

Apr 14, 2024 – 12:11 AM JST

PDB ID : 8WGV EMDB ID : EMD-37516 BA.2(S375) Spike (S6P)/hACE2 complex Title : : Wei, X.; Zhang, Z. Authors Deposited on 2023-09-22 : 2.92 Å(reported) Resolution : Based on initial model 7X08 ·

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	FAILED
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.92 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain					
1	А	1244	60%	19%	20%			
1	В	1244	60%	19%	20%			
1	С	1244	60%	19%	20%			
2	D	614	58%	38%	·			
2	Е	614	55%	42%	••			
2	F	614	60%	36%	·			
3	G	2	100%					
3	Н	2	100%					
3	Ι	2	50%	50%				

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 38688 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		Α	toms			AltConf	Trace
1	Δ	993	Total	С	Ν	0	\mathbf{S}	1	0
1	11	995	7773	4971	1293	1475	34	1	0
1	В	002	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	1	0
1	D	992	7770	4969	1293	1473	35	I	0
1	С	001	Total	С	Ν	Ο	\mathbf{S}	1	0
	U	391	7761	4964	1292	1470	35	1	U

• Molecule 1 is a protein called Spike glycoprotein.

Chain	Residue	Modelled	Actual	Comment	Reference
А	22	ILE	THR	variant	UNP P0DTC2
А	?	-	LEU	deletion	UNP P0DTC2
А	?	-	PRO	deletion	UNP P0DTC2
А	?	-	PRO	deletion	UNP P0DTC2
А	27	SER	ALA	variant	UNP P0DTC2
А	142	ASP	GLY	variant	UNP P0DTC2
А	213	GLY	VAL	variant	UNP P0DTC2
А	339	ASP	GLY	variant	UNP P0DTC2
А	371	PHE	SER	variant	UNP P0DTC2
А	373	PRO	SER	variant	UNP P0DTC2
А	376	ALA	THR	variant	UNP P0DTC2
А	405	ASN	ASP	variant	UNP P0DTC2
А	408	SER	ARG	variant	UNP P0DTC2
А	417	ASN	LYS	variant	UNP P0DTC2
А	440	LYS	ASN	variant	UNP P0DTC2
А	477	ASN	SER	variant	UNP P0DTC2
А	478	LYS	THR	variant	UNP P0DTC2
А	484	ALA	GLU	variant	UNP P0DTC2
А	493	ARG	GLN	variant	UNP P0DTC2
А	498	ARG	GLN	variant	UNP P0DTC2
А	501	TYR	ASN	variant	UNP P0DTC2
A	505	HIS	TYR	variant	UNP P0DTC2
A	614	GLY	ASP	variant	UNP P0DTC2
А	655	TYR	HIS	variant	UNP P0DTC2

There are 234 discrepancies between the modelled and reference sequences:

	Bosiduo	Modelled	Actual	Commont	Boforonco
	c70	IVIOUEIIeu	ACTUAL	Comment	
A	079		ASN	variant	UNP PUDICZ
A	681	HIS	PRO	variant	UNP PUDIC2
A	682	GLY	ARG	conflict	UNP PODICZ
A	683	SER	ARG	conflict	UNP P0DTC2
A	685	SER	ARG	conflict	UNP P0DTC2
A	764	LYS	ASN	variant	UNP P0DTC2
A	796	TYR	ASP	variant	UNP P0DTC2
A	817	PRO	PHE	conflict	UNP P0DTC2
A	892	PRO	ALA	conflict	UNP P0DTC2
A	899	PRO	ALA	conflict	UNP P0DTC2
A	942	PRO	ALA	conflict	UNP P0DTC2
A	954	HIS	GLN	variant	UNP P0DTC2
А	969	LYS	ASN	variant	UNP P0DTC2
А	986	PRO	LYS	variant	UNP P0DTC2
А	987	PRO	VAL	variant	UNP P0DTC2
А	1209	GLY	-	expression tag	UNP P0DTC2
А	1210	SER	-	expression tag	UNP P0DTC2
А	1211	GLY	-	expression tag	UNP P0DTC2
А	1212	TYR	-	expression tag	UNP P0DTC2
А	1213	ILE	-	expression tag	UNP P0DTC2
А	1214	PRO	-	expression tag	UNP P0DTC2
А	1215	GLU	-	expression tag	UNP P0DTC2
А	1216	ALA	-	expression tag	UNP P0DTC2
А	1217	PRO	-	expression tag	UNP P0DTC2
А	1218	ARG	-	expression tag	UNP P0DTC2
A	1219	ASP	-	expression tag	UNP P0DTC2
А	1220	GLY	-	expression tag	UNP P0DTC2
A	1221	GLN	-	expression tag	UNP P0DTC2
А	1222	ALA	-	expression tag	UNP P0DTC2
А	1223	TYR	_	expression tag	UNP P0DTC2
A	1224	VAL	-	expression tag	UNP P0DTC2
A	1225	ARG	-	expression tag	UNP P0DTC2
A	1226	LYS	-	expression tag	UNP P0DTC2
A	1227	ASP	-	expression tag	UNP P0DTC2
A	1228	GLY	_	expression tag	UNP P0DTC2
A	1229	GLU	_	expression tag	UNP P0DTC2
A	1230	TRP	-	expression tag	UNP P0DTC2
A	1231	VAL	-	expression tag	UNP P0DTC2
A	1232	LEU	-	expression tag	UNP P0DTC2
A	1233	LEU	-	expression tag	UNP P0DTC2
A	1234	SER	-	expression tag	UNP PODTC2
A	1235	THR	-	expression tag	UNP P0DTC2
. –	~ ~		1		<u> </u>

Continu	led from pre	vious page			
Chain	Residue	Modelled	Actual	Comment	Reference
A	1236	PHE	-	expression tag	UNP P0DTC2
A	1237	LEU	-	expression tag	UNP P0DTC2
A	1238	GLY	-	expression tag	UNP P0DTC2
A	1239	GLY	-	expression tag	UNP P0DTC2
A	1240	HIS	-	expression tag	UNP P0DTC2
A	1241	HIS	-	expression tag	UNP P0DTC2
A	1242	HIS	-	expression tag	UNP P0DTC2
A	1243	HIS	-	expression tag	UNP P0DTC2
A	1244	HIS	-	expression tag	UNP P0DTC2
А	1245	HIS	-	expression tag	UNP P0DTC2
А	1246	HIS	-	expression tag	UNP P0DTC2
А	1247	HIS	-	expression tag	UNP P0DTC2
В	22	ILE	THR	variant	UNP P0DTC2
В	?	-	LEU	deletion	UNP P0DTC2
В	?	-	PRO	deletion	UNP P0DTC2
В	?	-	PRO	deletion	UNP P0DTC2
В	27	SER	ALA	variant	UNP P0DTC2
В	142	ASP	GLY	variant	UNP P0DTC2
В	213	GLY	VAL	variant	UNP P0DTC2
В	339	ASP	GLY	variant	UNP P0DTC2
В	371	PHE	SER	variant	UNP P0DTC2
В	373	PRO	SER	variant	UNP P0DTC2
В	376	ALA	THR	variant	UNP P0DTC2
В	405	ASN	ASP	variant	UNP P0DTC2
В	408	SER	ARG	variant	UNP P0DTC2
В	417	ASN	LYS	variant	UNP P0DTC2
В	440	LYS	ASN	variant	UNP P0DTC2
В	477	ASN	SER	variant	UNP P0DTC2
В	478	LYS	THR	variant	UNP P0DTC2
В	484	ALA	GLU	variant	UNP P0DTC2
В	493	ARG	GLN	variant	UNP P0DTC2
В	498	ARG	GLN	variant	UNP P0DTC2
В	501	TYR	ASN	variant	UNP P0DTC2
В	505	HIS	TYR	variant	UNP P0DTC2
В	614	GLY	ASP	variant	UNP P0DTC2
В	655	TYR	HIS	variant	UNP P0DTC2
В	679	LYS	ASN	variant	UNP P0DTC2
В	681	HIS	PRO	variant	UNP P0DTC2
В	682	GLY	ARG	conflict	UNP P0DTC2
В	683	SER	ARG	conflict	UNP P0DTC2
В	685	SER	ARG	conflict	UNP P0DTC2
В	764	LYS	ASN	variant	UNP P0DTC2

Cntin d fa

Continu	ieu jioni pre	illous puye			
Chain	Residue	Modelled	Actual	Comment	Reference
В	796	TYR	ASP	variant	UNP P0DTC2
В	817	PRO	PHE	conflict	UNP P0DTC2
В	892	PRO	ALA	conflict	UNP P0DTC2
В	899	PRO	ALA	conflict	UNP P0DTC2
В	942	PRO	ALA	conflict	UNP P0DTC2
В	954	HIS	GLN	variant	UNP P0DTC2
В	969	LYS	ASN	variant	UNP P0DTC2
В	986	PRO	LYS	variant	UNP P0DTC2
В	987	PRO	VAL	variant	UNP P0DTC2
В	1209	GLY	-	expression tag	UNP P0DTC2
В	1210	SER	-	expression tag	UNP P0DTC2
В	1211	GLY	-	expression tag	UNP P0DTC2
В	1212	TYR	-	expression tag	UNP P0DTC2
В	1213	ILE	-	expression tag	UNP P0DTC2
В	1214	PRO	-	expression tag	UNP P0DTC2
В	1215	GLU	-	expression tag	UNP P0DTC2
В	1216	ALA	-	expression tag	UNP P0DTC2
В	1217	PRO	-	expression tag	UNP P0DTC2
В	1218	ARG	-	expression tag	UNP P0DTC2
В	1219	ASP	-	expression tag	UNP P0DTC2
В	1220	GLY	-	expression tag	UNP P0DTC2
В	1221	GLN	-	expression tag	UNP P0DTC2
В	1222	ALA	-	expression tag	UNP P0DTC2
В	1223	TYR	-	expression tag	UNP P0DTC2
В	1224	VAL	-	expression tag	UNP P0DTC2
В	1225	ARG	-	expression tag	UNP P0DTC2
В	1226	LYS	-	expression tag	UNP P0DTC2
В	1227	ASP	-	expression tag	UNP P0DTC2
В	1228	GLY	-	expression tag	UNP P0DTC2
В	1229	GLU	-	expression tag	UNP P0DTC2
В	1230	TRP	-	expression tag	UNP P0DTC2
В	1231	VAL	-	expression tag	UNP P0DTC2
В	1232	LEU	-	expression tag	UNP P0DTC2
В	1233	LEU	-	expression tag	UNP P0DTC2
В	1234	SER	-	expression tag	UNP P0DTC2
В	1235	THR	-	expression tag	UNP P0DTC2
В	1236	PHE	-	expression tag	UNP P0DTC2
В	1237	LEU	-	expression tag	UNP P0DTC2
В	1238	GLY	-	expression tag	UNP P0DTC2
В	1239	GLY	-	expression tag	UNP P0DTC2
В	1240	HIS	-	expression tag	UNP P0DTC2
В	1241	HIS	-	expression tag	UNP P0DTC2

Continued from previous page...

Continu	iea jrom pre	vious page			
Chain	Residue	Modelled	Actual	Comment	Reference
В	1242	HIS	-	expression tag	UNP P0DTC2
В	1243	HIS	-	expression tag	UNP P0DTC2
В	1244	HIS	-	expression tag	UNP P0DTC2
В	1245	HIS	-	expression tag	UNP P0DTC2
В	1246	HIS	-	expression tag	UNP P0DTC2
В	1247	HIS	-	expression tag	UNP P0DTC2
С	22	ILE	THR	variant	UNP P0DTC2
С	?	-	LEU	deletion	UNP P0DTC2
С	?	-	PRO	deletion	UNP P0DTC2
С	?	-	PRO	deletion	UNP P0DTC2
С	27	SER	ALA	variant	UNP P0DTC2
С	142	ASP	GLY	variant	UNP P0DTC2
С	213	GLY	VAL	variant	UNP P0DTC2
С	339	ASP	GLY	variant	UNP P0DTC2
С	371	PHE	SER	variant	UNP P0DTC2
С	373	PRO	SER	variant	UNP P0DTC2
С	376	ALA	THR	variant	UNP P0DTC2
С	405	ASN	ASP	variant	UNP P0DTC2
С	408	SER	ARG	variant	UNP P0DTC2
С	417	ASN	LYS	variant	UNP P0DTC2
С	440	LYS	ASN	variant	UNP P0DTC2
С	477	ASN	SER	variant	UNP P0DTC2
С	478	LYS	THR	variant	UNP P0DTC2
С	484	ALA	GLU	variant	UNP P0DTC2
С	493	ARG	GLN	variant	UNP P0DTC2
С	498	ARG	GLN	variant	UNP P0DTC2
С	501	TYR	ASN	variant	UNP P0DTC2
С	505	HIS	TYR	variant	UNP P0DTC2
С	614	GLY	ASP	variant	UNP P0DTC2
С	655	TYR	HIS	variant	UNP P0DTC2
С	679	LYS	ASN	variant	UNP P0DTC2
С	681	HIS	PRO	variant	UNP P0DTC2
С	682	GLY	ARG	conflict	UNP P0DTC2
С	683	SER	ARG	conflict	UNP P0DTC2
С	685	SER	ARG	conflict	UNP P0DTC2
С	764	LYS	ASN	variant	UNP P0DTC2
С	796	TYR	ASP	variant	UNP P0DTC2
С	817	PRO	PHE	conflict	UNP P0DTC2
С	892	PRO	ALA	conflict	UNP P0DTC2
С	899	PRO	ALA	conflict	UNP P0DTC2
С	942	PRO	ALA	conflict	UNP P0DTC2
С	954	HIS	GLN	variant	UNP P0DTC2

Cntia d fa

	lea from pre	vious page			Dí
Chain	Residue	Modelled	Actual	Comment	Reference
C	969	LYS	ASN	variant	UNP P0DTC2
C	986	PRO	LYS	variant	UNP P0DTC2
C	987	PRO	VAL	variant	UNP P0DTC2
C	1209	GLY	-	expression tag	UNP P0DTC2
С	1210	SER	-	expression tag	UNP P0DTC2
С	1211	GLY	-	expression tag	UNP P0DTC2
С	1212	TYR	-	expression tag	UNP P0DTC2
С	1213	ILE	-	expression tag	UNP P0DTC2
С	1214	PRO	-	expression tag	UNP P0DTC2
С	1215	GLU	-	expression tag	UNP P0DTC2
С	1216	ALA	-	expression tag	UNP P0DTC2
С	1217	PRO	-	expression tag	UNP P0DTC2
С	1218	ARG	-	expression tag	UNP P0DTC2
С	1219	ASP	-	expression tag	UNP P0DTC2
С	1220	GLY	-	expression tag	UNP P0DTC2
С	1221	GLN	-	expression tag	UNP P0DTC2
С	1222	ALA	-	expression tag	UNP P0DTC2
С	1223	TYR	-	expression tag	UNP P0DTC2
С	1224	VAL	-	expression tag	UNP P0DTC2
С	1225	ARG	-	expression tag	UNP P0DTC2
С	1226	LYS	-	expression tag	UNP P0DTC2
С	1227	ASP	-	expression tag	UNP P0DTC2
С	1228	GLY	-	expression tag	UNP P0DTC2
С	1229	GLU	-	expression tag	UNP P0DTC2
С	1230	TRP	-	expression tag	UNP P0DTC2
С	1231	VAL	-	expression tag	UNP P0DTC2
С	1232	LEU	-	expression tag	UNP P0DTC2
С	1233	LEU	-	expression tag	UNP P0DTC2
С	1234	SER	-	expression tag	UNP P0DTC2
С	1235	THR	-	expression tag	UNP P0DTC2
С	1236	PHE	-	expression tag	UNP P0DTC2
С	1237	LEU	-	expression tag	UNP P0DTC2
С	1238	GLY	-	expression tag	UNP P0DTC2
С	1239	GLY	-	expression tag	UNP P0DTC2
С	1240	HIS	-	expression tag	UNP P0DTC2
С	1241	HIS	-	expression tag	UNP P0DTC2
С	1242	HIS	-	expression tag	UNP P0DTC2
С	1243	HIS	-	expression tag	UNP P0DTC2
С	1244	HIS	-	expression tag	UNP P0DTC2
С	1245	HIS	-	expression tag	UNP P0DTC2
С	1246	HIS	-	expression tag	UNP P0DTC2
С	1247	HIS	-	expression tag	UNP P0DTC2

Cntin d fa

Mol	Chain	Residues		At	oms			AltConf	Trace
9	Л	506	Total	С	Ν	0	\mathbf{S}	0	0
2	D	590	4862	3111	805	917	29	0	0
9	F	506	Total	С	Ν	0	S	0	0
Z	Ľ	590	4862	3111	805	917	29	0	0
9	F	506	Total	С	Ν	0	S	0	0
2	Ľ	590	4862	3111	805	917	29	U	0

• Molecule 2 is a protein called Angiotensin-converting enzyme 2.

• Molecule 3 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	AltConf	Trace
3	G	2	Total C N O 28 16 2 10	0	0
3	Н	2	Total C N O 28 16 2 10	0	0
3	Ι	2	Total C N O 28 16 2 10	0	0

• Molecule 4 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms			AltConf	
4	٨	1	Total	С	Ν	Ο	0
4	А	1	14	8	1	5	0
4	٨	1	Total	С	Ν	0	0
4	А	1	14	8	1	5	0
4	٨	1	Total	С	Ν	0	0
4	A	1	14	8	1	5	0
4	Λ	1	Total	С	Ν	Ο	0
4	A	1	14	8	1	5	0
4	Δ	1	Total	С	Ν	Ο	0
	Л	1	14	8	1	5	0
4	Δ	1	Total	С	Ν	Ο	0
4	Л	1	14	8	1	5	0
4	Δ	1	Total	С	Ν	Ο	0
4	Л	1	14	8	1	5	0
4	Δ	1	Total	С	Ν	Ο	0
4	Л	1	14	8	1	5	0
4	Δ	1	Total	С	Ν	Ο	0
4	Л	1	14	8	1	5	0
4	Δ	1	Total	С	Ν	Ο	0
-1	Л	T	14	8	1	5	0
4	Δ	1	Total	С	Ν	Ο	0
-1	Л	T	14	8	1	5	0
4	В	1	Total	С	Ν	Ο	0
- T	D	1	14	8	1	5	0
	В	1	Total	С	Ν	Ο	0
	В	Ŧ	14	8	1	5	0
4	В	1	Total	С	Ν	Ο	0
-	D	1	14	8	1	5	•
4	В	1	Total	С	Ν	Ο	0
		-	14	8	1	5	0
4	В	1	Total	С	Ν	0	0
		-	14	8	1	5	, , , , , , , , , , , , , , , , , , ,
4	В	1	Total	C	Ν	Û	0
	_	_	14	8	1	5	
4	В	1	Total	C	N	Ũ	0
	_	_	14	8	1	5	
4	В	1	Total	C	N	Ũ	0
			14	8	1	5	-
4	В	1	'I'otal	C	N	Ũ	0
			14	8	1	5	-
4	В	1	Total	C	N	Ũ	0
			14	8	1	5	
4	В	1	Total	C	N	Ũ	0
	_	_	14	8	1	5	Ť

Continued from previous page...

Mol	Chain	Residues	Atoms				AltConf
4	C	1	Total	С	Ν	Ο	0
4	C	1	14	8	1	5	0
4	C	1	Total	С	Ν	0	0
4	C	1	14	8	1	5	0
	C	1	Total	С	Ν	Ο	0
4	C	1	14	8	1	5	0
	C	1	Total	С	Ν	Ο	0
4	C	1	14	8	1	5	0
4	C	1	Total	С	Ν	0	0
4	C	1	14	8	1	5	0
4	C	1	Total	С	Ν	0	0
4	U	1	14	8	1	5	0
4	C	1	Total	С	Ν	Ο	0
4	C	1	14	8	1	5	0
4	C	1	Total	С	Ν	Ο	0
4	C	1	14	8	1	5	0
4	C	1	Total	С	Ν	Ο	0
4	C	1	14	8	1	5	0
4	C	1	Total	С	Ν	Ο	0
4	C	1	14	8	1	5	0
4	C	1	Total	С	Ν	Ο	0
4	U	1	14	8	1	5	0
4	C	1	Total	С	Ν	Ο	0
4	U	1	14	8	1	5	0
4	C	1	Total	С	Ν	0	0
4	U	1	14	8	1	5	0
4	С	1	Total	С	Ν	Ο	0
4	U	1	14	8	1	5	0
4	л	1	Total	С	Ν	Ο	0
-1	D	1	14	8	1	5	0
4		1	Total	С	N	0	0
-1	D	1	14	8	1	5	0
4		1	Total	С	Ν	0	0
т	D	1	14	8	1	5	0
4		1	Total	С	Ν	0	0
Т		1	14	8	1	5	0
	Л	1	Total	С	Ν	Ο	0
т 		1	14	8	1	5	0
4	F	1	Total	C	Ν	0	0
т 		1	14	8	1	5	
4	E	1	Total	C	N	0	0
⁴	11	L	14	8	1	5	

Continued from previous page...

Mol	Chain	Residues	Α	ton	ns		AltConf	
4	F	1	Total	С	Ν	Ο	0	
4	Ľ	1	14	8	1	5	0	
4	F	1	Total	С	Ν	Ο	0	
4	Ľ	1	14	8	1	5	0	
4	F	1	Total	С	Ν	0	0	
4	Ľ	1	14	8	1	5	0	
4	F	1	Total	С	Ν	0	0	
	Г	1	14	8	1	5	0	
4	F	1	Total	С	Ν	0	0	
	Г	1	14	8	1	5	0	
4	F	1	Total	С	Ν	Ο	0	
	Г	1	14	8	1	5	0	
4	F	1	Total	С	Ν	Ο	0	
-1	T,	1	14	8	1	5	0	
4	F	1	Total	С	N	0	0	
<u>+</u>	Ľ	1	14	8	1	5		

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

 \bullet Molecule 1: Spike glycoprotein

• Molecule 1. Spike grycopi	rotem		
Chain B:	60%	19%	20%
MET PHE VAL LEU VAL LEU LEU VAL LEU VAL SER SER SER SER SER SER SER SER TLEU TLE	ARG 125 125 125 125 125 125 125 145 145 145 145 153 153 153 165 165 166	ALA ILE HIS VAL SER GLY ASN GLY THR	LYS ARG PHE ASH ASH P82 V83 C89 V90 C89 V90 C99 T95
E96 11 00 11 00 11 05 11 14 11 14 11 15 11 15 111 15 111 15 111 15 11111111	0134 D138 D138 F139 F139 F139 F139 ASN TYR ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	ALU SER GLU CLU ARG VAL TYR SER SI62 S162 A163	N164 T167 S172 GLN GLN PHC LEU MSF LEU LEU
6LU 6LU 6LN 6LN 6LN 6LN 8LN 8LN 8LN 8 8188 1190 1190 1190 1190 1190 1203 1203 1203 1203 1203 1203 1203 120	1210 N211 LEU LEU LEU LEU E17 P215 P216 P215 1233 1233 1233 1233 1235 1235	q239 L242 ALA LEU HIS SER SER TYR	LEU THR PRO GLY GLY SER SER SER SER CLY THR ALA
GLY ALA A263 A264 Y266 Y266 Y266 Y266 Y266 Y266 P270 P272 P272 P276 C291 C291	1299 1299 1290 1290 1290 1290 1390 1390 1390 1391 1391 1391 1392 1392 1392 1392 1392	D339 F342 F347 A348 A348 X349 V350	4353 4356 4357 1358 1358 1358 1358 1358 1368 1368 1368 1368
T393 T393 N394 N394 N395 N395 N396 N396 N396 N396 N396 N397 N396 N396 N396 N397 N397 N397 N396 N401 1402 N403 P406 N421 1430 C431 06431 C431	W436 W437 8438 N437 N439 N439 N451 N460 N460 N460 N460	44.14 44.75 64.76 64.76 74.92 84.93 84.93 84.93 84.95 64.95 64.95	R498 P507 Y508 R509 V510 V511 F515 E516 E516 L517
A520 V624 F627 F627 F633 L633 F633 F643 F643 F643 F653 F653 F653 F653 F653	F566 R57 L582 L582 L582 F619 F619 F619 F619 F1618 F161	ALA ASP GIN LEU THR THR ARG VAL	TYR SER THR GLY GLY GLY SER NG41 VG42 TG45 TG45
1670 7674 7675 7676 7676 7676 71HR 1HR 1HR 1HR 1HR 1HR 1HR 1HR 1HR 1HR	5708 5711 1714 1714 1715 1715 1724 1724 1726 1726 1726 1726 1726 1726 1726 1726	7741 1742 7743 7743 6743 8751 1754	8758 7759 7760 1767 1767 1767 1767 1767 1769 1764
K811 L821 L821 L822 L822 L822 ASP ALA ASP CVS CVS CVS CVS	GLY ASP ILE ALA ALA ALA ALA ALA CYS CYS CYS CYS CYS CYS CYS CYS 7870 1870	L878 A879 883 884 3884 C885 L894 L894	q901 R905 N907 N914 N915 N919 A930
1934 1935 1935 1941 1941 1948 1948 1948 1948 1948 1948	L984 1985 1986 1993 1997 1997 1997 1997 1997 1997 1997	M1029 1040 1040 1048 1048 1052 1053 1055 1055	G1059 V1061 V1061 H1064 V1065 T1066 G1071 E1072
P1079 P1081 11081 11084 P1083 P1083 P1083 P1083 P1083 P1096 P1096 P1096 P1096 P1096 P1096 P1096 P1096 P1096 P1096 P1096 P1096 P1096 P1096 P1096 P1096 P1096 P1096 P1087 P1088 P1098 P1008 P1	T1105 q1106 71109 71110 11135 11135 11141 11145 11145 11145 11145 11145 11146 11146 11146 11146 11146	GLU LEU ASP LYR PHE PHE LYS ASN HIS THR	SER PRO ASP VAL ASP LEU GLY SER SER GLY TLE TLE
ASN ASN SER VAL VAL VAL ASN TLE TLE TLE GLN GLN GLU CVAL VAL ASN CLU CLU CLU CLU	LEU ASN GLU SER SER SER ASN LEU CLU CLU CLU CLU CLU CLU CLU CLU CLU	TYR TYR TLE PRO GLU ASP ASP GLY	GLN ALA VAL VAL ARG LYS GLY GLU TRP VAL LEU
LEU THR PHE CLV CLY CLY CLY CLY HIS HIS HIS HIS HIS HIS			
• Molecule 1: Spike glycop	rotein		
Chain C:	60%	19%	20%
MET PHE VAL LEU VAL LEU LEU LEU PLEU LEU CAL SER SER SER SER SER ASNL THE THE	ARG 125 125 125 125 125 125 166 166 166 112 112 112 112 112 112 112	Ink LYS ARG ASP ASP ASP N81 V82 V82 V83	F92 T95 T101 F101 F102 F105 C107 C117
L118 1119 N125 N125 V130 V130 V130 V130 LEU ASP LVS LVS LVS ASN ASN	LYS SER SER MET MET CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	V171 S172 GLN PHE PHE LEU ASP LEU	GLU GLIY GLIY GLIN GLIN ASIN ASIN ASIN FPHE E191 E191 K195

• Molecule 1: Spike glycoprotein

Chain E:	55%	42%	•••
MET SER SER SER SER SER SER SER LEU VAL LEU VAL LEU VAL ALA ALA ALA ALA ALA ALA	Stig C C C C C C C C	870 874 675 675 178 178 80 88 185	(1989) (1990) (1993) (1996) (1
L97 Q98 Q101 V107 V107 L118 L116 L116 L116 T119 T119 T113 T122	1126 1132 1142 1142 1142 1155 1155 1155 1155 115	L176 L176 P177 P177 P179 Y180 Y180 V184 V185 L186	M190 A191 R192 Y196 E197 D198
Y199 G200 G200 W203 W203 W206 W206 W206 W206 W206 W206 W215 V211 V215 W215 W215 W215 W215 W215 W215 W215 W	N219 1222 1222 1222 1229 1229 1229 1233 1233	1256 2257 2260 2261 2261 1266 1266 1266	6268 0269 0272 1275 1276
N277 P284 K288 K288 N297 N3008 A3008 A3008 R305 F306 F305 F306 F305 F307 F305	K313 F314 F315 F315 F315 C326 C326 C326 C326 C326 C326 C326 C326	L359 M360 V364 V364 T365 M365 D365 F369 F369 L370	G377 Q380 Y381 D382 M383 A384
Y385 7385 7386 7388 7388 7389 7389 7389 7399 7399 7403 7403 7403 7409 7410 7410	8411 A412 A413 P414 P414 P416 F416 F416 F416 F416 F416 F416 F425 F425 F425 F428 F438 F438 F438 F438 F438 F438 F438 F43	L440 K441 K443 L444 L444 V47 C449 C449 C449 L460 L460 P461	Y454 M455 L456 E457 E457 R460 W461
M462 V463 F464 K465 K465 P468 P468 P468 M472 K476 K476 K476 K476 K476 K476 K476 K481 K481 K483 K483	L483 L483 V488 V488 V488 V488 E489 E489 E494 E496 C498 C496 C498 C496 F503 F504 H505 F503 F505 F507 F512	1513 1514 1514 1519 1520 1520 1523 1525 1525 1525	E527 A532 H535 P538
L539 K541 K542 C542 D543 D543 C553 L558 L558 L558 R553 K562 S563 S563 S563 S563 S564 V566	4566 4569 1567 1569 1570 1577 8571 8571 8571 8571 8589 1584 1584 1588 1589 1589 1589 1589	K596 0597 0598 0598 0598 0509 0606 0606 0609 0609	W610 8611 P612 Y613 A614

• Molecule 2: Angiotensin-converting enzyme 2

Chain F:	60%	36% •	
MET SER SER SER SER SER TRP LEU LEU LEU VAL ALA	TAL TAL ALA ALA ALA GLA GLA 120 120 120 120 120 120 128 128 128 128 128 128 128 128 128 128	635 637 637 637 637 637 637 153 153 153 154 154 154 154 154 155 165 165 166 166 166 166 166 166 166	F72 Q76 S77
481 883 883 884 984 188 188 899 899 893 K94 K94	A98 A99 Q101 Q101 Q101 Q102 Q102 X112 X12 X12 X12 X133 X12 X133 X137 X137 X137 X137 X137 X137 X137	L1 42 L1 42 L1 48 N1 49 N1 54 N1 54 L1 56 L1 56 L1 56 L1 56 R1 60 R1 68 R1 60 R1 68 R1 77 V1 77	1179 1179 1183 V184
V185 L186 E189 A191 A191 A191 A192 A192 D198 D201	Y202 W203 W203 W209 V209 W226 W226 W226 W226 W226 W226 W226 W22	1225 1225 1226 1241 1241 1256 1256 1256 1256 1256 1256 1256 1266 126	F285 F286 G286 Q287
K288 P289 N293 1294 V293 N295 M295 N296 N296 N298 N298 N298 N298 N298	A304 A304 R306 R306 R315 R313 R313 R313 R315 R315 R315 R315	1335 1337 1337 1341 1356 1358 1358 1358 1358 1358 1358 1358 1365 1365 1365 1365 1365 1365 1365 1365	1379 0380 1381 1382

L668 F464 F485 R852 F464 F485 R856 W47 G385 1588 K431 G385 1589 K431 G385 1593 R432 G385 1593 R432 G385 1593 R431 M397 1608 P4809 G385 1609 V487 G395 1609 V487 G395 1608 M397 G395 1609 M397 G395 1600 F503 F304 1600 F503 F304 1601 F503 F304 1603 F503 F305 1604 F503 F305 1603 F503 F305 1604 F503 F305

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain G:

100%

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain H:	100%	
NAG1 NAG2		
• Molecule 2	2 acatamida 2 daarry hata D glyconyranaga (1.4) 2 acatamida 5) do

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain I:	50%	50%

NAG1 NAG2

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	74518	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	60	Depositor
Minimum defocus (nm)	1200	Depositor
Maximum defocus (nm)	2500	Depositor
Magnification	Not provided	
Image detector	FEI FALCON IV (4k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.28	0/7952	0.50	0/10818	
1	В	0.28	0/7950	0.49	0/10817	
1	С	0.28	0/7941	0.50	1/10805~(0.0%)	
2	D	0.24	0/4999	0.46	0/6792	
2	Е	0.25	0/4999	0.47	0/6792	
2	F	0.30	1/4999~(0.0%)	0.51	3/6792~(0.0%)	
All	All	0.28	1/38840~(0.0%)	0.49	4/52816~(0.0%)	

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
2	F	321	PRO	CG-CD	-11.73	1.11	1.50

All (4) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	F	321	PRO	N-CD-CG	-14.40	81.59	103.20
2	F	321	PRO	CA-N-CD	-7.80	100.58	111.50
2	F	321	PRO	CA-CB-CG	-7.35	90.04	104.00
1	С	492	LEU	CA-CB-CG	6.67	130.65	115.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	7773	0	7598	162	0
1	В	7770	0	7596	158	0
1	С	7761	0	7586	173	0
2	D	4862	0	4639	169	0
2	Е	4862	0	4639	193	0
2	F	4862	0	4639	166	0
3	G	28	0	25	0	0
3	Н	28	0	25	0	0
3	Ι	28	0	25	1	0
4	А	154	0	143	2	0
4	В	154	0	143	0	0
4	С	196	0	182	5	0
4	D	70	0	65	1	0
4	Е	70	0	65	3	0
4	F	70	0	65	3	0
All	All	38688	0	37435	997	0

the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 13.

All (997) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:215:ASP:N	1:B:266:TYR:HH	1.66	0.93
1:A:400:PHE:O	1:A:510:VAL:HB	1.75	0.86
1:A:330:PRO:HD3	1:A:544:ASN:HD21	1.37	0.86
1:B:190:ARG:HD2	1:B:207:HIS:HD2	1.41	0.85
1:A:1093:GLY:HA3	1:A:1105:THR:O	1.77	0.83
1:A:226:LEU:HG	1:A:227:VAL:HG23	1.60	0.81
2:E:482:ARG:HH21	2:E:610:TRP:HB2	1.45	0.80
2:D:75:GLU:HG3	2:D:79:LEU:HD12	1.64	0.79
1:A:402:ILE:HG13	1:A:403:ARG:H	1.47	0.79
1:C:65:PHE:HB3	1:C:265:TYR:HD2	1.46	0.79
2:D:297:MET:HB3	2:D:302:TRP:HB2	1.65	0.78
2:F:54:ILE:HB	2:F:341:LYS:HB3	1.64	0.77
1:C:763:LEU:HD13	1:C:1004:LEU:HD22	1.66	0.77
2:E:200:GLY:HA2	2:E:203:TRP:HE3	1.49	0.77
1:B:474:GLN:NE2	1:B:476:GLY:O	2.18	0.77
2:F:302:TRP:HB3	2:F:307:ILE:HG13	1.67	0.77
1:B:350:VAL:HA	1:B:400:PHE:HB2	1.67	0.76

A + 1	1 0 At arra 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:168:PHE:HE1	1:C:170:TYR:HB2	1.53	0.73
2:D:230:PHE:HA	2:D:233:ILE:HB	1.70	0.72
2:E:237:TYR:HE1	2:E:448:GLY:HA2	1.54	0.72
2:F:356:PHE:HB3	2:F:379:ILE:HD12	1.71	0.72
2:D:356:PHE:HB3	2:D:379:ILE:HD11	1.72	0.72
1:B:393:THR:HG22	1:B:517:LEU:HA	1.72	0.71
2:D:472:GLN:HA	2:D:475:LYS:HG2	1.71	0.71
2:E:233:ILE:HD11	2:E:584:LEU:HD22	1.73	0.71
2:F:416:LYS:HD3	2:F:542:CYS:HA	1.73	0.71
2:D:396:ALA:HA	2:D:562:LYS:HG3	1.73	0.70
2:E:436:ILE:HG13	4:E:702:NAG:H62	1.72	0.70
2:E:126:ILE:HD12	2:E:176:LEU:HG	1.73	0.69
2:E:242:ALA:HB2	2:E:605:GLY:H	1.57	0.69
2:F:132:VAL:HB	2:F:142:LEU:H	1.56	0.69
1:A:201:PHE:HB3	1:A:229:LEU:HB2	1.75	0.69
1:B:1102:TRP:HB2	1:B:1135:ASN:HD22	1.57	0.69
1:B:726:ILE:HG12	1:B:1061:VAL:HG22	1.74	0.69
1:A:120:VAL:HG11	1:A:129:LYS:HE3	1.74	0.68
1:A:456:PHE:HZ	2:D:31:LYS:HD2	1.59	0.68
1:B:327:VAL:HG13	1:B:542:ASN:HB3	1.76	0.68
1:B:131:CYS:HA	1:B:167:THR:H	1.58	0.68
1:B:376:ALA:HB3	1:B:435:ALA:HB3	1.73	0.68
1:B:353:TRP:O	1:B:466:ARG:NH1	2.27	0.68
2:D:161:ARG:NH1	2:D:252:TYR:OH	2.26	0.68
2:F:52:THR:O	2:F:340:GLN:NE2	2.27	0.68
1:A:1106:GLN:HE21	1:A:1109:PHE:HB3	1.58	0.68
1:B:115:GLN:NE2	1:B:164:ASN:O	2.27	0.68
2:D:37:GLU:HB2	2:D:390:PHE:HB2	1.74	0.68
2:D:294:THR:HG23	2:D:365:THR:HA	1.76	0.68
1:C:350:VAL:HG23	1:C:400:PHE:HB2	1.73	0.67
1:A:335:LEU:HD12	1:A:364:ASP:HB2	1.75	0.67
2:D:573:VAL:HG13	2:D:574:VAL:HG23	1.74	0.67
1:B:885:GLY:HA2	1:B:901:GLN:NE2	2.10	0.67
2:F:565:PRO:HG2	2:F:568:LEU:HB2	1.77	0.67
1:C:197:ILE:HG13	1:C:198:ASP:H	1.60	0.67
1:A:1116:THR:HG22	1:A:1138:TYR:HB3	1.75	0.67
2:E:204:ARG:HG2	2:E:222:LEU:HD21	1.76	0.67
2:F:101:GLN:NE2	2:F:102:GLN:OE1	2.28	0.67
2:F:358:ILE:HD11	2:F:376:MET:HB3	1.76	0.67
1:A:804:GLN:NE2	1:A:935:GLN:OE1	2.28	0.66
2:E:237:TYR:CE1	2:E:448:GLY:HA2	2.29	0.66

A 4 1	1.5	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:F:58:ASN:O	2:F:61:ASN:HB2	1.95	0.66
2:F:404:VAL:HA	2:F:407:ILE:HG12	1.78	0.66
1:C:421:TYR:HB3	1:C:454:ARG:HB3	1.77	0.65
2:F:394:ASN:OD1	2:F:401:HIS:ND1	2.29	0.65
1:B:210:ILE:HG21	1:B:217:PRO:HG2	1.77	0.65
2:D:457:GLU:HG2	2:D:513:ILE:HB	1.76	0.65
2:E:232:GLU:HB3	2:E:581:VAL:HG11	1.78	0.65
2:E:243:TYR:HB2	2:E:599:ASN:HD21	1.61	0.65
1:B:808:ASP:HB3	1:B:811:LYS:HD2	1.77	0.65
1:C:454:ARG:HA	1:C:492:LEU:HA	1.77	0.65
2:E:204:ARG:HD3	2:E:219:ARG:HG2	1.79	0.65
1:B:358:ILE:HB	1:B:395:VAL:HB	1.79	0.64
2:D:365:THR:HB	2:D:368:ASP:HB2	1.78	0.64
2:F:451:PRO:HA	2:F:454:TYR:HB3	1.77	0.64
1:A:420:ASP:OD1	1:A:460:ASN:ND2	2.31	0.64
2:F:482:ARG:HB3	2:F:608:THR:HB	1.79	0.64
1:A:405:ASN:H	1:A:504:GLY:HA2	1.63	0.64
1:C:130:VAL:HG21	1:C:231:ILE:HG21	1.80	0.64
1:B:356:LYS:HB3	1:B:397:ALA:HB3	1.79	0.64
1:C:1116:THR:HG22	1:C:1138:TYR:HB3	1.80	0.64
2:E:108:LEU:HD13	2:E:116:LEU:HD22	1.79	0.64
2:F:312:GLU:HA	2:F:315:PHE:HB2	1.79	0.64
2:E:538:PRO:HG2	2:E:541:LYS:HB2	1.78	0.64
2:F:269:ASP:HB2	2:F:274:PHE:H	1.62	0.64
2:E:381:TYR:HB2	2:E:404:VAL:HG11	1.78	0.64
1:B:1053:PRO:O	1:B:1054:GLN:NE2	2.30	0.63
4:A:1306:NAG:H4	1:C:794:ILE:HG21	1.79	0.63
1:C:345:THR:O	1:C:509:ARG:NH2	2.30	0.63
2:E:209:VAL:H	2:E:217:TYR:HB3	1.64	0.63
2:E:85:LEU:HD12	2:E:97:LEU:HB2	1.80	0.63
2:E:275:TRP:HB2	2:E:444:LEU:HD22	1.79	0.63
2:D:109:SER:HB2	2:D:112:LYS:HE2	1.81	0.63
1:C:117:LEU:HD21	1:C:119:ILE:HG13	1.79	0.63
2:E:485:VAL:HG13	2:E:487:VAL:H	1.63	0.63
1:C:103:GLY:H	1:C:241:LEU:HB2	1.63	0.63
1:A:353:TRP:O	1:A:466:ARG:NH1	2.32	0.63
2:F:529:LEU:HD22	2:F:544:ILE:HG21	1.81	0.63
1:A:198:ASP:OD1	1:A:202:LYS:NZ	2.31	0.63
1:A:577:ARG:HH11	1:A:582:LEU:HD12	1.63	0.63
1:A:756:TYR:OH	1:A:994:ASP:OD1	2.16	0.63
2:D:520:LEU:HG	2:D:581:VAL:HG13	1.81	0.63

A + 1	A + ama 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:442:ASP:O	1:B:448:ASN:ND2	2.32	0.62
1:B:577:ARG:HH11	1:B:582:LEU:HD12	1.63	0.62
2:D:418:LEU:HD22	2:D:423:LEU:HD12	1.79	0.62
1:A:742:ILE:O	1:A:1000:ARG:NH1	2.27	0.62
1:B:438:SER:HB2	1:B:441:LEU:HD13	1.80	0.62
1:B:439:ASN:HA	1:B:507:PRO:HD2	1.81	0.62
2:D:201:ASP:O	2:D:205:GLY:N	2.23	0.62
2:F:236:LEU:HD12	2:F:592:PHE:HB2	1.82	0.62
2:D:229:THR:OG1	2:D:580:ASN:OD1	2.17	0.62
2:F:157:ASP:HB3	2:F:160:GLU:HB2	1.80	0.62
1:B:675:GLN:HG3	1:B:676:THR:HG22	1.82	0.62
2:D:460:ARG:NH2	2:D:509:ASP:OD1	2.32	0.62
2:D:123:MET:HG2	2:D:507:SER:HA	1.82	0.62
1:A:1040:VAL:HG21	1:C:1035:GLY:HA3	1.81	0.62
1:B:190:ARG:HD2	1:B:207:HIS:CD2	2.31	0.62
2:E:119:ILE:O	2:E:123:MET:HG2	2.00	0.62
1:B:961:THR:O	1:B:965:GLN:HG2	2.00	0.62
1:C:432:CYS:H	1:C:513:LEU:HB2	1.64	0.62
2:D:571:GLU:HB2	2:D:577:LYS:NZ	2.15	0.62
1:A:233:ILE:HG22	1:A:234:ASN:H	1.64	0.61
1:C:393:THR:HG23	1:C:517:LEU:HD12	1.81	0.61
1:B:339:ASP:HB3	1:B:368:LEU:HD11	1.82	0.61
2:F:234:LYS:O	2:F:238:GLU:HB3	2.00	0.61
1:A:454:ARG:NH1	1:A:469:SER:OG	2.33	0.61
1:A:752:LEU:HD23	1:A:997:ILE:HD12	1.81	0.61
2:E:261:CYS:SG	2:E:482:ARG:NH2	2.74	0.61
2:E:488:VAL:HG21	2:E:610:TRP:HB3	1.83	0.61
2:F:454:TYR:HE2	2:F:484:ILE:HG13	1.66	0.61
2:E:108:LEU:HD23	2:E:112:LYS:HB3	1.83	0.61
2:F:373:HIS:HB2	2:F:409:SER:HA	1.82	0.60
2:F:356:PHE:HB2	2:F:379:ILE:HG23	1.82	0.60
2:F:446:ILE:HD12	2:F:523:PHE:HZ	1.66	0.60
1:A:128:ILE:HD13	1:A:170:TYR:HD2	1.66	0.60
2:D:66:GLY:HA2	2:D:69:TRP:HB3	1.82	0.60
1:A:903:ALA:HB1	1:A:913:GLN:HB2	1.84	0.60
1:B:164:ASN:HD21	1:C:357:ARG:HH12	1.50	0.60
2:E:597:ASP:OD1	2:E:598:GLN:N	2.34	0.60
1:B:271:GLN:OE1	1:B:272:PRO:HD2	2.01	0.60
1:C:493[A]:ARG:NH2	1:C:494:SER:O	2.33	0.60
2:E:261:CYS:SG	2:E:606:TRP:HB2	2.41	0.60
1:B:357:ARG:NH1	1:B:394:ASN:OD1	2.35	0.60

A 4 1	A + 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:439:ASN:HD22	1:A:506:GLN:HB3	1.66	0.60
1:B:27:SER:HB3	1:B:64:TRP:HB3	1.82	0.60
1:C:616:ASN:OD1	1:C:617:CYS:N	2.34	0.60
1:A:42:VAL:O	1:B:563:GLN:NE2	2.34	0.60
1:C:543:PHE:O	1:C:546:LEU:HD23	2.02	0.60
2:D:403:ALA:HB2	2:D:518:ARG:HB2	1.84	0.60
2:F:168:TRP:O	2:F:172:VAL:HG12	2.02	0.60
1:A:115:GLN:HA	1:A:132:GLU:HG2	1.84	0.59
1:B:546:LEU:HD22	1:B:565:PHE:HE2	1.65	0.59
2:E:244:VAL:O	2:E:248:LEU:HB2	2.02	0.59
2:E:413:ALA:HB1	2:E:438:PHE:HE2	1.67	0.59
2:D:142:LEU:HD21	2:D:164:ALA:HA	1.84	0.59
2:D:209:VAL:HB	2:D:217:TYR:HB3	1.83	0.59
2:F:37:GLU:OE1	2:F:393:ARG:NH1	2.35	0.59
2:D:174:LYS:HB3	2:D:497:TYR:HA	1.84	0.59
1:B:1048:HIS:HA	1:B:1066:THR:HG22	1.84	0.59
2:E:49:ASN:O	2:E:58:ASN:ND2	2.35	0.59
2:D:237:TYR:CE2	2:D:451:PRO:HD3	2.37	0.59
1:A:357:ARG:NH1	1:A:359:SER:OG	2.36	0.59
2:E:505:HIS:HB3	2:E:512:PHE:HZ	1.67	0.59
1:C:403:ARG:HB3	1:C:406:GLU:HG2	1.85	0.58
2:E:385:TYR:HB3	2:E:559:ARG:HA	1.85	0.58
1:C:65:PHE:HB3	1:C:265:TYR:CD2	2.35	0.58
2:D:44:SER:HB3	2:D:48:TRP:HZ3	1.67	0.58
2:D:144:LEU:HD11	2:D:271:TRP:HZ2	1.68	0.58
2:D:31:LYS:NZ	2:D:35:GLU:OE2	2.32	0.58
2:F:60:GLN:HE21	2:F:64:ASN:HD22	1.51	0.58
2:D:339:VAL:HG23	2:D:340:GLN:HG3	1.85	0.58
2:F:312:GLU:HB3	2:F:316:VAL:HG23	1.84	0.58
2:F:460:ARG:NH2	2:F:506:VAL:O	2.37	0.58
1:C:358:ILE:HB	1:C:395:VAL:HB	1.85	0.58
1:A:447:GLY:O	1:A:497:PHE:N	2.37	0.58
2:E:191:ALA:HB1	2:E:196:TYR:HB2	1.85	0.58
1:C:344:ALA:HB3	1:C:436:TRP:HZ2	1.69	0.58
1:C:399:SER:HA	1:C:510:VAL:O	2.03	0.58
2:E:200:GLY:HA2	2:E:203:TRP:CE3	2.35	0.58
2:E:239:HIS:CD2	2:E:599:ASN:HD22	2.21	0.58
1:B:1102:TRP:HB2	1:B:1135:ASN:ND2	2.19	0.57
1:C:125:ASN:HD22	4:C:1302:NAG:H5	1.68	0.57
2:D:508:ASN:HB2	2:D:510:TYR:CE2	2.39	0.57
2:F:382:ASP:OD1	2:F:401:HIS:NE2	2.37	0.57

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:1106:GLN:HE21	1:C:1109:PHE:HB3	1.68	0.57
2:D:204:ARG:HG3	2:D:219:ARG:HD2	1.87	0.57
2:F:22:GLU:HG3	2:F:88:ILE:HG13	1.86	0.57
1:C:784:GLN:HG3	1:C:1029:MET:HG2	1.86	0.57
1:C:959:LEU:O	1:C:963:VAL:HG23	2.05	0.57
1:C:1028:LYS:NZ	1:C:1042:PHE:O	2.36	0.57
2:D:177:ARG:NH2	2:D:495:GLU:O	2.37	0.57
1:B:133:PHE:HD2	1:B:134:GLN:HG2	1.68	0.57
2:E:394:ASN:HB2	2:E:562:LYS:HE3	1.85	0.57
2:F:238:GLU:HG2	2:F:604:VAL:HG12	1.86	0.57
1:B:1106:GLN:HE21	1:B:1109:PHE:HB3	1.69	0.57
2:D:528:ALA:HB2	2:D:574:VAL:HG22	1.86	0.57
1:C:490:PHE:O	1:C:493[B]:ARG:NH2	2.37	0.57
2:F:132:VAL:HG21	2:F:142:LEU:HB2	1.87	0.57
2:F:196:TYR:HB3	2:F:201:ASP:HB3	1.87	0.57
1:B:543:PHE:O	1:B:546:LEU:HD23	2.05	0.57
1:B:1098:ASN:OD1	1:B:1101:HIS:N	2.29	0.57
2:D:372:ALA:O	2:D:376:MET:HG3	2.04	0.57
2:E:229:THR:HG21	2:E:520:LEU:HD21	1.87	0.57
1:A:328:ARG:NH1	1:A:580:GLN:OE1	2.38	0.57
1:A:350:VAL:HG22	1:A:422:ASN:HB3	1.87	0.57
1:A:1105:THR:HG22	1:A:1112:PRO:HA	1.87	0.57
1:B:435:ALA:HB1	1:B:508:TYR:HE1	1.70	0.57
4:E:703:NAG:H3	4:E:703:NAG:H83	1.87	0.57
1:C:386:LYS:O	1:C:390:LEU:N	2.38	0.56
1:C:388:ASN:HA	1:C:527:PRO:HD2	1.87	0.56
2:D:264:ALA:HB3	2:D:490:PRO:HD3	1.85	0.56
2:E:565:PRO:HD2	2:E:568:LEU:HD23	1.87	0.56
1:A:530:SER:OG	1:A:580:GLN:NE2	2.38	0.56
2:F:385:TYR:HB3	2:F:559:ARG:HA	1.86	0.56
1:A:108:THR:O	1:A:237:ARG:NH1	2.36	0.56
1:B:716:THR:OG1	1:B:1071:GLN:O	2.21	0.56
1:C:328:ARG:NH1	1:C:578:ASP:OD1	2.38	0.56
1:C:1053:PRO:O	1:C:1054:GLN:NE2	2.38	0.56
2:D:150:GLU:HA	2:D:154:ASN:HD22	1.69	0.56
1:A:317:ASN:ND2	1:C:737:ASP:OD1	2.38	0.56
1:B:48:LEU:HB3	1:B:276:LEU:HD21	1.87	0.56
1:C:426:PRO:HB3	1:C:463:PRO:HB3	1.88	0.56
2:F:65:ALA:HA	2:F:68:LYS:HE2	1.87	0.56
2:F:249:MET:HA	2:F:256:ILE:HG13	1.87	0.56
2:F:328:TRP:NE1	4:F:701:NAG:O7	2.38	0.56

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:442:ASP:OD2	1:B:448:ASN:ND2	2.34	0.56
1:B:763:LEU:HD13	1:B:1004:LEU:HD22	1.86	0.56
1:C:378:LYS:HB3	1:C:433:VAL:HB	1.87	0.56
1:C:475:ALA:O	2:F:19:SER:N	2.39	0.56
2:D:508:ASN:HB2	2:D:510:TYR:HE2	1.69	0.56
1:C:659:SER:HB3	1:C:698:SER:HB2	1.88	0.56
2:E:227:GLU:OE2	2:E:454:TYR:OH	2.24	0.56
2:E:267:LEU:HD12	2:E:269:ASP:H	1.71	0.56
2:E:598:GLN:NE2	2:E:599:ASN:OD1	2.39	0.56
2:D:444:LEU:HA	2:D:448:GLY:HA3	1.88	0.56
4:D:703:NAG:H83	4:D:703:NAG:H3	1.87	0.56
2:D:332:MET:HB3	2:D:359:LEU:HG	1.87	0.56
2:E:297:MET:HB2	2:E:302:TRP:HB3	1.88	0.56
2:F:455:MET:HE1	2:F:481:LYS:HG2	1.88	0.56
1:B:760:CYS:HA	1:B:763:LEU:HD12	1.88	0.55
1:C:366:SER:HB3	1:C:387:LEU:HD22	1.87	0.55
1:C:751:ASN:O	1:C:754:LEU:HG	2.05	0.55
1:A:167:THR:HG23	1:B:357:ARG:HH21	1.70	0.55
1:B:784:GLN:HG3	1:B:1029:MET:HG2	1.88	0.55
2:D:592:PHE:HA	2:D:595:LEU:HB2	1.86	0.55
2:E:351:LEU:HB2	2:E:355:ASP:HB3	1.88	0.55
1:A:168:PHE:CE2	1:A:170:TYR:HB2	2.41	0.55
1:A:454:ARG:NE	1:A:456:PHE:O	2.37	0.55
1:B:914:ASN:ND2	1:C:1123:SER:OG	2.39	0.55
1:C:351:TYR:HB2	1:C:454:ARG:HB2	1.88	0.55
1:C:720:ILE:HG13	1:C:923:ILE:HG23	1.87	0.55
2:D:46:ALA:HB1	2:D:61:ASN:HB3	1.88	0.55
2:F:304:ALA:HB2	2:F:362:THR:H	1.71	0.55
2:E:256:ILE:HD11	2:E:266:LEU:HG	1.87	0.55
1:B:403:ARG:HG2	1:B:406:GLU:HB2	1.89	0.55
4:C:1306:NAG:H83	4:C:1306:NAG:H3	1.89	0.55
1:A:776:LYS:O	1:A:780:GLU:HG2	2.06	0.55
2:F:333:LEU:HG	2:F:334:THR:HG23	1.89	0.55
1:A:377:PHE:CD1	1:A:434:ILE:HG12	2.42	0.55
1:B:89:GLY:HA3	1:B:270:LEU:HD12	1.87	0.55
1:B:112:SER:HA	1:B:133:PHE:CD2	2.41	0.55
1:A:281:GLU:OE2	4:A:1303:NAG:O3	2.19	0.55
1:B:493[A]:ARG:HD3	2:E:34:HIS:HB3	1.88	0.55
1:B:982:SER:OG	1:B:983:ARG:NH1	2.35	0.55
2:D:29:LEU:HD21	2:D:100:LEU:HD22	1.88	0.55
2:F:375:GLU:O	2:F:379:ILE:HG12	2.07	0.55

Atom 1	A 4 am 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:134:GLN:H	1:A:161:SER:HB3	1.71	0.55
2:E:284:PRO:HD3	2:E:440:LEU:HD13	1.88	0.55
2:D:163:TRP:O	2:D:167:SER:OG	2.24	0.54
2:E:549:GLU:OE2	2:E:553:LYS:NZ	2.40	0.54
1:B:869:MET:HG2	1:C:699:LEU:HD21	1.88	0.54
1:C:128:ILE:HG21	1:C:229:LEU:HD21	1.89	0.54
1:C:365:TYR:HD2	1:C:387:LEU:HA	1.72	0.54
2:D:236:LEU:HD11	2:D:592:PHE:CD1	2.42	0.54
2:D:460:ARG:HH22	2:D:509:ASP:HA	1.72	0.54
1:A:1086:LYS:HD2	1:A:1122:VAL:HG11	1.90	0.54
2:D:159:ASN:HA	2:D:162:LEU:HD12	1.88	0.54
2:D:410:LEU:HD11	2:D:526:GLN:HG2	1.90	0.54
1:A:983:ARG:HG2	1:A:984:LEU:HD22	1.88	0.54
1:B:618:THR:OG1	1:B:619:GLU:OE1	2.26	0.54
2:F:373:HIS:HA	2:F:376:MET:HG2	1.88	0.54
1:C:210:ILE:HG22	1:C:217:PRO:HG3	1.89	0.54
2:E:315:PHE:HD1	2:E:320:LEU:HD12	1.73	0.54
2:F:392:LEU:HB3	2:F:562:LYS:HB2	1.88	0.54
1:A:422:ASN:HD21	1:A:453:TYR:HD2	1.55	0.54
1:A:743:CYS:HB2	1:A:977:LEU:HD12	1.90	0.54
2:F:467:GLU:OE2	2:F:468:ILE:HG12	2.08	0.54
1:B:348:ALA:HB1	1:B:353:TRP:HA	1.90	0.54
1:A:327:VAL:HB	1:A:531:THR:HG23	1.89	0.54
1:B:948:LEU:HD21	1:B:1059:GLY:HA3	1.89	0.54
2:D:25:ALA:HA	2:D:29:LEU:HB2	1.90	0.54
1:A:350:VAL:HG21	1:A:418:ILE:HD12	1.88	0.54
1:B:303:LEU:HD22	1:B:308:VAL:HG12	1.89	0.54
1:B:930:ALA:O	1:B:934:ILE:HG12	2.08	0.54
2:E:457:GLU:HG3	2:E:512:PHE:HB2	1.90	0.54
1:A:374:PHE:CD1	1:A:436:TRP:HB3	2.43	0.53
1:B:739:THR:O	1:B:744:GLY:N	2.41	0.53
1:C:457:ARG:NH1	1:C:460:ASN:O	2.40	0.53
1:A:314:GLN:OE1	1:A:613:GLN:NE2	2.38	0.53
1:B:559:PHE:HB2	1:B:577:ARG:HH21	1.74	0.53
1:B:1141:LEU:HD23	1:B:1145:LEU:HD23	1.89	0.53
1:C:92:PHE:HZ	1:C:101:ILE:HG21	1.73	0.53
2:F:149:ASN:O	2:F:154:ASN:N	2.41	0.53
2:F:553:LYS:HG3	2:F:554:LEU:HD12	1.89	0.53
2:F:313:LYS:HE3	3:I:1:NAG:HN2	1.74	0.53
1:A:96:GLU:HG2	1:A:99:ASN:H	1.74	0.53
1:B:299:THR:OG1	1:B:597:VAL:HG21	2.09	0.53

A + 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:197:ILE:HG12	1:C:202:LYS:HZ1	1.73	0.53
2:F:155:SER:HB3	2:F:161:ARG:HG3	1.89	0.53
1:A:326:ILE:HD11	1:A:534:VAL:HG12	1.90	0.53
1:A:960:ASN:O	1:A:964:LYS:HG2	2.09	0.53
1:C:930:ALA:O	1:C:934:ILE:HG12	2.09	0.53
2:F:101:GLN:HB2	4:F:703:NAG:H81	1.91	0.53
1:C:1102:TRP:HB2	1:C:1135:ASN:ND2	2.23	0.53
2:D:435:GLU:HG2	2:D:540:HIS:ND1	2.23	0.53
2:E:90:ASN:HB3	2:E:93:VAL:HG22	1.89	0.53
2:E:472:GLN:HA	2:E:475:LYS:HE2	1.91	0.53
1:A:487:ASN:ND2	2:D:24:GLN:OE1	2.41	0.53
1:C:726:ILE:HG12	1:C:1061:VAL:HG22	1.91	0.53
2:D:267:LEU:HA	2:D:278:LEU:HD11	1.91	0.53
2:E:32:PHE:HE2	2:E:80:ALA:HB2	1.72	0.53
2:E:288:LYS:H	2:E:433:GLU:HG2	1.73	0.53
2:E:330:ASN:HB3	2:E:357:ARG:HE	1.73	0.53
2:E:503:LEU:HD23	2:E:505:HIS:H	1.74	0.53
2:E:591:LEU:HG	2:E:595:LEU:HG	1.91	0.53
1:A:34:ARG:HH21	1:A:217:PRO:HG2	1.74	0.53
1:C:442:ASP:OD1	1:C:509:ARG:NH2	2.41	0.53
2:D:392:LEU:HA	2:D:562:LYS:HD3	1.90	0.53
2:D:105:SER:HB2	2:D:108:LEU:HD22	1.91	0.53
2:E:357:ARG:HG2	2:E:358:ILE:H	1.73	0.53
1:A:1023:ASN:O	1:A:1027:THR:HG23	2.09	0.52
1:B:758:SER:HB3	1:C:964:LYS:NZ	2.24	0.52
1:C:433:VAL:HA	1:C:512:VAL:HG23	1.90	0.52
2:D:482:ARG:HG2	2:D:488:VAL:HG23	1.92	0.52
2:F:222:LEU:O	2:F:226:VAL:HG23	2.09	0.52
1:C:1048:HIS:HA	1:C:1066:THR:HG22	1.92	0.52
2:D:44:SER:HB3	2:D:48:TRP:CZ3	2.43	0.52
1:B:194:PHE:HD1	1:B:203:ILE:HG12	1.74	0.52
2:D:116:LEU:HD12	2:D:186:LEU:HB3	1.92	0.52
2:D:400:PHE:CZ	2:D:566:TRP:HB2	2.44	0.52
2:F:421:ILE:HG13	2:F:423:LEU:HG	1.91	0.52
2:D:557:MET:HG3	2:D:569:ALA:HB1	1.92	0.52
2:F:287:GLN:HG2	2:F:288:LYS:HG2	1.91	0.52
1:B:296:LEU:O	1:B:300:LYS:HG2	2.10	0.52
1:B:894:LEU:HD13	1:C:715:PRO:HD3	1.91	0.52
1:C:718:PHE:HE2	1:C:923:ILE:HG12	1.73	0.52
2:F:450:LEU:HB2	2:F:519:THR:HG21	1.91	0.52
1:A:349:SER:HB2	1:A:352:ALA:HB3	1.91	0.52

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:1048:HIS:HA	1:A:1066:THR:HG22	1.92	0.52
2:D:443:ALA:O	2:D:448:GLY:N	2.42	0.52
2:E:308:PHE:HB3	2:E:333:LEU:HD13	1.91	0.52
2:E:463:VAL:HA	2:E:468:ILE:HB	1.90	0.52
1:A:53:ASP:OD1	1:A:54:LEU:N	2.35	0.52
1:B:328:ARG:HH11	1:B:533:LEU:HB3	1.74	0.52
2:E:75:GLU:HA	2:E:78:THR:HG22	1.90	0.52
2:E:535:HIS:NE2	2:E:538:PRO:O	2.39	0.52
1:A:745:ASP:N	1:A:745:ASP:OD1	2.43	0.52
1:A:879:ALA:O	1:A:883:THR:OG1	2.21	0.52
1:C:896:ILE:HD11	1:C:900:MET:HE2	1.91	0.52
2:E:167:SER:O	2:E:171:GLU:HG3	2.10	0.52
2:F:263:PRO:HD2	2:F:266:LEU:HD22	1.92	0.52
1:B:715:PRO:HA	1:B:1072:GLU:HA	1.92	0.52
2:D:407:ILE:O	2:D:526:GLN:NE2	2.42	0.52
2:E:161:ARG:HH11	2:E:252:TYR:HE2	1.58	0.52
2:E:456:LEU:HD21	2:E:506:VAL:HB	1.93	0.52
2:F:185:VAL:HG12	2:F:186:LEU:HD23	1.92	0.52
1:C:234:ASN:HB3	4:C:1303:NAG:H83	1.92	0.51
2:F:392:LEU:HA	2:F:562:LYS:HD3	1.93	0.51
2:F:433:GLU:O	2:F:437:ASN:N	2.34	0.51
1:A:612:TYR:HB2	1:A:649:CYS:SG	2.50	0.51
1:A:1053:PRO:O	1:A:1054:GLN:NE2	2.28	0.51
1:B:985:ASP:OD1	1:B:986:PRO:HD2	2.10	0.51
1:C:168:PHE:CE1	1:C:170:TYR:HB2	2.39	0.51
1:C:612:TYR:HB2	1:C:649:CYS:SG	2.50	0.51
2:E:524:GLN:HG3	2:E:574:VAL:HG11	1.92	0.51
2:F:50:TYR:HA	2:F:58:ASN:HB3	1.92	0.51
2:E:85:LEU:O	2:E:89:GLN:NE2	2.44	0.51
2:F:588:PHE:O	2:F:592:PHE:N	2.32	0.51
2:D:146:PRO:O	2:D:149:ASN:ND2	2.44	0.51
2:E:122:THR:HB	2:E:179:LEU:HD13	1.91	0.51
2:F:295:ASP:O	2:F:298:VAL:HB	2.09	0.51
1:A:323:THR:OG1	1:A:324:GLU:OE1	2.18	0.51
1:B:645:THR:HG23	1:B:670:ILE:HG13	1.93	0.51
2:D:432:ASN:OD1	2:D:433:GLU:N	2.44	0.51
2:F:290:ASN:HA	2:F:434:THR:HG23	1.93	0.51
2:F:389:PRO:HG2	2:F:392:LEU:HD12	1.92	0.51
1:A:417:ASN:HA	1:A:421:TYR:CZ	2.46	0.51
1:C:715:PRO:HA	1:C:1072:GLU:HA	1.93	0.51
1:C:107:GLY:H	1:C:235:ILE:HG23	1.76	0.51

A + 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:442:ASP:HB3	1:C:507:PRO:HG2	1.93	0.51
2:D:459:TRP:HB2	2:D:480:MET:HE1	1.91	0.51
2:E:180:TYR:HB3	2:E:498:CYS:SG	2.50	0.51
2:E:212:VAL:HG23	2:E:215:TYR:HB2	1.91	0.51
2:F:396:ALA:HB1	2:F:566:TRP:HB2	1.92	0.51
1:A:122:ASN:OD1	1:A:123:ALA:N	2.44	0.51
1:B:317:ASN:O	1:B:319:ARG:NH1	2.44	0.51
1:B:361:CYS:H	1:B:524:VAL:HG22	1.75	0.51
1:C:220:PHE:HE2	1:C:285:ILE:HG22	1.75	0.51
2:D:407:ILE:HG21	2:D:525:PHE:HB2	1.92	0.51
2:D:553:LYS:HG2	2:D:573:VAL:HG23	1.93	0.51
2:E:564:GLU:HB3	2:E:569:ALA:HB2	1.93	0.51
2:F:177:ARG:HH22	2:F:501:ALA:HB3	1.75	0.51
1:A:36:VAL:HG11	1:A:220:PHE:CZ	2.46	0.50
1:A:444:LYS:N	1:A:448:ASN:OD1	2.45	0.50
1:C:736:VAL:HG21	1:C:1004:LEU:HD11	1.92	0.50
2:D:285:PHE:HZ	2:D:436:ILE:HB	1.75	0.50
1:B:1084:ASP:N	1:B:1084:ASP:OD1	2.45	0.50
2:E:155:SER:OG	2:E:157:ASP:OD1	2.28	0.50
2:E:377:GLY:HA2	2:E:408:MET:SD	2.50	0.50
2:E:382:ASP:HA	2:E:385:TYR:CE2	2.46	0.50
1:B:642:VAL:HG12	1:B:651:ILE:HG12	1.93	0.50
1:C:822:LEU:HD23	1:C:945:LEU:HD13	1.94	0.50
2:D:127:TYR:CE2	2:D:504:PHE:HB2	2.46	0.50
2:E:177:ARG:NH1	2:E:495:GLU:O	2.42	0.50
2:E:450:LEU:HD11	2:E:519:THR:HG21	1.93	0.50
1:C:804:GLN:OE1	1:C:935:GLN:NE2	2.42	0.50
2:E:199:TYR:HD2	2:E:203:TRP:CZ3	2.29	0.50
2:F:398:GLU:HB3	2:F:514:ARG:HB2	1.93	0.50
2:D:365:THR:HG22	2:D:367:ASP:N	2.27	0.50
2:E:257:SER:HB3	2:E:260:GLY:HA3	1.93	0.50
2:E:416:LYS:HE3	2:E:543:ASP:HB2	1.93	0.50
2:E:460:ARG:NH1	2:E:506:VAL:O	2.45	0.50
2:F:241:HIS:CE1	2:F:245:ARG:HH21	2.30	0.50
1:A:203:ILE:HB	1:A:227:VAL:HB	1.92	0.50
2:D:527:GLU:HG2	2:D:583:PRO:HG3	1.94	0.50
2:E:184:VAL:HG22	2:E:464:PHE:HE1	1.77	0.50
1:A:402:ILE:HG13	1:A:403:ARG:N	2.23	0.50
2:D:110:GLU:HA	2:D:113:SER:HB3	1.94	0.50
2:D:365:THR:HG22	2:D:367:ASP:H	1.76	0.50
2:D:370:LEU:HD12	2:D:409:SER:HB2	1.93	0.50

	At arra 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:D:589:GLU:HA	2:D:592:PHE:CE1	2.47	0.50
2:E:177:ARG:HA	2:E:498:CYS:SG	2.51	0.50
1:A:27:SER:HB2	1:A:64:TRP:HB3	1.94	0.50
2:F:123:MET:HB3	2:F:179:LEU:HD22	1.93	0.50
1:A:64:TRP:HE1	1:A:264:ALA:HB1	1.77	0.49
1:B:215:ASP:N	1:B:266:TYR:OH	2.40	0.49
1:B:220:PHE:HE2	1:B:285:ILE:HG22	1.75	0.49
2:D:85:LEU:HD11	2:D:101:GLN:HB3	1.94	0.49
2:D:190:MET:SD	2:D:194:ASN:ND2	2.77	0.49
2:D:302:TRP:CG	2:D:306:ARG:HG2	2.47	0.49
2:F:416:LYS:HB3	2:F:541:LYS:NZ	2.27	0.49
1:A:726:ILE:HG13	1:A:1061:VAL:HG22	1.94	0.49
1:B:742:ILE:O	1:B:1000:ARG:NH1	2.45	0.49
2:E:210:ASN:OD1	2:E:211:GLY:N	2.44	0.49
2:E:269:ASP:HB3	2:E:272:GLY:H	1.77	0.49
2:F:332:MET:HG3	2:F:336:PRO:HB3	1.94	0.49
2:D:351:LEU:HD11	2:D:357:ARG:HG2	1.94	0.49
2:E:418:LEU:HA	2:E:423:LEU:HB2	1.94	0.49
1:B:167:THR:HG21	1:B:233:ILE:HD11	1.93	0.49
1:C:879:ALA:O	1:C:883:THR:OG1	2.25	0.49
2:D:327:PHE:CE1	2:D:356:PHE:HB2	2.47	0.49
2:D:418:LEU:HB3	2:D:423:LEU:HB2	1.93	0.49
2:E:132:VAL:HG21	2:E:142:LEU:HD23	1.94	0.49
2:F:48:TRP:HZ3	2:F:359:LEU:HB2	1.78	0.49
2:F:177:ARG:NH2	2:F:498:CYS:SG	2.85	0.49
2:F:439:LEU:HD21	2:F:540:HIS:CG	2.48	0.49
1:C:456:PHE:HB2	1:C:491:PRO:HB3	1.94	0.49
2:D:288:LYS:HG2	2:D:434:THR:HG22	1.94	0.49
2:E:199:TYR:HD2	2:E:203:TRP:CH2	2.31	0.49
2:F:191:ALA:HB1	2:F:196:TYR:HB2	1.95	0.49
1:B:164:ASN:ND2	1:C:357:ARG:HH12	2.10	0.49
1:C:992:GLN:NE2	1:C:995:ARG:HH21	2.10	0.49
2:E:148:LEU:HD22	2:E:168:TRP:HZ2	1.77	0.49
2:E:504:PHE:O	2:E:508:ASN:ND2	2.44	0.49
2:F:98:GLN:HE22	2:F:209:VAL:HG22	1.77	0.49
1:A:462:LYS:O	1:A:465:GLU:HG2	2.12	0.49
1:A:577:ARG:NH1	1:A:582:LEU:HD12	2.27	0.49
1:A:856:ASN:HD22	1:A:966:LEU:HD12	1.77	0.49
1:B:336:CYS:SG	1:B:361:CYS:HB2	2.52	0.49
1:C:34:ARG:NH2	1:C:191:GLU:OE2	2.46	0.49
2:E:95:LEU:HA	2:E:98:GLN:HB2	1.94	0.49

	1 J	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:E:192:ARG:HH12	2:E:197:GLU:HG3	1.77	0.49
2:E:324:THR:HG22	2:E:326:GLY:H	1.77	0.49
1:A:395:VAL:HG22	1:A:515:PHE:CD1	2.47	0.49
1:A:490:PHE:CD1	1:A:491:PRO:HD2	2.47	0.49
1:A:644:GLN:NE2	1:A:648:GLY:O	2.45	0.49
1:C:826:VAL:O	1:C:949:GLN:NE2	2.41	0.49
2:E:304:ALA:HA	2:E:307:ILE:HG22	1.95	0.49
2:F:25:ALA:HA	2:F:28:PHE:CE1	2.48	0.49
2:F:169:ARG:HH22	2:F:478:TRP:HH2	1.61	0.49
2:F:433:GLU:OE2	2:F:594:TRP:NE1	2.46	0.49
1:A:107:GLY:H	1:A:235:ILE:HG23	1.78	0.49
1:A:395:VAL:HG23	1:A:524:VAL:HG21	1.94	0.49
2:E:388:GLN:HB3	2:E:392:LEU:HB2	1.95	0.49
2:F:235:PRO:O	2:F:239:HIS:ND1	2.35	0.49
1:A:451:TYR:HB2	1:A:495:TYR:HB2	1.94	0.49
1:B:53:ASP:OD1	1:B:195:LYS:NZ	2.45	0.49
1:B:108:THR:HA	1:B:236:THR:HB	1.95	0.49
1:C:310:LYS:NZ	1:C:663:ASP:OD1	2.41	0.49
2:E:263:PRO:HD2	2:E:266:LEU:HD23	1.95	0.49
2:E:381:TYR:HD1	2:E:558:LEU:HD22	1.78	0.49
2:F:226:VAL:HG21	2:F:461:TRP:HZ3	1.78	0.49
2:E:364:VAL:O	2:E:365:THR:OG1	2.26	0.48
2:F:403:ALA:O	2:F:407:ILE:HG23	2.13	0.48
1:B:118:LEU:HB3	1:B:129:LYS:O	2.13	0.48
2:D:392:LEU:HG	2:D:562:LYS:HB3	1.95	0.48
2:E:115:ARG:NH1	2:E:118:THR:OG1	2.46	0.48
1:A:436:TRP:CE2	1:A:509:ARG:HG3	2.48	0.48
1:B:30:ASN:HD21	1:B:59:PHE:HD1	1.61	0.48
1:B:600:PRO:HB3	1:B:674:TYR:HB2	1.95	0.48
1:C:366:SER:H	1:C:387:LEU:HD13	1.78	0.48
1:C:551:VAL:HB	1:C:588:THR:HB	1.93	0.48
2:D:382:ASP:HA	2:D:385:TYR:CZ	2.48	0.48
2:E:170:SER:HA	2:E:497:TYR:HE2	1.78	0.48
2:E:366:MET:HA	2:E:369:PHE:HB3	1.94	0.48
2:F:32:PHE:HA	2:F:35:GLU:HG2	1.95	0.48
2:F:416:LYS:HB3	2:F:541:LYS:HZ2	1.77	0.48
1:B:196:ASN:HD22	1:B:235:ILE:HG12	1.79	0.48
1:C:905:ARG:HD3	1:C:1049:LEU:O	2.13	0.48
2:D:528:ALA:O	2:D:553:LYS:NZ	2.38	0.48
1:C:337:PRO:HG2	1:C:358:ILE:HG12	1.95	0.48
2:D:553:LYS:HE3	2:D:573:VAL:HG23	1.96	0.48

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:E:403:ALA:O	2:E:407:ILE:HG23	2.12	0.48
1:C:1106:GLN:NE2	1:C:1109:PHE:HB3	2.28	0.48
2:D:129:THR:O	2:D:131:LYS:NZ	2.47	0.48
2:E:180:TYR:HA	2:E:183:TYR:CD2	2.49	0.48
1:A:442:ASP:O	1:A:451:TYR:OH	2.26	0.48
1:B:1081:ILE:HD11	1:B:1137:VAL:HG22	1.95	0.48
1:C:139:PRO:HB2	1:C:241:LEU:HD13	1.95	0.48
1:C:378:LYS:HE2	1:C:380:TYR:HB2	1.96	0.48
2:E:439:LEU:HD23	2:E:588:PHE:HD1	1.77	0.48
2:F:169:ARG:NH1	2:F:499:ASP:OD1	2.47	0.48
2:F:293:VAL:HG12	2:F:423:LEU:HB3	1.96	0.48
1:C:197:ILE:HG13	1:C:198:ASP:N	2.26	0.48
1:C:340:GLU:HG3	1:C:347:PHE:HZ	1.78	0.48
1:C:487:ASN:OD1	2:F:83:TYR:OH	2.32	0.48
2:D:245:ARG:NH2	2:D:605:GLY:O	2.32	0.48
2:E:463:VAL:HG22	2:E:468:ILE:HG21	1.94	0.48
2:F:556:ASN:HA	2:F:559:ARG:HG2	1.95	0.48
1:B:349:SER:HB3	1:B:451:TYR:HA	1.95	0.48
1:B:979:ASP:O	1:B:983:ARG:HB2	2.13	0.48
2:D:48:TRP:HZ2	2:D:349:TRP:HB2	1.79	0.48
2:D:158:TYR:HE1	2:D:263:PRO:HG2	1.77	0.48
2:F:189:GLU:HA	2:F:192:ARG:HB2	1.94	0.48
1:B:34:ARG:HG3	1:B:216:LEU:HD12	1.95	0.47
1:C:65:PHE:O	1:C:265:TYR:HB3	2.13	0.47
2:E:41:TYR:HA	2:E:351:LEU:O	2.13	0.47
2:F:120:LEU:HD11	2:F:183:TYR:HE1	1.78	0.47
1:A:231:ILE:HG21	1:B:520:ALA:HB1	1.94	0.47
1:A:377:PHE:HD1	1:A:434:ILE:HG12	1.77	0.47
1:B:493[A]:ARG:NH1	2:E:34:HIS:O	2.47	0.47
1:C:986:PRO:N	1:C:987:PRO:HD2	2.30	0.47
2:E:302:TRP:HE1	2:E:307:ILE:HG13	1.77	0.47
2:E:571:GLU:HG3	2:E:577:LYS:HD3	1.95	0.47
1:A:485:GLY:H	1:A:488:CYS:HB2	1.79	0.47
1:C:598:ILE:HG23	1:C:664:ILE:HG21	1.95	0.47
1:C:896:ILE:HD12	1:C:897:PRO:HD2	1.97	0.47
2:E:363:LYS:HE3	2:E:364:VAL:HG22	1.96	0.47
2:F:225:ASP:HA	2:F:228:HIS:CD2	2.49	0.47
2:D:581:VAL:HG21	2:D:584:LEU:HD13	1.96	0.47
2:E:29:LEU:HD11	2:E:96:GLN:HB3	1.96	0.47
2:F:127:TYR:OH	2:F:502:SER:O	2.29	0.47
1:A:99:ASN:O	1:A:102:ARG:NH2	2.46	0.47

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
1:C:280:ASN:ND2	4:C:1304:NAG:O7	2.47	0.47
1:C:392:PHE:HD2	1:C:395:VAL:HG22	1.80	0.47
1:C:874:THR:HG21	1:C:1055:SER:HB3	1.97	0.47
2:F:396:ALA:HB2	2:F:560:LEU:HD11	1.95	0.47
2:E:204:ARG:O	2:E:208:GLU:HG2	2.14	0.47
2:E:333:LEU:HA	2:E:360:MET:HB2	1.95	0.47
2:F:307:ILE:HG21	2:F:362:THR:HG21	1.95	0.47
2:F:541:LYS:HD2	2:F:541:LYS:O	2.15	0.47
1:A:407:VAL:HG21	1:A:508:TYR:CE2	2.49	0.47
1:B:65:PHE:HB2	1:B:265:TYR:CD2	2.49	0.47
1:C:501:TYR:HB3	1:C:505:HIS:HB2	1.96	0.47
1:C:596:SER:OG	1:C:613:GLN:OE1	2.32	0.47
2:D:285:PHE:CE2	2:D:433:GLU:HB3	2.50	0.47
2:E:48:TRP:CH2	2:E:348:ALA:HB1	2.50	0.47
2:E:179:LEU:HB3	2:E:183:TYR:CZ	2.50	0.47
2:E:594:TRP:HB2	4:E:702:NAG:H61	1.96	0.47
2:F:48:TRP:CZ3	2:F:359:LEU:HB2	2.50	0.47
2:F:245:ARG:HG2	2:F:258:PRO:HA	1.95	0.47
2:F:318:VAL:HG22	2:F:544:ILE:HG13	1.96	0.47
1:A:493[B]:ARG:HA	1:A:493[B]:ARG:HD3	1.49	0.47
1:A:941:THR:N	1:A:942:PRO:HD2	2.30	0.47
1:B:81:ASN:HB3	1:B:82:PRO:HD3	1.97	0.47
2:D:388:GLN:HG2	2:D:563:SER:HB2	1.97	0.47
2:E:415:PRO:HG3	2:E:541:LYS:HD2	1.96	0.47
2:E:490:PRO:HA	2:E:612:PRO:HG2	1.96	0.47
2:F:67:ASP:OD1	2:F:68:LYS:N	2.48	0.47
2:F:302:TRP:CD1	2:F:306:ARG:HG2	2.50	0.47
1:C:456:PHE:HB3	1:C:473:TYR:HB2	1.97	0.47
2:D:25:ALA:HB2	2:D:97:LEU:HD12	1.96	0.47
2:D:358:ILE:HG12	2:D:379:ILE:HG21	1.96	0.47
2:F:112:LYS:O	2:F:115:ARG:HG2	2.15	0.47
1:A:412:PRO:HB3	1:A:427:ASP:HA	1.97	0.47
1:B:493[A]:ARG:NH2	1:B:494:SER:O	2.34	0.47
2:D:190:MET:HG3	2:D:202:TYR:OH	2.14	0.47
2:D:260:GLY:HA2	2:D:607:SER:OG	2.15	0.47
2:D:415:PRO:O	2:D:419:LYS:HB3	2.15	0.47
2:E:468:ILE:HG23	2:E:472:GLN:NE2	2.30	0.47
2:E:554:LEU:O	2:E:558:LEU:HG	2.15	0.47
1:B:342:PHE:CE1	1:B:511:VAL:HG11	2.50	0.46
1:B:1090:PRO:HD3	1:B:1095:PHE:CE2	2.50	0.46
1:C:349:SER:HA	1:C:451:TYR:HD1	1.80	0.46

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:D:203:TRP:HD1	2:D:513:ILE:HG22	1.80	0.46
2:D:293:VAL:HA	2:D:296:ALA:HB3	1.96	0.46
1:A:404:GLY:N	1:A:506:GLN:O	2.42	0.46
1:A:976:VAL:HB	1:A:979:ASP:HB2	1.96	0.46
1:B:290:ASP:OD1	1:B:291:CYS:N	2.45	0.46
1:C:511:VAL:HG12	1:C:511:VAL:O	2.15	0.46
2:D:583:PRO:HA	2:D:586:ASN:HD21	1.79	0.46
2:D:112:LYS:HD2	2:D:189:GLU:HG3	1.97	0.46
2:E:470:LYS:O	2:E:473:TRP:NE1	2.49	0.46
2:F:36:ALA:HB2	2:F:72:PHE:HE2	1.80	0.46
1:C:106:PHE:HB2	1:C:117:LEU:HB3	1.98	0.46
1:C:497:PHE:HA	1:C:501:TYR:HE2	1.80	0.46
2:E:540:HIS:HD1	2:E:540:HIS:H	1.62	0.46
2:F:237:TYR:CZ	2:F:451:PRO:HG2	2.50	0.46
1:A:196:ASN:ND2	1:A:235:ILE:HD12	2.30	0.46
1:A:441:LEU:H	1:A:441:LEU:HD23	1.80	0.46
1:B:1098:ASN:OD1	1:B:1100:THR:N	2.42	0.46
1:C:945:LEU:HD23	1:C:945:LEU:H	1.80	0.46
2:D:183:TYR:O	2:D:187:LYS:HG2	2.15	0.46
2:E:116:LEU:HD13	2:E:186:LEU:HD12	1.98	0.46
1:A:339:ASP:OD1	1:A:339:ASP:N	2.47	0.46
1:B:83:VAL:HA	1:B:239:GLN:HE22	1.79	0.46
2:D:150:GLU:HG2	2:D:154:ASN:HD22	1.80	0.46
2:E:589:GLU:HG3	2:E:590:PRO:HD3	1.96	0.46
2:F:263:PRO:HB2	2:F:266:LEU:HD13	1.97	0.46
2:F:527:GLU:HG2	2:F:582:ARG:HH12	1.79	0.46
1:A:117:LEU:HG	1:A:130:VAL:HG23	1.97	0.46
2:E:115:ARG:O	2:E:119:ILE:HG12	2.15	0.46
2:F:198:ASP:OD2	2:F:464:PHE:HB3	2.15	0.46
1:B:1098:ASN:OD1	1:B:1099:GLY:N	2.49	0.46
2:D:236:LEU:HD12	2:D:236:LEU:HA	1.78	0.46
2:D:245:ARG:NH1	2:D:260:GLY:O	2.49	0.46
2:E:435:GLU:HB2	2:E:540:HIS:NE2	2.31	0.46
2:E:469:PRO:HD2	2:E:472:GLN:HE21	1.81	0.46
1:B:993:ILE:O	1:B:997:ILE:HG23	2.16	0.46
1:C:448:ASN:OD1	1:C:450:ASN:ND2	2.48	0.46
2:D:610:TRP:CH2	2:D:612:PRO:HB3	2.51	0.46
1:A:40:ASP:OD1	1:A:40:ASP:N	2.49	0.46
1:A:133:PHE:HB2	1:A:162:SER:O	2.16	0.46
1:A:733:LYS:HE3	1:A:771:ALA:HB1	1.98	0.46
1:B:736:VAL:HG21	1:B:1004:LEU:HD11	1.98	0.46

	h + o	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:D:31:LYS:HB2	2:D:31:LYS:HE2	1.70	0.46
2:E:267:LEU:HD13	2:E:272:GLY:N	2.31	0.46
2:E:413:ALA:HB1	2:E:438:PHE:CE2	2.49	0.46
1:A:959:LEU:HD23	1:A:959:LEU:HA	1.81	0.45
1:A:986:PRO:N	1:A:987:PRO:HD2	2.31	0.45
1:B:336:CYS:N	1:B:362:VAL:O	2.39	0.45
2:D:209:VAL:HG21	2:D:567:THR:HG23	1.98	0.45
2:D:418:LEU:HA	2:D:421:ILE:HG12	1.98	0.45
2:E:302:TRP:HA	2:E:306:ARG:HD3	1.98	0.45
2:F:302:TRP:HD1	2:F:306:ARG:HG2	1.81	0.45
1:B:822:LEU:HD21	1:B:938:LEU:HD13	1.96	0.45
1:B:878:LEU:HD21	1:B:1052:PHE:HB3	1.98	0.45
1:C:401:VAL:HG22	1:C:509:ARG:HG3	1.97	0.45
2:D:44:SER:HA	2:D:47:SER:HB3	1.98	0.45
2:E:97:LEU:O	2:E:101:GLN:HB2	2.15	0.45
1:B:759:PHE:O	1:B:763:LEU:HG	2.16	0.45
2:D:176:LEU:HG	2:D:179:LEU:HB3	1.97	0.45
2:D:252:TYR:O	2:D:256:ILE:HG12	2.17	0.45
1:C:1093:GLY:HA3	1:C:1105:THR:O	2.17	0.45
2:D:90:ASN:HB3	2:D:94:LYS:H	1.82	0.45
2:D:112:LYS:NZ	2:D:189:GLU:OE1	2.43	0.45
2:E:305:GLN:HA	2:E:333:LEU:HB2	1.99	0.45
1:C:106:PHE:HB3	1:C:235:ILE:HD13	1.98	0.45
1:C:353:TRP:HB3	1:C:400:PHE:HB3	1.98	0.45
1:C:708:SER:OG	1:C:711:SER:HB3	2.17	0.45
2:D:72:PHE:HA	2:D:75:GLU:OE1	2.16	0.45
1:A:748:GLU:HG3	1:A:981:LEU:HD11	1.98	0.45
2:E:407:ILE:HG22	2:E:522:GLN:HE21	1.82	0.45
2:E:494:ASP:OD2	2:E:496:THR:OG1	2.24	0.45
1:A:130:VAL:HG13	1:A:131:CYS:N	2.31	0.45
2:D:453:THR:HA	2:D:512:PHE:CE2	2.51	0.45
1:A:368:LEU:HD22	1:A:377:PHE:CZ	2.52	0.45
1:B:821:LEU:HD13	1:B:935:GLN:OE1	2.16	0.45
1:C:91:TYR:CG	1:C:91:TYR:O	2.68	0.45
2:E:180:TYR:HE1	2:E:507:SER:HA	1.82	0.45
2:D:54:ILE:HD12	2:D:54:ILE:H	1.82	0.45
2:F:26:LYS:HE3	2:F:88:ILE:HD11	1.97	0.45
2:F:414:THR:HG22	2:F:416:LYS:HG2	1.97	0.45
1:A:508:TYR:HD2	1:A:510:VAL:HG23	1.82	0.45
1:A:878:LEU:HD21	1:A:1052:PHE:HB3	1.99	0.45
1:B:90:VAL:HG13	1:B:267:VAL:HG23	1.98	0.45

A + a 1	At arra 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:406:GLU:HB3	1:C:418:ILE:HG13	1.98	0.45
2:E:57:GLU:O	2:E:60:GLN:HG3	2.17	0.45
2:E:209:VAL:HG13	2:E:565:PRO:HB3	1.99	0.45
2:E:523:PHE:O	2:E:526:GLN:HB3	2.17	0.45
1:B:496:GLY:O	1:B:498:ARG:NH1	2.50	0.44
1:C:195:LYS:HD3	1:C:204:TYR:HE1	1.80	0.44
1:C:743:CYS:HB3	1:C:749:CYS:HB3	1.88	0.44
2:D:267:LEU:HD11	2:D:487:VAL:HG21	1.98	0.44
2:E:162:LEU:HA	2:E:265:HIS:CD2	2.52	0.44
2:F:90:ASN:HB2	4:F:704:NAG:O5	2.18	0.44
2:F:417:HIS:O	2:F:420:SER:OG	2.31	0.44
1:A:37:TYR:OH	1:A:54:LEU:O	2.22	0.44
1:A:1035:GLY:HA3	1:B:1040:VAL:HG21	1.99	0.44
1:B:403:ARG:HE	1:B:495:TYR:HE1	1.65	0.44
1:C:459:SER:OG	1:C:460:ASN:N	2.50	0.44
2:D:177:ARG:HB2	2:D:178:PRO:HD3	1.98	0.44
2:D:275:TRP:CE3	2:D:444:LEU:HB2	2.52	0.44
2:E:209:VAL:HB	2:E:217:TYR:HB2	2.00	0.44
2:E:482:ARG:HG2	2:E:609:ASP:HA	2.00	0.44
2:F:381:TYR:CD2	2:F:558:LEU:HG	2.52	0.44
1:B:878:LEU:HD11	1:B:1054:GLN:HE22	1.82	0.44
1:B:985:ASP:O	1:B:989:ALA:N	2.45	0.44
1:C:493[B]:ARG:HE	1:C:493[B]:ARG:HB2	1.59	0.44
2:F:101:GLN:NE2	2:F:196:TYR:OH	2.47	0.44
1:A:371:PHE:HB3	1:A:374:PHE:CE1	2.53	0.44
1:A:456:PHE:HB3	1:A:473:TYR:CD1	2.53	0.44
1:B:751:ASN:HA	1:B:754:LEU:HG	2.00	0.44
1:C:323:THR:OG1	1:C:324:GLU:OE1	2.28	0.44
1:C:365:TYR:H	1:C:387:LEU:HB2	1.81	0.44
2:E:404:VAL:HA	2:E:407:ILE:HG12	2.00	0.44
2:E:410:LEU:HD22	2:E:522:GLN:HE22	1.82	0.44
2:E:433:GLU:HG3	2:E:437:ASN:OD1	2.18	0.44
1:A:894:LEU:HD13	1:B:715:PRO:HD3	1.99	0.44
1:C:722:VAL:O	1:C:934:ILE:HD11	2.17	0.44
1:C:752:LEU:HD11	1:C:990:GLU:HG2	1.99	0.44
2:D:457:GLU:OE2	2:D:461:TRP:NE1	2.50	0.44
2:E:238:GLU:HG3	2:E:605:GLY:HA3	1.99	0.44
2:F:419:LYS:HE2	2:F:424:LEU:HD23	1.99	0.44
1:B:915:VAL:O	1:B:919:ASN:ND2	2.47	0.44
1:B:940:SER:OG	1:B:941:THR:N	2.50	0.44
1:C:349:SER:HA	1:C:451:TYR:CD1	2.52	0.44

A + a 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:D:188:ASN:O	2:D:192:ARG:NH1	2.51	0.44
1:A:455:LEU:N	1:A:491:PRO:O	2.33	0.44
1:B:727:LEU:HD21	1:B:1024:LEU:HD23	2.00	0.44
1:C:731:MET:HE1	1:C:1014:ARG:HB3	2.00	0.44
1:C:878:LEU:HD11	1:C:1054:GLN:HE22	1.82	0.44
2:E:268:GLY:O	2:E:277:ASN:ND2	2.45	0.44
2:F:294:THR:HA	2:F:297:MET:HE2	2.00	0.44
1:A:106:PHE:HB3	1:A:235:ILE:HG21	1.99	0.44
2:E:432:ASN:O	2:E:436:ILE:HG12	2.18	0.44
2:F:21:ILE:HG21	2:F:84:PRO:HD2	1.99	0.44
2:F:439:LEU:HD21	2:F:540:HIS:CD2	2.52	0.44
1:C:551:VAL:N	1:C:588:THR:O	2.44	0.44
1:C:1102:TRP:HB2	1:C:1135:ASN:HD22	1.82	0.44
2:D:480:MET:HA	2:D:483:GLU:HG2	1.99	0.44
2:D:532:ALA:HB2	2:D:553:LYS:NZ	2.33	0.44
2:F:112:LYS:HE3	2:F:186:LEU:HD13	2.00	0.44
2:F:314:PHE:HB3	2:F:417:HIS:CE1	2.53	0.44
1:A:501:TYR:HB2	1:A:506:GLN:HG3	2.00	0.43
1:B:328:ARG:NH1	1:B:533:LEU:HB3	2.33	0.43
1:B:436:TRP:CZ3	1:B:438:SER:HB3	2.52	0.43
1:B:1093:GLY:HA3	1:B:1105:THR:O	2.18	0.43
1:C:391:CYS:HA	1:C:525:CYS:HA	1.99	0.43
1:C:515:PHE:CE2	1:C:517:LEU:HB2	2.53	0.43
2:D:284:PRO:HD3	2:D:440:LEU:HD22	2.00	0.43
2:D:325:GLN:HG2	2:D:326:GLY:N	2.33	0.43
2:D:400:PHE:CE2	2:D:566:TRP:HB2	2.53	0.43
2:E:482:ARG:NH2	2:E:607:SER:O	2.50	0.43
2:F:273:ARG:O	2:F:449:THR:OG1	2.30	0.43
1:A:190:ARG:HG2	1:A:192:PHE:CZ	2.53	0.43
1:A:500:THR:HG1	2:D:41:TYR:HH	1.49	0.43
1:C:475:ALA:HB3	2:F:24:GLN:OE1	2.18	0.43
1:C:854:LYS:HB2	1:C:959:LEU:HD13	1.99	0.43
2:D:380:GLN:HE22	2:D:558:LEU:HD13	1.83	0.43
2:D:595:LEU:O	2:D:599:ASN:N	2.51	0.43
2:E:389:PRO:O	2:E:393:ARG:N	2.51	0.43
2:E:439:LEU:HD21	2:E:590:PRO:HD2	1.99	0.43
2:F:120:LEU:HD11	2:F:183:TYR:CE1	2.52	0.43
2:F:236:LEU:HD11	2:F:588:PHE:HB2	1.98	0.43
2:F:245:ARG:NE	2:F:262:LEU:HD23	2.32	0.43
1:A:401:VAL:HG13	1:A:508:TYR:H	1.83	0.43
1:A:822:LEU:HD22	1:A:945:LEU:HD11	2.00	0.43

A + 1	A 4 am 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:970:PHE:CD2	1:A:999:GLY:HA3	2.54	0.43
1:B:105:ILE:HG12	1:B:239:GLN:HB2	1.99	0.43
1:C:196:ASN:OD1	1:C:235:ILE:HD12	2.18	0.43
1:C:378:LYS:O	1:C:433:VAL:N	2.50	0.43
1:C:556:ASN:HB3	1:C:558:LYS:NZ	2.33	0.43
1:C:915:VAL:HG21	1:C:1106:GLN:HE22	1.82	0.43
2:D:279:TYR:CE1	2:D:441:LYS:HB3	2.53	0.43
2:F:415:PRO:HD2	2:F:541:LYS:HD3	1.99	0.43
1:A:374:PHE:HD1	1:A:436:TRP:HB3	1.82	0.43
1:A:490:PHE:CE2	1:A:492:LEU:HB3	2.53	0.43
1:B:339:ASP:OD1	1:B:339:ASP:N	2.52	0.43
1:C:985:ASP:OD1	1:C:985:ASP:N	2.49	0.43
2:D:303:ASP:H	2:D:306:ARG:HB2	1.83	0.43
2:E:205:GLY:HA2	2:E:208:GLU:CG	2.49	0.43
2:E:315:PHE:CE1	2:E:380:GLN:HG2	2.54	0.43
2:F:124:SER:HB2	2:F:508:ASN:HD21	1.84	0.43
2:F:177:ARG:HB2	2:F:178:PRO:HD3	2.01	0.43
2:F:365:THR:HB	2:F:368:ASP:HB2	2.00	0.43
1:B:1106:GLN:NE2	1:B:1109:PHE:HB3	2.31	0.43
1:C:497:PHE:HA	1:C:501:TYR:CE2	2.54	0.43
1:C:969:LYS:HZ1	1:C:974:SER:HA	1.84	0.43
2:D:396:ALA:HB3	2:D:566:TRP:HB3	2.00	0.43
2:D:554:LEU:O	2:D:558:LEU:N	2.35	0.43
2:E:245:ARG:HH22	2:E:602:SER:HB2	1.84	0.43
1:B:95:THR:OG1	1:B:189:LEU:HD13	2.19	0.43
1:B:714:ILE:HD12	1:B:1096:VAL:HG11	1.99	0.43
1:C:453:TYR:HB3	1:C:495:TYR:HE1	1.83	0.43
1:C:493[A]:ARG:HE	1:C:493[A]:ARG:HB3	1.46	0.43
2:D:378:HIS:CE1	2:D:402:GLU:HA	2.53	0.43
2:D:450:LEU:HG	2:D:516:TYR:HD1	1.84	0.43
2:D:568:LEU:O	2:D:572:ASN:ND2	2.42	0.43
2:E:480:MET:O	2:E:484:ILE:HB	2.19	0.43
1:A:825:LYS:NZ	1:A:938:LEU:O	2.42	0.43
1:B:206:LYS:HA	1:B:206:LYS:HD2	1.77	0.43
1:B:401:VAL:HG21	1:B:451:TYR:CZ	2.54	0.43
1:B:741:TYR:CD2	1:B:1004:LEU:HD12	2.54	0.43
1:C:738:CYS:HB3	1:C:753:LEU:HD21	2.01	0.43
2:D:477:TRP:CE3	2:D:500:PRO:HG3	2.54	0.43
2:E:151:ILE:O	2:E:155:SER:HB2	2.19	0.43
2:E:438:PHE:CZ	2:E:442:GLN:HG3	2.53	0.43
2:F:540:HIS:HB3	2:F:587:TYR:O	2.19	0.43

	1 J	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:F:557:MET:HA	2:F:560:LEU:HD23	1.99	0.43
1:C:206:LYS:HB2	1:C:223:LEU:HA	2.01	0.43
1:C:752:LEU:HA	1:C:755:GLN:OE1	2.19	0.43
2:F:88:ILE:HD13	2:F:93:VAL:HG11	2.01	0.43
1:B:430:THR:HG22	1:B:515:PHE:CE1	2.54	0.43
1:B:879:ALA:O	1:B:883:THR:OG1	2.30	0.43
1:C:546:LEU:HD22	1:C:565:PHE:CE1	2.54	0.43
2:E:50:TYR:HD1	2:E:58:ASN:HB3	1.84	0.43
2:E:70:SER:O	2:E:74:LYS:HG2	2.18	0.43
2:E:527:GLU:HG3	2:E:539:LEU:HD11	2.01	0.43
2:F:260:GLY:HA2	2:F:607:SER:H	1.84	0.43
2:F:453:THR:O	2:F:457:GLU:HB2	2.18	0.43
1:A:394:ASN:OD1	1:A:516:GLU:HB3	2.18	0.43
1:A:802:PHE:HD1	1:A:805:ILE:HD11	1.84	0.43
1:A:917:TYR:CE1	1:B:1079:PRO:HB3	2.54	0.43
1:A:945:LEU:HD12	1:A:948:LEU:HD12	2.01	0.43
1:A:1093:GLY:CA	1:A:1105:THR:O	2.58	0.43
1:B:114:THR:OG1	1:B:115:GLN:N	2.50	0.43
2:F:94:LYS:NZ	2:F:98:GLN:OE1	2.50	0.43
1:A:376:ALA:H	1:A:435:ALA:HB3	1.84	0.42
1:A:543:PHE:CG	1:A:576:VAL:HG11	2.53	0.42
1:B:231:ILE:HG13	1:B:232:GLY:N	2.34	0.42
1:B:716:THR:HG22	1:B:1110:TYR:HB3	2.01	0.42
2:D:21:ILE:HD12	2:D:24:GLN:HE21	1.84	0.42
2:D:169:ARG:HH11	2:D:499:ASP:HB3	1.84	0.42
2:E:48:TRP:CZ2	2:E:357:ARG:HB3	2.54	0.42
2:E:514:ARG:NH1	2:E:515:TYR:HB2	2.34	0.42
1:A:456:PHE:CZ	2:D:31:LYS:HD2	2.48	0.42
1:A:470:THR:HB	1:A:490:PHE:CE1	2.53	0.42
1:A:707:TYR:HB3	1:C:792:PRO:HG3	2.01	0.42
1:A:821:LEU:HD13	1:A:935:GLN:HG3	2.00	0.42
1:C:410:ILE:O	1:C:410:ILE:HG22	2.19	0.42
2:D:48:TRP:O	2:D:52:THR:HG22	2.19	0.42
2:E:532:ALA:HB2	2:E:553:LYS:HD2	2.00	0.42
2:D:505:HIS:O	2:D:510:TYR:N	2.51	0.42
2:D:564:GLU:HB2	2:D:565:PRO:HD2	2.01	0.42
2:E:392:LEU:HD23	2:E:562:LYS:HB2	2.02	0.42
2:F:527:GLU:O	2:F:531:GLN:HG2	2.19	0.42
1:B:736:VAL:HG12	1:B:767:LEU:HD12	2.00	0.42
1:C:961:THR:O	1:C:965:GLN:HB2	2.18	0.42
2:D:43:SER:HA	2:D:65:ALA:HB1	2.02	0.42

Atom-1 Atom-2		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:D:589:GLU:HB3	2:D:590:PRO:HD3	2.02	0.42
1:A:204:TYR:HD1	1:A:225:PRO:HA	1.83	0.42
1:B:1083:HIS:CE1	1:B:1137:VAL:H	2.38	0.42
1:C:334:ASN:HB2	1:C:361:CYS:HA	2.00	0.42
1:C:350:VAL:HG22	1:C:422:ASN:HD22	1.84	0.42
1:C:1081:ILE:HD11	1:C:1137:VAL:HG22	2.02	0.42
1:C:1114:ILE:H	1:C:1114:ILE:HD12	1.84	0.42
2:E:84:PRO:O	2:E:85:LEU:HB3	2.20	0.42
2:E:157:ASP:OD1	2:E:157:ASP:N	2.52	0.42
2:E:407:ILE:HG22	2:E:522:GLN:HG2	2.01	0.42
2:F:32:PHE:CD1	2:F:76:GLN:HG3	2.55	0.42
1:A:192:PHE:HD1	1:A:205:SER:HG	1.64	0.42
1:B:138:ASP:OD1	1:B:138:ASP:N	2.53	0.42
1:B:874:THR:HG21	1:B:1055:SER:HB3	2.02	0.42
1:C:328:ARG:HD2	1:C:533:LEU:HD13	2.01	0.42
2:D:237:TYR:OH	2:D:447:VAL:HG12	2.19	0.42
2:E:207:TYR:HE1	2:E:398:GLU:HB2	1.84	0.42
2:F:237:TYR:CE1	2:F:451:PRO:HG2	2.55	0.42
1:A:1081:ILE:HD11	1:A:1137:VAL:HG22	2.01	0.42
1:B:493[A]:ARG:HE	1:B:493[A]:ARG:HB3	1.55	0.42
1:B:527:PRO:O	1:B:528:LYS:HE2	2.20	0.42
1:C:44:ARG:O	1:C:283:GLY:HA2	2.20	0.42
1:C:726:ILE:HD13	1:C:945:LEU:HA	2.01	0.42
2:D:36:ALA:HB2	2:D:72:PHE:HE2	1.84	0.42
1:A:350:VAL:O	1:A:353:TRP:HD1	2.03	0.42
1:C:452:LEU:HB3	1:C:492:LEU:HD12	2.01	0.42
2:D:85:LEU:HD23	2:D:98:GLN:HG3	2.02	0.42
2:E:48:TRP:CZ3	2:E:348:ALA:HB1	2.55	0.42
1:A:195:LYS:HE3	1:A:195:LYS:HB2	1.80	0.42
1:B:901:GLN:HE21	1:B:905:ARG:HH21	1.67	0.42
2:D:21:ILE:HA	2:D:24:GLN:HE21	1.85	0.42
2:D:48:TRP:HA	2:D:51:ASN:HB2	2.01	0.42
2:E:242:ALA:HB2	2:E:605:GLY:N	2.32	0.42
2:F:285:PHE:CD2	2:F:433:GLU:HG3	2.54	0.42
1:A:194:PHE:CD1	1:A:203:ILE:HG12	2.55	0.41
1:A:493[A]:ARG:HE	1:A:493[A]:ARG:HB3	1.57	0.41
2:E:369:PHE:HE2	2:E:412:ALA:HB2	1.84	0.41
2:E:450:LEU:HB2	2:E:451:PRO:HD3	2.02	0.41
1:A:722:VAL:O	1:A:934:ILE:HD11	2.20	0.41
1:C:83:VAL:HG11	1:C:237:ARG:NH1	2.35	0.41
1:C:406:GLU:OE1	1:C:409:GLN:NE2	2.53	0.41

Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:D:250:ASN:OD1	2:D:251:ALA:N	2.53	0.41
2:E:574:VAL:HG12	2:E:576:ALA:H	1.85	0.41
2:F:29:LEU:HD12	2:F:93:VAL:HG23	2.02	0.41
1:A:731:MET:HE1	1:A:1014:ARG:HB3	2.02	0.41
1:C:454:ARG:NH1	1:C:469:SER:O	2.37	0.41
2:D:378:HIS:NE2	2:D:401:HIS:O	2.53	0.41
2:D:457:GLU:HG3	2:D:461:TRP:CE2	2.56	0.41
2:E:238:GLU:O	2:E:605:GLY:HA2	2.20	0.41
2:F:77:SER:O	2:F:81:GLN:HG2	2.21	0.41
2:D:314:PHE:HE1	2:D:421:ILE:HG21	1.85	0.41
2:F:403:ALA:O	2:F:406:GLU:HG3	2.21	0.41
1:A:319:ARG:NH1	1:C:739:THR:HG23	2.36	0.41
1:B:454:ARG:HA	1:B:492:LEU:HA	2.03	0.41
1:C:790:LYS:HB2	1:C:790:LYS:HE2	1.75	0.41
2:F:25:ALA:HA	2:F:28:PHE:CD1	2.55	0.41
2:F:133:CYS:H	2:F:171:GLU:HG3	1.85	0.41
2:F:208:GLU:HG3	2:F:219:ARG:HG3	2.02	0.41
2:F:518:ARG:HH12	2:F:522:GLN:HG3	1.85	0.41
2:F:539:LEU:O	2:F:540:HIS:CG	2.73	0.41
1:A:407:VAL:HG21	1:A:508:TYR:CZ	2.55	0.41
1:A:443:SER:HB3	1:A:507:PRO:HG2	2.02	0.41
1:A:722:VAL:HG22	1:A:1065:VAL:HG22	2.02	0.41
1:B:96:GLU:HG2	1:B:100:ILE:HG22	2.03	0.41
2:D:209:VAL:O	2:D:209:VAL:HG12	2.21	0.41
2:E:293:VAL:HG12	2:E:418:LEU:HD22	2.02	0.41
2:E:313:LYS:HD3	2:E:313:LYS:HA	1.80	0.41
2:F:442:GLN:O	2:F:446:ILE:HG12	2.20	0.41
2:F:485:VAL:HG12	2:F:487:VAL:HG23	2.01	0.41
1:A:988:GLU:O	1:A:992:GLN:HG2	2.21	0.41
1:B:421:TYR:HE1	1:B:460:ASN:H	1.68	0.41
1:B:724:THR:HG21	1:B:938:LEU:HD21	2.03	0.41
1:C:240:THR:OG1	1:C:265:TYR:HE1	2.04	0.41
2:E:42:GLN:O	2:E:45:LEU:HG	2.21	0.41
2:F:148:LEU:HA	2:F:151:ILE:HG12	2.02	0.41
2:F:398:GLU:O	2:F:514:ARG:HG3	2.21	0.41
2:F:406:GLU:O	2:F:409:SER:OG	2.22	0.41
1:C:34:ARG:HA	1:C:34:ARG:HD2	1.94	0.41
1:C:568:ASP:HB3	1:C:574:ASP:OD1	2.21	0.41
4:C:1314:NAG:O7	4:C:1314:NAG:O3	2.34	0.41
2:E:107:VAL:HG11	2:E:190:MET:O	2.21	0.41
2:E:407:ILE:HG13	2:E:408:MET:N	2.36	0.41

Atom 1 Atom-2		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:E:416:LYS:HA	2:E:416:LYS:HD3	1.72	0.41
2:E:447:VAL:HG23	2:E:450:LEU:HD12	2.02	0.41
2:E:514:ARG:HH11	2:E:515:TYR:HB2	1.86	0.41
2:F:337:GLY:O	2:F:340:GLN:N	2.35	0.41
1:A:372:ALA:N	1:A:373:PRO:HD2	2.35	0.41
1:A:478:LYS:HD2	1:A:479:PRO:HD2	2.03	0.41
1:A:595:VAL:HG22	1:A:612:TYR:CD1	2.56	0.41
1:B:722:VAL:HA	1:B:1064:HIS:O	2.21	0.41
1:B:870:ILE:O	1:B:874:THR:HG23	2.21	0.41
1:B:907:ASN:HD22	1:B:907:ASN:HA	1.62	0.41
1:C:336:CYS:SG	1:C:338:PHE:HB2	2.61	0.41
1:C:377:PHE:CD1	1:C:434:ILE:HG23	2.56	0.41
2:D:187:LYS:HG3	2:D:464:PHE:CZ	2.55	0.41
2:D:595:LEU:HA	2:D:598:GLN:HG2	2.03	0.41
2:E:209:VAL:HG21	2:E:566:TRP:HB3	2.02	0.41
2:E:462:MET:HG3	2:E:465:LYS:NZ	2.36	0.41
2:F:49:ASN:OD1	2:F:58:ASN:ND2	2.54	0.41
2:F:236:LEU:HD13	2:F:585:LEU:HA	2.02	0.41
2:F:245:ARG:NH2	2:F:261:CYS:HA	2.36	0.41
2:F:529:LEU:HD23	2:F:554:LEU:HD13	2.03	0.41
2:F:539:LEU:HG	2:F:540:HIS:H	1.86	0.41
1:A:165:ASN:OD1	1:A:165:ASN:N	2.54	0.41
1:A:203:ILE:O	1:A:226:LEU:HD23	2.21	0.41
2:D:528:ALA:O	2:D:531:GLN:HG3	2.21	0.41
2:E:42:GLN:HE21	2:E:42:GLN:HB3	1.76	0.41
2:E:323:MET:HA	2:E:383:MET:SD	2.61	0.41
2:F:203:TRP:HH2	2:F:461:TRP:HE1	1.70	0.41
2:F:385:TYR:CD2	2:F:388:GLN:HG3	2.56	0.41
1:A:65:PHE:HD2	1:A:265:TYR:HH	1.68	0.40
1:A:193:VAL:HB	1:A:204:TYR:HD2	1.86	0.40
1:B:431:GLY:HA2	1:B:515:PHE:CE2	2.56	0.40
1:B:454:ARG:HB2	1:B:492:LEU:HD12	2.03	0.40
1:B:763:LEU:HB3	1:B:1008:VAL:HG21	2.03	0.40
1:C:95:THR:H	1:C:264:ALA:HB3	1.86	0.40
1:C:198:ASP:O	1:C:200:TYR:HD1	2.04	0.40
2:D:571:GLU:HA	2:D:575:GLY:HA2	2.03	0.40
2:E:496:THR:O	2:E:497:TYR:HD1	2.04	0.40
2:F:245:ARG:HH12	2:F:260:GLY:C	2.24	0.40
2:F:293:VAL:O	2:F:296:ALA:HB3	2.20	0.40
1:A:371:PHE:CE2	1:A:436:TRP:HB2	2.56	0.40
1:B:708:SER:HB3	1:B:711:SER:HB3	2.03	0.40

A + a 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:510:VAL:HG12	1:C:512:VAL:H	1.86	0.40
2:D:274:PHE:CE1	2:D:449:THR:HG21	2.55	0.40
2:D:357:ARG:HA	2:D:357:ARG:HD3	1.77	0.40
2:E:248:LEU:O	2:E:256:ILE:HG13	2.21	0.40
2:E:302:TRP:HE1	2:E:307:ILE:CG1	2.34	0.40
2:E:424:LEU:HD12	2:E:425:SER:H	1.85	0.40
2:F:50:TYR:O	2:F:54:ILE:HD13	2.21	0.40
1:A:1079:PRO:HB3	1:C:917:TYR:CE1	2.57	0.40
1:B:324:GLU:HB3	1:B:539:VAL:HG23	2.03	0.40
1:B:347:PHE:CD1	1:B:509:ARG:HD3	2.56	0.40
1:B:758:SER:HB3	1:C:964:LYS:HZ3	1.86	0.40
1:B:966:LEU:HD23	1:B:966:LEU:HA	1.93	0.40
1:C:25:THR:OG1	1:C:66:HIS:ND1	2.54	0.40
2:D:177:ARG:HA	2:D:177:ARG:HD2	1.86	0.40
2:D:436:ILE:HG23	2:D:591:LEU:HD12	2.02	0.40
2:E:370:LEU:HG	2:E:409:SER:HB2	2.04	0.40
2:E:468:ILE:HG12	2:E:472:GLN:HE22	1.85	0.40
2:E:523:PHE:O	2:E:527:GLU:OE1	2.38	0.40
1:A:43:PHE:CG	1:A:43:PHE:O	2.75	0.40
1:C:329:PHE:N	1:C:530:SER:OG	2.37	0.40
1:C:456:PHE:CZ	2:F:31:LYS:HD3	2.56	0.40
2:D:176:LEU:O	2:D:180:TYR:HB2	2.22	0.40
2:D:321:PRO:HD2	2:D:380:GLN:NE2	2.37	0.40
2:D:468:ILE:HA	2:D:472:GLN:HG2	2.03	0.40
2:E:365:THR:HG22	2:E:368:ASP:H	1.87	0.40
2:E:427:ASP:OD1	2:E:427:ASP:N	2.53	0.40
2:E:455:MET:SD	2:E:456:LEU:N	2.95	0.40
2:F:29:LEU:HD23	2:F:29:LEU:HA	1.93	0.40
1:A:436:TRP:HH2	1:A:511:VAL:HB	1.86	0.40
1:A:995:ARG:HE	1:A:995:ARG:HB2	1.69	0.40
1:C:170:TYR:HE2	1:C:172:SER:HB3	1.87	0.40
1:C:374:PHE:HD2	1:C:436:TRP:HA	1.86	0.40
2:D:73:LEU:HA	2:D:76:GLN:OE1	2.22	0.40
2:E:60:GLN:NE2	2:E:61:ASN:OD1	2.55	0.40
2:E:288:LYS:HB2	2:E:433:GLU:HB3	2.04	0.40
2:F:99:ALA:HA	2:F:102:GLN:HE22	1.87	0.40
2:F:381:TYR:HD1	2:F:385:TYR:HE1	1.67	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	974/1244~(78%)	883 (91%)	90 (9%)	1 (0%)	51	81
1	В	975/1244~(78%)	890 (91%)	84 (9%)	1 (0%)	51	81
1	С	974/1244~(78%)	897 (92%)	75 (8%)	2(0%)	47	77
2	D	594/614~(97%)	540 (91%)	52 (9%)	2~(0%)	41	70
2	Е	594/614~(97%)	550 (93%)	43 (7%)	1 (0%)	47	77
2	F	594/614~(97%)	547 (92%)	47 (8%)	0	100	100
All	All	4705/5574 (84%)	4307 (92%)	391 (8%)	7 (0%)	54	81

All (7) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	В	675	GLN
1	С	332	ILE
2	D	364	VAL
1	С	481	ASN
2	D	365	THR
2	Е	609	ASP
1	А	126	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	871/1083~(80%)	869 (100%)	2 (0%)	93 98

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	В	871/1083~(80%)	868 (100%)	3(0%)	92	98
1	\mathbf{C}	870/1083~(80%)	867~(100%)	3(0%)	92	98
2	D	526/541~(97%)	524 (100%)	2~(0%)	91	97
2	Ε	526/541~(97%)	522~(99%)	4 (1%)	81	93
2	F	526/541~(97%)	523~(99%)	3~(1%)	86	95
All	All	4190/4872~(86%)	4173 (100%)	17 (0%)	92	97

All (17) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	493[A]	ARG
1	А	493[B]	ARG
1	В	493[A]	ARG
1	В	493[B]	ARG
1	В	907	ASN
1	С	493[A]	ARG
1	С	493[B]	ARG
1	С	964	LYS
2	D	174	LYS
2	D	559	ARG
2	Е	42	GLN
2	Е	476	LYS
2	Е	514	ARG
2	Е	559	ARG
2	F	518	ARG
2	F	541	LYS
2	F	553	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (21) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	317	ASN
1	А	439	ASN
1	А	487	ASN
1	А	544	ASN
1	В	207	HIS
1	В	901	GLN
1	В	1002	GLN
1	В	1106	GLN

Mol	Chain	Res	Type
1	С	992	GLN
2	D	24	GLN
2	D	49	ASN
2	D	58	ASN
2	D	154	ASN
2	Ε	58	ASN
2	Е	60	GLN
2	Ε	101	GLN
2	Е	472	GLN
2	Е	522	GLN
2	Е	598	GLN
2	Е	599	ASN
2	F	64	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

6 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	True	Chain	Dec	Tinle	Bo	ond leng	ths	Bond angles		
moi Type	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
3	NAG	G	1	3,2	14,14,15	0.43	0	17,19,21	0.36	0
3	NAG	G	2	3	14,14,15	0.41	0	17,19,21	0.34	0
3	NAG	Н	1	3,2	14,14,15	0.49	0	17,19,21	0.38	0
3	NAG	Н	2	3	14,14,15	0.37	0	17,19,21	0.37	0
3	NAG	Ι	1	3,2	14,14,15	0.43	0	17,19,21	0.36	0
3	NAG	Ι	2	3	14,14,15	0.38	0	17,19,21	0.35	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	NAG	G	1	3,2	-	3/6/23/26	0/1/1/1
3	NAG	G	2	3	-	2/6/23/26	0/1/1/1
3	NAG	Н	1	3,2	-	4/6/23/26	0/1/1/1
3	NAG	Н	2	3	-	2/6/23/26	0/1/1/1
3	NAG	Ι	1	3,2	-	2/6/23/26	0/1/1/1
3	NAG	Ι	2	3	-	1/6/23/26	0/1/1/1

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (14) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	G	2	NAG	O5-C5-C6-O6
3	Н	1	NAG	O5-C5-C6-O6
3	Н	1	NAG	C4-C5-C6-O6
3	Н	2	NAG	O5-C5-C6-O6
3	G	2	NAG	C4-C5-C6-O6
3	G	1	NAG	C8-C7-N2-C2
3	G	1	NAG	O7-C7-N2-C2
3	Н	1	NAG	C8-C7-N2-C2
3	Н	1	NAG	O7-C7-N2-C2
3	Ι	1	NAG	C8-C7-N2-C2
3	Ι	1	NAG	O7-C7-N2-C2
3	Н	2	NAG	C4-C5-C6-O6
3	G	1	NAG	O5-C5-C6-O6
3	Ι	2	NAG	C4-C5-C6-O6

There are no ring outliers.

1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	Ι	1	NAG	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

51 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type Chain	Turne	Chain	Dec	Tiple	Bo	Bond lengths			Bond angles		
	Unam	Ites	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2		
4	NAG	Е	702	2	14,14,15	0.33	0	17,19,21	0.34	0	
4	NAG	С	1304	1	14,14,15	0.42	0	17,19,21	0.37	0	
4	NAG	В	1310	1	14,14,15	0.23	0	17,19,21	0.49	0	
4	NAG	В	1309	1	14,14,15	0.20	0	17,19,21	0.47	0	

	T		Ъ	T · 1	Bo	nd leng	ths	Bond angles			
NIOI	Type	Chain	Res	Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
4	NAG	В	1306	1	14,14,15	0.23	0	17,19,21	0.48	0	
4	NAG	А	1307	1	14,14,15	0.20	0	17,19,21	0.45	0	
4	NAG	D	701	2	14,14,15	0.50	0	$17,\!19,\!21$	0.41	0	
4	NAG	F	704	2	14,14,15	0.31	0	$17,\!19,\!21$	0.38	0	
4	NAG	F	705	2	14,14,15	0.37	0	17,19,21	0.35	0	
4	NAG	С	1310	1	14,14,15	0.25	0	17,19,21	0.42	0	
4	NAG	E	704	2	14,14,15	0.26	0	17,19,21	0.53	0	
4	NAG	E	705	2	14,14,15	0.40	0	17,19,21	0.34	0	
4	NAG	F	701	2	14,14,15	0.45	0	17,19,21	0.39	0	
4	NAG	В	1311	1	14,14,15	0.23	0	17,19,21	0.34	0	
4	NAG	A	1301	1	14,14,15	0.78	1 (7%)	17,19,21	0.97	1 (5%)	
4	NAG	D	702	2	14,14,15	0.85	1 (7%)	$17,\!19,\!21$	0.90	1 (5%)	
4	NAG	А	1309	1	14,14,15	0.31	0	$17,\!19,\!21$	0.58	0	
4	NAG	D	705	2	14,14,15	0.89	2 (14%)	$17,\!19,\!21$	0.91	1 (5%)	
4	NAG	F	702	2	14,14,15	0.40	0	17,19,21	0.36	0	
4	NAG	В	1302	1	14,14,15	0.22	0	17,19,21	0.52	0	
4	NAG	С	1314	1	14,14,15	0.30	0	$17,\!19,\!21$	0.40	0	
4	NAG	В	1308	1	14,14,15	0.52	0	17,19,21	0.42	0	
4	NAG	В	1305	1	14,14,15	0.32	0	17,19,21	0.46	0	
4	NAG	A	1303	1	14,14,15	0.36	0	17,19,21	0.36	0	
4	NAG	A	1302	1	14,14,15	0.39	0	17,19,21	0.35	0	
4	NAG	С	1303	1	14,14,15	0.83	1 (7%)	17,19,21	0.98	1 (5%)	
4	NAG	С	1306	1	$14,\!14,\!15$	0.40	0	$17,\!19,\!21$	1.27	1 (5%)	
4	NAG	В	1303	1	14,14,15	0.92	1 (7%)	$17,\!19,\!21$	1.21	1 (5%)	
4	NAG	А	1308	1	14,14,15	0.27	0	17,19,21	0.46	0	
4	NAG	С	1307	1	14,14,15	0.38	0	$17,\!19,\!21$	0.39	0	
4	NAG	А	1305	1	14,14,15	0.44	0	$17,\!19,\!21$	0.38	0	
4	NAG	А	1311	1	14,14,15	0.85	1 (7%)	$17,\!19,\!21$	1.34	1 (5%)	
4	NAG	С	1302	1	14,14,15	0.26	0	17,19,21	0.54	0	
4	NAG	D	703	2	14,14,15	0.47	0	17,19,21	1.25	2 (11%)	
4	NAG	С	1313	1	14,14,15	0.30	0	17,19,21	1.37	2 (11%)	
4	NAG	F	703	2	14,14,15	0.29	0	17,19,21	0.61	0	
4	NAG	В	1301	1	14,14,15	0.38	0	17,19,21	0.45	0	
4	NAG	А	1304	1	14,14,15	0.20	0	17,19,21	0.44	0	
4	NAG	С	1308	1	14,14,15	0.25	0	17,19,21	0.43	0	
4	NAG	В	1304	1	14,14,15	0.33	0	17,19,21	0.62	0	
4	NAG	Е	701	2	14,14,15	0.39	0	17,19,21	0.38	0	
4	NAG	C	1301	1	14,14,15	0.26	0	$17,\!19,\!21$	0.34	0	
4	NAG	С	1311	1	14,14,15	0.23	0	17,19,21	0.52	0	
4	NAG	А	1306	1	14,14,15	0.41	0	17,19,21	0.35	0	
4	NAG	В	1307	1	14,14,15	0.19	0	$17,\!19,\!21$	0.48	0	

Mol Type Chain	Turne	Chain	Bos	Tink	Bo	Bond lengths			Bond angles		
	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2		
4	NAG	С	1305	1	14,14,15	0.30	0	17,19,21	0.36	0	
4	NAG	Е	703	2	14,14,15	0.47	0	$17,\!19,\!21$	1.26	1 (5%)	
4	NAG	А	1310	1	14,14,15	0.23	0	17,19,21	0.36	0	
4	NAG	D	704	2	14,14,15	0.20	0	17,19,21	0.51	0	
4	NAG	С	1312	1	14,14,15	0.84	1 (7%)	$17,\!19,\!21$	1.30	1 (5%)	
4	NAG	С	1309	1	14,14,15	0.35	0	17,19,21	0.57	0	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	NAG	Е	702	2	-	2/6/23/26	0/1/1/1
4	NAG	С	1304	1	-	0/6/23/26	0/1/1/1
4	NAG	В	1310	1	-	3/6/23/26	0/1/1/1
4	NAG	В	1309	1	-	0/6/23/26	0/1/1/1
4	NAG	В	1306	1	-	0/6/23/26	0/1/1/1
4	NAG	А	1307	1	-	1/6/23/26	0/1/1/1
4	NAG	D	701	2	-	2/6/23/26	0/1/1/1
4	NAG	F	704	2	-	0/6/23/26	0/1/1/1
4	NAG	\mathbf{F}	705	2	-	2/6/23/26	0/1/1/1
4	NAG	С	1310	1	-	0/6/23/26	0/1/1/1
4	NAG	Е	704	2	-	3/6/23/26	0/1/1/1
4	NAG	Е	705	2	-	2/6/23/26	0/1/1/1
4	NAG	F	701	2	-	4/6/23/26	0/1/1/1
4	NAG	В	1311	1	-	2/6/23/26	0/1/1/1
4	NAG	А	1301	1	-	4/6/23/26	0/1/1/1
4	NAG	D	702	2	-	2/6/23/26	0/1/1/1
4	NAG	А	1309	1	-	4/6/23/26	0/1/1/1
4	NAG	D	705	2	-	2/6/23/26	0/1/1/1
4	NAG	F	702	2	-	0/6/23/26	0/1/1/1
4	NAG	В	1302	1	-	3/6/23/26	0/1/1/1
4	NAG	С	1314	1	-	4/6/23/26	0/1/1/1
4	NAG	В	1308	1	-	2/6/23/26	0/1/1/1
4	NAG	В	1305	1	-	3/6/23/26	0/1/1/1
4	NAG	А	1303	1	-	4/6/23/26	0/1/1/1
4	NAG	А	1302	1	-	4/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	NAG	С	1303	1	-	2/6/23/26	0/1/1/1
4	NAG	С	1306	1	-	5/6/23/26	0/1/1/1
4	NAG	В	1303	1	-	3/6/23/26	0/1/1/1
4	NAG	А	1308	1	-	3/6/23/26	0/1/1/1
4	NAG	С	1307	1	-	3/6/23/26	0/1/1/1
4	NAG	А	1305	1	-	4/6/23/26	0/1/1/1
4	NAG	А	1311	1	-	4/6/23/26	0/1/1/1
4	NAG	С	1302	1	-	2/6/23/26	0/1/1/1
4	NAG	D	703	2	-	3/6/23/26	0/1/1/1
4	NAG	С	1313	1	-	0/6/23/26	0/1/1/1
4	NAG	F	703	2	-	1/6/23/26	0/1/1/1
4	NAG	В	1301	1	-	4/6/23/26	0/1/1/1
4	NAG	А	1304	1	-	2/6/23/26	0/1/1/1
4	NAG	С	1308	1	-	2/6/23/26	0/1/1/1
4	NAG	В	1304	1	-	3/6/23/26	0/1/1/1
4	NAG	Е	701	2	-	1/6/23/26	0/1/1/1
4	NAG	С	1301	1	-	2/6/23/26	0/1/1/1
4	NAG	С	1311	1	-	2/6/23/26	0/1/1/1
4	NAG	А	1306	1	-	1/6/23/26	0/1/1/1
4	NAG	В	1307	1	-	0/6/23/26	0/1/1/1
4	NAG	С	1305	1	-	2/6/23/26	0/1/1/1
4	NAG	Е	703	2	-	4/6/23/26	0/1/1/1
4	NAG	А	1310	1	-	0/6/23/26	0/1/1/1
4	NAG	D	704	2	-	2/6/23/26	0/1/1/1
4	NAG	С	1312	1	-	2/6/23/26	0/1/1/1
4	NAG	С	1309	1	-	3/6/23/26	0/1/1/1

All (8) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
4	В	1303	NAG	O5-C1	3.17	1.48	1.43
4	А	1311	NAG	O5-C1	3.10	1.48	1.43
4	С	1312	NAG	O5-C1	3.04	1.48	1.43
4	С	1303	NAG	O5-C1	2.64	1.47	1.43
4	D	702	NAG	O5-C1	2.50	1.47	1.43
4	D	705	NAG	O5-C1	2.48	1.47	1.43
4	А	1301	NAG	O5-C1	2.25	1.47	1.43
4	D	705	NAG	C1-C2	2.04	1.55	1.52

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	А	1311	NAG	C1-O5-C5	5.26	119.32	112.19
4	С	1312	NAG	C1-O5-C5	5.14	119.16	112.19
4	С	1313	NAG	C1-O5-C5	4.95	118.90	112.19
4	В	1303	NAG	C1-O5-C5	4.58	118.40	112.19
4	С	1306	NAG	C2-N2-C7	4.32	129.05	122.90
4	Ε	703	NAG	C2-N2-C7	4.29	129.02	122.90
4	D	703	NAG	C2-N2-C7	4.27	128.99	122.90
4	А	1301	NAG	C1-O5-C5	3.81	117.35	112.19
4	С	1303	NAG	C1-O5-C5	3.79	117.32	112.19
4	D	702	NAG	C1-O5-C5	3.48	116.91	112.19
4	D	705	NAG	C1-O5-C5	3.38	116.77	112.19
4	С	1313	NAG	C3-C4-C5	2.07	113.92	110.24
4	D	703	NAG	C1-C2-N2	2.03	113.95	110.49

All (13) bond angle outliers are listed below:

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
4	В	1303	NAG	C4-C5-C6-O6
4	А	1309	NAG	C4-C5-C6-O6
4	Е	702	NAG	C4-C5-C6-O6
4	Е	704	NAG	O5-C5-C6-O6
4	А	1304	NAG	C4-C5-C6-O6
4	А	1301	NAG	O5-C5-C6-O6
4	В	1302	NAG	O5-C5-C6-O6
4	С	1314	NAG	O5-C5-C6-O6
4	С	1302	NAG	C4-C5-C6-O6
4	Е	702	NAG	O5-C5-C6-O6
4	А	1309	NAG	O5-C5-C6-O6
4	А	1311	NAG	O5-C5-C6-O6
4	В	1303	NAG	O5-C5-C6-O6
4	В	1304	NAG	C4-C5-C6-O6
4	А	1304	NAG	O5-C5-C6-O6
4	В	1308	NAG	C4-C5-C6-O6
4	В	1311	NAG	C4-C5-C6-O6
4	С	1306	NAG	O5-C5-C6-O6
4	С	1308	NAG	O5-C5-C6-O6
4	С	1301	NAG	O5-C5-C6-O6
4	С	1308	NAG	C4-C5-C6-O6
4	В	1301	NAG	O5-C5-C6-O6
4	F	701	NAG	O5-C5-C6-O6

All (113) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	С	1309	NAG	O5-C5-C6-O6
4	С	1314	NAG	C4-C5-C6-O6
4	А	1302	NAG	O5-C5-C6-O6
4	А	1305	NAG	O5-C5-C6-O6
4	В	1304	NAG	O5-C5-C6-O6
4	С	1312	NAG	O5-C5-C6-O6
4	D	705	NAG	O5-C5-C6-O6
4	С	1302	NAG	O5-C5-C6-O6
4	В	1305	NAG	O5-C5-C6-O6
4	В	1311	NAG	O5-C5-C6-O6
4	Е	705	NAG	O5-C5-C6-O6
4	А	1301	NAG	C4-C5-C6-O6
4	В	1302	NAG	C4-C5-C6-O6
4	Е	704	NAG	C4-C5-C6-O6
4	В	1310	NAG	O5-C5-C6-O6
4	А	1305	NAG	C4-C5-C6-O6
4	А	1311	NAG	C4-C5-C6-O6
4	В	1305	NAG	C4-C5-C6-O6
4	С	1306	NAG	C4-C5-C6-O6
4	С	1312	NAG	C4-C5-C6-O6
4	А	1301	NAG	C8-C7-N2-C2
4	А	1301	NAG	O7-C7-N2-C2
4	А	1302	NAG	C8-C7-N2-C2
4	А	1302	NAG	O7-C7-N2-C2
4	А	1303	NAG	C8-C7-N2-C2
4	А	1303	NAG	O7-C7-N2-C2
4	А	1305	NAG	C8-C7-N2-C2
4	А	1305	NAG	O7-C7-N2-C2
4	А	1308	NAG	C8-C7-N2-C2
4	А	1308	NAG	07-C7-N2-C2
4	А	1309	NAG	C8-C7-N2-C2
4	A	1309	NAG	O7-C7-N2-C2
4	A	1311	NAG	$C8-C7-N\overline{2-C2}$
4	A	1311	NAG	07-C7-N2-C2
4	В	1301	NAG	C8-C7-N2-C2
4	В	1301	NAG	07-C7-N2-C2
4	С	1303	NAG	C8-C7-N2-C2
4	С	1303	NAG	O7-C7-N2-C2
4	С	1305	NAG	C8-C7-N2-C2
4	С	1305	NAG	O7-C7-N2-C2
4	С	1306	NAG	C8-C7-N2-C2
4	\mathbf{C}	1306	NAG	07-C7-N2-C2

Continued from previous page...

Mol	Chain	Res	Type	Atoms
4	С	1307	NAG	C8-C7-N2-C2
4	С	1307	NAG	O7-C7-N2-C2
4	D	703	NAG	C8-C7-N2-C2
4	D	703	NAG	O7-C7-N2-C2
4	Е	703	NAG	C8-C7-N2-C2
4	Е	703	NAG	O7-C7-N2-C2
4	F	701	NAG	C8-C7-N2-C2
4	F	701	NAG	O7-C7-N2-C2
4	F	705	NAG	C8-C7-N2-C2
4	F	705	NAG	O7-C7-N2-C2
4	В	1308	NAG	O5-C5-C6-O6
4	С	1309	NAG	C4-C5-C6-O6
4	А	1303	NAG	O5-C5-C6-O6
4	С	1311	NAG	O5-C5-C6-O6
4	В	1310	NAG	C4-C5-C6-O6
4	Е	705	NAG	C4-C5-C6-O6
4	D	701	NAG	O5-C5-C6-O6
4	С	1301	NAG	C4-C5-C6-O6
4	С	1314	NAG	C1-C2-N2-C7
4	D	701	NAG	C4-C5-C6-O6
4	F	701	NAG	C4-C5-C6-O6
4	В	1301	NAG	C4-C5-C6-O6
4	А	1302	NAG	C4-C5-C6-O6
4	Ε	703	NAG	O5-C5-C6-O6
4	D	702	NAG	C4-C5-C6-O6
4	D	702	NAG	O5-C5-C6-O6
4	С	1311	NAG	C4-C5-C6-O6
4	С	1307	NAG	O5-C5-C6-O6
4	D	705	NAG	C4-C5-C6-O6
4	А	1307	NAG	O5-C5-C6-O6
4	А	1303	NAG	C4-C5-C6-O6
4	Е	701	NAG	O5-C5-C6-O6
4	D	704	NAG	C4-C5-C6-O6
4	А	1306	NAG	O5-C5-C6-O6
4	С	1309	NAG	C1-C2-N2-C7
4	В	1302	NAG	C3-C2-N2-C7
4	В	1303	NAG	C3-C2-N2-C7
4	В	1304	NAG	C3-C2-N2-C7
4	В	1305	NAG	C3-C2-N2-C7
4	В	1310	NAG	C3-C2-N2-C7
4	D	704	NAG	C3-C2-N2-C7
4	E	704	NAG	C3-C2-N2-C7

Continued from previous page...

Mol	Chain	Res	Type	Atoms
4	F	703	NAG	C3-C2-N2-C7
4	С	1306	NAG	C3-C2-N2-C7
4	С	1314	NAG	C3-C2-N2-C7
4	D	703	NAG	C3-C2-N2-C7
4	Е	703	NAG	C3-C2-N2-C7
4	А	1308	NAG	C4-C5-C6-O6

There are no ring outliers.

13 monomers are involved in 14 short contacts:

Mol	Chain	\mathbf{Res}	Type	Clashes	Symm-Clashes
4	Е	702	NAG	2	0
4	С	1304	NAG	1	0
4	F	704	NAG	1	0
4	F	701	NAG	1	0
4	С	1314	NAG	1	0
4	А	1303	NAG	1	0
4	С	1303	NAG	1	0
4	С	1306	NAG	1	0
4	С	1302	NAG	1	0
4	D	703	NAG	1	0
4	F	703	NAG	1	0
4	А	1306	NAG	1	0
4	Е	703	NAG	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

