

wwPDB X-ray Structure Validation Summary Report (i)

Sep 26, 2023 – 12:08 AM EDT

PDB ID	:	5WOB
Title	:	Crystal Structure Analysis of Fab1-Bound Human Insulin Degrading Enzyme
		(IDE) in Complex with Insulin
Authors	:	McCord, L.A.; Liang, W.G.; Farcasanu, M.; Wang, A.G.; Koide, S.; Tang,
		W.J.
Deposited on	:	2017-08-01
Resolution	:	3.95 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.13
EDS	:	2.35.1
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.95 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	1025 (4.22-3.70)
Clashscore	141614	1085 (4.22-3.70)
Ramachandran outliers	138981	1047 (4.22-3.70)
Sidechain outliers	138945	1039 (4.22-3.70)
RSRZ outliers	127900	1013 (4.28-3.64)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
			.%		
1	А	990	81%	14%	5%
			.%		
1	В	990	81%	14%	·
			5%		
1	С	990	81%	15%	•
			6%		
1	D	990	80%	16%	•
			5%		
1	Е	990	81%	15%	5%

Mol	Chain	Length	Quality of chai	n	
1	F	990	6% 82%		13% 5%
1	G	990	2% 8 1%		14% 5%
1		000	3%		1470 570
	п	990			13% 5%
2	a	20	100%		
2	b	20	25% 75	%	
2	с	20	5%		
2	d	20	15% 85%		
2	е	20	40% 5%	55%	
2	f	20	90%		10%
2	g	20	70%	5%	25%
2	h	20	30%	70%	
3	Ι	263	^{2%}	11%	18%
3	K	263	7%	14%	21%
3	М	263	4%	14%	10%
2	0	200	11%	1470	1370
3	0	203	68%	11%	21%
3	Q	263	65% 5%	11%	24%
3	S	263	66%	16%	18%
3	U	263	61%	14%	24%
3	W	263	64%	13%	22%
4	J	239	2% 67%	15%	17%
4	L	239	62%	11%	26%
4	N	239	<mark>6%</mark> 71%	13%	16%
4	Р	239	9%	10%	23%
4	B	239	63%	11%	26%
	-	200	10%	TT /0	2070
4	Т	239	68%	15%	17%

Mol	Chain	Length	Quality of chain		
4	V	239	5% 67%	11%	22%
4	Х	239	5% 65%	18%	17%

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 86906 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		Α	toms			ZeroOcc	AltConf	Trace
1	Δ	0.41	Total	С	Ν	Ο	S	0	0	0
	А	941	7708	4971	1294	1422	21	0	0	0
1	В	047	Total	С	Ν	Ο	S	0	0	0
	D	941	7758	4997	1302	1437	22	0	0	0
1	С	050	Total	С	Ν	Ο	S	0	0	0
1	U	900	7772	5009	1304	1437	22	0	0	0
1	Л	052	Total	С	Ν	Ο	S	0	0	0
1	D	932	7790	5018	1307	1443	22	0	0	0
1	F	043	Total	С	Ν	Ο	S	0	0	0
L		940	7713	4969	1294	1428	22	0	0	U
1	F	044	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	Г	944	7735	4988	1301	1425	21	0	0	0
1	С	043	Total	С	Ν	Ο	S	0	0	0
	G	940	7722	4975	1298	1427	22	0	0	0
1	ц	026	Total	С	Ν	Ο	S	0	0	0
	п	900	7663	4945	1288	1410	20		0	0

• Molecule 1 is a protein called Insulin-degrading enzyme.

There are 208 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	30	MET	-	initiating methionine	UNP P14735
А	31	HIS	-	expression tag	UNP P14735
А	32	HIS	-	expression tag	UNP P14735
А	33	HIS	-	expression tag	UNP P14735
А	34	HIS	-	expression tag	UNP P14735
А	35	HIS	-	expression tag	UNP P14735
А	36	HIS	-	expression tag	UNP P14735
А	37	ALA	-	expression tag	UNP P14735
А	38	ALA	-	expression tag	UNP P14735
А	39	GLY	-	expression tag	UNP P14735
А	40	ILE	-	expression tag	UNP P14735
А	41	PRO	-	expression tag	UNP P14735
A	110	LEU	CYS	engineered mutation	UNP P14735

0 W O D	5	W	Ο	В
---------	---	---	---	---

Chain	Residue	Modelled	Actual	Comment	Reference
A	111	GLN	GLU	engineered mutation	UNP P14735
A	171	SER	CYS	engineered mutation	UNP P14735
A	178	ALA	CYS	engineered mutation	UNP P14735
A	257	VAL	CYS	engineered mutation	UNP P14735
А	414	LEU	CYS	engineered mutation	UNP P14735
А	573	ASN	CYS	engineered mutation	UNP P14735
А	590	SER	CYS	engineered mutation	UNP P14735
А	789	SER	CYS	engineered mutation	UNP P14735
А	812	ALA	CYS	engineered mutation	UNP P14735
А	819	ALA	CYS	engineered mutation	UNP P14735
А	904	SER	CYS	engineered mutation	UNP P14735
А	966	ASN	CYS	engineered mutation	UNP P14735
А	974	ALA	CYS	engineered mutation	UNP P14735
В	30	MET	-	initiating methionine	UNP P14735
В	31	HIS	-	expression tag	UNP P14735
В	32	HIS	-	expression tag	UNP P14735
В	33	HIS	-	expression tag	UNP P14735
В	34	HIS	-	expression tag	UNP P14735
В	35	HIS	-	expression tag	UNP P14735
В	36	HIS	-	expression tag	UNP P14735
В	37	ALA	-	expression tag	UNP P14735
В	38	ALA	-	expression tag	UNP P14735
В	39	GLY	-	expression tag	UNP P14735
В	40	ILE	-	expression tag	UNP P14735
В	41	PRO	-	expression tag	UNP P14735
В	110	LEU	CYS	engineered mutation	UNP P14735
В	111	GLN	GLU	engineered mutation	UNP P14735
В	171	SER	CYS	engineered mutation	UNP P14735
В	178	ALA	CYS	engineered mutation	UNP P14735
В	257	VAL	CYS	engineered mutation	UNP P14735
В	414	LEU	CYS	engineered mutation	UNP P14735
В	573	ASN	CYS	engineered mutation	UNP P14735
В	590	SER	CYS	engineered mutation	UNP P14735
В	789	SER	CYS	engineered mutation	UNP P14735
В	812	ALA	CYS	engineered mutation	UNP P14735
В	819	ALA	CYS	engineered mutation	UNP P14735
B	904	SER	CYS	engineered mutation	UNP P14735
B	966	ASN	CYS	engineered mutation	UNP P14735
B	974	ALA	CYS	engineered mutation	UNP P14735
C	30	MET	-	initiating methionine	UNP P14735
С	31	HIS	-	expression tag	UNP P14735
С	32	HIS	-	expression tag	UNP P14735

Continued from previous page...

Chain	Residue	Modelled	Actual	Comment	Reference
С	33	HIS	_	expression tag	UNP P14735
С	34	HIS	_	expression tag	UNP P14735
С	35	HIS	_	expression tag	UNP P14735
С	36	HIS	_	expression tag	UNP P14735
С	37	ALA	-	expression tag	UNP P14735
С	38	ALA	-	expression tag	UNP P14735
С	39	GLY	-	expression tag	UNP P14735
С	40	ILE	-	expression tag	UNP P14735
С	41	PRO	-	expression tag	UNP P14735
С	110	LEU	CYS	engineered mutation	UNP P14735
С	111	GLN	GLU	engineered mutation	UNP P14735
С	171	SER	CYS	engineered mutation	UNP P14735
С	178	ALA	CYS	engineered mutation	UNP P14735
С	257	VAL	CYS	engineered mutation	UNP P14735
С	414	LEU	CYS	engineered mutation	UNP P14735
С	573	ASN	CYS	engineered mutation	UNP P14735
С	590	SER	CYS	engineered mutation	UNP P14735
С	789	SER	CYS	engineered mutation	UNP P14735
С	812	ALA	CYS	engineered mutation	UNP P14735
С	819	ALA	CYS	engineered mutation	UNP P14735
С	904	SER	CYS	engineered mutation	UNP P14735
С	966	ASN	CYS	engineered mutation	UNP P14735
С	974	ALA	CYS	engineered mutation	UNP P14735
D	30	MET	-	initiating methionine	UNP P14735
D	31	HIS	-	expression tag	UNP P14735
D	32	HIS	-	expression tag	UNP P14735
D	33	HIS	-	expression tag	UNP P14735
D	34	HIS	-	expression tag	UNP P14735
D	35	HIS	-	expression tag	UNP P14735
D	36	HIS	-	expression tag	UNP P14735
D	37	ALA	-	expression tag	UNP P14735
D	38	ALA	-	expression tag	UNP P14735
D	39	GLY	-	expression tag	UNP P14735
D	40	ILE	-	expression tag	UNP P14735
D	41	PRO	-	expression tag	UNP P14735
D	110	LEU	CYS	engineered mutation	UNP P14735
D	111	GLN	GLU	engineered mutation	UNP P14735
D	171	SER	CYS	engineered mutation	UNP P14735
D	178	ALA	CYS	engineered mutation	UNP P14735
D	257	VAL	CYS	engineered mutation	UNP P14735
D	414	LEU	CYS	engineered mutation	UNP P14735
D	573	ASN	CYS	engineered mutation	UNP P14735

Continued from previous page...

D

D

Modelled	Actual	Comment	Reference
SED	CVC	comment	IND D14725
	CYC	engineered mutation	UNP P14755
SER	CYS	engineered mutation	UNP P14735
ALA	CYS	engineered mutation	UNP P14735
ALA	CYS	engineered mutation	UNP P14735
SER	CYS	engineered mutation	UNP P14735
ASN	CYS	engineered mutation	UNP P14735
ALA	CYS	engineered mutation	UNP P14735
MET	-	initiating methionine	UNP P14735
HIS	-	expression tag	UNP P14735
HIS	-	expression tag	UNP P14735
HIS	-	expression tag	UNP P14735
HIS	-	expression tag	UNP P14735
HIS	-	expression tag	UNP P14735
HIS	-	expression tag	UNP P14735
ALA	-	expression tag	UNP P14735
ALA	-	expression tag	UNP P14735
GLY	-	expression tag	UNP P14735
ILE	-	expression tag	UNP P14735
PRO	-	expression tag	UNP P14735
LEU	CYS	engineered mutation	UNP P14735
GLN	GLU	engineered mutation	UNP P14735
SER	CYS	engineered mutation	UNP P14735
ALA	CYS	engineered mutation	UNP P14735
VAL	CYS	engineered mutation	UNP P14735
LEU	CYS	engineered mutation	UNP P14735
ASN	CYS	engineered mutation	UNP P14735
SER	CYS	engineered mutation	UNP P14735
SER	CYS	engineered mutation	UNP P14735
ALA	CYS	engineered mutation	UNP P14735

Continued from previou Chain Residue

590

789

D819ALACYSengineered mutationUNP P14D904SERCYSengineered mutationUNP P14D966ASNCYSengineered mutationUNP P14D974ALACYSengineered mutationUNP P14
D904SERCYSengineered mutationUNP P14D966ASNCYSengineered mutationUNP P14D974ALACYSengineered mutationUNP P14
D966ASNCYSengineered mutationUNP P14D974ALACYSengineered mutationUNP P14
D 974 ALA CYS engineered mutation UNP P14
E 30 MET - initiating methionine UNP P14
E 31 HIS - expression tag UNP P14
E 32 HIS - expression tag UNP P14
E 33 HIS - expression tag UNP P14
E 34 HIS - expression tag UNP P14
E 35 HIS - expression tag UNP P14
E 36 HIS - expression tag UNP P14
E 37 ALA - expression tag UNP P14
E 38 ALA - expression tag UNP P14
E 39 GLY - expression tag UNP P14
E 40 ILE - expression tag UNP P14
E41PRO-expression tagUNP P14
E 110 LEU CYS engineered mutation UNP P14
E 111 GLN GLU engineered mutation UNP P14
E 171 SER CYS engineered mutation UNP P14
E 178 ALA CYS engineered mutation UNP P14
E 257 VAL CYS engineered mutation UNP P14
E 414 LEU CYS engineered mutation UNP P14
E 573 ASN CYS engineered mutation UNP P14
E 590 SER CYS engineered mutation UNP P14
E 789 SER CYS engineered mutation UNP P14
E 812 ALA CYS engineered mutation UNP P14
E 819 ALA CYS engineered mutation UNP P14
E 904 SER CYS engineered mutation UNP P14
E 966 ASN CYS engineered mutation UNP P14
E 974 ALA CYS engineered mutation UNP P14
F 30 MET - initiating methionine UNP P14
F 31 HIS - expression tag UNP P14
F 32 HIS - expression tag UNP P14
F 33 HIS - expression tag UNP P14
F 34 HIS - expression tag UNP P14
F35HIS-expression tagUNP P14
F 36 HIS - expression tag UNP P14
F 37 ALA - expression tag UNP P14
F 38 ALA - expression tag UNP P14

Chain	Residue	Modelled	Actual	Comment	Reference
F	39	GLY	-	expression tag	UNP P14735
F	40	ILE	_	expression tag	UNP P14735
F	41	PRO	-	expression tag	UNP P14735
F	110	LEU	CYS	engineered mutation	UNP P14735
F	111	GLN	GLU	engineered mutation	UNP P14735
F	171	SER	CYS	engineered mutation	UNP P14735
F	178	ALA	CYS	engineered mutation	UNP P14735
F	257	VAL	CYS	engineered mutation	UNP P14735
F	414	LEU	CYS	engineered mutation	UNP P14735
F	573	ASN	CYS	engineered mutation	UNP P14735
F	590	SER	CYS	engineered mutation	UNP P14735
F	789	SER	CYS	engineered mutation	UNP P14735
F	812	ALA	CYS	engineered mutation	UNP P14735
F	819	ALA	CYS	engineered mutation	UNP P14735
F	904	SER	CYS	engineered mutation	UNP P14735
F	966	ASN	CYS	engineered mutation	UNP P14735
F	974	ALA	CYS	engineered mutation	UNP P14735
G	30	MET	-	initiating methionine	UNP P14735
G	31	HIS	-	expression tag	UNP P14735
G	32	HIS	-	expression tag	UNP P14735
G	33	HIS	-	expression tag	UNP P14735
G	34	HIS	-	expression tag	UNP P14735
G	35	HIS	-	expression tag	UNP P14735
G	36	HIS	-	expression tag	UNP P14735
G	37	ALA	-	expression tag	UNP P14735
G	38	ALA	-	expression tag	UNP P14735
G	39	GLY	-	expression tag	UNP P14735
G	40	ILE	-	expression tag	UNP P14735
G	41	PRO	-	expression tag	UNP P14735
G	110	LEU	CYS	engineered mutation	UNP P14735
G	111	GLN	GLU	engineered mutation	UNP P14735
G	171	SER	CYS	engineered mutation	UNP P14735
G	178	ALA	CYS	engineered mutation	UNP P14735
G	257	VAL	CYS	engineered mutation	UNP P14735
G	414	LEU	CYS	engineered mutation	UNP P14735
G	573	ASN	CYS	engineered mutation	UNP P14735
G	590	SER	CYS	engineered mutation	UNP P14735
G	789	SER	CYS	engineered mutation	UNP P14735
G	812	ALA	CYS	engineered mutation	UNP P14735
G	819	ALA	CYS	engineered mutation	UNP P14735
G	904	SER	CYS	engineered mutation	UNP P14735
G	966	ASN	CYS	engineered mutation	UNP P14735

Chain	Residue	Modelled	Actual	Comment	Reference
G	974	ALA	CYS	engineered mutation	UNP P14735
Н	30	MET	-	initiating methionine	UNP P14735
Н	31	HIS	-	expression tag	UNP P14735
Н	32	HIS	-	expression tag	UNP P14735
Н	33	HIS	-	expression tag	UNP P14735
Н	34	HIS	-	expression tag	UNP P14735
Н	35	HIS	-	expression tag	UNP P14735
Н	36	HIS	-	expression tag	UNP P14735
Н	37	ALA	-	expression tag	UNP P14735
Н	38	ALA	-	expression tag	UNP P14735
Н	39	GLY	-	expression tag	UNP P14735
Н	40	ILE	-	expression tag	UNP P14735
Н	41	PRO	-	expression tag	UNP P14735
Н	110	LEU	CYS	engineered mutation	UNP P14735
Н	111	GLN	GLU	engineered mutation	UNP P14735
Н	171	SER	CYS	engineered mutation	UNP P14735
Н	178	ALA	CYS	engineered mutation	UNP P14735
Н	257	VAL	CYS	engineered mutation	UNP P14735
Н	414	LEU	CYS	engineered mutation	UNP P14735
Н	573	ASN	CYS	engineered mutation	UNP P14735
Н	590	SER	CYS	engineered mutation	UNP P14735
Н	789	SER	CYS	engineered mutation	UNP P14735
Н	812	ALA	CYS	engineered mutation	UNP P14735
Н	819	ALA	CYS	engineered mutation	UNP P14735
Н	904	SER	CYS	engineered mutation	UNP P14735
Н	966	ASN	CYS	engineered mutation	UNP P14735
Н	974	ALA	CYS	engineered mutation	UNP P14735

• Molecule 2 is a protein called Insulin.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
2	a	20	Total C N O S 154 95 23 32 4	0	0	0
2	b	5	Total C N O 37 23 6 8	0	0	0
2	С	20	Total C N O S 154 95 23 32 4	0	0	0
2	d	3	Total C N O 19 13 3 3	0	0	0
2	е	9	Total C N O 74 49 11 14	0	0	0
2	f	18	Total C N O S 134 80 21 29 4	0	0	0

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
9	ſ,	15	Total	С	Ν	Ο	S	0	0	0
2	g		121	76	18	25	2	0		
9	h	6	Total	С	Ν	Ο	S	0	0	0
	0	43	26	7	9	1	0	0	0	

Continued from previous page...

• Molecule 3 is a protein called IDE-bound Fab heavy chain.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
3	т	215	Total	С	Ν	0	S	0	0	0
5	L	210	1632	1041	267	317	7	0	0	0
3	K	207	Total	С	Ν	Ο	\mathbf{S}	0	0	0
0	11	201	1582	1009	259	307	7	0	0	0
3	М	914	Total	С	Ν	Ο	\mathbf{S}	0	0	0
0	111	214	1623	1035	265	316	7	0	0	0
3	0	200	Total	С	Ν	0	\mathbf{S}	0	0	0
0	U	209	1587	1011	261	309	6	0		0
3	0	201	Total	С	Ν	0	\mathbf{S}	0	0	0
0	Q	201	1539	984	252	297	6	0	0	0
3	S	215	Total	С	Ν	0	\mathbf{S}	0	0	0
0	G	210	1632	1041	267	317	7	0	0	0
3	I	100	Total	С	Ν	Ο	\mathbf{S}	0	0	0
5	U	199	1518	970	248	293	7		0	0
3	W	204	Total	С	N	0	S	0	0	0
	vv	204	1546	986	252	302	6			

• Molecule 4 is a protein called IDE-bound Fab light chain.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
4	т	109	Total	С	Ν	0	S	0	0	0
4	J	190	1523	959	254	305	5	0	0	0
4	т	176	Total	С	Ν	0	S	0	0	0
4		170	1356	854	226	272	4	0	0	0
4	N	200	Total	С	Ν	Ο	S	0	0	0
4	1	200	1532	964	256	307	5	0	0	0
4	D	194	Total	С	Ν	0	S	0	0	0
4	1	104	1416	891	239	281	5	0		0
4	В	177	Total	С	Ν	Ο	S	0	0	0
4	п	111	1350	846	224	276	4	0	0	0
4	т	108	Total	С	Ν	Ο	S	0	0	0
4	L	190	1518	952	255	306	5	0	0	0
1	V	V 186	Total	С	Ν	0	S	0	0	0
4	v		1432	900	239	289	4			U

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
4	Х	198	Total 1515	C 949	N 255	O 307	${S \over 4}$	0	0	0

• Molecule 5 is ZINC ION (three-letter code: ZN) (formula: Zn) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	1	Total Zn 1 1	0	0
5	В	1	Total Zn 1 1	0	0
5	С	1	Total Zn 1 1	0	0
5	D	1	Total Zn 1 1	0	0
5	Ε	1	Total Zn 1 1	0	0
5	F	1	Total Zn 1 1	0	0
5	G	1	Total Zn 1 1	0	0
5	Н	1	Total Zn 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Insulin-degrading enzyme

IT V449 F717 V449 F717 L456 H724 L456 H724 L456 H724 L456 H724 L456 H724 L461 H759 L454 K756 G497 G710 P506 L711 V509 Q770 P506 L711 V509 Q770 P506 L711 V509 Q7179 N528 L714 V509 W129 K524 L171 V509 L171 V509 L179 N528 L179 N528 L810 K562 L819 K562 L819 K562 L928 L574 L928 L574 L928 L574 L928 L574 L928 L574 L928 L574 L929</td

PR0 VAL VAL GLV GLV GLU GLU PR0 ASN P1005 P1005

• Molecule 1: Insulin-degrading enzyme

1992 ● 1903 ● 11004 ■ 11005 ● 11005 ● 11005 ■ 11012 ■ 810 810 ■ 810 ■ 811 ■ 811 ■ 811 ■ 812 ■ 8

• Molecule 1: Insulin-degrading enzyme

 \bullet Molecule 1: Insulin-degrading enzyme

Chain F:

82%

13% 5%

PRO VAL VAL GLY GLV PHE PHE

• Molecule 1: Insulin-degrading enzyme

G1 12 0 12 0 12 0 12 0 12 12 11 11 11 11 11	CYS SER LEU TYR GLN GLU ASN TYR CYS			
• Molecule 2:	Insulin			
Chain e:	40%	5%	55%	
C1 CVS CVS CVS CVS CVS THR THR THR THR CVS SER SER SER	113 714 714 715 116 GLU GLU ASN TYR CYS			
• Molecule 2:	Insulin			
Chain f:		90%		10%
G1 S12 LEU TYR Q15 C20				
• Molecule 2:	Insulin			
Chain g:		70%	5%	25%
G1 CYS CYS CYS CYS THR THR SER ILE C11	<mark>d 15</mark> 20			
• Molecule 2:	Insulin			
Chain h:	30%		70%	
G1 C4S C4S SER ILE C4S SER ILEU	TYR GLN LEU GLU GLU ASN TYR CYS			
• Molecule 3:	IDE-bound Fa	b heavy chain		
Chain I:		71%	11%	18%
MET LYS LYS LYS ASN TLE ALA LEU LEU ALA	SER MET PHE VAL PHE PHE SER ILE ALA ASN ALA	TYR ALA GLU CLU SER E1 L11 V12 L18 L18 L18	C22 533 533 833 833 833 833 840 840 840 840 850	Y65 863 863 867 867 867 174 178 177 178 177
V93 199 1999 1100 1115	Y118 L124 V125 T126 P142 SER SER SER LYS	SER THR SER SER GLY CLY T15 T15 V15 K159 K159 K159	1167 1167 8195 8203 8203 8203 8203 8203 8203 617 118 617 1209 8715	D224 K230 SER SER CYS CYS CYS LYS THR THR THR
• Molecule 3:	IDE-bound Fa	b heavy chain		
Chain K:	•	64%	14%	21%
MET LYS LYS LYS ASN TLE ALA LEU LEU LEU ALA	SER MET PHE VAL PHE PHE SER TLE ALA ASN ALA	TYR ALA GLU CLE SER E6 V5 CLE V5 CLE V5 CLE V5 CLE V5 CLE V5 CLE V5 CLE V5 CLE V5 CLE V5 CLE V1 CLE V1 CLE CLE V1 CLE CLE CLE CLE CLE CLE CLE CLE CLE CLE	P14 S17 C12 C22 S33 S33 R40 A40 K43	47 850 866 866 866 866 874 174 878 878 878 878 878 878

• Molecule 4: IDE-bound Fab light chain

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	121.59Å 138.19 Å 376.51 Å	Deperitor
a, b, c, α , β , γ	90.00° 99.36° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	49.54 - 3.95	Depositor
Resolution (A)	49.54 - 3.93	EDS
% Data completeness	99.5 (49.54-3.95)	Depositor
(in resolution range)	93.6(49.54-3.93)	EDS
R _{merge}	0.20	Depositor
R _{sym}	0.12	Depositor
$< I/\sigma(I) > 1$	$1.94 (at 3.88 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.10.1_2155	Depositor
D D.	0.243 , 0.291	Depositor
Π, Π_{free}	0.252 , 0.299	DCC
R_{free} test set	1990 reflections (1.84%)	wwPDB-VP
Wilson B-factor $(Å^2)$	81.3	Xtriage
Anisotropy	0.155	Xtriage
Bulk solvent $k_{sol}(e/A^3)$, $B_{sol}(A^2)$	0.29 , 37.2	EDS
L-test for twinning ²	$< L >=0.41, < L^2>=0.24$	Xtriage
Estimated twinning fraction	0.379 for h,-k,-h-l	Xtriage
F_o, F_c correlation	0.86	EDS
Total number of atoms	86906	wwPDB-VP
Average B, all atoms $(Å^2)$	111.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 27.56 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 2.1507e-03.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond	l angles
	Ullaill	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.24	0/7898	0.39	0/10677
1	В	0.25	0/7947	0.40	0/10739
1	С	0.25	0/7965	0.39	0/10772
1	D	0.25	0/7982	0.39	0/10795
1	Е	0.24	0/7898	0.40	0/10670
1	F	0.24	0/7922	0.40	0/10704
1	G	0.24	0/7906	0.40	0/10680
1	Н	0.24	0/7853	0.39	0/10618
2	a	0.26	0/155	0.59	0/209
2	b	0.24	0/36	0.44	0/47
2	с	0.32	0/155	0.62	0/209
2	d	0.19	0/18	0.39	0/23
2	е	0.23	0/73	0.53	0/96
2	f	0.26	0/133	0.59	0/177
2	g	0.25	0/121	0.49	0/161
2	h	0.25	0/42	0.50	0/55
3	Ι	0.24	0/1675	0.44	0/2282
3	К	0.24	0/1623	0.42	0/2206
3	М	0.24	0/1666	0.43	0/2271
3	0	0.24	0/1628	0.42	0/2214
3	Q	0.24	0/1574	0.42	0/2131
3	S	0.24	0/1675	0.43	0/2282
3	U	0.24	0/1555	0.44	0/2111
3	W	0.25	0/1586	0.44	0/2160
4	J	0.24	0/1551	0.41	0/2096
4	L	0.25	0/1380	0.45	0/1862
4	Ν	0.24	0/1562	0.42	0/2114
4	Р	0.24	0/1440	0.42	0/1940
4	R	0.24	0/1375	0.42	0/1858
4	Т	0.24	0/1546	0.44	0/2090
4	V	0.24	0/1458	0.42	0/1967
4	Х	0.24	0/1545	0.43	0/2092

Mal	Chain	Bond	lengths	Bond angles	
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
All	All	0.24	0/88943	0.41	0/120308

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	7708	0	7652	81	0
1	В	7758	0	7696	83	0
1	С	7772	0	7714	84	0
1	D	7790	0	7728	95	0
1	Е	7713	0	7650	86	1
1	F	7735	0	7691	76	0
1	G	7722	0	7667	81	0
1	Н	7663	0	7617	77	0
2	a	154	0	145	0	0
2	b	37	0	39	0	0
2	с	154	0	145	0	0
2	d	19	0	25	0	0
2	е	74	0	77	0	0
2	f	134	0	124	0	0
2	g	121	0	113	0	0
2	h	43	0	44	0	0
3	Ι	1632	0	1575	18	0
3	Κ	1582	0	1517	22	0
3	М	1623	0	1562	24	0
3	0	1587	0	1530	15	0
3	Q	1539	0	1474	19	0
3	S	1632	0	1575	29	0
3	U	1518	0	1446	24	0
3	W	1546	0	1476	21	0
4	J	1523	0	1495	20	1

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
4	L	1356	0	1327	17	0
4	N	1532	0	1505	19	0
4	Р	1416	0	1385	14	0
4	R	1350	0	1311	14	0
4	Т	1518	0	1489	20	0
4	V	1432	0	1386	14	0
4	Х	1515	0	1485	27	0
5	А	1	0	0	0	0
5	В	1	0	0	0	0
5	С	1	0	0	0	0
5	D	1	0	0	0	0
5	Е	1	0	0	0	0
5	F	1	0	0	0	0
5	G	1	0	0	0	0
5	Н	1	0	0	0	0
All	All	86906	0	85665	958	1

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

The worst 5 of 958 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
4:T:121:PRO:HB3	4:T:132:SER:H	1.51	0.76
4:R:34:ALA:HB3	4:R:89:GLN:HB3	1.68	0.75
3:I:22:CYS:HB3	3:I:79:ALA:HB3	1.69	0.74
4:L:34:ALA:HB3	4:L:89:GLN:HB3	1.70	0.73
1:F:123:LYS:HB3	1:F:126:GLU:HB2	1.70	0.73

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:E:281:LYS:NZ	4:J:188:GLU:O[1_654]	2.08	0.12

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	929/990~(94%)	919 (99%)	10 (1%)	0	100	100
1	В	935/990~(94%)	926 (99%)	9 (1%)	0	100	100
1	С	942/990~(95%)	932 (99%)	10 (1%)	0	100	100
1	D	944/990~(95%)	932 (99%)	12 (1%)	0	100	100
1	Е	923/990~(93%)	906 (98%)	17 (2%)	0	100	100
1	F	926/990~(94%)	914 (99%)	12 (1%)	0	100	100
1	G	923/990~(93%)	911 (99%)	12 (1%)	0	100	100
1	Н	924/990~(93%)	912 (99%)	12 (1%)	0	100	100
2	a	18/20~(90%)	17 (94%)	1 (6%)	0	100	100
2	b	3/20~(15%)	2 (67%)	1 (33%)	0	100	100
2	с	18/20~(90%)	18 (100%)	0	0	100	100
2	d	1/20~(5%)	0	1 (100%)	0	100	100
2	е	5/20~(25%)	5 (100%)	0	0	100	100
2	f	14/20~(70%)	14 (100%)	0	0	100	100
2	g	11/20~(55%)	10 (91%)	1 (9%)	0	100	100
2	h	4/20~(20%)	3 (75%)	1 (25%)	0	100	100
3	Ι	207/263~(79%)	200 (97%)	7 (3%)	0	100	100
3	K	195/263~(74%)	189 (97%)	6 (3%)	0	100	100
3	М	206/263~(78%)	195 (95%)	11 (5%)	0	100	100
3	Ο	199/263~(76%)	193 (97%)	6 (3%)	0	100	100
3	Q	181/263~(69%)	175 (97%)	6 (3%)	0	100	100
3	S	207/263~(79%)	201 (97%)	6 (3%)	0	100	100
3	U	183/263~(70%)	174 (95%)	9 (5%)	0	100	100
3	W	192/263~(73%)	186 (97%)	6 (3%)	0	100	100
4	J	184/239~(77%)	175 (95%)	9 (5%)	0	100	100
					Continued of	on next	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
4	L	160/239~(67%)	156 (98%)	4 (2%)	0	100	100
4	Ν	190/239~(80%)	183~(96%)	7 (4%)	0	100	100
4	Р	167/239~(70%)	162 (97%)	5 (3%)	0	100	100
4	R	165/239~(69%)	160 (97%)	5(3%)	0	100	100
4	Т	186/239~(78%)	179~(96%)	7 (4%)	0	100	100
4	V	168/239~(70%)	167~(99%)	1 (1%)	0	100	100
4	Х	190/239~(80%)	183 (96%)	7 (4%)	0	100	100
All	All	10500/12096~(87%)	10299 (98%)	201 (2%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	838/879~(95%)	838 (100%)	0	100 100
1	В	845/879~(96%)	844 (100%)	1 (0%)	93 96
1	С	846/879~(96%)	844 (100%)	2 (0%)	93 96
1	D	848/879~(96%)	846 (100%)	2 (0%)	93 96
1	Е	840/879~(96%)	838 (100%)	2 (0%)	93 96
1	F	843/879~(96%)	842 (100%)	1 (0%)	93 96
1	G	841/879~(96%)	841 (100%)	0	100 100
1	Н	833/879~(95%)	833 (100%)	0	100 100
2	a	19/19~(100%)	19~(100%)	0	100 100
2	b	4/19~(21%)	4 (100%)	0	100 100
2	с	19/19~(100%)	19~(100%)	0	100 100
2	d	2/19~(10%)	2 (100%)	0	100 100
2	е	8/19~(42%)	7(88%)	1 (12%)	4 23
2	f	17/19 (90%)	17 (100%)	0	100 100

\mathbf{Mol}	Chain	Analysed	Rotameric	Outliers Percent		ntiles
2	g	14/19~(74%)	13~(93%)	1 (7%)	14	42
2	h	5/19~(26%)	5 (100%)	0	100	100
3	Ι	180/220~(82%)	180 (100%)	0	100	100
3	Κ	176/220~(80%)	176 (100%)	0	100	100
3	М	179/220~(81%)	179 (100%)	0	100	100
3	Ο	176/220~(80%)	176 (100%)	0	100	100
3	Q	169/220~(77%)	169 (100%)	0	100	100
3	S	180/220~(82%)	180 (100%)	0	100	100
3	U	164/220~(74%)	164 (100%)	0	100	100
3	W	170/220~(77%)	170 (100%)	0	100	100
4	J	178/210~(85%)	177~(99%)	1 (1%)	86	91
4	L	159/210~(76%)	157 (99%)	2(1%)	69	81
4	Ν	178/210~(85%)	178 (100%)	0	100	100
4	Р	164/210~(78%)	162 (99%)	2(1%)	71	83
4	R	157/210~(75%)	155 (99%)	2(1%)	69	81
4	Т	178/210~(85%)	177 (99%)	1 (1%)	86	91
4	V	165/210~(79%)	164 (99%)	1 (1%)	86	91
4	Х	$17\overline{8/210}~(85\%)$	$1\overline{77} (99\%)$	1 (1%)	86	91
All	All	9573/10624 (90%)	9553~(100%)	20 (0%)	93	96

5 of 20 residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
4	Р	171	ASP
4	Т	95	PHE
4	Х	95	PHE
4	V	95	PHE
1	Е	244	PHE

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 10 such side chains are listed below:

Mol	Chain	Res	Type
2	е	15	GLN
2	h	5	GLN
4	V	6	GLN

Continued from previous page...

Mol	Chain	Res	Type
1	Н	184	ASN
1	Н	332	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 8 ligands modelled in this entry, 8 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$\mathbf{OWAB}(\mathrm{\AA}^2)$	$Q{<}0.9$
1	А	941/990~(95%)	-0.09	11 (1%) 79 70	53, 77, 99, 113	0
1	В	947/990~(95%)	-0.04	13 (1%) 75 66	54, 77, 97, 116	0
1	С	950/990~(95%)	0.21	47 (4%) 29 25	100, 118, 135, 148	0
1	D	952/990~(96%)	0.35	62 (6%) 18 15	116, 136, 150, 161	0
1	Е	943/990~(95%)	0.35	53 (5%) 24 21	106, 133, 147, 160	0
1	F	944/990~(95%)	0.29	56 (5%) 22 18	105, 128, 146, 158	0
1	G	943/990~(95%)	0.08	20 (2%) 63 54	66, 88, 106, 131	0
1	Н	936/990~(94%)	0.08	28 (2%) 50 39	65, 91, 115, 135	0
2	a	20/20~(100%)	0.13	1 (5%) 28 25	70, 108, 127, 129	0
2	b	5/20~(25%)	0.19	1 (20%) 1 1	74, 83, 103, 114	0
2	с	20/20~(100%)	0.28	1 (5%) 28 25	106, 124, 132, 136	0
2	d	3/20~(15%)	0.03	0 100 100	118, 118, 121, 121	0
2	е	9/20~(45%)	0.60	1 (11%) 5 5	117, 123, 128, 132	0
2	f	18/20~(90%)	0.11	0 100 100	111, 128, 136, 138	0
2	g	15/20~(75%)	0.26	0 100 100	88, 105, 122, 130	0
2	h	6/20~(30%)	0.19	0 100 100	79, 102, 126, 126	0
3	Ι	215/263~(81%)	0.20	4 (1%) 66 58	73, 103, 126, 140	0
3	К	207/263~(78%)	0.39	18 (8%) 10 9	74, 106, 136, 155	0
3	М	214/263~(81%)	0.30	10 (4%) 31 26	107, 123, 135, 138	0
3	О	209/263~(79%)	0.70	30 (14%) 2 3	128, 153, 170, 180	0
3	Q	$\overline{201/263}~(76\%)$	0.78	32 (15%) 1 2	140, 156, 170, 177	0
3	S	$\overline{215/263}~(81\%)$	0.30	12 (5%) 24 21	99, 124, 144, 151	0
3	U	$\overline{199/263}~(75\%)$	0.49	21 (10%) 6 6	77, 115, 146, 151	0
3	W	204/263~(77%)	0.25	12 (5%) 22 18	82, 106, 138, 155	0

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$\mathbf{OWAB}(\mathbf{\AA}^2)$	Q<0.9
4	J	198/239~(82%)	0.06	4 (2%) 65 56	68, 102, 118, 130	0
4	L	176/239~(73%)	0.40	17 (9%) 7 7	72,107,130,137	0
4	Ν	200/239~(83%)	0.40	15 (7%) 14 12	104, 125, 135, 145	0
4	Р	184/239~(76%)	0.66	21 (11%) 5 5	131, 151, 172, 178	0
4	R	177/239~(74%)	0.75	23 (12%) 3 4	137, 154, 168, 177	0
4	Т	198/239~(82%)	0.57	24 (12%) 4 5	108, 136, 154, 160	0
4	V	186/239~(77%)	0.43	12 (6%) 18 15	77,107,142,155	0
4	Х	198/239~(82%)	0.33	12 (6%) 21 17	83, 117, 135, 144	0
All	All	10833/12096~(89%)	0.24	561 (5%) 27 24	53, 116, 152, 180	0

The worst 5 of 561 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	F	852	SER	9.0
4	Х	148	GLN	8.3
4	R	79	GLN	5.8
4	Х	149	TRP	5.8
3	W	144	SER	5.7

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q < 0.9
5	ZN	F	1101	1/1	0.90	0.11	$134,\!134,\!134,\!134$	0
5	ZN	D	2001	1/1	0.91	0.10	139,139,139,139	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
5	ZN	С	1101	1/1	0.94	0.12	110,110,110,110	0
5	ZN	Е	2001	1/1	0.97	0.04	126,126,126,126	0
5	ZN	Н	1101	1/1	0.97	0.15	97,97,97,97	0
5	ZN	В	2001	1/1	0.98	0.16	63,63,63,63	0
5	ZN	А	1101	1/1	0.98	0.17	$65,\!65,\!65,\!65$	0
5	ZN	G	2001	1/1	0.99	0.17	64,64,64,64	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

