

wwPDB X-ray Structure Validation Summary Report (i)

Aug 17, 2022 – 11:58 PM EDT

PDB ID	:	3WHE
Title	:	A new conserved neutralizing epitope at the globular head of hemagglutinin
		in H3N2 influenza viruses
Authors	:	Fujii, Y.; Sumida, T.; Shirouzu, M.; Yokoyama, S.
Deposited on	:	2013-08-25
Resolution	:	4.00 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

:	4.02b-467
:	1.8.5 (274361), CSD as541be (2020)
:	1.13
:	2.29
:	20191225.v01 (using entries in the PDB archive December 25th 2019)
:	5.8.0158
:	7.0.044 (Gargrove)
:	Engh & Huber (2001)
:	Parkinson et al. (1996)
:	2.29
	:::::::::::::::::::::::::::::::::::::::

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 4.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive $(\#$ Entries)	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$				
R _{free}	130704	1087 (4.30-3.70)				
Clashscore	141614	1148 (4.30-3.70)				
Ramachandran outliers	138981	1108 (4.30-3.70)				
Sidechain outliers	138945	1099 (4.30-3.70)				

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quali	ty of chain	
1	А	493	49%	46%	·
1	В	493	47%	49%	•
1	С	493	47%	49%	•
1	D	493	48%	48%	•
1	Е	493	46%	49%	•
1	F	493	46%	49%	5%
1	G	493	48%	47%	•

Continued from previous page...

Mol	Chain	Length	Quality of chain						
1	Н	493	47%	49%	•				
1	Ι	493	46%	49%	•				
1	J	493	47%	49%	•				
1	K	493	46%	50%	•				
1	L	493	47%	48%	•				
2	1	226	32%	57%	11%				
2	3	226	32%	57%	11%				
2	5	226	32%	57%	11%				
2	7	226	32%	56%	12%				
2	9	226	33%	56%	11%				
2	М	226	29%	60%	11%				
2	Ο	226	32%	57%	12%				
2	Q	226	31%	58%	11%				
2	S	226	31%	58%	12%				
2	U	226	31%	57%	12%				
2	W	226	32%	56%	12%				
2	Y	226	31%	58%	11%				
3	0	220	39%	52%	5% •				
3	2	220	41%	50%	5% •				
3	4	220	40%	52%	5% •				
3	6	220	40%	52%	5% •				
3	8	220	43%	49%	5% •				
3	Ν	220	36%	55%	5% •				
3	Р	220	41%	51%	• •				
3	R	220	42%	50%	5% •				

 $Continued \ from \ previous \ page...$

Chain Length Quality of chain Mol Т 220 3 40% 51% 5% • 3 V 22040% 51% 5%• 3 Х 220 39% 53% 5% • Ζ 3 22040% 51% 5%• BA 74 43% 43% 14% ΕA 74 29% 43% 29% 7HA 4 29% 14% 57% 74 \mathbf{a} 29% 71% 74 d 29% 71% 74 g 29% 71% 74 j 29% 71% 74 \mathbf{m} 29% 71% 74 р 43% 57% 74 \mathbf{S} 43% 57% 74 v 43% 57% 4 7у 43% 57% CA6567% 33% FA 6567% 33% IA 56 67% 33% 6 5b 100% 56 е 100% 6 5h 100% 65k 100% 6 5n 100% 65100% q Continued on next page...

Mol	Chain	Length	Quality of chain	
5	t	6	100%	
5	W	6	17% 83%	
5	Z	6	100%	
6	AA	3	100%	
6	DA	3	100%	
6	GA	3	67%	33%
6	JA	3	100%	
6	с	3	33%	7%
6	f	3	33%	7%
6	i	3	33%	7%
6	1	3	220/	70/
6	1	3	5570	2200
	0	0	67%	33%
0	r	3	67%	33%
6	u	3	100%	
6	х	3	33% 6	7%

Continued from previous page...

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
4	NAG	EA	2	-	-	Х	-

3WHE

2 Entry composition (i)

There are 7 unique types of molecules in this entry. The entry contains 88152 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	402	Total	С	Ν	0	S	0	0	0
1	A	495	3878	2418	684	757	19	0	0	0
1	D	402	Total	С	Ν	0	S	0	0	0
	D 495	495	3878	2418	684	757	19	0	0	0
1	C	402	Total	С	Ν	0	S	0	0	0
	U	495	3878	2418	684	757	19	0	0	0
1	П	402	Total	С	Ν	0	S	0	0	0
1	D	495	3878	2418	684	757	19		0	0
1	Б	402	Total	С	Ν	0	S	0	0	0
	E	495	3878	2418	684	757	7 19	U	0	0
1	Б	493	Total	С	Ν	0	S	0	0	0
	Г		3878	2418	684	757	19	0	0	0
1	C	402	Total	С	Ν	0	S	0	0	0
	G	495	3878	2418	684	757	19		0	0
1	и	402	Total	С	Ν	0	S	0	0	0
	п	495	3878	2418	684	757	19	0	0	0
1	т	402	Total	С	Ν	0	S	0	0	0
1	1	495	3878	2418	684	757	19	0	0	0
1	т	402	Total	С	Ν	0	S	0	0	0
	J	495	3878	2418	684	757	19	0	0	0
1	1 K	402	Total	С	Ν	Ο	S	0	0	0
		493	3878	2418	684	757	19	0	0	U
1 T	402	Total	С	Ν	0	S	0	0	0	
		495	3878	2418	684	757	19	U	U	0

• Molecule 1 is a protein called Hemagglutinin.

• Molecule 2 is a protein called immunoglobulin heavy chain.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
9	2 M	226	Total	С	Ν	0	\mathbf{S}	0	0	0
	220	1697	1072	284	331	10	0	0	0	
0	0	226	Total	С	Ν	0	S	0	0	0
	0	220	1697	1072	284	331	10	0	U	0

Mol	Chain	Residues	5	At	oms			ZeroOcc	AltConf	Trace
9	0	226	Total	С	Ν	0	S	0	0	0
	Q	220	1697	1072	284	331	10	0	0	0
2	2 S	226	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
		220	1697	1072	284	331	10	0	0	0
2	U	226	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
	0	220	1697	1072	284	331	10		0	0
2	W	226	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
		220	1697	1072	284	331	10	Ŭ	0	
2	Y	226	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
	-		1697	1072	284	331	10	Ŭ		
2	1	226	Total	С	Ν	Ο	S	0	0	0
		220	1697	1072	284	331	10		0	
2	3	226	Total	С	Ν	0	S	0	0	0
			1697	1072	284	331	10			
2	5	226	Total	С	Ν	0	S	0	0	0
			1697	1072	284	331	10			
2	2 7	226	Total	С	Ν	0	S	0	0	0
2 I	220	1697	1072	284	331	10	Ŭ,	, in the second		
2 9	9 226	Total	С	Ν	Ο	S	0	0	0	
	U	220	1697	1072	284	331	10	Ŭ		

Continued from previous page...

• Molecule 3 is a protein called immunoglobulin light chain.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
3	N	919	Total	С	Ν	0	S	0	0	0
5	IN	212	1549	965	261	319	4	0	0	0
3	3 P	919	Total	С	Ν	Ο	\mathbf{S}	0	0	0
0	T	212	1549	965	261	319	4	0	0	0
3	В	919	Total	С	Ν	Ο	\mathbf{S}	0	0	0
0	10	212	1549	965	261	319	4	0	0	0
3	Т	919	Total	С	Ν	Ο	\mathbf{S}	0	0	0
0	T	212	1549	965	261	319	4	0		
3	V	212	Total	С	Ν	0	\mathbf{S}	0	0	0
0	v		1549	965	261	319	4	0	0	
3	v	010	Total	С	Ν	0	\mathbf{S}	0	0	0
0	Λ	212	1549	965	261	319	4	0	0	0
3	7	919	Total	С	Ν	0	\mathbf{S}	0	0	0
0		212	1549	965	261	319	4	0	0	0
3	2	919	Total	С	Ν	0	\mathbf{S}	0	0	0
3 2	212	1549	965	261	319	4	0	0	0	
3	4	010	Total	С	Ν	0	S	0	0	0
J	4	212	1549	965	261	319	4			0

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
2	6	919	Total	С	Ν	Ο	S	0	0	0
5	0	212	1549	965	261	319	4	0	0	0
9	0	212	Total	С	Ν	0	S	0	0	0
5	0		1549	965	261	319	4			0
2	3 0	212	Total	С	Ν	0	S	0	0	0
3			1549	965	261	319	4	0	0	0

Continued from previous page...

• Molecule 4 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyran ose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyran ose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	A	Aton	ns		ZeroOcc	AltConf	Trace
4	0	7	Total	С	Ν	0	0	0	0
4	a	1	83	46	2	35	0	0	0
4	d	7	Total	С	Ν	0	0	0	0
4	u	1	83	46	2	35	0	0	0
4	ď	7	Total	С	Ν	0	0	Ο	0
-1	g	1	83	46	2	35	0	0	0
4	i	7	Total	С	Ν	Ο	0	0	0
т	J	1	83	46	2	35	0	0	0
	m	7	Total	\mathbf{C}	Ν	Ο	0	0	0
	111	1	83	46	2	35	0	0	0
4	n	7	Total	\mathbf{C}	Ν	Ο	0	0	0
т	Р	1	83	46	2	35	0	0	0
	S	7	Total	С	Ν	Ο	0	0	0
	۵ 	1	83	46	2	35	0	0	0
4	v	7	Total	С	Ν	Ο	0	0	0
	v	1	83	46	2	35	0	0	0
	v	7	Total	С	Ν	Ο	0	0	0
	у	1	83	46	2	35	0	0	0
4	BΔ	7	Total	\mathbf{C}	Ν	Ο	0	0	0
	DA	1	83	46	2	35	0	0	0
	ΕA	7	Total	\mathbf{C}	N	0	0	0	0
		1	83	46	2	35	0	0	0
4	НА	7	Total	С	Ν	Ο	0	0	0
т 	11/1	'	83	46	2	35	0	0	U

• Molecule 5 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyran

ose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
5	b	6	Total C N O 72 40 2 30	0	0	0
5	е	6	$\begin{array}{cccc} Total & C & N & O \\ 72 & 40 & 2 & 30 \end{array}$	0	0	0
5	h	6	Total C N O 72 40 2 30	0	0	0
5	k	6	Total C N O 72 40 2 30	0	0	0
5	n	6	Total C N O 72 40 2 30	0	0	0
5	q	6	$\begin{array}{cccc} \text{Total} & \text{C} & \text{N} & \text{O} \\ \hline 72 & 40 & 2 & 30 \end{array}$	0	0	0
5	t	6	Total C N O 72 40 2 30	0	0	0
5	W	6	$\begin{array}{cccc} Total & C & N & O \\ 72 & 40 & 2 & 30 \end{array}$	0	0	0
5	Z	6	$\begin{array}{cccc} Total & C & N & O \\ 72 & 40 & 2 & 30 \end{array}$	0	0	0
5	CA	6	Total C N O 72 40 2 30	0	0	0
5	FA	6	$\begin{array}{cccc} Total & C & N & O \\ 72 & 40 & 2 & 30 \end{array}$	0	0	0
5	IA	6	$\begin{array}{cccc} \text{Total} & \text{C} & \text{N} & \text{O} \\ \hline 72 & 40 & 2 & 30 \end{array}$	0	0	0

• Molecule 6 is an oligosaccharide called beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-b eta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace		
6	С	3	Total 39	C 22	N 2	0 15	0	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
6	f	3	Total C N O 39 22 2 15	0	0	0
6	i	3	Total C N O 39 22 2 15	0	0	0
6	1	3	Total C N O 39 22 2 15	0	0	0
6	0	3	Total C N O 39 22 2 15	0	0	0
6	r	3	Total C N O 39 22 2 15	0	0	0
6	u	3	Total C N O 39 22 2 15	0	0	0
6	x	3	Total C N O 39 22 2 15	0	0	0
6	AA	3	Total C N O 39 22 2 15	0	0	0
6	DA	3	Total C N O 39 22 2 15	0	0	0
6	GA	3	Total C N O 39 22 2 15	0	0	0
6	JA	3	Total C N O 39 22 2 15	0	0	0

Continued from previous page...

• Molecule 7 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf
7	٨	1	Total	С	Ν	0	0	0
(A	1	14	8	1	5	0	0
7	Λ	1	Total	С	Ν	Ο	0	0
1	A	1	14	8	1	5	0	0
7	В	1	Total	С	Ν	0	0	0
1	D	1	14	8	1	5	0	0
7	В	1	Total	С	Ν	0	0	0
1	D	1	14	8	1	5	0	0
7	С	1	Total	С	Ν	Ο	0	0
1	U	1	14	8	1	5	0	0
7	С	1	Total	С	Ν	Ο	0	0
1	U	1	14	8	1	5	0	0
7	Л	1	Total	С	Ν	Ο	0	0
1	D	1	14	8	1	5	0	0
7	Л	1	Total	С	Ν	Ο	0	0
1	D	1	14	8	1	5	0	0
7	F	1	Total	С	Ν	Ο	0	0
1	Ľ	1	14	8	1	5	0	0
7	F	1	Total	С	Ν	0	0	0
1	Ľ	1	14	8	1	5	0	0
7	Б	1	Total	С	Ν	Ο	0	0
1	Ľ	1	14	8	1	5	0	0
7	F	1	Total	С	Ν	Ο	0	0
1	Ľ	1	14	8	1	5	0	0
7	С	1	Total	С	Ν	Ο	0	0
1	G	1	14	8	1	5	0	0
7	С	1	Total	С	Ν	Ο	0	0
1	G	1	14	8	1	5	0	0
7	Ц	1	Total	С	Ν	Ο	0	0
1	11	1	14	8	1	5	0	0
7	Ц	1	Total	С	Ν	Ο	0	0
1	11	1	14	8	1	5	0	0
7	T	1	Total	С	Ν	Ο	0	0
1	L	1	14	8	1	5	0	0
7	T	1	Total	C	Ν	Ō	0	Ο
	L	1	14	8	1	5	0	U
7	Т	1	Total	C	N	0	0	0
	J	1	14	8	1	5		0
7	Т	1	Total	C	N	0	0	0
	J	1	14	8	1	5		0
7	K	1	Total	C	N	0	0	0
	17	1	14	8	1	5		0
7	K	1	Total	C	Ν	Ō	0	Ο
'	17	L	14	8	1	5		U

001000	continuou front proctous pagem							
Mol	Chain	Residues	Atoms	ZeroOcc	AltConf			
7	т	1	Total C N O	0	0			
	1	14 8 1 5	0	0				
7	т	1	Total C N O	0	0			
	1	14 8 1 5		0				

Continued from previous page...

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Hemagglutinin

 \bullet Molecule 1: Hemagglutinin

- Molecule 1: Hemagglutinin

Chain H: 47% 49% •

• Molecule 1: Hemagglutinin

Chain K:	46%	50%	·
S9 C14 C15 G16 G16 H17 H18	A 19 K27 T28 T28 T39 F44 C45 K45 K51 K51 K57 K57 K57 K57 K57 K57 K57 K57 K57 K57	162 163 164 167 167 167 167 173 173 173 173 173 173 173 173 173 17	N96 C97 Y98 P99 D101 V102
P103 D104 Y105 A106 S107 L108 R109	8110 1111 1111 1112 1112 8114 8114 8114 8114	K140 R141 P143 P144 P144 C144 C144 R145 R145 R151 R155 R155 R155 R155 R	K176 L177 Y178 1179 V182
H183 H184 P185 S186 T187 N188 Q189	E190 7192 7192 7192 7195 7194 7196 7196 7196 7196 7200 7200 7203 7203 7203 7203 7203 7203	1217 2218 2219 2219 2226 2225 2225 2225 2226	L243 V244 S247 N248 G249 N260
1251 1252 P254 R255 R255 M260	2265 2265 2266 2266 2267 2267 2273 2276 2277 2276 2277 2276 2277 2276 2276 2277 2278 2279 2276 2281 2278 2278 2278 2278 2278 2278 2278	P289 N299 N299 N299 P294 P294 P295 P295 P295 P295 N295 N295 N295 N295 N295 N296 N296 N296 N296 N296 N296 N296 N296	M320 R321 N322 V323 P324 E325 K326
q 327 T328 R329 G 330 L331 A 334	1335 1335 6337 7338 7338 7338 7338 1337 7338 844 844 844 844 744 1344 1344 1344 1344 1345 1344 1344 13	6359 6366 7366 7366 7366 7366 7366 7366 7370 7370	S400 E401 V402 E403 G404 R405
1406 Q407 D408 L409 E410 K411 Y412	V413 E414 D414 T416 T416 T416 1420 M423 M425 M425 M425 L420 L420 L421 L420 L421 L428 M425 L423 N423 M429 L431 L431 L431 L433 M433 M433	1435 1435 1437 14336 14336 1443 1444 1444 1445 1445 1445 1445 1445	1469 Y470 H471 K472 C473 M483
D487 V490 E494 A495	1446 14497 14499 14499 14500 14500		

• Molecule 2: immunoglobulin heavy chain

T206 T129 Q65 7207 K130 Q65 7201 P136 T171 7211 P136 T71 7212 L137 T71 7213 P136 T71 7214 S141 T71 722 L144 Y80 723 L144 Y81 723 L151 T74 723 L154 T74 723 L154 Y81 724 L155 L164 725 L154 Y84 725 L156 Y84 716 Y156 Y84 7156 Y156 Y84 7157 Y156 Y84 7156 Y156 Y166 7157 Y156 Y166 7157

• Molecule 2: immunoglobulin heavy chain

• Molecule 2: immunoglobulin heavy chain

V5 Q6 S7

V37 R36

T129 F64 7206 81.33 664 7201 81.33 70 7201 81.33 70 7201 81.33 70 7211 81.33 70 7213 81.41 70 7214 713 70 7215 81.43 70 7216 114.4 77 7218 714 77 7219 114.4 77 7218 714 77 7219 744 77 7214 714 77 7216 744 77 7218 714 76 722 1154 176 722 1154 77 722 1154 77 722 1154 77 723 1154 71 724 715 71 725 1154 71 725 1156 71 <

• Molecule 2: immunoglobulin heavy chain

• Molecule 2: immunoglobulin heavy chain

Chain 1: 32% 57% 11%

 \bullet Molecule 2: immunoglobulin heavy chain

• Molecule 2: immunoglobulin heavy chain

 \bullet Molecule 2: immunoglobulin heavy chain

• Molecule 3: immunoglobulin light chain

 \bullet Molecule 3: immunoglobulin light chain

• Molecule 3: immunoglobulin light chain

• Molecule 3: immunoglobulin light chain

• Molecule 3: immunoglobulin light chain

SER V151 ALA V154 ALA V155 ALA V156 ALA V157 AL66 V156 AL66 V157 AL66 V157 AL66 V156 AL66 V157 AL66 V156 AL66 V157 AL66 V157 AL79 S184 AL79 S184 AL76 S184 AL76 S184 AL76 S184 AL79 S184 AL90 S184 AL91 S184 AL91 S184 AL91 S184 AL91 <td

THR GLU CYS SER ALA ALA ARG GLN

• Molecule 3: immunoglobulin light chain

• Molecule 3: immunoglobulin light chain

CYS SER ALA ARG GLN

• Molecule 3: immunoglobulin light chain

• Molecule 3: immunoglobulin light chain

• Molecule 3: immunoglobulin light chain

Chain 0:

THR GLU CYS SER ALA ALA ARG GLN

 $\label{eq:mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-b$

 $\label{eq:mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-b$

Chain d:	29%	71%	I.
NAG1 NAG2 BAA3 MAN4 MAN6 MAN6 MAN7			

 $\label{eq:mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-b$

α_1 ·		
Chain g:	29%	71%
chain 8.	2570	, 1,0

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 MAN5 MAN7

 $\label{eq:mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-b$

Chain j:	29%	71%

NAG1 NAG2 BMA3 BMA3 MAN4 MAN5 MAN5 MAN6 MAN7

 $\bullet \ Molecule \ 4: \ alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] \\ alpha-D-mannopyranose-(1-3)] \\ beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-$

D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain m: 29% 71%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 MAN7

 $\label{eq:mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-b$

Chain p:	43%	57%
<mark>NAG1</mark> NAG2 BMA3 MAN4 MAN5 MAN5 MAN5		

 $\label{eq:mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-b$

Chain s:	43%	57%
NAG1 NAG2 BMA3 MAN4 MAN5 MAN6 MAN6 MAN7		

 $\label{eq:mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-b$

Chain v:	43%	57%	
NAG1 NAG2 BMA3 MAN4 MAN5 MAN6 MAN6 MAN7			

 $\label{eq:mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-b$

Chain y:	43%	57%
NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 MAN7		

 $\label{eq:mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-b$

Chain BA:	43%	43%	14%
NAG2 NAG2 BMA3 MAN4 MAN5 MAN5 MAN7			
		WORLDWIDE	

 $\label{eq:mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-b$

Chain EA: 29% 43% 29%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 MAN5 MAN7

 $\label{eq:mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-b$

Chain HA:	29%	57%	14%

• Molecule 5: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain b:

AG MA AN AN

100%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 MAN6

 $\label{eq:mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]} beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy$

Chain e:

100%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 MAN6

 $\label{eq:constraint} \bullet \mbox{ Molecule 5: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetami$

Chain h:

100%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 MAN6

 $\label{eq:constraint} \bullet \mbox{ Molecule 5: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetami$

Chain k:

100%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 MAN6

 $\label{eq:constraint} \bullet \mbox{ Molecule 5: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetami$

Chain n:

100%

NAG1 NAG2 BMA3 BMA3 MAN4 MAN5 MAN5

 $\label{eq:constraint} \bullet \mbox{ Molecule 5: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetami$

Chain q:

100%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN6

 $\label{eq:constraint} \bullet \mbox{ Molecule 5: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetami$

Chain t:

100%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 MAN6

 $\label{eq:constraint} \bullet \mbox{ Molecule 5: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetami$

Chain w:	17%	83%	-
NAG1 NAG2 BMA3 MAN4 MAN5 MAN6 MAN6			

 $\label{eq:constraint} \bullet \mbox{ Molecule 5: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetami$

Chain z:

100%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN6 MAN6

 $\label{eq:constraint} \bullet \mbox{Molecule 5: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamid$

33%

Chain CA: 67%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 MAN6

 $\label{eq:constraint} \bullet \mbox{ Molecule 5: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetami$

Chain FA:	67%	33%

NAG1 NAG2 BMA3 MAN4 MAN5 MAN5 MAN6

 $\label{eq:constraint} \bullet \mbox{ Molecule 5: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetami$

Chain IA:	67%	33%

NAG1 NAG2 BMA3 BMA3 MAN4 MAN5 MAN5 MAN6

• Molecule 6: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain c:	33%	67%

NAG1 NAG2 BMA3

• Molecule 6: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain f:	33%	67%
NAG1 NAG2 BMA3		

• Molecule 6: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain i:	33%	67%
NAG1 NAG2 BMA3		

• Molecule 6: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

$\alpha_1 \cdot 1$		
Chain I:	33%	67%
01100111 10	5570	0170

NAG1 NAG2 BMA3

• Molecule 6: beta-D
-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain o:	67%	33%
NAG1 NAG2 BMA3		

• Molecule 6: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain r:	67%	33%

NAG1 NAG2 BMA3

• Molecule 6: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain u:	100%
NAG1 NAG2 BMA3	

• Molecule 6: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain x:	33%	67%
61 62 A3		

NAG1 NAG2 BMA3

• Molecule 6: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain AA:	100%

NAG1 NAG2 BMA3

• Molecule 6: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain DA:

100%

NAG1 NAG2 BMA3

• Molecule 6: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

33%

Chain GA:

NAG1 NAG2 BMA3

• Molecule 6: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain JA:

100%

67%

NAG1 NAG2 BMA3

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	391.04Å 241.17Å 223.21Å	Deperitor
a, b, c, α , β , γ	90.00° 123.62° 90.00°	Depositor
$\mathbf{P}_{\text{acclution}}(\hat{\mathbf{A}})$	30.00 - 4.00	Depositor
Resolution (A)	29.98 - 4.00	EDS
% Data completeness	98.1 (30.00-4.00)	Depositor
(in resolution range)	98.2 (29.98-4.00)	EDS
R _{merge}	0.24	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$0.99 (at 3.98 \text{\AA})$	Xtriage
Refinement program	CNS 1.3	Depositor
D D.	0.235 , 0.308	Depositor
Π, Π_{free}	0.284 , 0.291	DCC
R_{free} test set	7106 reflections (5.00%)	wwPDB-VP
Wilson B-factor $(Å^2)$	180.3	Xtriage
Anisotropy	0.246	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.28 , 149.3	EDS
L-test for twinning ²	$< L >=0.41, < L^2>=0.23$	Xtriage
Estimated twinning fraction	0.063 for -h-2*l,-k,l	Xtriage
F_o, F_c correlation	0.91	EDS
Total number of atoms	88152	wwPDB-VP
Average B, all atoms $(Å^2)$	205.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 1.91% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MAN, BMA, NAG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.25	0/3959	0.50	0/5369	
1	В	0.25	0/3959	0.50	0/5369	
1	С	0.25	0/3959	0.50	0/5369	
1	D	0.25	0/3959	0.50	0/5369	
1	Е	0.25	0/3959	0.50	0/5369	
1	F	0.25	0/3959	0.49	0/5369	
1	G	0.25	0/3959	0.50	0/5369	
1	Н	0.25	0/3959	0.50	0/5369	
1	Ι	0.25	0/3959	0.50	0/5369	
1	J	0.25	0/3959	0.50	0/5369	
1	K	0.25	0/3959	0.50	0/5369	
1	L	0.25	0/3959	0.50	0/5369	
2	1	0.25	0/1739	0.52	0/2371	
2	3	0.26	0/1739	0.52	0/2371	
2	5	0.25	0/1739	0.52	0/2371	
2	7	0.25	0/1739	0.52	0/2371	
2	9	0.26	0/1739	0.52	0/2371	
2	М	0.25	0/1739	0.52	0/2371	
2	0	0.25	0/1739	0.52	0/2371	
2	Q	0.25	0/1739	0.53	0/2371	
2	S	0.25	0/1739	0.52	0/2371	
2	U	0.25	0/1739	0.52	0/2371	
2	W	0.26	0/1739	0.52	0/2371	
2	Y	0.25	0/1739	0.52	0/2371	
3	0	0.26	0/1586	0.53	0/2166	
3	2	0.26	0/1586	0.53	0/2166	
3	4	0.26	0/1586	0.53	0/2166	
3	6	0.26	0/1586	0.53	0/2166	
3	8	0.26	0/1586	0.53	0/2166	
3	N	0.26	0/1586	0.55	1/2166~(0.0%)	
3	P	0.26	0/1586	0.53	0/2166	
3	R	0.26	0/1586	0.55	1/2166~(0.0%)	

Mol	Chain	Bond lengths		Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
3	Т	0.26	0/1586	0.53	0/2166	
3	V	0.28	0/1586	0.55	0/2166	
3	Х	0.26	0/1586	0.53	0/2166	
3	Ζ	0.26	0/1586	0.53	0/2166	
All	All	0.25	0/87408	0.51	$2/118872 \ (0.0\%)$	

There are no bond length outliers.

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	R	112	GLY	N-CA-C	-5.23	100.03	113.10
3	N	112	GLY	N-CA-C	-5.11	100.33	113.10

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3878	0	3743	258	0
1	В	3878	0	3743	272	0
1	С	3878	0	3743	276	0
1	D	3878	0	3743	276	0
1	Е	3878	0	3743	272	0
1	F	3878	0	3743	278	0
1	G	3878	0	3743	248	0
1	Н	3878	0	3743	257	0
1	Ι	3878	0	3743	255	0
1	J	3878	0	3743	263	0
1	K	3878	0	3743	262	0
1	L	3878	0	3743	268	0
2	1	1697	0	1668	191	0
2	3	1697	0	1668	191	2
2	5	1697	0	1668	193	0
2	7	1697	0	1668	197	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	9	1697	0	1668	192	0
2	М	1697	0	1668	214	0
2	0	1697	0	1668	193	0
2	Q	1697	0	1668	191	0
2	S	1697	0	1668	197	0
2	U	1697	0	1668	209	0
2	W	1697	0	1668	210	0
2	Y	1697	0	1668	188	0
3	0	1549	0	1503	133	0
3	2	1549	0	1503	133	0
3	4	1549	0	1503	136	0
3	6	1549	0	1503	137	0
3	8	1549	0	1503	127	0
3	N	1549	0	1503	154	0
3	Р	1549	0	1503	132	0
3	R	1549	0	1503	137	0
3	Т	1549	0	1503	135	0
3	V	1549	0	1503	144	0
3	Х	1549	0	1503	143	0
3	Ζ	1549	0	1503	133	0
4	BA	83	0	70	4	0
4	EA	83	0	70	7	0
4	HA	83	0	70	5	0
4	a	83	0	70	0	0
4	d	83	0	70	0	0
4	g	83	0	70	0	0
4	j	83	0	70	0	0
4	m	83	0	70	0	0
4	р	83	0	70	0	0
4	S	83	0	70	0	0
4	V	83	0	70	0	0
4	У	83	0	70	0	0
5	CA	72	0	61	3	0
5	FA	72	0	61	3	0
5	IA	72	0	61	4	0
5	b	72	0	61	0	0
5	e	72	0	61	0	0
5	h	72	0	61	0	0
5	k	72	0	61	0	0
5	n	72	0	61	0	0
5	q	72	0	61	0	0
5	t	72	0	61	0	0

2	117	Ъ	F
J	vv	11	Ľ

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
5	W	72	0	61	0	0
5	Z	72	0	61	0	0
6	AA	39	0	34	1	0
6	DA	39	0	34	1	0
6	GA	39	0	34	1	0
6	JA	39	0	34	1	0
6	с	39	0	34	0	0
6	f	39	0	34	0	0
6	i	39	0	34	0	0
6	l	39	0	34	0	0
6	0	39	0	34	0	0
6	r	39	0	34	0	0
6	u	39	0	34	0	0
6	Х	39	0	34	0	0
7	А	28	0	26	0	0
7	В	28	0	26	0	0
7	С	28	0	26	0	0
7	D	28	0	26	0	0
7	Е	28	0	26	0	0
7	F	28	0	26	0	0
7	G	28	0	26	0	0
7	Н	28	0	26	0	0
7	Ι	28	0	26	0	0
7	J	28	0	26	0	0
7	K	28	0	26	0	0
7	L	28	0	26	0	0
All	All	88152	0	85260	6696	2

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 39.

The worst 5 of 6696 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
2:5:136:PRO:O	3:6:126:SER:HB3	1.52	1.09
3:2:143:ASP:HA	3:2:176:LYS:HG3	1.35	1.08
3:T:143:ASP:HA	3:T:176:LYS:HG3	1.35	1.08
3:0:143:ASP:HA	3:0:176:LYS:HG3	1.34	1.08
1:G:331:LEU:HD22	1:G:331:LEU:H	1.19	1.08

All (2) symmetry-related close contacts are listed below. The label for Atom-2 includes the sym-

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
2:3:171:ALA:CB	2:3:171:ALA:CB[2_556]	1.73	0.47
2:3:206:THR:OG1	2:3:206:THR:OG1[2_556]	1.74	0.46

metry operator and encoded unit-cell translations to be applied.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	P	erce	entiles
1	А	491/493~(100%)	431 (88%)	54 (11%)	6 (1%)		13	49
1	В	491/493~(100%)	425 (87%)	60~(12%)	6 (1%)		13	49
1	С	491/493~(100%)	427 (87%)	57~(12%)	7 (1%)		11	46
1	D	491/493~(100%)	429 (87%)	55~(11%)	7 (1%)		11	46
1	Е	491/493~(100%)	426 (87%)	58~(12%)	7 (1%)		11	46
1	F	491/493~(100%)	430 (88%)	54 (11%)	7 (1%)		11	46
1	G	491/493~(100%)	431 (88%)	54 (11%)	6 (1%)		13	49
1	Н	491/493~(100%)	426 (87%)	58~(12%)	7 (1%)		11	46
1	Ι	491/493~(100%)	431 (88%)	54 (11%)	6 (1%)		13	49
1	J	491/493~(100%)	430 (88%)	54 (11%)	7 (1%)		11	46
1	Κ	491/493~(100%)	424 (86%)	60~(12%)	7 (1%)		11	46
1	L	491/493~(100%)	429 (87%)	56 (11%)	6 (1%)		13	49
2	1	224/226~(99%)	200 (89%)	18 (8%)	6 (3%)		5	34
2	3	224/226~(99%)	203 (91%)	16 (7%)	5 (2%)		6	37
2	5	224/226~(99%)	202 (90%)	$17 \ (8\%)$	5 (2%)		6	37
2	7	224/226~(99%)	198 (88%)	20~(9%)	6 (3%)		5	34
2	9	$\overline{224/226}~(99\%)$	201 (90%)	18 (8%)	5 (2%)		6	37
2	М	224/226~(99%)	197 (88%)	22 (10%)	5 (2%)		6	37
2	Ο	224/226~(99%)	197 (88%)	22 (10%)	5 (2%)		6	37

Mol	Chain	Analysed	Favoured	Allowed	Outliers	P	erc	entiles
2	Q	224/226~(99%)	203~(91%)	16 (7%)	5(2%)		6	37
2	S	224/226~(99%)	200 (89%)	19 (8%)	5(2%)		6	37
2	U	224/226~(99%)	199 (89%)	20~(9%)	5(2%)		6	37
2	W	224/226~(99%)	200 (89%)	19 (8%)	5(2%)		6	37
2	Y	224/226~(99%)	197 (88%)	22 (10%)	5(2%)		6	37
3	0	210/220~(96%)	190 (90%)	15 (7%)	5(2%)		6	36
3	2	210/220~(96%)	191 (91%)	16 (8%)	3 (1%)		11	46
3	4	210/220~(96%)	190 (90%)	16 (8%)	4 (2%)		8	40
3	6	210/220~(96%)	192 (91%)	15 (7%)	3(1%)		11	46
3	8	210/220~(96%)	190 (90%)	16 (8%)	4 (2%)		8	40
3	Ν	210/220~(96%)	189 (90%)	16 (8%)	5(2%)		6	36
3	Р	210/220~(96%)	191 (91%)	15 (7%)	4 (2%)		8	40
3	R	210/220~(96%)	190 (90%)	17 (8%)	3 (1%)		11	46
3	Т	210/220~(96%)	192 (91%)	14 (7%)	4 (2%)		8	40
3	V	210/220~(96%)	190 (90%)	16 (8%)	4 (2%)		8	40
3	X	210/220~(96%)	191 (91%)	15 (7%)	4 (2%)		8	40
3	Z	210/220~(96%)	190 (90%)	15 (7%)	5 (2%)		6	36
All	All	11100/11268 (98%)	9822 (88%)	1089 (10%)	189 (2%)		9	43

 $5~{\rm of}~189$ Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	F	330	GLY
2	5	115	VAL
3	N	175	ASN
3	Р	175	ASN
3	R	175	ASN

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

3	V	V	H	ΙE
$\mathbf{\mathbf{v}}$		•		

Mol	Chain	Analysed	Rotameric	Outliers	Perc	entiles
1	А	430/430~(100%)	406 (94%)	24 (6%)	21	49
1	В	430/430 (100%)	406 (94%)	24 (6%)	21	49
1	С	430/430 (100%)	407 (95%)	23 (5%)	22	51
1	D	430/430~(100%)	405 (94%)	25 (6%)	20	48
1	Е	430/430 (100%)	407 (95%)	23 (5%)	22	51
1	F	430/430~(100%)	405 (94%)	25 (6%)	20	48
1	G	430/430 (100%)	405 (94%)	25~(6%)	20	48
1	Н	430/430~(100%)	407 (95%)	23 (5%)	22	51
1	Ι	430/430~(100%)	406 (94%)	24 (6%)	21	49
1	J	430/430~(100%)	406 (94%)	24 (6%)	21	49
1	K	430/430~(100%)	405 (94%)	25 (6%)	20	48
1	L	430/430 (100%)	406 (94%)	24 (6%)	21	49
2	1	191/191~(100%)	166 (87%)	25 (13%)	4	21
2	3	191/191~(100%)	166 (87%)	25 (13%)	4	21
2	5	191/191~(100%)	168 (88%)	23 (12%)	5	23
2	7	191/191~(100%)	163 (85%)	28 (15%)	3	18
2	9	191/191~(100%)	165 (86%)	26 (14%)	3	21
2	М	191/191~(100%)	167 (87%)	24 (13%)	4	22
2	Ο	191/191~(100%)	164 (86%)	27 (14%)	3	19
2	Q	191/191~(100%)	166 (87%)	25 (13%)	4	21
2	S	191/191~(100%)	166 (87%)	25 (13%)	4	21
2	U	191/191~(100%)	165 (86%)	26 (14%)	3	21
2	W	191/191~(100%)	166 (87%)	25 (13%)	4	21
2	Y	191/191~(100%)	167 (87%)	24 (13%)	4	22
3	0	174/181~(96%)	162 (93%)	12 (7%)	15	43
3	2	174/181~(96%)	162 (93%)	12 (7%)	15	43
3	4	174/181~(96%)	162 (93%)	12 (7%)	15	43
3	6	174/181~(96%)	162 (93%)	12 (7%)	15	43
3	8	174/181~(96%)	162 (93%)	12 (7%)	15	43
3	Ν	174/181~(96%)	162 (93%)	12 (7%)	15	43
3	Р	174/181~(96%)	162 (93%)	12 (7%)	15	43
3	R	174/181~(96%)	162 (93%)	12 (7%)	15	43

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
3	Т	174/181~(96%)	162~(93%)	12 (7%)	15	43
3	V	174/181~(96%)	161 (92%)	13 (8%)	13	41
3	Х	174/181~(96%)	162~(93%)	12 (7%)	15	43
3	Ζ	174/181~(96%)	161 (92%)	13 (8%)	13	41
All	All	9540/9624~(99%)	8802 (92%)	738 (8%)	13	40

 $5~{\rm of}~738$ residues with a non-rotameric side chain are listed below:

Mol	Chain	\mathbf{Res}	Type
2	Y	163	VAL
2	9	64	PHE
2	1	82	GLU
2	Y	143	SER
2	5	54	TYR

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 369 such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
1	L	322	ASN
2	7	210	ASN
2	М	1	GLN
2	U	210	ASN
3	Р	81	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

192 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and

the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dog	Tiple	Bo	ond leng	$_{\rm sths}$	B	ond ang	les
IVIOI	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
6	NAG	AA	1	1,6	14,14,15	0.89	1 (7%)	17,19,21	1.17	2 (11%)
6	NAG	AA	2	6	14,14,15	0.76	0	17,19,21	0.67	0
6	BMA	AA	3	6	11,11,12	0.76	0	15,15,17	0.30	0
4	NAG	BA	1	1,4	14,14,15	0.63	0	17,19,21	0.69	1 (5%)
4	NAG	BA	2	4	14,14,15	0.50	0	17,19,21	0.71	0
4	BMA	BA	3	4	11,11,12	0.84	0	15,15,17	0.56	0
4	MAN	BA	4	4	11,11,12	1.04	1 (9%)	$15,\!15,\!17$	1.28	1 (6%)
4	MAN	BA	5	4	11,11,12	0.77	0	$15,\!15,\!17$	0.94	1 (6%)
4	MAN	BA	6	4	11,11,12	0.60	0	15,15,17	0.69	0
4	MAN	BA	7	4	11,11,12	0.72	0	$15,\!15,\!17$	0.62	0
5	NAG	CA	1	1,5	14,14,15	0.89	0	17,19,21	1.09	1 (5%)
5	NAG	CA	2	5	14,14,15	0.87	1 (7%)	17,19,21	1.26	2 (11%)
5	BMA	CA	3	5	11,11,12	0.81	0	$15,\!15,\!17$	0.78	1 (6%)
5	MAN	CA	4	5	11,11,12	0.84	0	15,15,17	1.28	1 (6%)
5	MAN	CA	5	5	11,11,12	0.67	0	15,15,17	0.81	1 (6%)
5	MAN	CA	6	5	11,11,12	0.77	0	15,15,17	0.79	1 (6%)
6	NAG	DA	1	1,6	14,14,15	0.86	1 (7%)	17,19,21	1.17	2 (11%)
6	NAG	DA	2	6	14,14,15	0.74	0	17,19,21	0.71	0
6	BMA	DA	3	6	11,11,12	0.79	0	$15,\!15,\!17$	0.32	0
4	NAG	EA	1	1,4	14,14,15	0.54	0	17,19,21	0.68	1 (5%)
4	NAG	EA	2	4	14,14,15	0.59	0	17,19,21	0.71	1 (5%)
4	BMA	EA	3	4	11,11,12	0.92	1 (9%)	15,15,17	0.52	0
4	MAN	EA	4	4	11,11,12	1.09	1 (9%)	15,15,17	1.26	1 (6%)
4	MAN	EA	5	4	11,11,12	0.69	0	$15,\!15,\!17$	0.89	1 (6%)
4	MAN	EA	6	4	11,11,12	0.64	0	15,15,17	0.71	0
4	MAN	EA	7	4	11,11,12	0.65	0	15,15,17	0.65	0
5	NAG	FA	1	1,5	14,14,15	0.90	0	17,19,21	1.06	1 (5%)
5	NAG	FA	2	5	14,14,15	0.87	1 (7%)	17,19,21	1.19	2 (11%)
5	BMA	FA	3	5	11,11,12	0.90	1 (9%)	15,15,17	0.77	1 (6%)
5	MAN	FA	4	5	11,11,12	0.86	0	15,15,17	1.27	1 (6%)
5	MAN	FA	5	5	11,11,12	0.68	0	15,15,17	0.80	1 (6%)
5	MAN	FA	6	5	11,11,12	0.73	0	15,15,17	0.74	1 (6%)

Mal	Trune	Chain	Dec	Timle	Bo	ond leng	ths	Bond angles		
	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
6	NAG	GA	1	1,6	14,14,15	0.97	1 (7%)	$17,\!19,\!21$	1.17	2 (11%)
6	NAG	GA	2	6	14,14,15	0.78	1 (7%)	17,19,21	0.67	0
6	BMA	GA	3	6	11,11,12	0.74	0	$15,\!15,\!17$	0.30	0
4	NAG	HA	1	1,4	14,14,15	0.74	1 (7%)	$17,\!19,\!21$	0.69	1 (5%)
4	NAG	HA	2	4	14,14,15	0.56	0	17,19,21	0.71	0
4	BMA	НА	3	4	11,11,12	0.86	1 (9%)	$15,\!15,\!17$	0.52	0
4	MAN	HA	4	4	11,11,12	1.16	1 (9%)	$15,\!15,\!17$	1.32	1 (6%)
4	MAN	HA	5	4	11,11,12	0.78	0	$15,\!15,\!17$	0.95	1 (6%)
4	MAN	HA	6	4	11,11,12	0.68	0	$15,\!15,\!17$	0.67	0
4	MAN	HA	7	4	11,11,12	0.76	0	$15,\!15,\!17$	0.64	0
5	NAG	IA	1	1,5	14, 14, 15	0.88	0	$17,\!19,\!21$	1.05	1 (5%)
5	NAG	IA	2	5	14,14,15	0.89	1 (7%)	$17,\!19,\!21$	1.23	2 (11%)
5	BMA	IA	3	5	11,11,12	0.83	0	$15,\!15,\!17$	0.79	1 (6%)
5	MAN	IA	4	5	11,11,12	0.86	0	$15,\!15,\!17$	1.27	1 (6%)
5	MAN	IA	5	5	11,11,12	0.69	0	$15,\!15,\!17$	0.83	1 (6%)
5	MAN	IA	6	5	11,11,12	0.70	0	$15,\!15,\!17$	0.76	1 (6%)
6	NAG	JA	1	1,6	14,14,15	0.93	1 (7%)	17,19,21	1.16	2 (11%)
6	NAG	JA	2	6	14,14,15	0.74	0	17,19,21	0.70	0
6	BMA	JA	3	6	11,11,12	0.77	0	$15,\!15,\!17$	0.32	0
4	NAG	a	1	1,4	$14,\!14,\!15$	0.57	0	$17,\!19,\!21$	0.72	1 (5%)
4	NAG	a	2	4	14,14,15	0.55	0	$17,\!19,\!21$	0.70	1 (5%)
4	BMA	a	3	4	11,11,12	0.95	1 (9%)	$15,\!15,\!17$	0.51	0
4	MAN	a	4	4	11,11,12	1.08	1 (9%)	$15,\!15,\!17$	1.27	1 (6%)
4	MAN	a	5	4	11,11,12	0.74	0	15,15,17	0.90	1 (6%)
4	MAN	a	6	4	11,11,12	0.64	0	15,15,17	0.68	0
4	MAN	a	7	4	11,11,12	0.77	0	$15,\!15,\!17$	0.64	0
5	NAG	b	1	1,5	14,14,15	0.78	0	$17,\!19,\!21$	1.04	1(5%)
5	NAG	b	2	5	14,14,15	0.83	1 (7%)	17,19,21	1.23	2 (11%)
5	BMA	b	3	5	11,11,12	0.95	1 (9%)	$15,\!15,\!17$	0.78	1 (6%)
5	MAN	b	4	5	11,11,12	0.92	0	15,15,17	1.21	1 (6%)
5	MAN	b	5	5	11,11,12	0.67	0	15,15,17	0.85	1 (6%)
5	MAN	b	6	5	11,11,12	0.65	0	15,15,17	0.78	1 (6%)
6	NAG	с	1	1,6	14,14,15	0.79	0	17,19,21	1.21	2 (11%)
6	NAG	с	2	6	14,14,15	0.78	1 (7%)	17,19,21	0.69	0
6	BMA	с	3	6	11,11,12	0.76	0	15,15,17	0.32	0
4	NAG	d	1	1,4	14,14,15	0.62	0	17,19,21	0.67	1 (5%)

Mal	Trune	Chain	Dec	Timle	Bo	ond leng	ths	Bond angles		
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
4	NAG	d	2	4	14,14,15	0.48	0	$17,\!19,\!21$	0.77	1(5%)
4	BMA	d	3	4	11,11,12	0.94	1 (9%)	$15,\!15,\!17$	0.56	0
4	MAN	d	4	4	11,11,12	1.06	1 (9%)	$15,\!15,\!17$	1.28	1 (6%)
4	MAN	d	5	4	11,11,12	0.82	0	$15,\!15,\!17$	0.95	1 (6%)
4	MAN	d	6	4	11,11,12	0.64	0	$15,\!15,\!17$	0.68	0
4	MAN	d	7	4	11,11,12	0.76	0	$15,\!15,\!17$	0.59	0
5	NAG	e	1	1,5	14,14,15	0.90	0	17,19,21	1.06	1 (5%)
5	NAG	е	2	5	14,14,15	0.94	1 (7%)	$17,\!19,\!21$	1.17	2 (11%)
5	BMA	е	3	5	11,11,12	0.79	0	$15,\!15,\!17$	0.78	1 (6%)
5	MAN	е	4	5	11,11,12	0.92	1 (9%)	$15,\!15,\!17$	1.26	1 (6%)
5	MAN	е	5	5	11,11,12	0.69	0	$15,\!15,\!17$	0.82	1 (6%)
5	MAN	е	6	5	11,11,12	0.72	0	15,15,17	0.76	1 (6%)
6	NAG	f	1	1,6	14,14,15	0.82	0	17,19,21	1.24	2 (11%)
6	NAG	f	2	6	14,14,15	0.76	1 (7%)	17,19,21	0.70	0
6	BMA	f	3	6	11,11,12	0.76	0	15,15,17	0.29	0
4	NAG	g	1	1,4	14,14,15	0.54	0	17,19,21	0.68	1 (5%)
4	NAG	g	2	4	14,14,15	0.51	0	17,19,21	0.72	1 (5%)
4	BMA	g	3	4	11,11,12	0.94	1 (9%)	$15,\!15,\!17$	0.54	0
4	MAN	g	4	4	11,11,12	1.09	1 (9%)	$15,\!15,\!17$	1.26	1 (6%)
4	MAN	g	5	4	11,11,12	0.75	0	15,15,17	0.90	1 (6%)
4	MAN	g	6	4	11,11,12	0.64	0	15,15,17	0.70	0
4	MAN	g	7	4	11,11,12	0.77	0	$15,\!15,\!17$	0.63	0
5	NAG	h	1	1,5	14,14,15	0.79	0	$17,\!19,\!21$	1.11	1 (5%)
5	NAG	h	2	5	14,14,15	0.84	1 (7%)	17,19,21	1.29	2 (11%)
5	BMA	h	3	5	11,11,12	0.75	0	$15,\!15,\!17$	0.86	1 (6%)
5	MAN	h	4	5	11,11,12	0.84	0	$15,\!15,\!17$	1.27	1 (6%)
5	MAN	h	5	5	11,11,12	0.64	0	$15,\!15,\!17$	0.81	1 (6%)
5	MAN	h	6	5	11,11,12	0.70	0	15,15,17	0.81	1 (6%)
6	NAG	i	1	1,6	14,14,15	0.89	1 (7%)	17,19,21	1.17	2 (11%)
6	NAG	i	2	6	14,14,15	0.86	1 (7%)	17,19,21	0.71	0
6	BMA	i	3	6	11,11,12	0.77	0	15,15,17	0.33	0
4	NAG	j	1	1,4	14,14,15	0.62	0	17,19,21	0.66	1 (5%)
4	NAG	j	2	4	14,14,15	0.61	0	17,19,21	0.73	1 (5%)
4	BMA	j	3	4	11,11,12	0.86	1 (9%)	$15,\!15,\!17$	0.50	0
4	MAN	j	4	4	11,11,12	1.09	1 (9%)	15,15,17	1.29	1 (6%)
4	MAN	j	5	4	11,11,12	0.77	0	15,15,17	0.94	1 (6%)

	T	Chain	Dec	T : 1-	Bo	ond leng	$_{\rm ths}$	Bond angles		
IVIOI	Type	Chain	Res	LINK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
4	MAN	j	6	4	11,11,12	0.63	0	$15,\!15,\!17$	0.67	0
4	MAN	j	7	4	11,11,12	0.69	0	15, 15, 17	0.59	0
5	NAG	k	1	1,5	14,14,15	0.84	0	17,19,21	1.11	1 (5%)
5	NAG	k	2	5	14,14,15	0.87	1 (7%)	17,19,21	1.23	2 (11%)
5	BMA	k	3	5	$11,\!11,\!12$	0.90	1 (9%)	$15,\!15,\!17$	0.80	1 (6%)
5	MAN	k	4	5	11,11,12	0.92	1 (9%)	$15,\!15,\!17$	1.25	1 (6%)
5	MAN	k	5	5	11,11,12	0.68	0	$15,\!15,\!17$	0.83	1 (6%)
5	MAN	k	6	5	11,11,12	0.73	0	$15,\!15,\!17$	0.77	1 (6%)
6	NAG	1	1	1,6	14,14,15	0.87	1 (7%)	17,19,21	1.16	2 (11%)
6	NAG	1	2	6	14,14,15	0.79	1 (7%)	17,19,21	0.67	0
6	BMA	1	3	6	11,11,12	0.73	0	$15,\!15,\!17$	0.30	0
4	NAG	m	1	1,4	14,14,15	0.51	0	17,19,21	0.68	1 (5%)
4	NAG	m	2	4	14,14,15	0.40	0	17,19,21	0.75	1 (5%)
4	BMA	m	3	4	11,11,12	1.03	1 (9%)	$15,\!15,\!17$	0.54	0
4	MAN	m	4	4	11,11,12	1.13	1 (9%)	$15,\!15,\!17$	1.27	1 (6%)
4	MAN	m	5	4	11,11,12	0.74	0	$15,\!15,\!17$	0.88	2 (13%)
4	MAN	m	6	4	11,11,12	0.59	0	$15,\!15,\!17$	0.68	0
4	MAN	m	7	4	11,11,12	0.81	0	$15,\!15,\!17$	0.67	0
5	NAG	n	1	1,5	14,14,15	0.81	0	17,19,21	1.06	1 (5%)
5	NAG	n	2	5	14,14,15	0.84	1 (7%)	17,19,21	1.25	2 (11%)
5	BMA	n	3	5	11,11,12	0.87	0	$15,\!15,\!17$	0.79	1 (6%)
5	MAN	n	4	5	11,11,12	0.89	0	$15,\!15,\!17$	1.25	1 (6%)
5	MAN	n	5	5	11,11,12	0.72	0	$15,\!15,\!17$	0.85	1 (6%)
5	MAN	n	6	5	11,11,12	0.66	0	$15,\!15,\!17$	0.78	1 (6%)
6	NAG	0	1	1,6	14,14,15	0.85	1 (7%)	17,19,21	1.23	2 (11%)
6	NAG	0	2	6	14,14,15	0.72	0	17,19,21	0.71	0
6	BMA	0	3	6	11,11,12	0.73	0	$15,\!15,\!17$	0.32	0
4	NAG	р	1	1,4	14,14,15	0.68	0	17,19,21	0.75	0
4	NAG	р	2	4	14,14,15	0.45	0	$17,\!19,\!21$	0.78	1(5%)
4	BMA	р	3	4	$11,\!11,\!12$	1.02	1 (9%)	$15,\!15,\!17$	0.55	0
4	MAN	р	4	4	11,11,12	1.09	1 (9%)	$15,\!15,\!17$	1.30	1 (6%)
4	MAN	р	5	4	11,11,12	0.75	0	$15,\!15,\!17$	0.95	1 (6%)
4	MAN	р	6	4	11,11,12	0.58	0	15,15,17	0.67	0
4	MAN	р	7	4	11,11,12	0.74	0	15, 15, 17	0.63	0
5	NAG	q	1	1,5	14,14,15	0.84	0	17,19,21	1.01	1 (5%)
5	NAG	q	2	5	14,14,15	0.92	1 (7%)	17,19,21	1.17	2 (11%)
5	BMA	q	3	5	11,11,12	0.90	1 (9%)	$15,\!15,\!17$	0.88	1 (6%)

Mal	Tune	Chain	Dec	Tink	Bo	ond leng	ths	Bond angles		
WIOI	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
5	MAN	q	4	5	11,11,12	0.87	0	$15,\!15,\!17$	1.26	1 (6%)
5	MAN	q	5	5	11,11,12	0.69	0	$15,\!15,\!17$	0.85	1 (6%)
5	MAN	q	6	5	11,11,12	0.66	0	$15,\!15,\!17$	0.77	1 (6%)
6	NAG	r	1	1,6	14,14,15	0.81	0	17,19,21	1.23	2 (11%)
6	NAG	r	2	6	14,14,15	0.69	0	17,19,21	0.71	0
6	BMA	r	3	6	11,11,12	0.72	0	$15,\!15,\!17$	0.31	0
4	NAG	s	1	1,4	14,14,15	0.64	0	17,19,21	0.69	0
4	NAG	S	2	4	14,14,15	0.54	0	$17,\!19,\!21$	0.76	1 (5%)
4	BMA	s	3	4	11,11,12	0.93	1 (9%)	$15,\!15,\!17$	0.58	0
4	MAN	s	4	4	11,11,12	1.03	1 (9%)	$15,\!15,\!17$	1.25	1 (6%)
4	MAN	s	5	4	11,11,12	0.70	0	$15,\!15,\!17$	0.89	2 (13%)
4	MAN	s	6	4	11,11,12	0.61	0	$15,\!15,\!17$	0.69	0
4	MAN	s	7	4	11,11,12	0.71	0	$15,\!15,\!17$	0.64	0
5	NAG	t	1	1,5	14,14,15	0.92	0	$17,\!19,\!21$	1.05	1 (5%)
5	NAG	t	2	5	14,14,15	0.90	1 (7%)	$17,\!19,\!21$	1.21	2 (11%)
5	BMA	t	3	5	11,11,12	0.88	1 (9%)	$15,\!15,\!17$	0.76	1 (6%)
5	MAN	t	4	5	11,11,12	0.78	0	$15,\!15,\!17$	1.30	1 (6%)
5	MAN	t	5	5	11,11,12	0.68	0	$15,\!15,\!17$	0.81	1 (6%)
5	MAN	t	6	5	11,11,12	0.71	0	$15,\!15,\!17$	0.76	1 (6%)
6	NAG	u	1	1,6	14,14,15	0.90	1 (7%)	17,19,21	1.23	2 (11%)
6	NAG	u	2	6	14,14,15	0.83	1 (7%)	$17,\!19,\!21$	0.68	0
6	BMA	u	3	6	11,11,12	0.79	1 (9%)	$15,\!15,\!17$	0.36	0
4	NAG	v	1	1,4	14,14,15	0.65	0	$17,\!19,\!21$	0.66	1 (5%)
4	NAG	V	2	4	14,14,15	0.69	0	17,19,21	0.69	0
4	BMA	v	3	4	11,11,12	0.91	1 (9%)	$15,\!15,\!17$	0.46	0
4	MAN	v	4	4	11,11,12	1.11	1 (9%)	$15,\!15,\!17$	1.27	1 (6%)
4	MAN	V	5	4	11,11,12	0.74	0	$15,\!15,\!17$	0.94	1 (6%)
4	MAN	v	6	4	11,11,12	0.66	0	$15,\!15,\!17$	0.70	0
4	MAN	V	7	4	11,11,12	0.74	0	$15,\!15,\!17$	0.60	0
5	NAG	W	1	1,5	14,14,15	0.89	0	$17,\!19,\!21$	1.05	1 (5%)
5	NAG	W	2	5	14,14,15	0.87	1 (7%)	17,19,21	1.21	2 (11%)
5	BMA	W	3	5	11,11,12	0.88	1 (9%)	$15,\!15,\!17$	0.79	1 (6%)
5	MAN	w	4	5	11,11,12	0.90	0	$15,\!15,\!17$	1.26	1 (6%)
5	MAN	W	5	5	11,11,12	0.69	0	15, 15, 17	0.81	0
5	MAN	W	6	5	11,11,12	0.64	0	$15,\!15,\!17$	0.76	1 (6%)
6	NAG	Х	1	1,6	14,14,15	1.05	1 (7%)	17,19,21	1.12	2 (11%)

Mal	Tuno	Chain	Dog	Link	Bond lengths		Bond angles			
NIOI	туре	Unain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
6	NAG	х	2	6	14,14,15	0.76	1 (7%)	$17,\!19,\!21$	0.64	0
6	BMA	х	3	6	11,11,12	0.75	0	$15,\!15,\!17$	0.33	0
4	NAG	У	1	1,4	14,14,15	0.61	0	17,19,21	0.70	0
4	NAG	У	2	4	14,14,15	0.44	0	17,19,21	0.74	0
4	BMA	У	3	4	11,11,12	1.11	1 (9%)	$15,\!15,\!17$	0.55	0
4	MAN	У	4	4	11,11,12	1.12	1 (9%)	$15,\!15,\!17$	1.31	1 (6%)
4	MAN	У	5	4	11,11,12	0.74	0	$15,\!15,\!17$	0.95	2 (13%)
4	MAN	У	6	4	11,11,12	0.66	0	$15,\!15,\!17$	0.69	0
4	MAN	У	7	4	11,11,12	0.85	1 (9%)	$15,\!15,\!17$	0.67	0
5	NAG	Z	1	1,5	$14,\!14,\!15$	0.89	0	$17,\!19,\!21$	1.07	1 (5%)
5	NAG	Z	2	5	14,14,15	0.92	1 (7%)	17,19,21	1.19	2 (11%)
5	BMA	Z	3	5	11,11,12	0.76	0	$15,\!15,\!17$	0.80	1 (6%)
5	MAN	Z	4	5	11,11,12	0.84	0	$15,\!15,\!17$	1.28	1 (6%)
5	MAN	Z	5	5	11,11,12	0.69	0	15,15,17	0.80	1 (6%)
5	MAN	Z	6	5	11,11,12	0.71	0	$15,\!15,\!17$	0.79	1 (6%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
6	NAG	AA	1	1,6	-	5/6/23/26	0/1/1/1
6	NAG	AA	2	6	-	4/6/23/26	0/1/1/1
6	BMA	AA	3	6	-	1/2/19/22	0/1/1/1
4	NAG	BA	1	1,4	-	4/6/23/26	0/1/1/1
4	NAG	BA	2	4	-	5/6/23/26	0/1/1/1
4	BMA	BA	3	4	-	1/2/19/22	0/1/1/1
4	MAN	BA	4	4	-	2/2/19/22	0/1/1/1
4	MAN	BA	5	4	-	1/2/19/22	0/1/1/1
4	MAN	BA	6	4	-	0/2/19/22	0/1/1/1
4	MAN	BA	7	4	-	0/2/19/22	0/1/1/1
5	NAG	CA	1	1,5	-	3/6/23/26	0/1/1/1
5	NAG	CA	2	5	-	4/6/23/26	0/1/1/1
5	BMA	CA	3	5	-	0/2/19/22	0/1/1/1
5	MAN	CA	4	5	-	0/2/19/22	0/1/1/1
5	MAN	CA	5	5	-	2/2/19/22	0/1/1/1
5	MAN	CA	6	5	-	0/2/19/22	0/1/1/1

9 VV 1112	3	Ŵ	ł	H	E
-----------	---	---	---	---	---

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
6	NAG	DA	1	1,6	-	5/6/23/26	0/1/1/1
6	NAG	DA	2	6	-	4/6/23/26	0/1/1/1
6	BMA	DA	3	6	-	1/2/19/22	0/1/1/1
4	NAG	EA	1	1,4	-	4/6/23/26	0/1/1/1
4	NAG	EA	2	4	-	5/6/23/26	0/1/1/1
4	BMA	EA	3	4	-	1/2/19/22	0/1/1/1
4	MAN	EA	4	4	-	2/2/19/22	0/1/1/1
4	MAN	EA	5	4	-	1/2/19/22	0/1/1/1
4	MAN	EA	6	4	-	0/2/19/22	0/1/1/1
4	MAN	EA	7	4	-	0/2/19/22	0/1/1/1
5	NAG	FA	1	1,5	-	3/6/23/26	0/1/1/1
5	NAG	FA	2	5	-	4/6/23/26	0/1/1/1
5	BMA	FA	3	5	-	0/2/19/22	0/1/1/1
5	MAN	FA	4	5	-	0/2/19/22	0/1/1/1
5	MAN	FA	5	5	-	2/2/19/22	0/1/1/1
5	MAN	FA	6	5	-	0/2/19/22	0/1/1/1
6	NAG	GA	1	1,6	-	4/6/23/26	0/1/1/1
6	NAG	GA	2	6	-	4/6/23/26	0/1/1/1
6	BMA	GA	3	6	-	1/2/19/22	0/1/1/1
4	NAG	HA	1	1,4	-	4/6/23/26	0/1/1/1
4	NAG	НА	2	4	-	5/6/23/26	0/1/1/1
4	BMA	НА	3	4	-	2/2/19/22	0/1/1/1
4	MAN	HA	4	4	-	2/2/19/22	0/1/1/1
4	MAN	HA	5	4	-	1/2/19/22	0/1/1/1
4	MAN	HA	6	4	-	0/2/19/22	0/1/1/1
4	MAN	HA	7	4	-	0/2/19/22	0/1/1/1
5	NAG	IA	1	1,5	-	3/6/23/26	0/1/1/1
5	NAG	IA	2	5	-	4/6/23/26	0/1/1/1
5	BMA	IA	3	5	-	0/2/19/22	0/1/1/1
5	MAN	IA	4	5	-	0/2/19/22	0/1/1/1
5	MAN	IA	5	5	-	2/2/19/22	0/1/1/1
5	MAN	IA	6	5	-	0/2/19/22	0/1/1/1
6	NAG	JA	1	1,6	-	5/6/23/26	0/1/1/1
6	NAG	JA	2	6	-	4/6/23/26	0/1/1/1
6	BMA	JA	3	6	-	1/2/19/22	0/1/1/1
4	NAG	a	1	1,4	-	4/6/23/26	0/1/1/1
4	NAG	a	2	4	-	5/6/23/26	0/1/1/1

\mathcal{O}	٢X	71	\mathbf{I}	L.
J	v	/ 1	11	Ľ.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	BMA	a	3	4	-	1/2/19/22	0/1/1/1
4	MAN	a	4	4	-	2/2/19/22	0/1/1/1
4	MAN	a	5	4	-	1/2/19/22	0/1/1/1
4	MAN	a	6	4	-	0/2/19/22	0/1/1/1
4	MAN	a	7	4	-	0/2/19/22	0/1/1/1
5	NAG	b	1	1,5	-	3/6/23/26	0/1/1/1
5	NAG	b	2	5	-	4/6/23/26	0/1/1/1
5	BMA	b	3	5	-	0/2/19/22	0/1/1/1
5	MAN	b	4	5	-	0/2/19/22	0/1/1/1
5	MAN	b	5	5	-	2/2/19/22	0/1/1/1
5	MAN	b	6	5	-	0/2/19/22	0/1/1/1
6	NAG	с	1	1,6	-	5/6/23/26	0/1/1/1
6	NAG	с	2	6	-	4/6/23/26	0/1/1/1
6	BMA	с	3	6	-	1/2/19/22	0/1/1/1
4	NAG	d	1	1,4	-	4/6/23/26	0/1/1/1
4	NAG	d	2	4	-	5/6/23/26	0/1/1/1
4	BMA	d	3	4	-	2/2/19/22	0/1/1/1
4	MAN	d	4	4	-	2/2/19/22	0/1/1/1
4	MAN	d	5	4	-	2/2/19/22	0/1/1/1
4	MAN	d	6	4	-	0/2/19/22	0/1/1/1
4	MAN	d	7	4	-	0/2/19/22	0/1/1/1
5	NAG	e	1	1,5	-	3/6/23/26	0/1/1/1
5	NAG	е	2	5	-	4/6/23/26	0/1/1/1
5	BMA	е	3	5	-	0/2/19/22	0/1/1/1
5	MAN	е	4	5	-	0/2/19/22	0/1/1/1
5	MAN	e	5	5	-	2/2/19/22	0/1/1/1
5	MAN	е	6	5	-	0/2/19/22	0/1/1/1
6	NAG	f	1	1,6	-	5/6/23/26	0/1/1/1
6	NAG	f	2	6	-	4/6/23/26	0/1/1/1
6	BMA	f	3	6	-	1/2/19/22	0/1/1/1
4	NAG	g	1	1,4	-	2/6/23/26	0/1/1/1
4	NAG	g	2	4	-	5/6/23/26	0/1/1/1
4	BMA	g	3	4	-	2/2/19/22	0/1/1/1
4	MAN	g	4	4	-	2/2/19/22	0/1/1/1
4	MAN	g	5	4	-	1/2/19/22	0/1/1/1
4	MAN	g	6	4	-	0/2/19/22	0/1/1/1
4	MAN	g	7	4	-	0/2/19/22	0/1/1/1

\mathcal{O}	٢X	71	\mathbf{I}	L.
J	v	/ 1	11	Ľ.

	Tueu 110	Chain	D og	 Tinle	Chinala	Tonsions	Dinga
-	Type	Unain	nes		Unirais		
5	NAG	h		1,5	-	3/6/23/26	0/1/1/1
5	NAG	h	2	5	-	4/6/23/26	0/1/1/1
5	BMA	h	3	5	-	0/2/19/22	0/1/1/1
5	MAN	h	4	5	-	0/2/19/22	0/1/1/1
5	MAN	h	5	5	-	2/2/19/22	0/1/1/1
5	MAN	h	6	5	-	0/2/19/22	0/1/1/1
6	NAG	i	1	1,6	-	5/6/23/26	0/1/1/1
6	NAG	i	2	6	-	4/6/23/26	0/1/1/1
6	BMA	i	3	6	-	1/2/19/22	0/1/1/1
4	NAG	j	1	1,4	-	3/6/23/26	0/1/1/1
4	NAG	j	2	4	-	5/6/23/26	0/1/1/1
4	BMA	j	3	4	-	1/2/19/22	0/1/1/1
4	MAN	j	4	4	-	2/2/19/22	0/1/1/1
4	MAN	j	5	4	-	1/2/19/22	0/1/1/1
4	MAN	j	6	4	-	0/2/19/22	0/1/1/1
4	MAN	j	7	4	-	0/2/19/22	0/1/1/1
5	NAG	k	1	1,5	-	3/6/23/26	0/1/1/1
5	NAG	k	2	5	-	4/6/23/26	0/1/1/1
5	BMA	k	3	5	-	0/2/19/22	0/1/1/1
5	MAN	k	4	5	-	0/2/19/22	0/1/1/1
5	MAN	k	5	5	-	2/2/19/22	0/1/1/1
5	MAN	k	6	5	-	0/2/19/22	0/1/1/1
6	NAG	1	1	1,6	-	5/6/23/26	0/1/1/1
6	NAG	1	2	6	-	4/6/23/26	0/1/1/1
6	BMA	1	3	6	-	1/2/19/22	0/1/1/1
4	NAG	m	1	1,4	-	2/6/23/26	0/1/1/1
4	NAG	m	2	4	-	5/6/23/26	0/1/1/1
4	BMA	m	3	4	-	$\frac{2}{2/2}/19/22$	0/1/1/1
4	MAN	m	4	4	-	$\frac{2}{2}/\frac{2}{19}/22$	0/1/1/1
4	MAN	m	5	4	_	1/2/19/22	0/1/1/1
4	MAN	m	6	4	_	0/2/19/22	0/1/1/1
4	MAN	m	7	4	-	0/2/19/22	0/1/1/1
5	NAG	n	1	1,5	-	3/6/23/26	0/1/1/1
5	NAG	n	2	5	-	4/6/23/26	0/1/1/1
5	BMA	n	3	5	-	0/2/19/22	0/1/1/1
5	MAN	n	4	5	-	0/2/19/22	0/1/1/1
5	MAN	n	5	5	-	2/2/19/22	0/1/1/1
5	MAN	n	6	5	-	0/2/19/22	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
6	NAG	0	1	1,6	-	5/6/23/26	0/1/1/1
6	NAG	0	2	6	_	4/6/23/26	0/1/1/1
6	BMA	0	3	6	-	1/2/19/22	0/1/1/1
4	NAG	р	1	1,4	-	2/6/23/26	0/1/1/1
4	NAG	р	2	4	-	5/6/23/26	0/1/1/1
4	BMA	р	3	4	-	2/2/19/22	0/1/1/1
4	MAN	р	4	4	-	2/2/19/22	0/1/1/1
4	MAN	р	5	4	-	1/2/19/22	0/1/1/1
4	MAN	p	6	4	-	0/2/19/22	0/1/1/1
4	MAN	р	7	4	-	0/2/19/22	0/1/1/1
5	NAG	q	1	1,5	-	3/6/23/26	0/1/1/1
5	NAG	q	2	5	-	4/6/23/26	0/1/1/1
5	BMA	q	3	5	-	0/2/19/22	0/1/1/1
5	MAN	q	4	5	-	0/2/19/22	0/1/1/1
5	MAN	q	5	5	-	2/2/19/22	0/1/1/1
5	MAN	q	6	5	-	0/2/19/22	0/1/1/1
6	NAG	r	1	1,6	-	5/6/23/26	0/1/1/1
6	NAG	r	2	6	-	4/6/23/26	0/1/1/1
6	BMA	r	3	6	-	1/2/19/22	0/1/1/1
4	NAG	S	1	1,4	-	4/6/23/26	0/1/1/1
4	NAG	S	2	4	-	5/6/23/26	0/1/1/1
4	BMA	S	3	4	-	1/2/19/22	0/1/1/1
4	MAN	s	4	4	-	2/2/19/22	0/1/1/1
4	MAN	s	5	4	-	1/2/19/22	0/1/1/1
4	MAN	S	6	4	-	0/2/19/22	0/1/1/1
4	MAN	s	7	4	-	0/2/19/22	0/1/1/1
5	NAG	t	1	1,5	-	3/6/23/26	0/1/1/1
5	NAG	t	2	5	-	4/6/23/26	0/1/1/1
5	BMA	t	3	5	-	0/2/19/22	0/1/1/1
5	MAN	t	4	5	-	0/2/19/22	0/1/1/1
5	MAN	t	5	5	-	2/2/19/22	0/1/1/1
5	MAN	t	6	5	-	0/2/19/22	0/1/1/1
6	NAG	u	1	1,6	-	5/6/23/26	0/1/1/1
6	NAG	u	2	6	-	4/6/23/26	0/1/1/1
6	BMA	u	3	6	-	1/2/19/22	0/1/1/1
4	NAG	v	1	1,4	-	4/6/23/26	0/1/1/1
4	NAG	v	2	4	-	5/6/23/26	0/1/1/1

3	X 7	Ч	F	
J	vv	11	11	

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	BMA	V	3	4	-	1/2/19/22	0/1/1/1
4	MAN	V	4	4	-	2/2/19/22	0/1/1/1
4	MAN	V	5	4	-	2/2/19/22	0/1/1/1
4	MAN	v	6	4	-	0/2/19/22	0/1/1/1
4	MAN	V	7	4	-	0/2/19/22	0/1/1/1
5	NAG	W	1	1,5	-	3/6/23/26	0/1/1/1
5	NAG	W	2	5	-	4/6/23/26	0/1/1/1
5	BMA	W	3	5	-	0/2/19/22	0/1/1/1
5	MAN	W	4	5	-	0/2/19/22	0/1/1/1
5	MAN	W	5	5	-	2/2/19/22	0/1/1/1
5	MAN	W	6	5	-	0/2/19/22	0/1/1/1
6	NAG	x	1	1,6	-	5/6/23/26	0/1/1/1
6	NAG	x	2	6	-	4/6/23/26	0/1/1/1
6	BMA	X	3	6	-	1/2/19/22	0/1/1/1
4	NAG	У	1	1,4	-	4/6/23/26	0/1/1/1
4	NAG	У	2	4	-	5/6/23/26	0/1/1/1
4	BMA	У	3	4	-	2/2/19/22	0/1/1/1
4	MAN	У	4	4	-	2/2/19/22	0/1/1/1
4	MAN	У	5	4	-	2/2/19/22	0/1/1/1
4	MAN	У	6	4	-	0/2/19/22	0/1/1/1
4	MAN	У	7	4	-	0/2/19/22	0/1/1/1
5	NAG	Z	1	1,5	-	3/6/23/26	0/1/1/1
5	NAG	Z	2	5	-	4/6/23/26	0/1/1/1
5	BMA	Z	3	5	-	0/2/19/22	0/1/1/1
5	MAN	Z	4	5	-	0/2/19/22	0/1/1/1
5	MAN	Z	5	5	-	2/2/19/22	0/1/1/1
5	MAN	Z	6	5	-	0/2/19/22	0/1/1/1

The worst 5 of 62 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
4	У	3	BMA	C4-C3	3.05	1.60	1.52
6	Х	1	NAG	C4-C3	2.97	1.59	1.52
4	m	3	BMA	C4-C3	2.74	1.59	1.52
4	р	3	BMA	C4-C3	2.70	1.59	1.52
4	HA	4	MAN	C4-C3	2.60	1.58	1.52

The worst 5 of 151 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
4	d	4	MAN	C1-C2-C3	4.15	114.77	109.67
4	BA	4	MAN	C1-C2-C3	4.12	114.73	109.67
4	s	4	MAN	C1-C2-C3	4.11	114.71	109.67
5	t	4	MAN	C1-C2-C3	4.10	114.70	109.67
4	g	4	MAN	C1-C2-C3	4.09	114.70	109.67

There are no chirality outliers.

5 of 385 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	a	1	NAG	C8-C7-N2-C2
4	a	1	NAG	O7-C7-N2-C2
4	a	2	NAG	C8-C7-N2-C2
4	a	2	NAG	O7-C7-N2-C2
4	d	1	NAG	C8-C7-N2-C2

There are no ring outliers.

20 monomers are involved in 30 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	BA	1	NAG	1	0
5	IA	2	NAG	3	0
4	HA	2	NAG	5	0
6	GA	3	BMA	1	0
6	AA	2	NAG	1	0
4	EA	1	NAG	1	0
5	IA	1	NAG	3	0
5	CA	1	NAG	3	0
6	DA	3	BMA	1	0
4	EA	2	NAG	7	0
6	DA	2	NAG	1	0
6	JA	3	BMA	1	0
4	BA	2	NAG	4	0
4	HA	1	NAG	1	0
5	FA	2	NAG	2	0
6	JA	2	NAG	1	0
6	AA	3	BMA	1	0
5	CA	2	NAG	2	0
5	FA	1	NAG	3	0
6	GA	2	NAG	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

24 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Tink	Bond lengths		Bond angles			
WIOI	Type	Ullaili	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
7	NAG	С	618	1	14,14,15	0.73	0	17,19,21	0.66	0
7	NAG	С	608	1	14,14,15	0.70	0	17,19,21	0.68	0
7	NAG	J	618	1	14,14,15	0.74	0	17,19,21	0.62	0
7	NAG	В	608	1	14,14,15	0.77	1 (7%)	$17,\!19,\!21$	0.67	0
7	NAG	Е	608	1	14,14,15	0.69	0	17,19,21	0.68	0
7	NAG	L	618	1	14,14,15	0.72	0	17,19,21	0.64	0
7	NAG	J	608	1	14,14,15	0.66	0	$17,\!19,\!21$	0.67	0
7	NAG	L	608	1	14,14,15	0.67	0	17,19,21	0.68	1 (5%)
7	NAG	Е	618	1	14,14,15	0.72	0	17,19,21	0.64	0
7	NAG	Ι	618	1	14,14,15	0.74	0	17,19,21	0.65	0
7	NAG	А	618	1	14,14,15	0.72	0	17,19,21	0.66	0
7	NAG	K	618	1	14,14,15	0.75	0	17,19,21	0.64	0
7	NAG	Н	618	1	14,14,15	1.15	2 (14%)	$17,\!19,\!21$	1.24	3 (17%)
7	NAG	А	608	1	14,14,15	0.63	0	17,19,21	0.68	0
7	NAG	K	608	1	14,14,15	0.71	0	$17,\!19,\!21$	0.68	0
7	NAG	Ι	608	1	14,14,15	0.70	0	$17,\!19,\!21$	0.67	0
7	NAG	G	618	1	14,14,15	0.71	0	17,19,21	0.65	0
7	NAG	D	618	1	14,14,15	0.76	1 (7%)	$17,\!19,\!21$	0.65	0
7	NAG	F	618	1	14,14,15	0.75	0	17,19,21	0.63	0
7	NAG	D	608	1	14,14,15	0.79	1 (7%)	$17,\!19,\!21$	0.67	0
7	NAG	В	618	1	14,14,15	0.78	1 (7%)	17,19,21	0.64	0
7	NAG	F	608	1	14,14,15	0.67	0	17,19,21	0.67	0
7	NAG	Н	608	1	14,14,15	0.78	1 (7%)	17,19,21	0.68	1 (5%)
7	NAG	G	608	1	14,14,15	0.68	0	17,19,21	0.69	1 (5%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
7	NAG	С	618	1	-	2/6/23/26	0/1/1/1
7	NAG	С	608	1	-	2/6/23/26	0/1/1/1
7	NAG	J	618	1	-	2/6/23/26	0/1/1/1
7	NAG	В	608	1	-	2/6/23/26	0/1/1/1
7	NAG	Е	608	1	-	2/6/23/26	0/1/1/1
7	NAG	L	618	1	-	2/6/23/26	0/1/1/1
7	NAG	J	608	1	-	2/6/23/26	0/1/1/1
7	NAG	L	608	1	-	2/6/23/26	0/1/1/1
7	NAG	Е	618	1	-	2/6/23/26	0/1/1/1
7	NAG	Ι	618	1	-	2/6/23/26	0/1/1/1
7	NAG	А	618	1	-	2/6/23/26	0/1/1/1
7	NAG	К	618	1	-	2/6/23/26	0/1/1/1
7	NAG	Н	618	1	-	2/6/23/26	0/1/1/1
7	NAG	А	608	1	-	2/6/23/26	0/1/1/1
7	NAG	К	608	1	-	2/6/23/26	0/1/1/1
7	NAG	Ι	608	1	-	2/6/23/26	0/1/1/1
7	NAG	G	618	1	-	2/6/23/26	0/1/1/1
7	NAG	D	618	1	-	2/6/23/26	0/1/1/1
7	NAG	F	618	1	-	2/6/23/26	0/1/1/1
7	NAG	D	608	1	-	2/6/23/26	0/1/1/1
7	NAG	В	618	1	-	2/6/23/26	0/1/1/1
7	NAG	F	608	1	-	2/6/23/26	0/1/1/1
7	NAG	Н	608	1	-	2/6/23/26	0/1/1/1
7	NAG	G	608	1	-	2/6/23/26	0/1/1/1

The worst 5 of 7 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
7	Н	618	NAG	O5-C5	2.45	1.48	1.43
7	D	608	NAG	C4-C3	2.29	1.58	1.52
7	Н	608	NAG	C4-C3	2.26	1.58	1.52
7	В	608	NAG	C4-C3	2.19	1.57	1.52
7	В	618	NAG	C4-C3	2.10	1.57	1.52

The worst 5 of 6 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	Н	618	NAG	O4-C4-C3	2.63	116.42	110.35

Continued on next page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	Н	618	NAG	C3-C4-C5	2.59	114.85	110.24
7	Н	618	NAG	C1-O5-C5	2.02	114.93	112.19
7	L	608	NAG	C2-N2-C7	-2.01	120.04	122.90
7	Н	608	NAG	C2-N2-C7	-2.01	120.04	122.90

Continued from previous page...

There are no chirality outliers.

5 of 48 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
7	А	608	NAG	C8-C7-N2-C2
7	А	608	NAG	O7-C7-N2-C2
7	В	608	NAG	C8-C7-N2-C2
7	В	608	NAG	O7-C7-N2-C2
7	С	608	NAG	C8-C7-N2-C2

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.3 Carbohydrates (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.5 Other polymers (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

