92	0.12	$27,\!31,\!36,\!40$	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} extsf{-}\mathbf{B} extsf{-}\mathbf{factors}(\mathbf{A}^2)$	Q<0.9
2	3FG	Н	703	12/13	0.93	0.10	$15,\!21,\!27,\!30$	0
2	GHP	Н	705	11/12	0.94	0.08	$19,\!23,\!26,\!27$	0
2	GHP	G	704	11/12	0.94	0.08	$16,\!21,\!26,\!28$	0
2	GHP	F	704	11/12	0.94	0.09	16,18,22,24	0
2	3MY	F	702	13/14	0.94	0.10	$11,\!16,\!27,\!30$	0
2	GHP	Н	701	11/12	0.95	0.07	$18,\!20,\!23,\!24$	0
2	3MY	G	702	13/14	0.95	0.10	12,21,34,36	0
2	GHP	Е	704	11/12	0.96	0.08	$11,\!18,\!27,\!27$	0
2	GHP	Н	704	11/12	0.96	0.09	$10,\!15,\!18,\!20$	0
2	3MY	Н	702	13/14	0.97	0.07	8,12,18,18	0

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
3	BMA	Е	708	11/12	0.43	0.37	57,62,64,66	0
3	BMA	G	708	11/12	0.50	0.27	43,47,50,50	0
4	NAG	G	709	14/15	0.55	0.42	54,60,64,65	0
4	NAG	Е	709	14/15	0.56	0.41	56,64,67,67	0
3	BMA	F	708	11/12	0.59	0.30	$51,\!56,\!59,\!63$	0
4	NAG	F	709	14/15	0.60	0.46	4,47,55,58	0
4	NAG	Н	709	14/15	0.67	0.39	$39,\!51,\!56,\!56$	0
3	BMA	Н	708	11/12	0.70	0.29	$36,\!46,\!53,\!53$	0
6	T55	Е	711	11/12	0.89	0.16	15,31,40,42	0
6	T55	F	711	11/12	0.91	0.17	19,34,38,39	0
6	T55	G	711	11/12	0.91	0.18	$19,\!31,\!43,\!46$	0
6	T55	Н	711	11/12	0.95	0.14	12,31,41,41	0
5	GCS	F	710	11/12	0.96	0.08	9,14,17,20	0
5	GCS	Н	710	11/12	0.96	0.10	4,9,11,12	0
5	GCS	Ē	710	11/12	0.97	0.07	8,10,12,12	0
5	GCS	G	710	11/12	0.97	0.08	10,14,17,17	0

6.5 Other polymers (i)

There are no such residues in this entry.

