

Nov 30, 2023 – 12:48 AM JST

PDB ID	:	7X30
EMDB ID	:	EMD-32974
Title	:	Capsid structure of Staphylococcus jumbo bacteriophage S6
Authors	:	Koibuchi, W.; Uchiyama, J.; Matsuzaki, S.; Murata, K.; Iwasaki, K.; Miyazaki,
		N.
Deposited on	:	2022-02-27
Resolution	:	3.60 Å(reported)

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 70
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.60 Å.

Sidechain outliers

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Percentile Ran	ks Value			
Ramachandran outliers		0			
Sidechain outliers		0.9%			
Worse		Better			
Percenti	le relative to all structures				
Percenti	le relative to all EM structures				
N I a tanka	Whole archive	EM structures			
Ivietric	$(\# { m Entries})$	$(\# {\rm Entries})$			
Ramachandran outliers	154571	4023			

154315

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

3826

Mol	Chain	Length	Quality of chain	
1	А	534	81%	19%
1	a	534	83%	17%
1	b	534	85%	15%
1	с	534	85%	15%
1	d	534	85%	15%
1	е	534	85%	15%
1	f	534	85%	15%
1	g	534	85%	15%
1	h	534	85%	15%

2

 \mathbf{R}

 \mathbf{S}

37%

37%

•

.

Mol Chain Length Quality of chain i 1 53485% 15% 1 j 53485% 15% 1 k 53485% 15% 1 1 53485% 15% 1 534 \mathbf{m} 85% 15% 1 534n 85% 15% 1 5340 85% 15% 5341 р 85% 15% 5341 q 85% 15% i 5341 r 85% 15% i 1 534 \mathbf{S} 85% 15% 1 \mathbf{t} 53484% 15% 1 534u 84% 15% 1 v 53485% 15% 5341 W 84% 15% 1 534х 85% 15% 5341 у 85% 15% 5341 \mathbf{Z} 85% 15% 2Р 47637% 59% • i Q 476259% 37% •

6%

6%

476

476

Continued from previous page...

59%

59%

2 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 105389 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At		AltConf	Trace		
1	Δ	/3/	Total	С	Ν	Ο	S	0	0
1	11	101	3394	2151	566	668	9	0	0
1	0	444	Total	\mathbf{C}	Ν	0	\mathbf{S}	0	0
1	a	444	3479	2207	581	682	9	0	0
1	h	454	Total	С	Ν	0	\mathbf{S}	0	0
1	U	404	3550	2247	595	699	9	0	0
1	0	454	Total	С	Ν	0	\mathbf{S}	0	0
1	C	404	3550	2247	595	699	9	0	0
1	d	454	Total	С	Ν	0	\mathbf{S}	0	0
1	u	404	3550	2247	595	699	9	0	0
1	0	454	Total	С	Ν	0	\mathbf{S}	0	0
1	е	404	3550	2247	595	699	9	0	0
1	f	454	Total	С	Ν	0	S	0	0
1	1	404	3549	2247	594	699	9	0	0
1	ď	454	Total	С	Ν	0	S	0	0
1	g	404	3550	2247	595	699	9	0	0
1	h	454	Total	С	Ν	0	S	0	0
1	11	404	3550	2247	595	699	9	0	0
1	i	454	Total	С	Ν	Ο	\mathbf{S}	0	0
L	1	404	3550	2247	595	699	9	0	0
1	i	454	Total	С	Ν	Ο	\mathbf{S}	0	0
1	J	404	3550	2247	595	699	9	0	0
1	Ŀ	454	Total	С	Ν	0	\mathbf{S}	0	0
1	K	404	3550	2247	595	699	9	0	0
1	1	454	Total	С	Ν	0	\mathbf{S}	0	0
1	1	404	3550	2247	595	699	9	0	0
1	m	454	Total	С	Ν	0	\mathbf{S}	0	0
1	111	404	3550	2247	595	699	9	0	0
1	n	454	Total	С	Ν	0	\mathbf{S}	0	0
1	11	404	3550	2247	595	699	9	0	0
1	0	454	Total	С	Ν	0	S	0	0
	0	404	3550	2247	595	699	9	0	0
1	n	454	Total	С	Ν	0	S	0	0
	h	404	3550	2247	595	699	9		U

• Molecule 1 is a protein called Major structural protein ORF12.

Mol	Chain	Residues	_	Ate	oms			AltConf	Trace	
1	a	454	Total	С	Ν	0	S	0	0	
	q	404	3549	2247	594	699	9	0	0	
1	r	454	Total	С	Ν	0	\mathbf{S}	0	0	
1	1	404	3550	2247	595	699	9	0	0	
1	q	454	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
1	6	101	3550	2247	595	699	9	0	0	
1	t	454	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
1	U	101	3550	2247	595 699		9	0	0	
1	11	454	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
1	u	101	3550	2247	595	699	9	0	0	
1	v	454	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
	v	101	3550	2247	595	699	9	0	0	
1	w	454	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
-	**	101	3550	2247	595	699	9	0	0	
1	v	454	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
-	A	101	3550	2247	595	699	9	0	0	
1	v	454	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
	у	101	3550	2247	595	699	9	0	0	
1	7	454	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
		404	3550	2247	595	699	9	0	0	

• Molecule 2 is a protein called Hoc-like protein ORF90.

Mol	Chain	Residues		Ator	AltConf	Trace		
2	Р	301	Total 2442	C 1572	N 395	O 475	0	0
2	Q	301	Total 2442	C 1572	N 395	0 475	0	0
2	R	301	Total	C 1572	N 205	0	0	0
2	S	301	2442 Total 2442	$\frac{1572}{C}$ 1572	395 N 395	$\frac{475}{0}$ 475	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Major structural protein ORF12

_																						٠	
																						ω	4
2	P,	A.	B	A.	7	E	B	P.	N	町	3	P,	P,	띡	B	E	P,	E.	E.	큤	_	5	3
믕	B	AI	3	AI	B	뜆	3	A	A	胄	AF	B	B		3	뜆	B	B	SE	¥		N.	22

• Molecule 1: Major structural protein ORF12

Chain d:	85%	15%
ET EU SN SN ERG	S A A A A A A A A A A A A A A A A A A A	SP AL AL AL AL AL AL AL CLU CLU CLU CLU CLU CLU CLU CLU CLU CL

Υ	10	LA .	ΞŪ	LA .	Y	ET	ΞŪ	SP	SN	HR	RG	10	.0	E	ΞŪ	ET	10	ER	ER	31	127	238	534
GL	GL	AL.	Ē	AL.	GL	E	Ξ	ASI	ASI	H	AR	GL	GL	Ξ	Ē	E	GL	SEI	SEI	M8	ΓΛ	D2:	R5

• Molecule 1: Major structural protein ORF12

Chain e:	85%		15%	
MET LEU ASN PRO ASN ASN ILE	LYS GLU GLU PHE SER VAL VAL ASP LLEU GLU GLU ASN SER ASN SER ASN SER THR THR THR	GLY GLY ASP PHE ALA ALA ALA ALA ALA ALA ASP ASP ASP PHE CLU SER CTYR	LYS ASP GLN LEU GLU GLU ASP	ALA ALU GLU

 \bullet Molecule 1: Major structural protein ORF12

Chain f:	85%	15%
MET LEU ASN ASS ASS ASS ASS ASS ASS ASS ASS ASS	ASN LEU SER THR CLF CLF CLF CLF CLF ALA ALA ALA ALA ALA ALA ALA ALA ALA A	ASP ASP GLN LLEU GLU GLU ASP ALA ALA ALA GLU GLU
0LY 0LY ALA ALA ALA ALA ALA ALA ALA A	N236 C237 D238 C239 C239 C239 C239 E241 C244 D244 N224 N2243 N2243 N2243 N2243 N2244 N2234	
• Molecule 1: Major structural pro	tein ORF12	
Chain g:	85%	15%

• Molecule 1: Major structural protein ORF12

Chain h:	85%	15%

• Molecule 1: Major structural protein ORF12

Chain i:	85%	15%	
LET SN SN RG RG	XYS SPECTOR ALLA ALLA ALLA ALLA CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	LA HHR SP SP SP HHR HHR HHR HHR HHR HHR HHR HHR HHR HH	HE SP LLA LLA

• Molecule 1: Major structural protein ORF12

Chain j:	85%	15%	
MET LEU ASN PRO ASN ASN ILE	LIYS ASP OGLU VAL ARG GLU ASP ASP ASS ASS ASS ASS ASS ASS ASS ASS	SER TYR LYS ASP GLN LEU LEU CLU	PHE ASP ALA ALA GLU

• Molecule 1: Major structural protein ORF12

Chain k:	85%	15%	
MET LEU ASN PRO ASN ASN TLE	LYS LYS PHE PHE CUU VAL ARG CUU VAL ARS ARS ARS ARS ARS ARS ARS ARS ARS ARS	SER TYR LYS ASP GLN LEU LEU CLU GLY GLY	ASP ALA ALA GLU

• Molecule 1: Major structural protein ORF12

Chain l:	8	35%	15%
MET LEU ASN PRO ASN ARG	ASP GLU GLU SER SER ASP GLU GLU ASS SER ASN THE ASN THE ASN SER ASN CULU	A ASN LEU CITTLE CITTLE CITTLE AASP PHE AALA AALA AALA PHE CILU	LYS LYS GLN GLN GLU GLU ASP ASP ALA ALA

 \bullet Molecule 1: Major structural protein ORF12

Chain m:

85%

15%

• Molecule 1: Major structural protein ORF12

Chain n:	859	6	15%
LEU LEU RO RO LE	YS SPECTRA SPE	SER HILL HILL HILL HILL HILL HILL HILL HIL	YR YR HEU HEU HEU HE

• Molecule 1: Major structural protein ORF12

Chain o:	85%	15%	
MET LEU ASN PRO ASN ASN ILE	LYNS PEHE PEHE ARG CLUU VALL ARG CLUU VALL ARS ARS ARS ARS ARS ARS ARS ARS ARS ARS	LYS ASP GLN LEU LEU CLU GLU GLV	PHE ASP ALA ALA GLU

• Molecule 1: Major structural protein ORF12

Chain p:							859	%													159	%	_			
MET LEU ASN PRO ASN ASN ILE ILE	ASP ASP GLU PHE SER VAT	VAL ARG LEU GLU	ASP ILE GLU	ASN SER TI F	ASN	SER	ASN LEU	SER THR	ILE	GLY	ASP PHE	ALA ALA	ILE	ALA THR	ASP	ALA	VAL PHE	GLU SFR	TYR	ASP	GLN	LEU	GLY	PHE ASP	ALA ALA	GLU

• Molecule 1: Major structural protein ORF12

Chain q:	85%	15%
MET LEU ASN PRO ASN ASN ILE	ASP ASP SER SER SER SER ASP ASP ASP ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	PHE GLU SER TYR LYS ASP GLV GLV GLV ASP ALA ALA ALA GLU

 \bullet Molecule 1: Major structural protein ORF12

Chain r: 85% 15%

• Molecule 1: Major structural protein ORF12

Chain s:	85%	15%	
MET LEU ASN PRO ASN ASN ATF	LYS SSER SSER SSER SSER LEU SSER ASP SSER ASP SSER ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	LYS ASP GLN LEU LLEU GLU GLV	Price ASP ALA ALA

• Molecule 1: Major structural protein ORF12

Chain t:	84%	• 15%
MET LLEU ASN ASN ASN ASS ASS ASS ASS ASS ASS ASS	ASP ASP TILE ASU ASU ASU ASU ASP ASP ASP ALLU CLU ALA ALA ALA ALA ALA ALA ALA ALA ALA	ASP ASP ALA ALA ALA ALA CLU CLU CLU CLU CLU CLU CLU ALA ALA ALA ALA
	THE REPORT OPEN	
• Molecule 1. Major s	structural protein OKF 12	
Chain u:	84%	• 15%
MET LLEU ASN PRO ASN ARG ILLE CLV SER VAL CLU GLU	ASP ILE ASP ASU ASU ASU ASN GLU SER TTR TTR TTR TTR TTR ALA ALA ALA ALA ALA ALA ALA	ASP ALA ALA PHE PHE CLU SER LYS CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU
GLY GLY GLU GLU GLU GLU ALA ALA ASP ASP ASP GLU CLU LEU LEU		
• Molecule 1: Major s	structural protein ORF12	
Chain v:	85%	15%
MET LEU ASN PRO PRO ASN ASP CLVS GLU PHE SER VAL LEU GLU	ASP ILE SER ASN SER ASN TILE ASN CLU SER ASN CLU SER ALA ALA ALA ALA ALA ALA ALA	ASP ASP VAL VAL PHE GLU SER TYR CLN CLN CLN CLN CLN CLN CLN CLN ASP ALA ALA ALA ALA
GLY GLU ALA ALA ALA MLA MLT MET ALS ASR ASR ASR ASR CLU CLU CLU CLU	MET MET SER SER M81 M428 M634	

• Molecule 1: Major structural protein ORF12

Chain w: 84% 15%

N.

	04H040H400H410H4044H	ALL THH ASIS ASIS ALL ASIS CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU
GLY GLU ALA ALA ALA ALA ALA GLY GLY GLY GLU GLU TLE	LEU MET GLU SER SER MB1 1133 C238 C238 C238 C238 C238 C238 C238 C2	
• Molecule 1: Major	structural protein ORF12	
Chain x:	85%	15%
MET LEU ASN PRO ASN ARG TLE LYS GLU CLU SER SER VAL LEU	GLU ASP TLE GLU ASN SER ASN SER TTR ASN CLU ASN CLU ASN ASN ASN ASP TTR ASN ASP TTR ASP ASP ASP ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	ALA ASP ASP ASP ASP ALA VAL PHE CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU
GLY GLY ALA ALA ALA ALA ALA MET ALA ASN ASN ASN ASN ASN ASN CLU GLU GLU	LEU MET GLU SER 85R M81 N238 M238 H238 H238	
• Molecule 1: Major	structural protein ORF12	
Chain y:	85%	15%
MET LEU ASN PRO ASN ARG ILE ILEU PHE SER VAL LEU	ASP TLU GLU GLU ASN SER SER TTR ASN GLU CLU CLU CLU CLU CLU CLU CLU ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	ALA ASP ASP ASP ASP ALA VIA CU CU CU CU CU CU CU CU CU CU CU CU CU
GLY GLV ALA ALA ALA ALA ALEU ALEU ALEU ASP ASP ASP ASP THR ASP THR THR THR THR THR TLU	LEU MET GUU SER SER Mai R334	
• Molecule 1: Major	structural protein ORF12	
Chain z:	85%	15%
Chain z:	CLU TIE CLU CLU CLU CLU CLU CLU ALA ALA ALA ALA ALA ALA ALA ALA ALA A	ALA ATA ASP ASP ASP ATA ATA ATA ATA ATA ATA ATA ATA ATA AT
Chain z: Ham Jan Share and a set of the set	REU CLU SER SER SER SER SER SER SER SER SER SER	12% ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
Chain z:	85%	12% ASP ASP ASP ASP ASP ALA ASP ALA ASP ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
Chain z:	85%	15% YHT A STA A ALA A ALA A A ALA A ALA A ALA A ALA A
Chain z:	85%	15% 15% 15% 15% 15% 15% 15% 15%
Chain z: H B S B S B B S B B S S B S S B B S S B B S S B B S S B B S S B B S S B B S S B B S S B B S S B B S S B S S B B S S B B S S B B S S B B S S B B S S B B S S B B S S B B S S B B S S B B S S B B S S B B S S B B S S B B S S B B S S B B S S B S S B B S S B S S B B S S B B S S B B S S B B S S B B S S B B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S B S S S B S S S B S S S B S S S B S S S B S S S B S S S B S S S B S S S B S S S B S S S B S S S S B S S S S B S	85%	15%
Chain z:	85%	115% 111

• Molecule 2: Hoc-like protein ORF90 Chain Q: 59% 37% • Molecule 2: Hoc-like protein ORF90 Chain R: 59% 37% ASN 3LN CYS LYS SER SER THR VAL VAL A ASP VALL LUCK SERRASP SERRASS SER SERRASS SERRASS SERRASS SERRASS SERRASS SERRASS SERRASS SE GLU GLU GLU GLU GLU GLU THR THR THR GLU GLU • Molecule 2: Hoc-like protein ORF90 Chain S: 59% 37% ASN 3LN THR LYS SER THR THR

VAL GLU GLU GLU GLU GLU THR THR THR THR GLU

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, I	Depositor
Number of particles used	27164	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	40	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	3000	Depositor
Magnification	Not provided	
Image detector	FEI FALCON II (4k x 4k)	Depositor
Maximum map value	0.204	Depositor
Minimum map value	-0.095	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.009	Depositor
Recommended contour level	0.02	Depositor
Map size (Å)	1394.0, 1394.0, 1394.0	wwPDB
Map dimensions	820, 820, 820	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.7, 1.7, 1.7	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond	l angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.31	0/3459	0.54	0/4701
1	a	0.33	0/3547	0.54	0/4821
1	b	0.33	0/3620	0.56	0/4921
1	с	0.34	0/3620	0.56	0/4921
1	d	0.33	0/3620	0.56	0/4921
1	е	0.33	0/3620	0.56	0/4921
1	f	0.31	0/3619	0.55	0/4919
1	g	0.34	0/3620	0.55	0/4921
1	h	0.32	0/3620	0.55	0/4921
1	i	0.32	0/3620	0.54	0/4921
1	j	0.32	0/3620	0.54	0/4921
1	k	0.33	0/3620	0.54	0/4921
1	1	0.32	0/3620	0.53	0/4921
1	m	0.34	0/3620	0.57	0/4921
1	n	0.34	0/3620	0.56	0/4921
1	0	0.33	0/3620	0.56	0/4921
1	р	0.33	0/3620	0.54	0/4921
1	q	0.34	0/3619	0.57	0/4919
1	r	0.34	0/3620	0.55	0/4921
1	s	0.33	0/3620	0.56	0/4921
1	t	0.35	0/3620	0.59	0/4921
1	u	0.33	0/3620	0.56	0/4921
1	V	0.34	0/3620	0.56	0/4921
1	W	0.34	0/3620	0.56	0/4921
1	Х	0.34	0/3620	0.57	0/4921
1	у	0.33	0/3620	0.53	0/4921
1	Z	0.31	0/3620	0.53	0/4921
2	Р	0.33	0/2484	0.54	0/3353
2	Q	0.33	0/2484	0.54	0/3353
2	R	0.33	0/2484	0.54	0/3353
2	S	0.34	0/2484	0.54	0/3353
All	All	0.33	0/107440	0.55	0/145955

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	430/534~(80%)	394~(92%)	36~(8%)	0	100	100
1	a	440/534~(82%)	404 (92%)	36~(8%)	0	100	100
1	b	452/534~(85%)	409 (90%)	43 (10%)	0	100	100
1	с	452/534~(85%)	422 (93%)	30 (7%)	0	100	100
1	d	452/534~(85%)	420 (93%)	32 (7%)	0	100	100
1	е	452/534~(85%)	421 (93%)	31 (7%)	0	100	100
1	f	452/534~(85%)	421 (93%)	31 (7%)	0	100	100
1	g	452/534~(85%)	418 (92%)	34 (8%)	0	100	100
1	h	452/534~(85%)	413 (91%)	39~(9%)	0	100	100
1	i	452/534~(85%)	417 (92%)	35~(8%)	0	100	100
1	j	452/534~(85%)	414 (92%)	38~(8%)	0	100	100
1	k	452/534~(85%)	417 (92%)	35~(8%)	0	100	100
1	1	452/534~(85%)	423 (94%)	29~(6%)	0	100	100
1	m	452/534~(85%)	415 (92%)	37~(8%)	0	100	100
1	n	452/534~(85%)	415 (92%)	37 (8%)	0	100	100
1	0	452/534~(85%)	413 (91%)	$39 \ (9\%)$	0	100	100
1	р	452/534~(85%)	410 (91%)	42 (9%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	q	452/534~(85%)	402 (89%)	50 (11%)	0	100	100
1	r	452/534~(85%)	420 (93%)	32 (7%)	0	100	100
1	S	452/534~(85%)	416 (92%)	36 (8%)	0	100	100
1	t	452/534~(85%)	412 (91%)	40 (9%)	0	100	100
1	u	452/534 (85%)	414 (92%)	38 (8%)	0	100	100
1	V	452/534~(85%)	409 (90%)	43 (10%)	0	100	100
1	W	452/534 (85%)	407 (90%)	45 (10%)	0	100	100
1	х	452/534~(85%)	420 (93%)	32 (7%)	0	100	100
1	У	452/534~(85%)	419 (93%)	33~(7%)	0	100	100
1	Z	452/534~(85%)	416 (92%)	36 (8%)	0	100	100
2	Р	299/476~(63%)	277~(93%)	22 (7%)	0	100	100
2	Q	299/476~(63%)	277~(93%)	22 (7%)	0	100	100
2	R	299/476~(63%)	277~(93%)	22 (7%)	0	100	100
2	S	299/476~(63%)	277 (93%)	22 (7%)	0	100	100
All	All	13366/16322~(82%)	12289 (92%)	1077 (8%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	379/461~(82%)	376~(99%)	3 (1%)	81 91
1	a	388/461~(84%)	386 (100%)	2(0%)	88 95
1	b	394/461~(86%)	393 (100%)	1 (0%)	92 97
1	с	394/461~(86%)	394 (100%)	0	100 100
1	d	394/461~(86%)	393 (100%)	1 (0%)	92 97
1	е	394/461~(86%)	392 (100%)	2(0%)	88 95
1	f	393/461~(85%)	393 (100%)	0	100 100

Mol	Chain	Analysed	Rotameric	Outliers	Per	ce	ntiles	s
1	g	394/461~(86%)	393~(100%)	1 (0%)	95	2	97	
1	h	394/461~(86%)	394 (100%)	0	10)	100	
1	i	394/461~(86%)	394~(100%)	0	10)	100	
1	j	394/461~(86%)	392~(100%)	2(0%)	8	3	95	
1	k	394/461~(86%)	393~(100%)	1 (0%)	95	2	97	
1	1	394/461~(86%)	394 (100%)	0	10)	100	
1	m	394/461~(86%)	394 (100%)	0	10)	100	
1	n	394/461~(86%)	393 (100%)	1 (0%)	92	2	97	
1	О	394/461~(86%)	392 (100%)	2(0%)	8	3	95	
1	р	394/461~(86%)	393 (100%)	1 (0%)	95	2	97	
1	q	393/461~(85%)	392 (100%)	1 (0%)	95	2	97	
1	r	394/461~(86%)	393 (100%)	1 (0%)	95	2	97	
1	s	394/461~(86%)	394 (100%)	0	10)	100	
1	t	394/461~(86%)	391~(99%)	3 (1%)	8	1	91	
1	u	394/461~(86%)	391~(99%)	3~(1%)	8	1	91	
1	v	394/461~(86%)	394 (100%)	0	10)	100	
1	W	394/461~(86%)	390~(99%)	4 (1%)	7	3	88	
1	х	394/461~(86%)	394 (100%)	0	10)	100	
1	У	394/461~(86%)	394 (100%)	0	10)	100	
1	Z	394/461~(86%)	394 (100%)	0	10)	100	
2	Р	277/434~(64%)	258~(93%)	19 (7%)	1	5	49	
2	Q	277/434~(64%)	258~(93%)	19 (7%)	1	5	49	
2	R	277/434~(64%)	258~(93%)	19 (7%)	1	5	49	
2	S	277/434~(64%)	258~(93%)	19 (7%)	1	5	49	
All	All	11723/14183~(83%)	11618 (99%)	105 (1%)	7	9	90	

All (105) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	153	GLN
1	А	205	ARG
1	А	401	VAL
1	a	214	LEU
1	a	257	LEU

Mol	Chain	Res	Type
1	b	427	ARG
1	d	127	VAL
1	е	101	ARG
1	е	488	VAL
1	g	205	ARG
1	j	127	VAL
1	j	307	VAL
1	k	205	ARG
1	n	241	VAL
1	0	401	VAL
1	0	497	ARG
1	р	369	ASP
1	q	124	THR
1	r	190	LYS
1	t	166	THR
1	\mathbf{t}	190	LYS
1	t	238	ASP
1	u	144	THR
1	u	307	VAL
1	u	398	LEU
1	W	193	ILE
1	W	238	ASP
1	W	240	GLU
1	W	460	ARG
2	Р	57	THR
2	Р	71	SER
2	Р	108	SER
2	Р	156	GLU
2	Р	165	VAL
2	Р	189	ASP
2	Р	196	SER
2	Р	215	THR
2	Р	217	VAL
2	Р	219	LYS
2	Р	233	GLU
2	Р	249	SER
2	Р	253	GLU
2	Р	267	ILE
2	Р	277	GLU
2	Р	278	GLU
2	Р	287	LYS
2	Р	296	LYS

Mol	Chain	Res	Type
2	Р	299	LYS
2	Q	57	THR
2	Q	71	SER
2	Q	108	SER
2	Q	156	GLU
2	Q	165	VAL
2	Q	189	ASP
2	Q	196	SER
2	Q	215	THR
2	Q	217	VAL
2	Q	219	LYS
2	Q	233	GLU
2	Q	249	SER
2	Q	253	GLU
2	Q	267	ILE
2	Q	277	GLU
2	Q	278	GLU
2	Q	287	LYS
2	Q	296	LYS
2	Q	299	LYS
2	R	57	THR
2	R	71	SER
2	R	108	SER
2	R	156	GLU
2	R	165	VAL
2	R	189	ASP
2	R	196	SER
2	R	215	THR
2	R	217	VAL
2	R	219	LYS
2	R	233	GLU
2	R	249	SER
2	R	253	GLU
2	R	267	ILE
2	R	277	GLU
2	R	278	GLU
2	R	287	LYS
2	R	296	LYS
2	R	299	LYS
2	S	57	THR
2	S	71	SER
2	S	108	SER

Mol	Chain	Res	Type
2	S	156	GLU
2	S	165	VAL
2	S	189	ASP
2	S	196	SER
2	S	215	THR
2	S	217	VAL
2	S	219	LYS
2	S	233	GLU
2	S	249	SER
2	S	253	GLU
2	S	267	ILE
2	S	277	GLU
2	S	278	GLU
2	S	287	LYS
2	S	296	LYS
2	S	299	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (123) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	224	ASN
1	А	373	HIS
1	А	471	GLN
1	А	527	ASN
1	a	142	ASN
1	a	153	GLN
1	a	236	ASN
1	a	472	GLN
1	b	135	HIS
1	b	279	GLN
1	b	301	GLN
1	b	333	GLN
1	b	373	HIS
1	b	434	ASN
1	b	472	GLN
1	b	474	ASN
1	b	500	ASN
1	с	224	ASN
1	с	301	GLN
1	с	373	HIS
1	с	489	ASN
1	с	503	ASN

Mol	Chain	Res	Type
1	с	527	ASN
1	d	222	GLN
1	d	402	GLN
1	d	423	ASN
1	е	85	GLN
1	е	313	GLN
1	е	495	ASN
1	е	500	ASN
1	f	236	ASN
1	f	373	HIS
1	g	285	ASN
1	g	373	HIS
1	g	408	ASN
1	g	471	GLN
1	h	279	GLN
1	h	526	ASN
1	i	135	HIS
1	i	301	GLN
1	i	367	HIS
1	i	495	ASN
1	j	285	ASN
1	j	428	ASN
1	j	486	ASN
1	k	85	GLN
1	k	153	GLN
1	k	402	GLN
1	k	486	ASN
1	1	390	GLN
1	1	495	ASN
1	m	417	ASN
1	n	143	ASN
1	n	224	ASN
1	n	402	GLN
1	n	417	ASN
1	n	495	ASN
1	n	498	ASN
1	n	503	ASN
1	0	337	GLN
1	0	472	GLN
1	p	236	ASN
1	р	373	HIS
1	р	402	GLN

Mol	Chain	Res	Type
1	р	417	ASN
1	q	143	ASN
1	q	279	GLN
1	q	313	GLN
1	q	402	GLN
1	q	417	ASN
1	q	486	ASN
1	q	498	ASN
1	r	135	HIS
1	r	224	ASN
1	r	279	GLN
1	r	285	ASN
1	r	417	ASN
1	S	301	GLN
1	s	367	HIS
1	s	387	HIS
1	s	390	GLN
1	s	402	GLN
1	s	471	GLN
1	S	486	ASN
1	s	503	ASN
1	t	143	ASN
1	t	230	GLN
1	t	394	ASN
1	t	417	ASN
1	t	472	GLN
1	u	143	ASN
1	u	285	ASN
1	V	280	HIS
1	V	367	HIS
1	V	373	HIS
1	V	402	GLN
1	W	402	GLN
1	X	135	HIS
1	X	222	GLN
1	X	224	ASN
1	X	301	GLN
1	X	313	GLN
1	X	367	HIS
1	x	417	ASN
1	x	486	ASN
1	Z	133	ASN

Mol	Chain	Res	Type
1	Z	143	ASN
1	Z	285	ASN
1	Z	302	HIS
1	Z	313	GLN
1	Z	333	GLN
2	Р	188	GLN
2	Р	271	ASN
2	Q	80	ASN
2	Q	188	GLN
2	Q	271	ASN
2	R	188	GLN
2	R	271	ASN
2	S	80	ASN
2	S	158	HIS
2	S	188	GLN
2	S	264	GLN
2	S	271	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-32974. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 410

Y Index: 410

Z Index: 410

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 344

Y Index: 86

Z Index: 734

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.02. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 73369 $\rm nm^3;$ this corresponds to an approximate mass of 66276 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.278 \AA^{-1}

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.278 Å $^{-1}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.60	-	-
Author-provided FSC curve	3.57	3.97	3.66
Unmasked-calculated*	-	-	-

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-32974 and PDB model 7X30. Per-residue inclusion information can be found in section 3 on page 6.

9.1 Map-model overlays

9.1.1 Map-model overlay (i)

9.1.2 Map-model assembly overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.02 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.02).

9.4 Atom inclusion (i)

At the recommended contour level, 98% of all backbone atoms, 88% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.02) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.8820	0.4580
А	0.8320	0.4430
Р	0.8520	0.4280
Q	0.8460	0.4260
R	0.7070	0.3870
S	0.6910	0.3680
a	0.8950	0.4640
b	0.8910	0.4630
С	0.8900	0.4650
d	0.8920	0.4680
е	0.8940	0.4630
f	0.8590	0.4570
g	0.9040	0.4660
h	0.9020	0.4650
i	0.8990	0.4660
j	0.9010	0.4680
k	0.9060	0.4680
1	0.9000	0.4650
m	0.8930	0.4630
n	0.8930	0.4670
0	0.8920	0.4630
р	0.8980	0.4600
q	0.8880	0.4660
r	0.8850	0.4620
S	0.8960	0.4630
t	0.8930	0.4620
u	0.8950	0.4580
V	0.9020	0.4640
W	0.8980	0.4630
X	0.8980	0.4660
У	0.9100	0.4640
Z	0.9030	0.4670

0.0 <0.0

1.0

