

Full wwPDB X-ray Structure Validation Report (i)

Mar 10, 2024 – 01:33 AM EST

PDB ID	:	3WT4
Title	:	Structural and kinetic bases for the metal preference of the M18 aminopepti-
		dase from Pseudomonas aeruginosa
Authors	:	Nguyen, D.D.; Pandian, R.; Kim, D.D.; Ha, S.C.; Yoon, H.J.; Kim, K.S.; Yun,
		K.H.; Kim, J.H.; Kim, K.K.
Deposited on	:	2014-04-07
Resolution	:	2.30 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.30 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motria	Whole archive	Similar resolution		
Metric	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$		
R_{free}	130704	5042(2.30-2.30)		
Clashscore	141614	5643 (2.30-2.30)		
Ramachandran outliers	138981	5575 (2.30-2.30)		
Sidechain outliers	138945	5575(2.30-2.30)		
RSRZ outliers	127900	4938 (2.30-2.30)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	429	84%	12%	• •
1	В	429	2% 84%	11%	•••
1	С	429	85%	12%	••
1	D	429	86%	10%	••

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 13955 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
1	Δ	425	Total	С	Ν	0	\mathbf{S}	0	0	0
	A	420	3265	2043	598	614	10	0	9	0
1	1 B	425	Total	С	Ν	0	S	0	9	0
		420	3260	2040	596	614	10			0
1	C	494	Total	С	Ν	0	S	0	0	0
	424	3257	2037	597	613	10	0	9	U	
1 D	425	Total	С	Ν	0	S	0	9	0	
	420	3265	2043	598	614	10			0	

• Molecule 1 is a protein called Probable M18 family aminopeptidase 2.

• Molecule 2 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	2	Total Zn 2 2	0	0
2	В	2	Total Zn 2 2	0	0
2	С	2	Total Zn 2 2	0	0
2	D	2	Total Zn 2 2	0	0

• Molecule 3 is CARBONATE ION (three-letter code: CO3) (formula: CO_3).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 1 & 3 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 1 & 3 \end{array}$	0	0
3	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
3	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0

• Molecule 4 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	222	Total O 222 222	0	0
4	В	220	Total O 220 220	0	0
4	С	219	Total O 219 219	0	0
4	D	223	Total O 223 223	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Probable M18 family aminopeptidase 2

4 Data and refinement statistics (i)

Property	Value	Source
Space group	Н 3	Depositor
Cell constants	134.19Å 134.19Å 328.76Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 120.00°	Depositor
Besolution (Å)	27.40 - 2.30	Depositor
	27.40 - 2.30	EDS
% Data completeness	99.9(27.40-2.30)	Depositor
(in resolution range)	99.9 (27.40-2.30)	EDS
R _{merge}	0.10	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	2.48 (at 2.31 Å)	Xtriage
Refinement program	REFMAC 5.7.0029	Depositor
B B c	0.146 , 0.196	Depositor
	0.155 , 0.202	DCC
R_{free} test set	4898 reflections $(4.99%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	25.9	Xtriage
Anisotropy	0.005	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.37, 44.1	EDS
L-test for twinning ²	$< L >=0.51, < L^2>=0.34$	Xtriage
	0.025 for -1/3 + 1/3 +	
	0.026 for -2/3 *h- 1/3 *k- 1/3 *l,- 1/3 *h- 2/3 *k+	
	1/3*l,-4/3*h+4/3*k+1/3*l	
	0.024 for -h,1/3*h-1/3*k-1/3*l,-4/3*h-8/3*k	
	+1/3*1 0.456 for b.9/2*b+1/2*b+1/2*b+0/2	V . :
Estimated twinning fraction	$0.430 \text{ IOF} -\Pi, 2/3 \cdot \Pi + 1/3 \cdot K + 1/3 \cdot 1, 4/3 \cdot \Pi + 8/3$	Atriage
	$0.457 \text{ for } 1/3^{*}\text{h} + 2/3^{*}\text{k} - 1/3^{*}\text{l} - \text{k} - 8/3^{*}\text{h} - 4/3^{*}$	
	k-1/3*1	
	0.457 for -1/3 *h-2/3 *k+1/3 *l, -2/3 *h-1/3 *k-1/3	
	1/3*l,4/3*h-4/3*k-1/3*l	
	0.030 for -h-k,k,-l	
F_o, F_c correlation	0.96	EDS
Total number of atoms	13955	wwPDB-VP
Average B, all atoms $(Å^2)$	28.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.72% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CO3, ZN $\,$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bo	nd lengths	Bond angles		
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.92	2/3324~(0.1%)	0.98	10/4509~(0.2%)	
1	В	0.93	3/3318~(0.1%)	1.02	10/4501~(0.2%)	
1	С	0.93	2/3316~(0.1%)	1.05	15/4498~(0.3%)	
1	D	0.91	1/3324~(0.0%)	1.00	13/4509~(0.3%)	
All	All	0.92	8/13282~(0.1%)	1.01	48/18017 (0.3%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	3
1	В	0	1
1	С	0	1
1	D	0	1
All	All	0	6

All (8) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
1	В	228	GLU	CD-OE1	6.88	1.33	1.25
1	В	273	CYS	C-O	6.13	1.34	1.23
1	А	228	GLU	CD-OE1	5.89	1.32	1.25
1	С	228	GLU	CD-OE1	5.59	1.31	1.25
1	В	384	SER	N-CA	5.40	1.57	1.46
1	А	273	CYS	CB-SG	-5.32	1.73	1.81
1	D	172	GLU	CD-OE2	-5.29	1.19	1.25
1	С	258	ILE	N-CA	5.25	1.56	1.46

All (48) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
1	С	391	VAL	CB-CA-C	-8.85	94.58	111.40
1	D	389	ARG	NE-CZ-NH2	-8.83	115.89	120.30
1	В	41	ARG	NE-CZ-NH1	8.20	124.40	120.30
1	А	36	ARG	NE-CZ-NH1	8.05	124.33	120.30
1	D	54	VAL	CB-CA-C	-7.55	97.06	111.40
1	А	2	ARG	NE-CZ-NH1	7.52	124.06	120.30
1	С	300	ARG	NE-CZ-NH1	7.47	124.03	120.30
1	А	260	VAL	CB-CA-C	-7.36	97.42	111.40
1	С	260	VAL	CB-CA-C	-7.08	97.95	111.40
1	D	260	VAL	CB-CA-C	-7.07	97.97	111.40
1	D	286	ARG	NE-CZ-NH2	-6.68	116.96	120.30
1	С	69	ARG	NE-CZ-NH2	-6.65	116.98	120.30
1	С	227	ASP	CB-CG-OD1	6.57	124.21	118.30
1	D	77	ARG	NE-CZ-NH1	6.57	123.58	120.30
1	С	187	ASP	CB-CG-OD2	-6.53	112.42	118.30
1	В	41	ARG	NE-CZ-NH2	-6.50	117.05	120.30
1	В	307	ASP	CB-CG-OD1	6.28	123.95	118.30
1	В	389	ARG	NE-CZ-NH1	6.27	123.44	120.30
1	С	258	ILE	N-CA-C	6.20	127.72	111.00
1	В	139	ARG	NE-CZ-NH1	6.16	123.38	120.30
1	D	69	ARG	NE-CZ-NH2	-6.14	117.23	120.30
1	А	318	ASP	CB-CG-OD1	6.09	123.78	118.30
1	С	319	ARG	NE-CZ-NH1	6.06	123.33	120.30
1	С	286	ARG	NE-CZ-NH2	-5.92	117.34	120.30
1	D	65	ARG	NE-CZ-NH2	-5.89	117.35	120.30
1	А	260	VAL	CG1-CB-CG2	5.89	120.32	110.90
1	С	3	ALA	N-CA-C	-5.81	95.32	111.00
1	D	300	ARG	NE-CZ-NH2	-5.78	117.41	120.30
1	А	286	ARG	NE-CZ-NH2	-5.68	117.46	120.30
1	D	227	ASP	CB-CG-OD1	5.66	123.40	118.30
1	С	300	ARG	NE-CZ-NH2	-5.65	117.48	120.30
1	С	187	ASP	CB-CG-OD1	5.59	123.33	118.30
1	D	42	ASP	CB-CG-OD1	5.57	123.31	118.30
1	A	273	CYS	N-CA-CB	-5.46	100.77	110.60
1	В	2	ARG	N-CA-C	5.41	125.60	111.00
1	С	198	ARG	NE-CZ-NH1	5.36	122.98	120.30
1	В	274	GLY	N-CA-C	-5.33	99.78	113.10
1	D	307	ASP	CB-CG-OD1	5.31	123.08	118.30
1	В	319	ARG	NE-CZ-NH1	5.26	122.93	120.30
1	А	36	ARG	NE-CZ-NH2	-5.24	117.68	120.30
1	С	257	CYS	O-C-N	-5.21	114.37	122.70
1	D	260	VAL	CG1-CB-CG2	5.20	119.22	110.90
1	А	371	ASP	CB-CG-OD1	5.19	122.97	118.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	384	SER	N-CA-C	5.19	125.00	111.00
1	С	84	ASP	CB-CG-OD2	-5.14	113.67	118.30
1	В	286	ARG	NE-CZ-NH2	-5.12	117.74	120.30
1	D	69	ARG	NE-CZ-NH1	5.10	122.85	120.30
1	А	319	ARG	NE-CZ-NH1	5.09	122.85	120.30

There are no chirality outliers.

All (6) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	2	ARG	Peptide
1	А	272	HIS	Peptide
1	А	276	ASP	Peptide
1	В	1	MET	Peptide
1	С	183	GLY	Peptide
1	D	428	LEU	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3265	0	3124	45	0
1	В	3260	0	3119	54	0
1	С	3257	0	3113	31	0
1	D	3265	0	3124	29	0
2	А	2	0	0	0	0
2	В	2	0	0	0	0
2	С	2	0	0	0	0
2	D	2	0	0	0	0
3	А	4	0	0	0	0
3	В	4	0	0	0	0
3	С	4	0	0	0	0
3	D	4	0	0	0	0
4	А	222	0	0	6	0
4	B	220	0	0	10	0
4	С	219	0	0	6	0
4	D	223	0	0	5	0

Continued from previous page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
All	All	13955	0	12480	151	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

All (151) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom_1	Atom-2	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:340:GLN:NE2	1:B:271:SER:O	1.83	1.11	
1:A:2:ARG:HD3	1:A:2:ARG:C	1.75	1.03	
1:B:272:HIS:H	1:B:273:CYS:HA	1.23	1.02	
1:B:273:CYS:SG	1:B:274:GLY:N	2.32	1.02	
1:B:270:CYS:O	4:B:728:HOH:O	1.81	0.97	
1:B:276:ASP:OD1	1:B:276:ASP:N	2.00	0.92	
1:D:344:THR:HG22	1:D:392:ASP:H	1.35	0.91	
1:A:276:ASP:HB3	1:A:381:ILE:HG23	1.57	0.84	
1:B:357:GLN:HB3	4:B:733:HOH:O	1.79	0.82	
1:B:272:HIS:N	1:B:273:CYS:HA	1.94	0.81	
1:B:381:ILE:HD13	1:B:382:THR:N	1.94	0.81	
1:C:3:ALA:O	1:C:4:GLU:CB	2.25	0.81	
1:A:382:THR:O	1:A:385:GLN:O	2.00	0.79	
1:C:379:GLY:N	4:C:764:HOH:O	2.17	0.78	
1:C:77:ARG:O	1:C:257:CYS:O	2.04	0.76	
1:B:37:ARG:HH21	1:B:55:THR:HG21	1.53	0.74	
1:A:378:ILE:HD12	4:A:821:HOH:O	1.86	0.74	
1:B:39:ASP:OD1	1:B:41:ARG:HD3	1.88	0.72	
1:B:382:THR:O	1:B:382:THR:HG23	1.93	0.68	
1:D:341:ARG:HD2	4:D:767:HOH:O	1.97	0.65	
1:A:2:ARG:HD3	1:A:3:ALA:N	2.12	0.65	
1:B:275:ALA:C	1:B:276:ASP:OD1	2.36	0.64	
1:B:37:ARG:NH2	1:B:55:THR:HG21	2.12	0.64	
1:D:1:MET:CE	1:D:1:MET:HA	2.26	0.64	
1:C:195:GLN:OE1	1:C:198:ARG:NH1	2.30	0.64	
1:C:77:ARG:NH2	1:C:428:LEU:HD22	2.14	0.62	
1:B:389:ARG:NE	4:B:722:HOH:O	2.32	0.62	
1:B:276:ASP:HA	1:B:277:GLY:O	1.99	0.61	
1:C:3:ALA:O	1:C:4:GLU:HB3	2.01	0.61	
1:D:198:ARG:NH1	4:D:707:HOH:O	2.32	0.61	
1:C:3:ALA:O	1:C:4:GLU:HB2	2.01	0.60	
1:B:160:ALA:HB1	1:B:163:GLU:HG3	1.84	0.60	
1:B:41:ARG:HD2	4:B:668:HOH:O	2.00	0.60	

	i ageni	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:378:ILE:HG13	1:A:380:PRO:HD2	1.84	0.59
1:B:274:GLY:O	1:B:275:ALA:HB3	2.00	0.59
1:B:55:THR:CG2	4:B:656:HOH:O	2.51	0.59
1:A:269:SER:O	1:A:270:CYS:CB	2.50	0.58
1:B:381:ILE:HD13	1:B:382:THR:HA	1.85	0.58
1:B:37:ARG:HH21	1:B:55:THR:CG2	2.16	0.58
1:A:341:ARG:CZ	4:A:776:HOH:O	2.53	0.57
1:B:275:ALA:CA	1:B:276:ASP:OD1	2.52	0.57
1:B:384:SER:HA	1:B:386:VAL:N	2.20	0.56
1:D:195:GLN:OE1	1:D:198:ARG:NH1	2.39	0.56
1:B:55:THR:HG23	4:B:656:HOH:O	2.05	0.56
1:D:348:THR:HB	1:D:391:VAL:HB	1.87	0.56
1:B:384:SER:HA	1:B:386:VAL:H	1.70	0.55
1:B:275:ALA:HA	1:B:276:ASP:OD1	2.06	0.55
1:A:36:ARG:HG2	1:A:36:ARG:HH11	1.71	0.55
1:A:42:ASP:O	1:A:286:ARG:NH2	2.40	0.55
1:D:153:LEU:HD23	1:D:158:ASN:HB2	1.87	0.54
1:C:74:SER:O	1:C:77:ARG:NH2	2.41	0.54
1:B:382:THR:O	1:B:382:THR:CG2	2.54	0.54
1:D:160:ALA:O	1:D:163:GLU:HB2	2.08	0.54
1:A:2:ARG:C	1:A:4:GLU:N	2.59	0.54
1:B:339:ASN:HA	1:C:267:VAL:HG21	1.90	0.54
1:C:357:GLN:HB3	4:C:709:HOH:O	2.08	0.53
1:C:288:LEU:HD13	1:C:294:PHE:HA	1.90	0.53
1:B:145:LYS:HE2	4:B:760:HOH:O	2.07	0.52
1:D:121:ASP:OD2	4:D:718:HOH:O	2.19	0.52
1:A:340:GLN:HE21	1:B:271:SER:C	2.09	0.52
1:B:381:ILE:HD13	1:B:382:THR:CA	2.39	0.52
1:C:159:ARG:NH2	4:C:813:HOH:O	2.42	0.52
1:D:233:ALA:HB2	1:D:403:ILE:O	2.10	0.52
1:C:65:ARG:HB2	1:C:257:CYS:HB2	1.91	0.52
1:D:77:ARG:HG2	1:D:77:ARG:HH11	1.75	0.51
1:A:271:SER:C	1:A:273:CYS:H	2.14	0.51
1:A:385:GLN:NE2	4:A:756:HOH:O	2.38	0.50
1:D:344:THR:CG2	1:D:392:ASP:H	2.15	0.50
1:A:153:LEU:HD23	1:A:158:ASN:HB2	1.93	0.50
1:C:395:LEU:HD22	1:C:411:ASP:HB3	1.94	0.50
1:D:115:ALA:N	1:D:116:PRO:CD	2.74	0.50
1:D:395:LEU:HD21	1:D:415:LEU:HB2	1.93	0.50
1:B:265:GLU:OE2	1:B:380:PRO:HB2	2.12	0.50
1:A:395:LEU:HD21	1:A:415:LEU:HB2	1.93	0.49

	lo ao pagom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:115:ALA:N	1:A:116:PRO:CD	2.75	0.49
1:D:131:ARG:HE	1:D:134:GLY:HA2	1.77	0.49
1:A:269:SER:O	1:A:270:CYS:HB3	2.13	0.49
1:B:270:CYS:HA	1:B:271:SER:HB3	1.93	0.48
1:A:339:ASN:HA	1:B:267:VAL:HG11	1.95	0.48
1:D:42:ASP:O	1:D:286:ARG:NH2	2.47	0.48
1:D:70:SER:HB2	4:D:698:HOH:O	2.13	0.48
1:C:62:ILE:HG12	1:C:260:VAL:HG13	1.95	0.48
1:C:361:VAL:HG11	1:C:418:VAL:HG21	1.95	0.48
1:A:2:ARG:NH2	1:A:410:HIS:HA	2.29	0.47
1:A:36:ARG:HH11	1:A:36:ARG:CG	2.26	0.47
1:C:71:PRO:HB2	1:C:288:LEU:HD21	1.95	0.47
1:A:267:VAL:HG11	1:C:339:ASN:HA	1.97	0.47
1:B:77:ARG:CD	1:B:428:LEU:HD21	2.45	0.47
1:C:153:LEU:HD23	1:C:158:ASN:HB2	1.97	0.47
1:C:335:LYS:HE3	4:C:738:HOH:O	2.15	0.47
1:A:276:ASP:HB3	1:A:381:ILE:CG2	2.37	0.47
1:A:361:VAL:HG21	1:A:418:VAL:HG13	1.96	0.47
1:C:63:ALA:O	1:C:258:ILE:HA	2.15	0.46
1:D:428:LEU:HB2	1:D:429:PRO:CD	2.45	0.46
1:D:63:ALA:HB3	1:D:259:LEU:HB3	1.96	0.46
1:B:269:SER:O	1:B:275:ALA:HB1	2.16	0.46
1:B:274:GLY:O	1:B:275:ALA:CB	2.64	0.46
1:C:77:ARG:HH21	1:C:428:LEU:HD22	1.80	0.46
1:B:270:CYS:HA	1:B:271:SER:CB	2.46	0.46
1:B:381:ILE:CD1	1:B:382:THR:N	2.74	0.46
4:B:620:HOH:O	1:C:272:HIS:HE1	1.99	0.45
1:A:269:SER:HB3	1:A:275:ALA:N	2.32	0.45
1:C:42:ASP:O	1:C:286:ARG:NH2	2.50	0.45
1:D:335:LYS:O	1:D:344:THR:CG2	2.65	0.45
1:D:335:LYS:O	1:D:344:THR:HG23	2.17	0.45
1:A:281:GLU:HB2	1:A:386:VAL:HG12	1.99	0.45
1:A:67:GLY:HA3	1:A:254:ASP:O	2.17	0.44
1:C:130:PHE:CZ	1:C:137:GLU:HG3	2.52	0.44
1:D:173:LEU:N	1:D:174:PRO:CD	2.81	0.44
1:B:115:ALA:N	1:B:116:PRO:CD	2.81	0.44
1:B:235:LEU:O	1:B:237:ASN:HA	2.18	0.44
1:C:36:ARG:NH1	4:C:797:HOH:O	2.24	0.44
1:A:383:ALA:O	1:A:387:GLY:HA2	2.18	0.44
1:A:130:PHE:CZ	1:A:137:GLU:HG3	2.52	0.43
1:A:319:ARG:NH2	4:A:624:HOH:O	2.51	0.43

A 4 1	A + 0	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:A:340:GLN:NE2	1:B:271:SER:C	2.63	0.43	
1:A:86:PRO:HG2	1:A:401:HIS:CG	2.54	0.43	
1:A:2:ARG:CA	1:A:4:GLU:H	2.31	0.43	
1:A:148:ALA:HB2	1:A:177:ILE:HG22	2.00	0.43	
1:B:300:ARG:O	1:B:428:LEU:HD12	2.18	0.43	
1:C:115:ALA:N	1:C:116:PRO:CD	2.81	0.43	
1:D:383:ALA:O	1:D:387:GLY:HA2	2.18	0.43	
1:A:65:ARG:NH2	1:A:251:ALA:HB3	2.34	0.42	
1:C:361:VAL:HG21	1:C:418:VAL:HG23	2.00	0.42	
1:D:2:ARG:HD2	4:D:798:HOH:O	2.18	0.42	
1:B:263:ASP:O	1:B:275:ALA:HB2	2.20	0.42	
1:B:302:LEU:HD23	1:B:422:PHE:CE1	2.54	0.42	
1:D:333:VAL:O	1:D:393:ILE:HA	2.19	0.42	
1:B:395:LEU:HD22	1:B:411:ASP:HB3	2.02	0.42	
1:A:378:ILE:HB	4:A:821:HOH:O	2.19	0.42	
1:B:335:LYS:HE2	4:B:676:HOH:O	2.20	0.42	
1:C:368:THR:HG22	4:C:686:HOH:O	2.19	0.42	
1:D:269:SER:HB2	1:D:381:ILE:HD13	2.02	0.42	
1:A:82:HIS:NE2	1:A:237:ASN:HB2	2.35	0.41	
1:A:332:PRO:HD2	1:A:362:PRO:O	2.20	0.41	
1:D:77:ARG:CD	1:D:428:LEU:HD21	2.49	0.41	
1:B:42:ASP:O	1:B:286:ARG:NH2	2.53	0.41	
1:B:148:ALA:HB2	1:B:177:ILE:HG22	2.02	0.41	
1:B:324:HIS:CG	1:B:367:VAL:HG12	2.56	0.41	
1:A:268:GLY:C	1:A:269:SER:O	2.56	0.41	
1:A:271:SER:C	1:A:273:CYS:N	2.74	0.41	
1:C:395:LEU:HD21	1:C:415:LEU:HB2	2.02	0.41	
1:A:62:ILE:HG12	1:A:260:VAL:HG13	2.03	0.41	
1:A:274:GLY:HA2	4:A:675:HOH:O	2.21	0.41	
1:A:319:ARG:NH1	1:D:157:LEU:O	2.54	0.41	
1:B:153:LEU:HD23	1:B:158:ASN:HB2	2.01	0.41	
1:D:328:LEU:O	1:D:329:ASN:HB2	2.21	0.41	
1:B:203:THR:HA	4:B:765:HOH:O	2.20	0.41	
1:A:384:SER:CB	1:B:270:CYS:HB3	2.51	0.40	
1:C:235:LEU:O	1:C:237:ASN:HA	2.20	0.40	
1:B:348:THR:HB	1:B:391:VAL:HB	2.02	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	421/429~(98%)	398 (94%)	21 (5%)	2(0%)	29	35
1	В	421/429~(98%)	390~(93%)	25~(6%)	6 (1%)	11	11
1	С	420/429~(98%)	403 (96%)	15 (4%)	2(0%)	29	35
1	D	421/429~(98%)	403 (96%)	17 (4%)	1 (0%)	47	58
All	All	1683/1716~(98%)	1594 (95%)	78 (5%)	11 (1%)	22	26

All (11) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	2	ARG
1	А	270	CYS
1	В	2	ARG
1	В	382	THR
1	В	383	ALA
1	С	4	GLU
1	В	380	PRO
1	В	384	SER
1	D	428	LEU
1	В	385	GLN
1	С	258	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	341/344~(99%)	326~(96%)	15~(4%)	28 39
1	В	340/344~(99%)	325~(96%)	15 (4%)	28 39
1	С	340/344~(99%)	324~(95%)	16 (5%)	26 37
1	D	341/344~(99%)	331~(97%)	10 (3%)	42 58
All	All	1362/1376~(99%)	1306~(96%)	56~(4%)	30 43

All (56) residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
1	А	2	ARG
1	А	36	ARG
1	А	48	THR
1	А	65	ARG
1	А	73	GLU
1	А	131	ARG
1	А	136	LEU
1	А	191	LEU
1	А	203	THR
1	А	254	ASP
1	А	341	ARG
1	А	378	ILE
1	А	386	VAL
1	А	392	ASP
1	А	428	LEU
1	В	4	GLU
1	В	46	THR
1	В	55	THR
1	В	131	ARG
1	В	191	LEU
1	В	203	THR
1	В	222	VAL
1	В	270	CYS
1	В	271	SER
1	В	273	CYS
1	В	276	ASP
1	В	381	ILE
1	В	382	THR
1	В	384	SER
1	В	385	GLN
1	С	46	THR
1	С	68	ARG
1	С	73	GLU

Mol	Chain	Res	Type
1	С	77	ARG
1	С	131	ARG
1	С	136	LEU
1	С	163	GLU
1	С	191	LEU
1	С	203	THR
1	С	267	VAL
1	С	341	ARG
1	С	386	VAL
1	С	391	VAL
1	С	392	ASP
1	С	427	GLU
1	С	428	LEU
1	D	2	ARG
1	D	54	VAL
1	D	131	ARG
1	D	136	LEU
1	D	163	GLU
1	D	267	VAL
1	D	341	ARG
1	D	344	THR
1	D	357	GLN
1	D	428	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 12 ligands modelled in this entry, 8 are monoatomic - leaving 4 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type	Turne	Chain	Dec	Tinle	Bond lengths			Bond angles		
	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
3	CO3	В	503	2	2,3,3	1.23	0	$2,\!3,\!3$	0.89	0
3	CO3	С	503	2	2,3,3	1.29	0	$2,\!3,\!3$	0.55	0
3	CO3	А	503	2	2,3,3	1.19	0	2,3,3	0.84	0
3	CO3	D	503	2	2,3,3	1.17	0	2,3,3	0.66	0

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	425/429~(99%)	-0.51	1 (0%) 95 96	15, 24, 50, 76	0
1	В	425/429~(99%)	-0.41	10 (2%) 59 66	15, 24, 54, 131	0
1	С	424/429~(98%)	-0.51	1 (0%) 95 96	16, 24, 47, 81	0
1	D	425/429~(99%)	-0.51	2 (0%) 91 94	16, 24, 47, 113	0
All	All	1699/1716~(99%)	-0.49	14 (0%) 86 89	15, 24, 51, 131	0

All (14) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	В	378	ILE	9.7
1	В	380	PRO	7.8
1	В	272	HIS	6.6
1	В	379	GLY	6.3
1	D	429	PRO	5.8
1	В	271	SER	3.7
1	В	270	CYS	3.6
1	В	381	ILE	2.9
1	D	270	CYS	2.5
1	В	273	CYS	2.3
1	С	428	LEU	2.3
1	А	269	SER	2.2
1	В	382	THR	2.2
1	В	427	GLU	2.1

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
3	CO3	С	503	4/4	0.96	0.10	$45,\!51,\!57,\!57$	0
3	CO3	В	503	4/4	0.98	0.12	38,48,51,55	0
3	CO3	А	503	4/4	0.99	0.08	35,51,52,54	0
2	ZN	В	501	1/1	0.99	0.07	29,29,29,29	0
2	ZN	С	502	1/1	0.99	0.08	29,29,29,29	0
3	CO3	D	503	4/4	0.99	0.10	$33,\!51,\!53,\!58$	0
2	ZN	D	501	1/1	1.00	0.08	$25,\!25,\!25,\!25$	0
2	ZN	D	502	1/1	1.00	0.10	28,28,28,28	0
2	ZN	А	501	1/1	1.00	0.09	$25,\!25,\!25,\!25$	0
2	ZN	В	502	1/1	1.00	0.10	26,26,26,26	0
2	ZN	С	501	1/1	1.00	0.08	26,26,26,26	0
2	ZN	А	502	1/1	1.00	0.07	29,29,29,29	0

6.5 Other polymers (i)

There are no such residues in this entry.

