

Mar 27, 2023 – 04:53 PM EDT

PDB ID	:	6WDR FMD 21644
	•	ENID-21044
Title	:	Subunit joining exposes nascent pre-40S rRNA for processing and quality con- trol
Authors	:	Rai, J.; Parker, M.D.; Huang, H.; Choy, S.; Ghalei, H.; Johnson, M.C.; Karbstein, K.; Stroupe, M.E.
Deposited on	:	2020-04-01
Resolution	:	3.70 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 50
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.32.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive (#Entries)	${ m EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain
1	А	206	100%
2	С	217	97%
3	D	223	96% .
4	Е	260	99%
5	F	206	6% 100%
6	G	232	98%
7	Н	184	99%
8	Ι	199	93% • 6%

Chain Length Quality of chain Mol ÷. 9 J 185. 98% 9% 10 Κ 96 • 97% i 11 L 14098% • 50% 12М 12599% . ÷. 13Ν 150100% 7% Р 1412798% . Q 1512799% • 16 \mathbf{R} 125• 98% 10% \mathbf{S} . 1713599% Т • 1814398% • U 1910396% • V . 208798% 21W 129. 99% 6% 22Х 14494% 5%• i Υ 2313499% • 6% Ζ 2463• 98% 25b 81 • 96% 13% 63 26 \mathbf{c} 98% • 27 \mathbf{d} 37 95% . . 22% 2863е 75% 24% • 32% f 2971100% 30 317g 100% 29% 78831 k 80% 19% • 232191042% 10% 14% 35%

2 Entry composition (i)

There are 32 unique types of molecules in this entry. The entry contains 74473 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 40S ribosomal protein S0-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	А	206	Total 1611	C 1036	N 285	0 288	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	206	PHE	ASP	conflict	UNP P32905

• Molecule 2 is a protein called 40S ribosomal protein S2.

Mol	Chain	Residues		Ate		AltConf	Trace		
2	С	217	Total 1635	C 1047	N 289	0 297	${f S}{2}$	0	0

• Molecule 3 is a protein called 40S ribosomal protein S3.

Mol	Chain	Residues		At		AltConf	Trace		
3	D	223	Total 1734	C 1101	N 313	0 314	S 6	0	0

• Molecule 4 is a protein called 40S ribosomal protein S4-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	Е	260	Total 2068	C 1316	N 389	O 360	${ m S} { m 3}$	0	0

• Molecule 5 is a protein called 40S ribosomal protein S5.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	F	206	Total 1609	C 1007	N 300	O 299	${ m S} { m 3}$	0	0

• Molecule 6 is a protein called 40S ribosomal protein S6-A.

Mol	Chain	Residues		Ate		AltConf	Trace		
6	G	232	Total 1873	C 1172	N 366	O 332	${ m S} { m 3}$	0	0

• Molecule 7 is a protein called 40S ribosomal protein S7-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
7	Н	184	Total 1481	C 951	N 265	O 265	0	0

• Molecule 8 is a protein called 40S ribosomal protein S8-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
8	Ι	188	Total 1489	C 925	N 298	0 264	${S \over 2}$	0	0

• Molecule 9 is a protein called 40S ribosomal protein S9-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
9	J	185	Total 1494	C 943	N 289	0 261	S 1	0	0

• Molecule 10 is a protein called 40S ribosomal protein S10-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
10	K	96	Total 817	C 529	N 133	O 153	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 11 is a protein called 40S ribosomal protein S11-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
11	L	140	Total 1129	С 724	N 215	0 187	${ m S} { m 3}$	0	0

• Molecule 12 is a protein called 40S ribosomal protein S12.

Mol	Chain	Residues		At	oms	AltConf	Trace		
12	М	125	Total 941	C 591	N 166	0 182	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 13 is a protein called 40S ribosomal protein S13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
13	Ν	150	Total 1192	C 759	N 224	O 207	${ m S} { m 2}$	0	0

• Molecule 14 is a protein called 40S ribosomal protein S15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	Р	127	Total 1001	C 637	N 186	0 171	${ m S} 7$	0	0

• Molecule 15 is a protein called 40S ribosomal protein S16-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
15	Q	127	Total 993	C 640	N 177	O 176	0	0

• Molecule 16 is a protein called 40S ribosomal protein S17-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
16	R	125	Total 1000	C 625	N 188	0 185	${S \over 2}$	0	0

• Molecule 17 is a protein called 40S ribosomal protein S18-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	S	135	Total 1110	C 696	N 215	0 197	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 18 is a protein called 40S ribosomal protein S19-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	Т	143	Total 1112	C 694	N 208	O 208	${ m S} { m 2}$	0	0

• Molecule 19 is a protein called 40S ribosomal protein S20.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	U	103	Total 819	C 519	N 148	0 151	S 1	0	0

• Molecule 20 is a protein called 40S ribosomal protein S21-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
20	V	87	Total 684	C 420	N 125	0 137	${ m S} { m 2}$	0	0

• Molecule 21 is a protein called 40S ribosomal protein S22-A.

Mol	Chain	Residues		At	AltConf	Trace			
21	W	129	Total 1021	C 650	N 188	O 180	${ m S} { m 3}$	0	0

• Molecule 22 is a protein called 40S ribosomal protein S23-A.

Mol	Chain	Residues		At	AltConf	Trace			
22	Х	144	Total 1121	C 708	N 220	0 191	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 23 is a protein called 40S ribosomal protein S24-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
23	Y	134	Total 1073	C 676	N 208	O 189	0	0

• Molecule 24 is a protein called 40S ribosomal protein S25-A.

Mol	Chain	Residues		Aton	ns	AltConf	Trace	
24	Z	63	Total 512	C 328	N 94	O 90	0	0

• Molecule 25 is a protein called 40S ribosomal protein S27-A.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
25	b	81	Total 610	C 382	N 110	0 113	${ m S}{ m 5}$	0	0

• Molecule 26 is a protein called 40S ribosomal protein S28-A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
26	с	63	Total 497	C 306	N 99	0 91	S 1	0	0

• Molecule 27 is a protein called 40S ribosomal protein S29-A.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
27	d	37	Total 302	C 186	N 62	O 50	${S \over 4}$	0	0

• Molecule 28 is a protein called 40S ribosomal protein S30-A.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
28	е	48	Total 384	C 242	N 81	O 59	$\frac{S}{2}$	0	0

• Molecule 29 is a protein called Ubiquitin-40S ribosomal protein S31.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
29	f	71	Total 498	C 309	N 93	O 92	${f S}$ 4	0	0

• Molecule 30 is a protein called Guanine nucleotide-binding protein subunit beta-like protein.

Mol	Chain	Residues		Ate	AltConf	Trace			
30	g	317	Total 2431	C 1538	N 417	0 468	S 8	0	0

• Molecule 31 is a protein called Ribosome biogenesis protein TSR1.

Mol	Chain	Residues		At	AltConf	Trace			
31	k	638	Total 5154	C 3291	N 896	O 953	S 14	0	0

• Molecule 32 is a RNA chain called 20S ribosomal RNA.

Mol	Chain	Residues		1	AltConf	Trace			
32	2	1647	Total 35078	C 15682	N 6196	O 11553	Р 1647	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 40S ribosomal protein S0-A

• Molecule 6: 4	40S ribosomal protein S6-A	
Chain G:	98%	·
M1 R25 R98 R98 D129 D151 K214	1223 1233 1233 1233 1233 1233 1233 1233	
• Molecule 7: 4	40S ribosomal protein S7-A	
Chain H:	99%	·
P4 A12 A52 K83 S187		
• Molecule 8: 4	40S ribosomal protein S8-A	
Chain I:	93%	• 6%
G2 R47 K123 LYS LYS ASN VAL LYS GJU GJU	GLU THR ALA A135 A135 A198 K199 K199 K199	
• Molecule 9: 4	40S ribosomal protein S9-A	
Chain J:	98%	
P2 E20 R78 N101 R175		
• Molecule 10:	40S ribosomal protein S10-A	
Chain K:	97%	·
M1 D36 V55 V55 N81 H85	V87 196 88 199 89 89 89 89 80 80 80 80 80 80 80 80 80 80 80 80 80	
• Molecule 11:	40S ribosomal protein S11-A	
Chain L:	98%	•
T6 K29 R30 R67 T124 A145		
• Molecule 12:	40S ribosomal protein S12	
Chain M:	50% 99%	·

q18 T19 A20 E21 V22 T23 T24 E25 D26 K29 K29 K29 K29	R33 T34 A35 L36 V37 H38 C36 A57 A57 L62 C55 A57 A57 C55 A57 A57 C55 C55 C55 C55 C55 C55 C55 C55 C55 C	171 171 178 178 179 180 181 182 183 184 185 185 185 185 185	189 K90 A92 A94 A94 K95 C96	A101 K105 L106 D107 R108 E109 G110 M111
A112 K113 K114 K124 N126 U126 T130 T130 T130 T133 S134 S133 S134	1136 M137 E138 F140 S141 Q142			
• Molecule 13: 40S ribo	somal protein S13			
Chain N:	100%			
G2 A148 L149 V150 N151				
• Molecule 14: 40S ribo	somal protein S15			
Chain P:	98%		•	
816 R47 E89 M70 M111 G132 A133 A133 H139				
• Molecule 15: 40S ribo	somal protein S16-A			
Chain Q:	99%			
L120				
• Molecule 16: 40S ribo	somal protein S17-A			
Chain R:	98%		•	
d2 L26 V66 q83 N123 V124 S125 A126				
• Molecule 17: 40S ribo	somal protein S18-A			
Chain S:	99%		·	
82 L3 V4 V5 Q8 R16 R16 R16 C23 C23 C23	R123 G124 W129 G135 G135 G135			
• Molecule 18: 40S ribo	somal protein S19-A			
Chain T:	98%		.	

• Molecule 19: 40S ribosomal protein S20

Chain U:	96%	·
119 126 165 165 868 868 868 106 1106 1106	S120 M121	
• Molecule 20: 40S	ribosomal protein S21-A	
Chain V:	98%	
M1 112 112 112		
• Molecule 21: 40S	ribosomal protein S22-A	
Chain W:	99%	:
12 1103 1103		
• Molecule 22: 40S	ribosomal protein S23-A	
Chain X:	94%	5% •
02 RC3 R62 P64 P64 P63 P64 P33 L93 R94 R94	C108 C108 K110 K1112 K113 K114 S145	
• Molecule 23: 40S	ribosomal protein S24-A	
Chain Y:	99%	
22 Ki12 Di15 Di35		
• Molecule 24: 40S	ribosomal protein S25-A	
Chain Z:	98%	·
142 044 044 044 044 044 044 044 044 044 0		

• Molecule 25: 40S ribosomal protein S27-A

Chain b:	96% .	
V2 K36 L41 T65 K82		
• Molecule 26:	40S ribosomal protein S28-A	
Chain c:	98% •	
•• • • • •	▶ ● ●	
T5 P6 E34 T39 R61		
• Molecule 27:	40S ribosomal protein S29-A	
Chain d:	95% • •	
020 V23 T28 R56		
• Molecule 28:	40S ribosomal protein S30-A	
Chain e:	22% • 24%	l
M 42 43 45 53 53 54 54 54 54 54 54 54 54 54 54 54 54 54	AI 1 CILY LAT LAT LAT LAT LAT CILY	
• Molecule 29:	Ubiquitin-40S ribosomal protein S31	
Chain f:	32%	
K82 K83 T186 \$104 Y105 D109	A110 G112 V114 T115 R118 R119 E120 C121 C121 C121 C127 C121 C127 V148 V149 V148 V149 V148 V149 V148 V149 V148 V149 V148 V149 V148 V149 V150 V151	
• Molecule 30:	Guanine nucleotide-binding protein subunit beta-like protein	n
Chain g:	100%	
S3 E1 60 K1 61 A1 62 D1 63 D1 65 S1 66	₩ <mark>1316 1833 1997 1997 1997 1997 1997 1997 1997 19</mark>	
• Molecule 31:	Ribosome biogenesis protein TSR1	
Chain k:	29% 80% • 19%	
	••••	
MET ALA ALA GLY HIS SER HIS ARG SER SER SER SER LEU	ASN LICE LICE LICE LICE LICE LICE LICE LICE	Q64 R65 I66 L67

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, POINT	Depositor
Number of particles used	90692, 90692	Depositor
Resolution determination method	FSC 0.143 CUT-OFF, FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION, PHASE FLIPPING AND	
	AMPLITUDE CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	25.00	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	DIRECT ELECTRON DE-64 (8k x 8k)	Depositor
Maximum map value	0.172	Depositor
Minimum map value	-0.087	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.004	Depositor
Recommended contour level	0.018	Depositor
Map size (Å)	476.16, 476.16, 476.16	wwPDB
Map dimensions	384, 384, 384	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.24, 1.24, 1.24	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		B	ond lengths	Bond angles		
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.73	0/1653	0.65	0/2261	
2	С	0.78	1/1665~(0.1%)	0.70	0/2263	
3	D	0.46	0/1758	0.77	3/2365~(0.1%)	
4	Е	0.81	0/2109	0.69	1/2839~(0.0%)	
5	F	0.36	0/1628	0.59	0/2199	
6	G	0.57	0/1897	0.59	0/2532	
7	Н	0.55	0/1506	0.60	0/2028	
8	Ι	0.72	0/1514	0.63	0/2021	
9	J	0.79	0/1519	0.67	0/2035	
10	Κ	0.40	0/836	0.63	0/1128	
11	L	0.97	0/1155	0.71	0/1557	
12	М	0.27	0/949	0.64	0/1284	
13	Ν	0.66	0/1215	0.61	0/1638	
14	Р	0.34	0/1019	0.62	0/1363	
15	Q	0.45	0/1011	0.61	0/1362	
16	R	0.49	0/1010	0.64	1/1355~(0.1%)	
17	S	0.31	0/1128	0.62	0/1518	
18	Т	0.38	0/1130	0.53	0/1517	
19	U	0.44	0/829	0.62	1/1121~(0.1%)	
20	V	0.73	0/693	0.66	0/935	
21	W	1.03	0/1038	0.82	1/1395~(0.1%)	
22	Х	0.79	0/1139	0.79	1/1518~(0.1%)	
23	Y	0.68	0/1087	0.66	0/1449	
24	Ζ	0.30	0/519	0.59	1/696~(0.1%)	
25	b	0.62	0/620	0.68	2/838~(0.2%)	
26	с	0.35	0/499	0.62	0/670	
27	d	0.54	0/306	0.73	0/404	
28	е	0.56	0/390	0.68	0/517	
29	f	0.31	0/502	0.65	0/673	
30	g	0.36	0/2484	0.60	0/3382	
31	k	0.35	0/5273	0.59	1/7129~(0.0%)	
32	2	1.56	433/39196 (1.1%)	1.49	733/60993~(1.2%)	
All	All	1.18	434/79277~(0.5%)	1.17	745/114985~(0.6%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	1
2	С	0	1
3	D	0	1
8	Ι	0	1
9	J	0	1
10	Κ	0	1
14	Р	0	2
16	R	0	1
18	Т	0	1
19	U	0	1
22	Х	0	4
27	d	0	1
All	All	0	16

All (434) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
32	2	627	G	C6-N1	-8.99	1.33	1.39
32	2	649	G	N7-C5	-8.66	1.34	1.39
32	2	1185	С	N3-C4	-8.38	1.28	1.33
32	2	893	А	N9-C8	-8.20	1.31	1.37
32	2	646	G	C5-C4	-8.16	1.32	1.38
32	2	97	С	C4-C5	-8.05	1.36	1.43
32	2	1168	U	P-O5'	8.00	1.67	1.59
32	2	628	G	N9-C8	-7.88	1.32	1.37
32	2	875	U	C2-N3	-7.84	1.32	1.37
32	2	724	G	C5-C4	-7.83	1.32	1.38
32	2	646	G	N1-C2	-7.76	1.31	1.37
32	2	649	G	C5-C4	-7.60	1.33	1.38
32	2	1185	С	C2-O2	-7.60	1.17	1.24
32	2	1255	U	C2-N3	-7.54	1.32	1.37
32	2	1289	А	N7-C5	-7.50	1.34	1.39
32	2	564	А	N7-C5	-7.50	1.34	1.39
32	2	647	G	C6-N1	-7.49	1.34	1.39
32	2	627	G	C5-C4	-7.47	1.33	1.38
32	2	876	G	C5-C4	-7.47	1.33	1.38
32	2	891	G	C6-N1	-7.46	1.34	1.39
32	2	568	С	N3-C4	-7.43	1.28	1.33
32	2	594	A	N9-C4	-7.43	1.33	1.37

Continueu from previous puge									
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)		
32	2	630	A	N9-C4	-7.35	1.33	1.37		
32	2	835	С	N1-C6	-7.34	1.32	1.37		
32	2	650	A	N7-C5	-7.31	1.34	1.39		
32	2	10	G	N9-C4	-7.31	1.32	1.38		
32	2	600	G	C5-C4	-7.25	1.33	1.38		
32	2	562	А	N7-C5	-7.20	1.34	1.39		
32	2	659	G	N1-C2	-7.16	1.32	1.37		
32	2	712	С	N1-C6	-7.14	1.32	1.37		
32	2	659	G	C5-C4	-7.08	1.33	1.38		
32	2	627	G	N1-C2	-7.04	1.32	1.37		
32	2	891	G	N1-C2	-7.04	1.32	1.37		
32	2	724	G	C6-N1	-7.02	1.34	1.39		
32	2	725	G	C5-C4	-7.00	1.33	1.38		
32	2	571	С	N3-C4	-6.98	1.29	1.33		
32	2	894	G	C6-N1	-6.97	1.34	1.39		
32	2	1452	А	N9-C4	-6.92	1.33	1.37		
32	2	628	G	C5-C4	-6.89	1.33	1.38		
32	2	564	А	N9-C4	-6.89	1.33	1.37		
32	2	873	G	C8-N7	-6.89	1.26	1.30		
32	2	90	С	N3-C4	-6.87	1.29	1.33		
32	2	893	А	N7-C5	-6.86	1.35	1.39		
32	2	99	С	N3-C4	-6.84	1.29	1.33		
32	2	10	G	N7-C5	-6.84	1.35	1.39		
32	2	629	А	N9-C4	-6.83	1.33	1.37		
32	2	109	G	N1-C2	-6.83	1.32	1.37		
32	2	1452	A	N3-C4	-6.82	1.30	1.34		
32	2	1452	A	C5-C4	-6.79	1.33	1.38		
32	2	733	А	C5-C4	-6.79	1.33	1.38		
32	2	109	G	C6-N1	-6.78	1.34	1.39		
32	2	624	С	C4-C5	-6.75	1.37	1.43		
32	2	39	A	N9-C4	-6.74	1.33	1.37		
32	2	1056	G	N9-C4	-6.74	1.32	1.38		
32	2	98	U	N3-C4	-6.73	1.32	1.38		
32	2	108	А	N7-C5	-6.71	1.35	1.39		
32	2	640	G	C5-C4	-6.69	1.33	1.38		
32	2	100	A	C5-C4	-6.69	1.34	1.38		
32	2	894	G	C5-C4	-6.68	1.33	1.38		
32	2	894	G	N7-C5	-6.68	1.35	1.39		
32	2	1260	G	C5-C4	-6.66	1.33	1.38		
32	2	635	G	C5-C4	-6.64	1.33	1.38		
32	2	876	G	N7-C5	-6.63	1.35	1.39		
32	2	621	U	C2-N3	-6.62	1.33	1.37		

Continuea from previous page										
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)			
32	2	57	G	N9-C8	-6.62	1.33	1.37			
32	2	655	G	C5-C4	-6.60	1.33	1.38			
32	2	730	G	N7-C5	-6.57	1.35	1.39			
32	2	893	А	N9-C4	-6.55	1.33	1.37			
32	2	561	С	C4-C5	-6.54	1.37	1.43			
32	2	570	G	C5-C4	-6.54	1.33	1.38			
32	2	1880	А	N9-C4	-6.53	1.33	1.37			
32	2	877	С	C4-C5	-6.52	1.37	1.43			
32	2	628	G	N7-C5	-6.52	1.35	1.39			
32	2	650	А	N9-C4	-6.51	1.33	1.37			
32	2	578	А	N7-C5	-6.51	1.35	1.39			
32	2	1168	U	C4-C5	-6.50	1.37	1.43			
32	2	1448	А	N9-C4	-6.48	1.33	1.37			
32	2	100	А	N9-C8	-6.48	1.32	1.37			
32	2	714	А	N9-C4	-6.47	1.33	1.37			
32	2	1256	U	C2-N3	-6.47	1.33	1.37			
32	2	1573	А	C5-C6	-6.47	1.35	1.41			
32	2	873	G	N7-C5	-6.46	1.35	1.39			
2	С	60	SER	C-N	-6.41	1.19	1.34			
32	2	1443	G	N7-C5	-6.41	1.35	1.39			
32	2	115	G	C5-C4	-6.40	1.33	1.38			
32	2	1006	А	N9-C4	-6.39	1.34	1.37			
32	2	870	G	N7-C5	-6.38	1.35	1.39			
32	2	655	G	C6-N1	-6.37	1.35	1.39			
32	2	1184	G	N7-C5	-6.36	1.35	1.39			
32	2	647	G	N1-C2	-6.36	1.32	1.37			
32	2	1295	А	N9-C4	-6.34	1.34	1.37			
32	2	714	А	N3-C4	-6.34	1.31	1.34			
32	2	894	G	C8-N7	-6.33	1.27	1.30			
32	2	624	С	N3-C4	-6.32	1.29	1.33			
32	2	657	С	C4-C5	-6.32	1.37	1.43			
32	2	108	А	C5-C4	-6.31	1.34	1.38			
32	2	109	G	C5-C4	-6.31	1.33	1.38			
32	2	30	G	N9-C4	-6.31	1.32	1.38			
32	2	873	G	N1-C2	-6.31	1.32	1.37			
32	2	1456	G	C5-C4	-6.30	1.33	1.38			
32	2	102	U	C4-C5	-6.30	1.37	1.43			
32	2	615	А	N9-C4	-6.29	1.34	1.37			
32	2	1185	С	C2-N3	-6.29	1.30	1.35			
32	2	1191	А	N7-C5	-6.29	1.35	1.39			
32	2	1827	С	N1-C6	-6.28	1.33	1.37			
32	2	712	С	N3-C4	-6.27	1.29	1.33			

Continueu from previous page									
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)		
32	2	647	G	C5-C4	-6.27	1.33	1.38		
32	2	568	С	C4-C5	-6.26	1.38	1.43		
32	2	659	G	N7-C5	-6.26	1.35	1.39		
32	2	724	G	N1-C2	-6.24	1.32	1.37		
32	2	1052	А	C5-C4	-6.23	1.34	1.38		
32	2	109	G	N7-C5	-6.22	1.35	1.39		
32	2	711	С	N3-C4	-6.22	1.29	1.33		
32	2	646	G	N7-C5	-6.21	1.35	1.39		
32	2	1184	G	C8-N7	-6.20	1.27	1.30		
32	2	659	G	C6-N1	-6.19	1.35	1.39		
32	2	2	А	N7-C5	-6.19	1.35	1.39		
32	2	894	G	C5-C6	-6.18	1.36	1.42		
32	2	1443	G	C5-C6	-6.18	1.36	1.42		
32	2	656	С	N3-C4	-6.17	1.29	1.33		
32	2	1254	G	C5-C4	-6.17	1.34	1.38		
32	2	24	U	C2-N3	-6.16	1.33	1.37		
32	2	599	G	C5-C4	-6.16	1.34	1.38		
32	2	834	G	C5-C4	-6.16	1.34	1.38		
32	2	570	G	N1-C2	-6.16	1.32	1.37		
32	2	1019	С	N1-C6	-6.15	1.33	1.37		
32	2	873	G	C6-N1	-6.15	1.35	1.39		
32	2	1184	G	C5-C6	-6.15	1.36	1.42		
32	2	99	С	N1-C6	-6.14	1.33	1.37		
32	2	23	G	C5-C4	-6.13	1.34	1.38		
32	2	108	А	N3-C4	-6.11	1.31	1.34		
32	2	644	С	C4-C5	-6.11	1.38	1.43		
32	2	875	U	N1-C2	-6.10	1.33	1.38		
32	2	720	G	C5-C4	-6.10	1.34	1.38		
32	2	1042	А	N7-C5	-6.10	1.35	1.39		
32	2	1182	А	C5-C6	-6.09	1.35	1.41		
32	2	1618	G	N9-C4	-6.09	1.33	1.38		
32	2	1043	G	C5-C4	-6.08	1.34	1.38		
32	2	664	А	C5-C4	-6.04	1.34	1.38		
32	2	630	А	N7-C5	-6.03	1.35	1.39		
32	2	111	U	N3-C4	-6.03	1.33	1.38		
32	2	648	А	C5-C4	-6.02	1.34	1.38		
32	2	1655	А	N9-C4	6.02	1.41	1.37		
32	2	95	G	C5-C4	-6.01	1.34	1.38		
32	2	1258	U	C2-N3	-6.00	1.33	1.37		
32	2	599	G	N3-C4	-5.99	1.31	1.35		
32	2	568	C	N1-C6	-5.99	1.33	1.37		
32	2	91	G	N7-C5	-5.98	1.35	1.39		

OOnu	naca jion	i previe	ius puye.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
32	2	1236	А	C5-C4	-5.97	1.34	1.38
32	2	565	U	C2-N3	-5.97	1.33	1.37
32	2	659	G	C8-N7	-5.96	1.27	1.30
32	2	640	G	N1-C2	-5.96	1.32	1.37
32	2	649	G	N1-C2	-5.96	1.32	1.37
32	2	667	G	C6-N1	-5.96	1.35	1.39
32	2	650	А	N9-C8	-5.95	1.32	1.37
32	2	707	С	C4-C5	-5.95	1.38	1.43
32	2	688	А	N7-C5	-5.93	1.35	1.39
32	2	623	А	N7-C5	-5.92	1.35	1.39
32	2	1053	А	N7-C5	-5.92	1.35	1.39
32	2	615	А	C5-C4	-5.91	1.34	1.38
32	2	722	G	N9-C8	-5.91	1.33	1.37
32	2	735	U	C2-N3	-5.89	1.33	1.37
32	2	870	G	N3-C4	-5.89	1.31	1.35
32	2	621	U	N3-C4	-5.89	1.33	1.38
32	2	597	G	C5-C4	-5.87	1.34	1.38
32	2	1253	G	N7-C5	-5.87	1.35	1.39
32	2	573	С	N1-C6	-5.86	1.33	1.37
32	2	636	G	N9-C4	-5.86	1.33	1.38
32	2	1140	А	N9-C4	-5.85	1.34	1.37
32	2	1163	А	N7-C5	-5.84	1.35	1.39
32	2	790	А	N9-C4	-5.83	1.34	1.37
32	2	873	G	N9-C8	-5.83	1.33	1.37
32	2	580	С	N3-C4	-5.83	1.29	1.33
32	2	47	А	N7-C5	-5.82	1.35	1.39
32	2	653	G	N9-C8	-5.82	1.33	1.37
32	2	866	U	N1-C2	-5.80	1.33	1.38
32	2	685	G	C6-N1	-5.80	1.35	1.39
32	2	1444	G	C5-C4	-5.78	1.34	1.38
32	2	97	C	N3-C4	-5.78	1.29	1.33
32	2	1881	С	N3-C4	-5.77	1.29	1.33
32	2	893	A	N3-C4	-5.76	1.31	1.34
32	2	878	A	N7-C5	-5.76	1.35	1.39
32	2	725	G	N1-C2	-5.76	1.33	1.37
32	2	655	G	N1-C2	-5.76	1.33	1.37
32	2	1016	А	N7-C5	-5.76	1.35	1.39
32	2	95	G	N7-C5	-5.75	1.35	1.39
32	2	1003	A	N9-C4	-5.75	1.34	1.37
32	2	697	G	C5-C4	-5.74	1.34	1.38
32	2	1003	A	C5-C4	-5.74	1.34	1.38
32	2	569	U	C2-N3	-5.74	1.33	1.37

COIIII	пией јгоп	ι ριευιί	vus puye.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
32	2	620	G	N7-C5	-5.74	1.35	1.39
32	2	563	А	N9-C4	-5.71	1.34	1.37
32	2	636	G	N7-C5	-5.71	1.35	1.39
32	2	896	U	C2-N3	-5.71	1.33	1.37
32	2	1053	А	N9-C4	-5.70	1.34	1.37
32	2	1258	U	N3-C4	-5.70	1.33	1.38
32	2	564	А	N3-C4	-5.70	1.31	1.34
32	2	706	С	C4-C5	-5.69	1.38	1.43
32	2	20	G	N7-C5	-5.68	1.35	1.39
32	2	657	С	N1-C6	-5.68	1.33	1.37
32	2	885	А	N9-C4	-5.68	1.34	1.37
32	2	1260	G	N7-C5	-5.66	1.35	1.39
32	2	999	А	C6-N1	-5.66	1.31	1.35
32	2	625	G	C6-N1	-5.66	1.35	1.39
32	2	24	U	N1-C2	-5.65	1.33	1.38
32	2	1042	А	C5-C6	-5.65	1.35	1.41
32	2	96	G	C6-N1	-5.65	1.35	1.39
32	2	655	G	N7-C5	-5.64	1.35	1.39
32	2	660	А	C5-C4	-5.64	1.34	1.38
32	2	19	А	N3-C4	-5.64	1.31	1.34
32	2	895	U	C2-N3	-5.64	1.33	1.37
32	2	1050	А	N7-C5	-5.64	1.35	1.39
32	2	698	С	N1-C6	-5.63	1.33	1.37
32	2	20	G	N9-C8	-5.62	1.33	1.37
32	2	1253	G	C5-C4	-5.62	1.34	1.38
32	2	1485	С	N3-C4	-5.61	1.30	1.33
32	2	1824	G	C6-N1	-5.61	1.35	1.39
32	2	581	U	C2-N3	-5.61	1.33	1.37
32	2	664	А	N7-C5	-5.60	1.35	1.39
32	2	1260	G	C6-N1	-5.59	1.35	1.39
32	2	898	А	N9-C4	-5.59	1.34	1.37
32	2	614	С	N1-C6	-5.58	1.33	1.37
32	2	1007	G	C6-N1	-5.58	1.35	1.39
32	2	655	G	N9-C8	-5.58	1.33	1.37
32	2	1255	U	N3-C4	-5.57	1.33	1.38
32	2	1168	U	C3'-O3'	5.56	1.50	1.42
32	2	1449	G	C5-C4	-5.56	1.34	1.38
32	2	1488	А	N9-C4	-5.56	1.34	1.37
32	2	649	G	C8-N7	-5.56	1.27	1.30
32	2	713	U	N1-C2	-5.56	1.33	1.38
32	2	669	U	C2-N3	-5.55	1.33	1.37
32	2	1043	l G	N1-C2	-5.55	1.33	1.37

COIIII	писи јгоп	i previc	rus puye.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(Å)
32	2	866	U	C2-N3	-5.55	1.33	1.37
32	2	90	С	N1-C6	-5.54	1.33	1.37
32	2	651	G	C8-N7	-5.54	1.27	1.30
32	2	660	А	N7-C5	-5.54	1.35	1.39
32	2	617	С	C4-C5	-5.53	1.38	1.43
32	2	38	С	N3-C4	-5.52	1.30	1.33
32	2	898	А	N7-C5	-5.52	1.35	1.39
32	2	624	С	N1-C2	-5.51	1.34	1.40
32	2	627	G	N3-C4	-5.51	1.31	1.35
32	2	725	G	C6-N1	-5.51	1.35	1.39
32	2	732	С	N1-C6	-5.51	1.33	1.37
32	2	615	А	N7-C5	-5.50	1.35	1.39
32	2	1568	G	N7-C5	-5.50	1.35	1.39
32	2	637	U	C4-C5	-5.48	1.38	1.43
32	2	668	С	N3-C4	-5.47	1.30	1.33
32	2	631	U	C2-N3	-5.47	1.33	1.37
32	2	646	G	N9-C8	-5.47	1.34	1.37
32	2	885	А	C5-C6	-5.47	1.36	1.41
32	2	115	G	N9-C8	-5.47	1.34	1.37
32	2	1251	U	C2-N3	-5.47	1.33	1.37
32	2	1257	С	C4-C5	-5.46	1.38	1.43
32	2	854	А	N9-C4	-5.46	1.34	1.37
32	2	897	G	N1-C2	-5.45	1.33	1.37
32	2	1037	А	N7-C5	-5.44	1.35	1.39
32	2	1168	U	O3'-P	5.43	1.67	1.61
32	2	99	C	C2-N3	-5.43	1.31	1.35
32	2	700	A	C6-N1	-5.43	1.31	1.35
32	2	1280	А	N9-C4	-5.43	1.34	1.37
32	2	862	А	N7-C5	-5.42	1.35	1.39
32	2	699	A	N7-C5	-5.42	1.35	1.39
32	2	656	С	N1-C6	-5.42	1.33	1.37
32	2	720	G	N1-C2	-5.42	1.33	1.37
32	2	997	G	C2-N3	-5.42	1.28	1.32
32	2	108	A	C6-N1	-5.42	1.31	1.35
32	2	92	A	N7-C5	-5.41	1.36	1.39
32	2	1042	А	C5-C4	-5.41	1.34	1.38
32	2	613	U	C2-N3	-5.40	1.33	1.37
32	2	644	С	C2-N3	-5.40	1.31	1.35
32	2	$72\overline{1}$	G	N1-C2	-5.40	1.33	1.37
32	2	662	A	N9-C8	-5.40	1.33	1.37
32	2	63	G	C6-N1	-5.40	1.35	1.39
$3\overline{2}$	2	560	U	C4-C5	-5.40	1.38	1.43

Continuea from previous page									
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)		
32	2	602	С	N3-C4	-5.40	1.30	1.33		
32	2	57	G	N7-C5	-5.40	1.36	1.39		
32	2	43	А	N9-C4	-5.39	1.34	1.37		
32	2	111	U	C2-N3	-5.39	1.33	1.37		
32	2	588	G	N9-C8	-5.39	1.34	1.37		
32	2	630	А	C5-C4	-5.39	1.34	1.38		
32	2	721	G	C6-N1	-5.38	1.35	1.39		
32	2	662	А	N7-C5	-5.38	1.36	1.39		
32	2	890	С	N3-C4	-5.38	1.30	1.33		
32	2	1572	С	N1-C6	-5.38	1.33	1.37		
32	2	876	G	C8-N7	-5.38	1.27	1.30		
32	2	41	А	C5-C4	-5.37	1.34	1.38		
32	2	789	А	N9-C4	-5.37	1.34	1.37		
32	2	835	С	C4-C5	-5.36	1.38	1.43		
32	2	662	А	C5-C4	-5.36	1.34	1.38		
32	2	650	А	C8-N7	-5.36	1.27	1.31		
32	2	667	G	N1-C2	-5.36	1.33	1.37		
32	2	1260	G	N9-C8	-5.36	1.34	1.37		
32	2	894	G	C6-O6	-5.35	1.19	1.24		
32	2	640	G	C6-N1	-5.35	1.35	1.39		
32	2	627	G	N9-C8	-5.34	1.34	1.37		
32	2	36	С	N1-C6	-5.34	1.33	1.37		
32	2	113	U	N1-C2	-5.34	1.33	1.38		
32	2	570	G	C6-N1	-5.34	1.35	1.39		
32	2	885	А	N3-C4	-5.34	1.31	1.34		
32	2	1258	U	C4-C5	-5.34	1.38	1.43		
32	2	636	G	C5-C4	-5.33	1.34	1.38		
32	2	894	G	N1-C2	-5.33	1.33	1.37		
32	2	1247	U	N1-C2	-5.33	1.33	1.38		
32	2	633	А	N7-C5	-5.32	1.36	1.39		
32	2	93	А	N7-C5	-5.32	1.36	1.39		
32	2	618	G	N7-C5	-5.31	1.36	1.39		
32	2	654	А	C5-C4	-5.30	1.35	1.38		
32	2	23	G	N9-C8	-5.30	1.34	1.37		
32	2	556	U	C2-N3	-5.30	1.34	1.37		
32	2	1008	А	N9-C4	-5.30	1.34	1.37		
32	2	1009	G	C5-C4	-5.29	1.34	1.38		
32	2	653	G	N7-C5	-5.29	1.36	1.39		
32	2	580	С	N1-C6	-5.28	1.33	1.37		
32	2	838	C	C2-N3	-5.28	1.31	1.35		
32	2	867	A	C5-C4	-5.27	1.35	1.38		
32	2	688	A	C6-N6	-5.27	1.29	1.33		

 α tio d fa

OOnu	<i>nucu jron</i>	i previe	ius puyc.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
32	2	647	G	N3-C4	-5.27	1.31	1.35
32	2	715	А	N7-C5	-5.27	1.36	1.39
32	2	571	С	C2-N3	-5.26	1.31	1.35
32	2	599	G	N9-C8	-5.26	1.34	1.37
32	2	601	С	N3-C4	-5.26	1.30	1.33
32	2	624	С	C2-N3	-5.26	1.31	1.35
32	2	1005	U	C2-N3	-5.26	1.34	1.37
32	2	629	А	C5-C4	-5.25	1.35	1.38
32	2	1182	А	C5-C4	-5.25	1.35	1.38
32	2	854	А	N3-C4	-5.25	1.31	1.34
32	2	665	С	N1-C6	-5.25	1.34	1.37
32	2	867	А	N9-C8	-5.24	1.33	1.37
32	2	601	С	N1-C6	-5.23	1.34	1.37
32	2	1043	G	C6-N1	-5.23	1.35	1.39
32	2	1455	U	C2-N3	-5.23	1.34	1.37
32	2	725	G	C8-N7	-5.23	1.27	1.30
32	2	28	А	N9-C4	-5.22	1.34	1.37
32	2	585	G	N7-C5	-5.22	1.36	1.39
32	2	654	A	N9-C8	-5.21	1.33	1.37
32	2	1045	А	C5-C4	-5.21	1.35	1.38
32	2	1244	А	N7-C5	-5.21	1.36	1.39
32	2	95	G	C6-N1	-5.21	1.35	1.39
32	2	1112	G	C6-N1	-5.21	1.35	1.39
32	2	1427	А	N9-C4	5.21	1.41	1.37
32	2	720	G	N9-C8	-5.21	1.34	1.37
32	2	27	U	C2-N3	-5.20	1.34	1.37
32	2	722	G	C6-N1	-5.20	1.35	1.39
32	2	1015	A	N9-C4	-5.20	1.34	1.37
32	2	628	G	C8-N7	-5.20	1.27	1.30
32	2	649	G	N9-C8	-5.20	1.34	1.37
32	2	1448	A	C5-C4	-5.20	1.35	1.38
32	2	61	A	N7-C5	-5.19	1.36	1.39
32	2	423	С	C4-C5	-5.19	1.38	1.43
32	2	871	U	C2-N3	-5.19	1.34	1.37
32	2	644	С	N1-C2	-5.18	1.34	1.40
32	2	574	U	N1-C2	-5.18	1.33	1.38
32	2	889	U	C4-C5	-5.18	1.38	1.43
32	2	103	A	C6-N1	-5.18	1.31	1.35
32	2	103	A	N7-C5	-5.17	1.36	1.39
32	2	597	G	N3-C4	-5.17	1.31	1.35
32	2	645	C	N1-C2	-5.17	1.34	1.40
- 32	2	21	I U	C2-N3	-5.17	1.34	1.37

Continued from previous page...

COmit	пией јгон	i previc	rus page.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
32	2	53	G	C5-C4	-5.17	1.34	1.38
32	2	724	G	N9-C8	-5.17	1.34	1.37
32	2	868	А	C5-C4	-5.17	1.35	1.38
32	2	1053	А	C5-C6	-5.16	1.36	1.41
32	2	20	G	C8-N7	-5.16	1.27	1.30
32	2	115	G	N1-C2	-5.16	1.33	1.37
32	2	898	А	N3-C4	-5.16	1.31	1.34
32	2	651	G	C2-N3	-5.16	1.28	1.32
32	2	1450	U	C2-N3	-5.16	1.34	1.37
32	2	710	U	N1-C2	-5.16	1.33	1.38
32	2	993	С	N3-C4	-5.15	1.30	1.33
32	2	1006	А	N7-C5	-5.15	1.36	1.39
32	2	1044	С	N1-C6	-5.15	1.34	1.37
32	2	1295	А	C5-C4	-5.15	1.35	1.38
32	2	609	G	N7-C5	-5.14	1.36	1.39
32	2	1260	G	N1-C2	-5.14	1.33	1.37
32	2	90	С	C2-N3	-5.14	1.31	1.35
32	2	664	А	N9-C4	-5.14	1.34	1.37
32	2	638	U	C2-N3	-5.14	1.34	1.37
32	2	1155	А	N9-C4	-5.14	1.34	1.37
32	2	95	G	N1-C2	-5.13	1.33	1.37
32	2	567	U	C2-N3	-5.13	1.34	1.37
32	2	110	U	C2-N3	-5.13	1.34	1.37
32	2	1189	С	N3-C4	-5.13	1.30	1.33
32	2	573	С	C4-C5	-5.12	1.38	1.43
32	2	697	G	N3-C4	-5.12	1.31	1.35
32	2	876	G	N9-C8	-5.12	1.34	1.37
32	2	41	А	N7-C5	-5.11	1.36	1.39
32	2	571	С	N1-C6	-5.11	1.34	1.37
32	2	593	G	C6-N1	-5.11	1.35	1.39
32	2	1294	А	C5-C4	-5.11	1.35	1.38
32	2	878	А	C6-N1	-5.11	1.31	1.35
32	2	1259	G	N7-C5	-5.11	1.36	1.39
32	2	721	G	C5-C4	-5.11	1.34	1.38
32	2	1165	U	C4-C5	-5.11	1.39	1.43
32	2	1003	А	C5-C6	-5.10	1.36	1.41
32	2	1448	A	N3-C4	-5.09	1.31	1.34
32	2	106	U	C4-C5	-5.09	1.39	1.43
32	2	597	G	N7-C5	-5.09	1.36	1.39
32	2	1243	A	N9-C4	-5.09	1.34	1.37
32	2	629	A	C6-N1	-5.08	1.31	1.35
32	2	710	U	C4-C5	-5.08	1.39	1.43

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
32	2	645	C	C4-C5	-5.07	1.38	1.43
32	2	1020	A	N9-C4	-5.07	1.34	1.37
32	2	891	G	N9-C8	-5.07	1.34	1.37
32	2	1294	A	N9-C4	-5.07	1.34	1.37
32	2	1433	G	N9-C4	-5.07	1.33	1.38
32	2	667	G	N7-C5	-5.07	1.36	1.39
32	2	569	U	N1-C2	-5.06	1.33	1.38
32	2	110	U	C4-C5	-5.06	1.39	1.43
32	2	562	А	C5-C6	-5.06	1.36	1.41
32	2	870	G	C6-N1	-5.06	1.36	1.39
32	2	714	А	C5-C4	-5.05	1.35	1.38
32	2	1586	U	C4-O4	-5.05	1.19	1.23
32	2	651	G	C5-C4	-5.05	1.34	1.38
32	2	96	G	C2-N3	-5.05	1.28	1.32
32	2	707	С	N3-C4	-5.05	1.30	1.33
32	2	858	G	N9-C8	-5.05	1.34	1.37
32	2	567	U	C4-C5	-5.05	1.39	1.43
32	2	1294	А	N7-C5	-5.05	1.36	1.39
32	2	1048	G	C6-N1	-5.04	1.36	1.39
32	2	700	А	N9-C4	-5.04	1.34	1.37
32	2	646	G	C5-C6	-5.03	1.37	1.42
32	2	510	A	C5-C4	-5.03	1.35	1.38
32	2	1137	С	N1-C6	-5.03	1.34	1.37
32	2	573	С	N1-C2	-5.03	1.35	1.40
32	2	627	G	C8-N7	-5.03	1.27	1.30
32	2	1042	А	C6-N1	-5.02	1.32	1.35
32	2	558	А	C5-C4	-5.02	1.35	1.38
32	2	723	А	N9-C8	-5.02	1.33	1.37
32	2	725	G	N9-C8	-5.01	1.34	1.37
32	2	724	G	C8-N7	-5.01	1.27	1.30
32	2	1483	A	N3-C4	-5.01	1.31	1.34
32	2	601	С	N1-C2	-5.01	1.35	1.40
32	2	109	G	C8-N7	-5.01	1.27	1.30
32	2	18	С	N1-C6	-5.00	1.34	1.37

Continued from previous page...

All (745) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$\operatorname{Ideal}(^{o})$
32	2	1168	U	C5-C6-N1	15.46	130.43	122.70
32	2	892	U	C6-N1-C2	-14.21	112.48	121.00
32	2	1168	U	OP1-P-OP2	-13.91	98.73	119.60
32	2	97	С	C6-N1-C2	-13.89	114.75	120.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	2	1731	U	C2-N1-C1'	13.25	133.60	117.70
32	2	1168	U	O5'-P-OP2	12.82	126.09	110.70
32	2	1733	С	C6-N1-C2	-12.75	115.20	120.30
32	2	1437	U	C2-N1-C1'	12.72	132.96	117.70
32	2	423	С	C6-N1-C2	-12.66	115.24	120.30
32	2	716	U	C2-N1-C1'	12.45	132.64	117.70
32	2	1159	U	N3-C2-O2	-12.39	113.53	122.20
32	2	144	U	N3-C2-O2	-12.22	113.64	122.20
32	2	1731	U	N1-C2-O2	12.18	131.32	122.80
32	2	1437	U	N1-C2-O2	12.16	131.32	122.80
32	2	832	С	N1-C2-O2	12.15	126.19	118.90
32	2	716	U	N1-C2-O2	12.03	131.22	122.80
32	2	836	С	O5'-P-OP1	-11.66	95.21	105.70
32	2	716	U	N3-C2-O2	-11.49	114.16	122.20
32	2	1168	U	C6-N1-C2	-11.35	114.19	121.00
32	2	1437	U	N3-C2-O2	-11.29	114.30	122.20
32	2	1204	U	N1-C2-O2	11.29	130.70	122.80
32	2	1583	С	N1-C2-O2	11.22	125.63	118.90
32	2	1427	А	C2-N3-C4	11.14	116.17	110.60
32	2	1159	U	N1-C2-O2	11.05	130.53	122.80
32	2	1184	G	N1-C6-O6	11.02	126.51	119.90
32	2	693	G	N3-C4-C5	-10.98	123.11	128.60
32	2	832	С	C2-N1-C1'	10.89	130.77	118.80
32	2	1731	U	N3-C2-O2	-10.72	114.69	122.20
32	2	693	G	C2-N3-C4	10.72	117.26	111.90
32	2	1040	U	N3-C2-O2	-10.69	114.72	122.20
32	2	1443	G	C4-C5-N7	10.58	115.03	110.80
32	2	1204	U	C2-N1-C1'	10.54	130.35	117.70
32	2	1168	U	C2-N1-C1'	10.50	130.30	117.70
32	2	836	С	C6-N1-C2	-10.41	116.14	120.30
32	2	890	С	N1-C2-O2	10.32	125.09	118.90
32	2	873	G	C4-N9-C1'	10.25	139.82	126.50
32	2	1184	G	C5-C6-O6	-10.12	122.53	128.60
32	2	1443	G	C6-C5-N7	-9.99	124.41	130.40
32	2	1165	U	C5-C6-N1	9.96	127.68	122.70
32	2	890	C	N3-C2-O2	-9.96	114.93	121.90
32	2	1426	C	C6-N1-C2	-9.95	116.32	120.30
32	2	144	U	N1-C2-O2	9.91	129.74	122.80
32	2	1783	A	C5-C6-N6	-9.81	115.85	123.70
32	2	873	G	C8-N9-C1'	-9.57	114.56	127.00
32	2	890	C	C6-N1-C2	-9.57	116.47	120.30
32	2	1578	C	C5-C6-N1	9.56	125.78	121.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	2	1618	G	N3-C4-C5	9.56	133.38	128.60
32	2	1204	U	N3-C2-O2	-9.49	115.55	122.20
32	2	892	U	N1-C2-N3	9.46	120.58	114.90
32	2	97	С	C5-C6-N1	9.41	125.71	121.00
32	2	1056	G	N3-C4-C5	9.38	133.29	128.60
32	2	423	С	C5-C6-N1	9.37	125.69	121.00
32	2	1615	С	C2-N1-C1'	9.36	129.09	118.80
32	2	101	U	N3-C2-O2	-9.34	115.66	122.20
32	2	892	U	N3-C4-C5	-9.34	108.99	114.60
32	2	1426	С	N1-C2-O2	9.32	124.49	118.90
32	2	1110	U	N3-C2-O2	-9.30	115.69	122.20
32	2	1166	А	O4'-C1'-N9	9.30	115.64	108.20
32	2	835	С	C5-C6-N1	9.28	125.64	121.00
32	2	1731	U	C6-N1-C1'	-9.25	108.25	121.20
32	2	846	С	N1-C2-O2	9.24	124.45	118.90
32	2	539	С	N1-C2-O2	9.23	124.44	118.90
32	2	1426	С	N3-C2-O2	-9.18	115.47	121.90
32	2	716	U	C6-N1-C1'	-9.15	108.39	121.20
32	2	1603	С	N1-C2-O2	9.10	124.36	118.90
32	2	1618	G	C4-N9-C1'	-9.05	114.74	126.50
32	2	1576	А	C2-N3-C4	8.98	115.09	110.60
32	2	671	С	C6-N1-C2	-8.96	116.72	120.30
32	2	1159	U	C2-N1-C1'	8.95	128.43	117.70
32	2	1184	G	C6-C5-N7	-8.93	125.04	130.40
32	2	1583	С	N3-C2-O2	-8.93	115.65	121.90
32	2	858	G	N3-C4-N9	8.90	131.34	126.00
32	2	641	А	C8-N9-C4	-8.89	102.24	105.80
32	2	1030	С	N1-C2-O2	8.87	124.22	118.90
32	2	1110	U	C2-N1-C1'	8.85	128.32	117.70
22	Х	93	LEU	CA-CB-CG	8.84	135.63	115.30
32	2	892	U	O4'-C1'-N1	8.79	115.23	108.20
32	2	693	G	N3-C4-N9	8.78	131.27	126.00
32	2	846	С	C6-N1-C2	-8.74	116.80	120.30
32	2	838	С	N3-C4-C5	8.70	125.38	121.90
32	2	17	С	C6-N1-C2	-8.65	116.84	120.30
32	2	832	С	N3-C2-O2	-8.65	115.84	121.90
32	2	1169	С	O5'-P-OP2	-8.64	97.92	105.70
32	2	1184	G	C4-C5-N7	8.62	114.25	110.80
32	2	1185	С	C6-N1-C2	-8.61	116.86	120.30
32	2	1615	С	N1-C2-O2	8.59	124.06	118.90
32	2	846	С	C2-N1-C1'	8.58	128.24	118.80
32	2	641	A	C2-N3-C4	8.48	114.84	110.60

I ontinued trom	mmoninonio	m a a a
Commuted from p	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	2	890	С	C2-N1-C1'	8.47	128.12	118.80
32	2	1783	А	N1-C6-N6	8.45	123.67	118.60
32	2	832	С	C6-N1-C1'	-8.45	110.66	120.80
32	2	1180	С	C2-N1-C1'	8.45	128.09	118.80
32	2	1185	С	N3-C2-O2	-8.44	115.99	121.90
32	2	572	С	C6-N1-C2	-8.41	116.94	120.30
32	2	100	А	C2-N3-C4	8.41	114.80	110.60
32	2	144	U	C2-N1-C1'	8.40	127.78	117.70
32	2	835	С	C6-N1-C2	-8.39	116.94	120.30
32	2	780	U	N3-C2-O2	-8.37	116.34	122.20
32	2	671	С	C5-C6-N1	8.36	125.18	121.00
32	2	1289	А	N7-C8-N9	8.32	117.96	113.80
32	2	1309	А	C8-N9-C4	-8.31	102.47	105.80
32	2	1182	А	N9-C4-C5	-8.31	102.48	105.80
32	2	627	G	N1-C6-O6	-8.29	114.92	119.90
32	2	1040	U	N1-C2-O2	8.29	128.60	122.80
32	2	1443	G	C5-N7-C8	-8.29	100.16	104.30
32	2	858	G	N3-C4-C5	-8.25	124.47	128.60
32	2	1312	А	C8-N9-C4	-8.25	102.50	105.80
32	2	1616	G	C4-N9-C1'	8.23	137.20	126.50
32	2	1168	U	P-O3'-C3'	8.21	129.56	119.70
32	2	1573	А	O4'-C1'-N9	8.18	114.75	108.20
32	2	1437	U	C6-N1-C1'	-8.18	109.75	121.20
32	2	836	С	C5-C6-N1	8.16	125.08	121.00
32	2	1604	U	N1-C2-O2	8.14	128.50	122.80
32	2	1409	U	N3-C2-O2	-8.13	116.51	122.20
32	2	846	С	C5-C6-N1	8.06	125.03	121.00
32	2	117	U	C5-C6-N1	8.04	126.72	122.70
32	2	1013	U	C2-N1-C1'	8.01	127.32	117.70
32	2	693	G	C5-C6-N1	8.01	115.50	111.50
32	2	1595	U	C2-N1-C1'	8.00	127.31	117.70
32	2	639	С	N1-C2-O2	7.99	123.70	118.90
32	2	857	А	C5-C6-N1	7.99	121.69	117.70
32	2	1641	U	N3-C2-O2	-7.97	116.62	122.20
32	2	873	G	N3-C4-N9	7.97	130.78	126.00
32	2	857	А	C2-N3-C4	7.92	114.56	110.60
32	2	1578	С	C4-C5-C6	-7.91	113.44	117.40
32	2	1040	U	C2-N1-C1'	7.90	127.19	117.70
32	2	1606	G	N7-C8-N9	7.86	117.03	113.10
32	2	693	G	$C4-N9-\overline{C1'}$	7.86	$136.7\overline{2}$	126.50
32	2	780	U	N1-C2-O2	7.86	128.30	122.80
32	2	17	С	C5-C6-N1	7.84	124.92	121.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	2	1618	G	C8-N9-C1'	7.82	137.16	127.00
32	2	1040	U	C6-N1-C2	-7.81	116.31	121.00
32	2	1541	С	N1-C2-O2	7.80	123.58	118.90
32	2	1110	U	N1-C2-O2	7.79	128.25	122.80
32	2	14	С	C6-N1-C2	-7.76	117.20	120.30
32	2	1731	U	C5-C6-N1	7.72	126.56	122.70
32	2	1185	С	N1-C2-N3	7.71	124.60	119.20
32	2	1257	С	C5-C6-N1	7.70	124.85	121.00
32	2	892	U	C6-N1-C1'	7.69	131.97	121.20
32	2	1302	G	N3-C4-N9	7.69	130.61	126.00
32	2	877	С	C5-C6-N1	7.67	124.83	121.00
32	2	54	С	N3-C2-O2	-7.66	116.54	121.90
32	2	1581	G	C6-C5-N7	-7.64	125.81	130.40
32	2	1589	U	O4'-C1'-N1	7.62	114.30	108.20
32	2	641	А	C5-C6-N1	7.61	121.51	117.70
32	2	841	U	C5-C6-N1	7.61	126.50	122.70
32	2	14	С	C5-C6-N1	7.60	124.80	121.00
32	2	1742	G	N3-C4-C5	-7.58	124.81	128.60
32	2	824	G	N3-C4-C5	-7.57	124.81	128.60
32	2	1606	G	C8-N9-C4	-7.57	103.37	106.40
32	2	943	С	O4'-C1'-N1	7.55	114.24	108.20
32	2	1476	G	C4-C5-N7	7.54	113.82	110.80
32	2	1692	G	C4-N9-C1'	7.52	136.27	126.50
32	2	824	G	C4-N9-C1'	7.51	136.26	126.50
32	2	1409	U	C2-N1-C1'	7.50	126.70	117.70
3	D	96	LEU	CA-CB-CG	7.50	132.54	115.30
32	2	1692	G	N3-C4-N9	7.48	130.49	126.00
32	2	1655	А	C2-N3-C4	7.48	114.34	110.60
32	2	1692	G	N3-C4-C5	-7.47	124.86	128.60
32	2	846	С	N3-C2-O2	-7.46	116.68	121.90
32	2	724	G	N1-C6-O6	-7.45	115.43	119.90
32	2	61	А	C5-N7-C8	-7.43	100.19	103.90
32	2	1204	U	C6-N1-C1'	-7.41	110.82	121.20
32	2	100	А	C5-C6-N1	7.41	121.41	117.70
32	2	539	С	N3-C2-O2	-7.41	116.71	121.90
32	2	1605	G	O4'-C1'-N9	7.41	114.12	108.20
32	2	1773	U	C5-C6-N1	7.40	126.40	122.70
32	2	1351	G	C4-N9-C1'	7.39	136.11	126.50
32	2	1742	G	N3-C4-N9	7.36	130.42	126.00
32	2	892	U	C5-C6-N1	7.35	126.38	122.70
3	D	113	LEU	CA-CB-CG	7.35	132.21	115.30
32	2	101	U	N1-C2-O2	7.33	127.93	122.80

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	2	1583	С	C2-N1-C1'	7.33	126.86	118.80
32	2	1639	A	O4'-C1'-N9	7.33	114.06	108.20
32	2	672	С	C6-N1-C2	-7.32	117.37	120.30
32	2	1218	С	N3-C2-O2	-7.29	116.80	121.90
32	2	873	G	C6-C5-N7	-7.29	126.03	130.40
32	2	1734	U	C6-N1-C2	7.27	125.36	121.00
32	2	1615	С	C6-N1-C2	-7.25	117.40	120.30
32	2	857	А	N1-C2-N3	-7.25	125.68	129.30
32	2	1581	G	C5-C6-O6	-7.24	124.25	128.60
32	2	1438	U	C2-N1-C1'	7.22	126.37	117.70
32	2	1257	С	C6-N1-C2	-7.20	117.42	120.30
32	2	1289	А	O4'-C1'-N9	7.19	113.95	108.20
32	2	1595	U	N1-C2-O2	7.19	127.83	122.80
32	2	940	U	N3-C2-O2	-7.18	117.17	122.20
32	2	1638	G	C4-N9-C1'	7.17	135.83	126.50
32	2	101	U	C2-N1-C1'	7.14	126.27	117.70
32	2	1289	A	C8-N9-C4	-7.13	102.95	105.80
32	2	1185	С	O5'-P-OP1	-7.12	99.29	105.70
32	2	54	С	N1-C2-O2	7.11	123.17	118.90
32	2	1181	U	P-O3'-C3'	7.11	128.23	119.70
32	2	880	U	C5-C6-N1	7.09	126.25	122.70
32	2	568	С	C6-N1-C2	-7.07	117.47	120.30
32	2	1185	С	C5-C4-N4	7.04	125.13	120.20
32	2	110	U	C5-C6-N1	7.03	126.22	122.70
32	2	1541	С	C2-N1-C1'	7.03	126.53	118.80
32	2	1615	С	C5-C6-N1	7.03	124.52	121.00
32	2	1643	U	P-O3'-C3'	7.03	128.14	119.70
32	2	1616	G	N3-C4-C5	-7.02	125.09	128.60
32	2	1427	А	C5-C6-N1	7.02	121.21	117.70
32	2	1289	А	C5-N7-C8	-7.00	100.40	103.90
32	2	1437	U	C5-C6-N1	7.00	126.20	122.70
32	2	49	С	N1-C2-O2	6.99	123.10	118.90
32	2	1000	A	O5'-P-OP2	-6.99	99.41	105.70
32	2	641	А	N7-C8-N9	6.98	117.29	113.80
32	2	31	С	C6-N1-C2	-6.98	117.51	120.30
32	2	894	G	C5-N7-C8	-6.97	100.81	104.30
32	2	1603	C	C2-N1-C1'	6.96	126.46	118.80
32	2	1027	U	N3-C2-O2	-6.96	117.33	122.20
32	2	1039	A	O4'-C1'-N9	6.93	113.74	108.20
32	2	1545	C	N1-C2-O2	6.92	123.05	118.90
32	2	1604	U	C2-N1-C1'	6.92	126.00	117.70
32	2	1438	U	O4'-C1'-N1	6.90	113.72	108.20

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
32	2	1289	А	C6-C5-N7	-6.89	127.47	132.30
32	2	1742	G	C2-N3-C4	6.89	115.34	111.90
32	2	891	G	N1-C2-N2	-6.89	110.00	116.20
32	2	1618	G	N3-C4-N9	-6.89	121.87	126.00
32	2	1783	А	N9-C4-C5	-6.88	103.05	105.80
32	2	712	С	C6-N1-C2	-6.87	117.55	120.30
32	2	1218	С	N1-C2-O2	6.87	123.02	118.90
32	2	1541	С	N3-C2-O2	-6.86	117.09	121.90
32	2	730	G	C8-N9-C4	-6.86	103.66	106.40
32	2	110	U	C6-N1-C2	-6.84	116.90	121.00
32	2	1641	U	C2-N1-C1'	6.83	125.89	117.70
32	2	867	А	N1-C6-N6	-6.82	114.51	118.60
32	2	1441	U	C5-C6-N1	6.81	126.11	122.70
32	2	631	U	N3-C2-O2	-6.81	117.44	122.20
32	2	1360	А	C4-N9-C1'	6.81	138.55	126.30
32	2	1734	U	N1-C2-O2	6.80	127.56	122.80
32	2	1485	С	N1-C2-O2	6.80	122.98	118.90
32	2	1580	G	C4-N9-C1'	6.80	135.34	126.50
32	2	891	G	C4-N9-C1'	6.80	135.33	126.50
32	2	1185	С	N3-C4-N4	-6.79	113.25	118.00
32	2	1027	U	C5-C6-N1	6.78	126.09	122.70
32	2	1758	С	C5-C6-N1	6.78	124.39	121.00
32	2	1758	С	C6-N1-C2	-6.78	117.59	120.30
32	2	858	G	C5-C6-N1	6.78	114.89	111.50
32	2	1566	U	N3-C2-O2	-6.78	117.45	122.20
32	2	1604	U	N3-C2-O2	-6.77	117.46	122.20
32	2	1427	А	N1-C6-N6	-6.76	114.55	118.60
32	2	1243	А	C5-N7-C8	-6.75	100.52	103.90
32	2	1409	U	N1-C2-O2	6.74	127.52	122.80
32	2	1463	U	N3-C2-O2	-6.73	117.49	122.20
32	2	855	А	N1-C6-N6	-6.72	114.57	118.60
32	2	1615	С	N3-C2-O2	-6.72	117.20	121.90
32	2	1182	А	N1-C6-N6	6.71	122.63	118.60
32	2	1030	С	N3-C2-O2	-6.70	117.21	121.90
32	2	1576	А	C5-C6-N1	6.69	121.05	117.70
32	2	1056	G	N3-C4-N9	-6.67	122.00	126.00
32	2	1476	G	C6-C5-N7	-6.67	126.40	130.40
32	2	1453	U	N1-C2-O2	6.67	127.47	122.80
32	2	693	G	C8-N9-C4	-6.65	103.74	106.40
32	2	1482	G	C8-N9-C4	-6.64	103.74	106.40
32	2	1641	U	N1-C2-O2	6.64	127.45	122.80
32	2	1182	А	N1-C2-N3	-6.64	125.98	129.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	2	1302	G	N3-C4-C5	-6.63	125.28	128.60
32	2	1581	G	C4-C5-N7	6.62	113.45	110.80
32	2	18	С	C5-C6-N1	6.62	124.31	121.00
32	2	1027	U	N1-C2-O2	6.62	127.43	122.80
32	2	1182	А	C4-C5-N7	6.61	114.01	110.70
32	2	1580	G	N7-C8-N9	6.59	116.39	113.10
32	2	1180	С	N1-C2-O2	6.59	122.85	118.90
32	2	1184	G	N9-C4-C5	-6.58	102.77	105.40
32	2	839	G	C8-N9-C4	-6.58	103.77	106.40
32	2	1891	С	N3-C2-O2	-6.58	117.30	121.90
32	2	824	G	N3-C4-N9	6.57	129.94	126.00
32	2	1056	G	C4-N9-C1'	-6.56	117.97	126.50
32	2	1302	G	C4-N9-C1'	6.56	135.03	126.50
32	2	144	U	C6-N1-C2	-6.53	117.08	121.00
32	2	87	С	N1-C2-O2	6.53	122.82	118.90
32	2	639	С	N3-C2-O2	-6.52	117.33	121.90
32	2	1110	U	C6-N1-C1'	-6.52	112.07	121.20
32	2	1013	U	C6-N1-C1'	-6.51	112.08	121.20
32	2	688	А	C5-C6-N1	6.51	120.95	117.70
32	2	873	G	C4-C5-N7	6.50	113.40	110.80
32	2	1690	U	N1-C2-O2	6.50	127.35	122.80
32	2	102	U	C5-C6-N1	6.50	125.95	122.70
32	2	1445	U	N3-C2-O2	-6.49	117.65	122.20
32	2	670	А	C5-C6-N1	6.49	120.94	117.70
32	2	894	G	C4-C5-N7	6.49	113.39	110.80
32	2	835	С	OP2-P-O3'	6.48	119.46	105.20
32	2	1748	С	N1-C2-O2	6.48	122.79	118.90
32	2	1595	U	C5-C6-N1	6.47	125.94	122.70
32	2	1835	С	N3-C2-O2	-6.47	117.37	121.90
32	2	1168	U	P-O5'-C5'	6.47	131.25	120.90
32	2	1485	С	N3-C2-O2	-6.46	117.38	121.90
32	2	43	А	C4-C5-C6	-6.46	113.77	117.00
32	2	835	С	P-O3'-C3'	-6.45	111.95	119.70
32	2	105	A	N1-C6-N6	-6.45	114.73	118.60
32	2	48	G	C6-C5-N7	-6.44	126.53	130.40
32	2	561	С	C5-C6-N1	6.44	124.22	121.00
32	2	552	U	N1-C2-O2	6.44	127.31	122.80
32	2	552	U	N3-C2-O2	-6.44	117.69	122.20
32	2	601	C	C6-N1-C2	-6.43	117.73	120.30
32	2	1023	C	N3-C2-O2	-6.43	117.40	121.90
32	2	1168	U	N3-C4-O4	6.43	123.90	119.40
32	2	1385	G	O4'-C1'-N9	6.43	113.34	108.20

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	2	1638	G	C8-N9-C1'	-6.43	118.65	127.00
32	2	1182	А	C5-C6-N6	-6.42	118.56	123.70
32	2	894	G	N7-C8-N9	6.42	116.31	113.10
32	2	61	А	C4-C5-N7	6.42	113.91	110.70
32	2	1476	G	C5-N7-C8	-6.41	101.09	104.30
32	2	881	U	O5'-P-OP1	-6.41	99.94	105.70
25	b	36	LYS	C-N-CA	6.40	137.71	121.70
32	2	892	U	C5-C4-O4	6.40	129.74	125.90
32	2	1357	С	N3-C2-O2	-6.39	117.43	121.90
32	2	18	С	C6-N1-C2	-6.38	117.75	120.30
32	2	1401	U	C5-C6-N1	6.37	125.89	122.70
32	2	1605	G	C4-N9-C1'	6.36	134.77	126.50
32	2	1289	А	C4-C5-N7	6.35	113.88	110.70
32	2	1426	С	C5-C6-N1	6.35	124.17	121.00
32	2	423	С	C6-N1-C1'	6.35	128.42	120.80
32	2	1013	U	N1-C2-O2	6.34	127.24	122.80
32	2	1573	А	N1-C6-N6	6.34	122.40	118.60
32	2	836	С	OP1-P-OP2	6.34	129.10	119.60
32	2	1595	U	N3-C2-O2	-6.33	117.77	122.20
32	2	1783	А	N3-C4-N9	6.33	132.46	127.40
32	2	565	U	N3-C2-O2	-6.32	117.77	122.20
32	2	858	G	C2-N3-C4	6.32	115.06	111.90
32	2	1620	U	N3-C2-O2	-6.32	117.78	122.20
32	2	872	U	O5'-P-OP2	-6.31	100.02	105.70
32	2	901	U	N1-C2-O2	6.30	127.21	122.80
32	2	649	G	C8-N9-C4	-6.29	103.88	106.40
32	2	1891	С	N1-C2-O2	6.29	122.68	118.90
32	2	1137	С	N3-C2-O2	-6.29	117.50	121.90
32	2	1616	G	C8-N9-C1'	-6.29	118.83	127.00
32	2	1437	U	C6-N1-C2	-6.28	117.23	121.00
32	2	1443	G	N7-C8-N9	6.28	116.24	113.10
32	2	1754	С	C5-C6-N1	6.28	124.14	121.00
32	2	1439	A	C5-C6-N1	6.28	120.84	117.70
32	2	87	С	N3-C2-O2	-6.27	117.51	121.90
32	2	1692	G	C8-N9-C1'	-6.26	118.86	127.00
32	2	102	U	C6-N1-C2	-6.26	117.25	121.00
32	2	1495	U	P-O3'-C3'	6.25	127.20	119.70
32	2	1633	C	C6-N1-C2	-6.24	117.81	120.30
32	2	1362	C	C6-N1-C2	-6.23	117.81	120.30
32	2	452	C	N1-C2-O2	$6.2\overline{2}$	122.64	118.90
32	2	573	C	C6-N1-C2	-6.21	117.82	120.30
32	2	1165	U	C4-C5-C6	-6.20	115.98	119.70

I ontinued trom	mmoninonio	m a a a
Commuted from p	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	2	561	С	C6-N1-C2	-6.20	117.82	120.30
32	2	1482	G	N7-C8-N9	6.20	116.20	113.10
32	2	845	U	N1-C2-O2	6.19	127.14	122.80
25	b	41	LEU	CA-CB-CG	6.19	129.54	115.30
32	2	1875	U	N3-C2-O2	-6.18	117.88	122.20
32	2	668	С	C6-N1-C2	-6.17	117.83	120.30
32	2	1443	G	N9-C4-C5	-6.17	102.93	105.40
32	2	648	А	N1-C2-N3	-6.17	126.22	129.30
32	2	1302	G	C8-N9-C1'	-6.16	118.99	127.00
32	2	1615	С	C6-N1-C1'	-6.16	113.41	120.80
32	2	1443	G	N1-C6-O6	6.16	123.59	119.90
32	2	1583	С	C6-N1-C1'	-6.15	113.42	120.80
32	2	1690	U	N3-C2-O2	-6.15	117.90	122.20
32	2	1620	U	N1-C2-O2	6.14	127.10	122.80
32	2	1754	С	C6-N1-C2	-6.14	117.84	120.30
32	2	570	G	O5'-P-OP2	-6.14	100.17	105.70
32	2	627	G	C5-C6-N1	6.14	114.57	111.50
32	2	891	G	N3-C4-C5	-6.14	125.53	128.60
32	2	1742	G	C4-N9-C1'	6.14	134.48	126.50
32	2	606	С	C5-C6-N1	6.13	124.07	121.00
32	2	1453	U	N3-C2-O2	-6.13	117.91	122.20
32	2	1441	U	N1-C2-O2	6.13	127.09	122.80
32	2	61	А	N7-C8-N9	6.13	116.86	113.80
32	2	1182	А	C8-N9-C4	6.12	108.25	105.80
32	2	539	С	C2-N1-C1'	6.11	125.52	118.80
32	2	1165	U	C5-C4-O4	-6.11	122.23	125.90
32	2	1383	U	C5-C6-N1	6.11	125.75	122.70
32	2	564	А	C8-N9-C4	-6.11	103.36	105.80
32	2	1616	G	C8-N9-C4	-6.10	103.96	106.40
32	2	804	А	C8-N9-C4	6.10	108.24	105.80
32	2	891	G	C8-N9-C1'	-6.09	119.09	127.00
32	2	855	A	C2-N3-C4	6.08	113.64	110.60
32	2	61	А	N1-C6-N6	6.08	122.25	118.60
32	2	1327	U	N3-C2-O2	-6.08	117.94	122.20
32	2	95	G	N1-C6-O6	-6.07	116.26	119.90
32	2	627	G	C6-N1-C2	-6.07	121.46	125.10
32	2	1168	U	C5'-C4'-O4'	-6.07	101.81	109.10
32	2	1670	С	C6-N1-C2	-6.07	117.87	120.30
32	2	43	A	C6-C5-N7	6.07	136.55	132.30
32	2	1349	С	C6-N1-C2	6.05	122.72	120.30
32	2	1614	G	N3-C4-N9	6.05	129.63	126.00
32	2	530	U	N3-C2-O2	-6.04	117.97	122.20

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	2	877	С	C4-C5-C6	-6.04	114.38	117.40
32	2	672	С	C5-C6-N1	6.04	124.02	121.00
32	2	1351	G	N3-C4-N9	6.03	129.62	126.00
32	2	1427	А	N1-C2-N3	-6.03	126.28	129.30
32	2	1351	G	C8-N9-C1'	-6.03	119.16	127.00
32	2	1484	С	N1-C2-O2	6.03	122.52	118.90
32	2	1312	А	N7-C8-N9	6.03	116.81	113.80
32	2	566	U	C6-N1-C2	-6.02	117.39	121.00
32	2	13	С	C5-C6-N1	6.02	124.01	121.00
32	2	1289	А	C4-N9-C1'	6.02	137.13	126.30
32	2	1168	U	C5-C4-O4	-6.01	122.29	125.90
32	2	1351	G	N3-C4-C5	-6.01	125.59	128.60
32	2	1165	U	N1-C2-O2	6.00	127.00	122.80
32	2	853	С	C6-N1-C1'	6.00	128.00	120.80
32	2	30	G	N3-C4-N9	-5.99	122.41	126.00
32	2	1116	С	N1-C2-O2	5.99	122.49	118.90
32	2	1603	С	C6-N1-C1'	-5.99	113.61	120.80
32	2	641	А	N3-C4-C5	-5.98	122.62	126.80
32	2	1638	G	N3-C4-N9	5.98	129.59	126.00
32	2	982	С	N3-C2-O2	-5.97	117.72	121.90
32	2	861	U	N3-C2-O2	-5.97	118.02	122.20
32	2	1024	G	O4'-C1'-N9	5.96	112.97	108.20
32	2	1580	G	N3-C4-N9	5.96	129.58	126.00
32	2	1023	С	N1-C2-O2	5.96	122.48	118.90
32	2	32	U	C5-C6-N1	5.96	125.68	122.70
32	2	1051	U	C5-C6-N1	5.96	125.68	122.70
32	2	1580	G	C8-N9-C4	-5.96	104.02	106.40
32	2	1438	U	N3-C4-C5	-5.95	111.03	114.60
32	2	1839	U	N1-C2-O2	5.95	126.97	122.80
32	2	1027	U	C6-N1-C2	-5.95	117.43	121.00
32	2	1156	С	C6-N1-C2	-5.95	117.92	120.30
32	2	1692	G	C2-N3-C4	5.95	114.88	111.90
32	2	657	С	C5-C6-N1	5.94	123.97	121.00
32	2	793	С	N1-C2-O2	5.93	122.46	118.90
32	2	1487	U	N3-C2-O2	-5.93	118.05	122.20
32	2	662	А	O5'-P-OP2	-5.93	100.36	105.70
32	2	857	A	C4-C5-C6	-5.93	114.03	117.00
32	2	1107	U	N3-C2-O2	-5.92	118.06	122.20
32	2	1292	G	N7-C8-N9	5.92	116.06	113.10
32	2	530	U	N1-C2-O2	5.91	126.94	122.80
32	2	580	С	N1-C2-O2	5.91	122.45	118.90
32	2	1617	С	N1-C2-O2	5.91	122.45	118.90

32

2

530

U

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	2	655	G	N1-C6-O6	-5.89	116.36	119.90
32	2	1204	U	C5-C6-N1	5.89	125.64	122.70
32	2	1168	U	N1-C2-O2	5.88	126.92	122.80
32	2	1439	А	C2-N3-C4	5.88	113.54	110.60
32	2	11	А	C4-C5-N7	5.88	113.64	110.70
32	2	624	С	C4-C5-C6	-5.88	114.46	117.40
32	2	598	U	C2-N1-C1'	5.87	124.74	117.70
32	2	1748	С	N3-C2-O2	-5.86	117.80	121.90
32	2	1417	G	N3-C4-N9	5.85	129.51	126.00
32	2	1330	G	N3-C2-N2	-5.84	115.81	119.90
32	2	853	С	C6-N1-C2	-5.83	117.97	120.30
32	2	891	G	N3-C4-N9	5.83	129.50	126.00
32	2	900	С	O5'-P-OP1	-5.83	100.45	105.70
32	2	1748	С	C2-N1-C1'	5.83	125.21	118.80
32	2	108	А	C8-N9-C4	-5.82	103.47	105.80
4	Е	9	LEU	CB-CG-CD2	-5.81	101.12	111.00
32	2	1258	U	N1-C2-O2	5.81	126.87	122.80
32	2	771	U	N1-C2-O2	5.81	126.87	122.80
32	2	31	С	C6-N1-C1'	5.80	127.76	120.80
31	k	689	LEU	CA-CB-CG	5.79	128.62	115.30
32	2	1180	С	C6-N1-C1'	-5.79	113.85	120.80
32	2	1168	U	OP1-P-O3'	5.79	117.93	105.20
32	2	1618	G	O4'-C1'-N9	5.78	112.83	108.20
32	2	54	С	C6-N1-C2	-5.78	117.99	120.30
32	2	33	U	C5-C6-N1	5.78	125.59	122.70
32	2	693	G	C8-N9-C1'	-5.77	119.50	127.00
32	2	1766	А	O4'-C1'-N9	5.77	112.81	108.20
32	2	1881	С	N3-C2-O2	-5.77	117.86	121.90
32	2	1029	G	N3-C4-N9	5.75	129.45	126.00
32	2	893	А	N7-C8-N9	5.75	116.68	113.80
32	2	1655	А	N3-C4-N9	5.75	132.00	127.40
32	2	572	С	C5-C6-N1	5.75	123.87	121.00
32	2	824	G	C8-N9-C1'	-5.74	119.53	127.00
32	2	1040	U	C5-C4-O4	5.73	129.34	125.90
32	2	1337	U	N1-C2-O2	5.73	126.81	122.80
32	2	15	U	C5-C6-N1	5.73	125.57	122.70
32	2	1135	U	N1-C2-O2	5.73	126.81	122.80
32	2	1576	А	N3-C4-C5	-5.72	122.80	126.80
32	2	39	А	C8-N9-C4	5.71	108.09	105.80
32	2	1457	U	N3-C2-O2	-5.71	118.20	122.20
32	2	37	U	N3-C2-O2	-5.71	118.21	122.20

Continued from previous page...

Continued on next page...

122.70

125.55

5.71

C5-C6-N1

32

32

32

32

32

32

32

2

2

2

 $\mathbf{2}$

2

2

2

580

1573

659

539

624

1833

771

С

А

G

С

С

А

U

N3-C2-O2

C3'-C2'-C1'

N1-C2-N2

C6-N1-C2

C5-C6-N1

O4'-C1'-N9

N3-C2-O2

Ideal(°) 120.30 119.90 128.60 122.20 121.00 105.80110.80 127.00 119.70 120.30 126.00 126.50 117.70 114.90 113.10 118.90 111.50 118.90 120.30 121.00 125.90 121.90 118.90 121.90 128.60 108.20126.80 128.60 119.70 120.30 122.70 128.60 110.60 122.80 115.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$
32	2	687	С	C6-N1-C2	-5.70	118.02
32	2	1048	G	N1-C6-O6	-5.70	116.48
32	2	1580	G	N3-C4-C5	-5.69	125.75
32	2	991	U	N3-C2-O2	-5.69	118.22
32	2	1409	U	C6-N1-C2	-5.69	117.58
32	2	1341	А	C8-N9-C4	5.69	108.08
32	2	48	G	C4-C5-N7	5.69	113.08
32	2	1742	G	C8-N9-C1'	-5.69	119.61
32	2	856	U	P-O3'-C3'	5.68	126.52
32	2	993	С	C6-N1-C2	-5.68	118.03
32	2	48	G	N3-C4-N9	5.67	129.40
32	2	1417	G	C4-N9-C1'	5.67	133.88
32	2	1027	U	C2-N1-C1'	5.67	124.50
32	2	1734	U	N1-C2-N3	-5.67	111.50
32	2	873	G	N7-C8-N9	5.66	115.93
32	2	1310	С	N1-C2-O2	5.66	122.30
32	2	894	G	C5-C6-N1	5.66	114.33
32	2	1835	С	N1-C2-O2	5.65	122.29
32	2	1484	С	C6-N1-C2	-5.65	118.04
32	2	118	U	C6-N1-C2	-5.64	117.61
32	2	669	U	C5-C4-O4	5.64	129.29
32	2	1484	С	N3-C2-O2	-5.64	117.95
32	2	1357	С	N1-C2-O2	5.64	122.28
32	2	674	С	N3-C2-O2	-5.64	117.95
32	2	1417	G	N3-C4-C5	-5.64	125.78
32	2	61	А	O4'-C1'-N9	5.63	112.71
32	2	1655	А	N3-C4-C5	-5.63	122.86
32	2	873	G	N3-C4-C5	-5.63	125.79
32	2	896	U	C4-C5-C6	-5.63	116.32
32	2	1180	С	C6-N1-C2	-5.62	118.05
32	2	52	U	C5-C6-N1	5.62	125.51
32	2	1433	G	C5-C6-O6	-5.62	125.23
32	2	670	А	C2-N3-C4	5.61	113.41
32	2	1566	U	N1-C2-O2	5.61	126.73
19	U	26	LEU	CA-CB-CG	5.60	128.19

Continued from previous page...

Continued on next page...

121.90

101.50

116.20

120.30

121.00

108.20

122.20

117.98

97.02

111.17

118.06

123.80

112.67

118.29

-5.60

-5.60

-5.59

-5.59

5.59

5.59

-5.59

α \cdots 1	e		
Continued	from	previous	page
	9	1	1 0

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	2	1427	А	N3-C4-N9	5.59	131.87	127.40
32	2	1839	U	N3-C2-O2	-5.59	118.29	122.20
32	2	824	G	C8-N9-C4	-5.58	104.17	106.40
32	2	1056	G	C2-N3-C4	-5.58	109.11	111.90
32	2	148	А	C8-N9-C4	5.58	108.03	105.80
32	2	833	А	N1-C6-N6	-5.58	115.25	118.60
32	2	1426	С	C2-N1-C1'	5.57	124.93	118.80
32	2	571	С	N3-C4-N4	-5.57	114.10	118.00
32	2	1427	А	N3-C4-C5	-5.57	122.90	126.80
32	2	1458	С	C6-N1-C2	-5.57	118.07	120.30
32	2	103	А	C8-N9-C4	-5.56	103.58	105.80
32	2	669	U	N1-C2-N3	5.56	118.24	114.90
32	2	1783	А	C5-C6-N1	5.56	120.48	117.70
32	2	1180	С	C5-C6-N1	5.56	123.78	121.00
32	2	631	U	N1-C2-O2	5.55	126.69	122.80
32	2	1360	А	C8-N9-C1'	-5.55	117.70	127.70
32	2	1441	U	N3-C2-O2	-5.55	118.31	122.20
32	2	1433	G	N1-C6-O6	5.55	123.23	119.90
32	2	1300	С	C5-C6-N1	-5.55	118.22	121.00
3	D	210	GLU	C-N-CD	-5.55	108.40	120.60
32	2	1029	G	C8-N9-C1'	-5.54	119.79	127.00
32	2	1312	А	N3-C4-C5	-5.54	122.92	126.80
32	2	1783	А	C4-C5-N7	5.54	113.47	110.70
32	2	835	С	OP1-P-O3'	-5.54	93.02	105.20
32	2	1443	G	C2-N3-C4	-5.54	109.13	111.90
32	2	1168	U	C2-N3-C4	5.54	130.32	127.00
32	2	1646	С	N3-C2-O2	-5.54	118.03	121.90
32	2	109	G	C5-C6-N1	5.53	114.27	111.50
32	2	11	А	O4'-C1'-N9	5.53	112.63	108.20
32	2	60	U	C5-C6-N1	5.53	125.46	122.70
32	2	541	U	P-O3'-C3'	5.53	126.33	119.70
32	2	530	U	C2-N1-C1'	5.52	124.33	117.70
32	2	1617	С	N3-C2-O2	-5.52	118.03	121.90
32	2	639	С	C5-C6-N1	5.52	123.76	121.00
32	2	1116	С	N3-C2-O2	-5.52	118.04	121.90
32	2	1734	U	N3-C4-O4	-5.52	115.54	119.40
32	2	838	С	C5-C4-N4	-5.51	116.34	120.20
32	2	624	С	N1-C2-O2	5.51	122.21	118.90
32	2	43	A	C4-N9-C1'	-5.51	116.39	126.30
32	2	1044	С	C6-N1-C2	-5.51	118.10	120.30
32	2	892	U	C4-C5-C6	5.50	123.00	119.70
32	2	513	С	N1-C2-O2	5.50	122.20	118.90

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	Ideal(°)
32	2	1457	U	N1-C2-O2	5.50	126.65	122.80
32	2	893	A	C5-N7-C8	-5.49	101.16	103.90
32	2	1231	U	N3-C2-O2	-5.49	118.36	122.20
32	2	1322	G	N3-C4-N9	5.48	129.29	126.00
32	2	894	G	C8-N9-C4	-5.48	104.21	106.40
32	2	1495	U	OP1-P-O3'	5.47	117.25	105.20
32	2	1484	С	C2-N1-C1'	5.47	124.82	118.80
32	2	569	U	C6-N1-C2	-5.47	117.72	121.00
32	2	31	С	C5-C6-N1	5.46	123.73	121.00
32	2	855	А	C5-C6-N1	5.45	120.43	117.70
32	2	1716	U	N3-C2-O2	-5.45	118.38	122.20
16	R	26	LEU	CA-CB-CG	5.45	127.83	115.30
32	2	890	С	C5-C6-N1	5.45	123.72	121.00
32	2	1292	G	C4-N9-C1'	5.44	133.58	126.50
32	2	117	U	C6-N1-C2	-5.44	117.73	121.00
32	2	447	С	N3-C2-O2	-5.44	118.09	121.90
32	2	1594	U	C2-N1-C1'	5.43	124.22	117.70
32	2	730	G	C4-N9-C1'	5.43	133.55	126.50
32	2	897	G	N3-C4-N9	5.42	129.25	126.00
32	2	733	А	C2-N3-C4	5.41	113.31	110.60
32	2	1482	G	C6-C5-N7	-5.41	127.16	130.40
32	2	45	U	O4'-C1'-N1	5.41	112.52	108.20
32	2	698	С	N1-C2-O2	5.40	122.14	118.90
32	2	891	G	N1-C2-N3	5.40	127.14	123.90
32	2	1581	G	N3-C4-N9	5.39	129.24	126.00
32	2	1243	А	N7-C8-N9	5.39	116.49	113.80
32	2	1135	U	N3-C2-O2	-5.38	118.43	122.20
32	2	15	U	C6-N1-C2	-5.38	117.77	121.00
32	2	1034	А	C8-N9-C4	5.38	107.95	105.80
32	2	1159	U	C6-N1-C2	-5.38	117.78	121.00
32	2	104	А	C5-C6-N1	5.37	120.39	117.70
32	2	1655	А	C4-N9-C1'	5.37	135.97	126.30
32	2	894	G	C6-C5-N7	-5.37	127.18	130.40
32	2	1242	С	C6-N1-C2	-5.37	118.15	120.30
32	2	1327	U	N1-C2-O2	5.37	126.56	122.80
32	2	569	U	N3-C2-O2	-5.35	118.45	122.20
32	2	1005	U	O5'-P-OP2	-5.35	100.88	105.70
32	2	826	U	P-O3'-C3'	5.35	126.12	119.70
32	2	1332	C	O5'-P-OP1	5.35	117.12	110.70
32	2	1073	C	C6-N1-C2	-5.35	118.16	120.30
32	2	617	С	C6-N1-C2	-5.34	118.16	120.30
32	2	873	G	O5'-P-OP2	-5.34	100.90	105.70

Continued from previous page...

\mathbf{Mol}	Chain	\mathbf{Res}	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
32	2	43	А	C8-N9-C1'	5.33	137.30	127.70
32	2	999	А	N1-C6-N6	-5.33	115.40	118.60
32	2	1247	U	C5-C6-N1	5.33	125.37	122.70
32	2	1866	А	P-O3'-C3'	5.33	126.09	119.70
32	2	1292	G	C8-N9-C4	-5.32	104.27	106.40
32	2	606	С	C4-C5-C6	-5.32	114.74	117.40
32	2	827	G	O4'-C1'-N9	-5.32	103.95	108.20
32	2	1254	G	O5'-P-OP1	-5.32	100.92	105.70
32	2	711	С	O5'-P-OP2	-5.31	100.92	105.70
32	2	1443	G	C4-N9-C1'	5.31	133.40	126.50
32	2	1603	С	N3-C2-O2	-5.31	118.18	121.90
32	2	109	G	N1-C6-O6	-5.31	116.72	119.90
32	2	878	А	C8-N9-C4	-5.31	103.68	105.80
32	2	908	С	C5-C6-N1	5.30	123.65	121.00
32	2	1358	U	N3-C2-O2	-5.30	118.49	122.20
32	2	1456	G	N1-C6-O6	-5.30	116.72	119.90
32	2	1159	U	C6-N1-C1'	-5.30	113.78	121.20
32	2	1581	G	N1-C6-O6	5.30	123.08	119.90
32	2	1616	G	N3-C4-N9	5.30	129.18	126.00
32	2	645	С	C5-C6-N1	5.29	123.65	121.00
32	2	674	С	N1-C2-O2	5.29	122.08	118.90
32	2	1051	U	C6-N1-C2	-5.29	117.82	121.00
32	2	98	U	N3-C2-O2	-5.29	118.50	122.20
32	2	571	С	N1-C2-N3	5.28	122.90	119.20
32	2	142	G	C4-C5-N7	5.28	112.91	110.80
32	2	835	С	O3'-P-O5'	5.28	114.02	104.00
32	2	845	U	N3-C2-O2	-5.27	118.51	122.20
32	2	1612	А	P-O3'-C3'	5.27	126.02	119.70
32	2	1352	G	C4-N9-C1'	5.27	133.35	126.50
32	2	1541	С	C6-N1-C1'	-5.27	114.48	120.80
32	2	707	С	C5-C6-N1	5.27	123.63	121.00
32	2	1733	С	N3-C4-C5	-5.26	119.80	121.90
32	2	867	А	C2-N3-C4	5.26	113.23	110.60
32	2	452	С	N3-C2-O2	-5.26	118.22	121.90
21	W	103	ILE	CG1-CB-CG2	-5.25	99.84	111.40
32	2	21	U	N3-C2-O2	-5.25	118.52	122.20
32	2	805	А	O4'-C1'-N9	5.25	112.40	108.20
32	2	1346	А	P-O3'-C3'	5.25	126.00	119.70
32	2	21	U	N1-C2-O2	5.24	126.47	122.80
32	2	1024	G	C4-N9-C1'	5.24	133.31	126.50
32	2	831	G	N1-C6-O6	5.23	123.04	119.90
32	2	1360	А	C8-N9-C4	-5.23	103.71	105.80

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	2	645	С	C4-C5-C6	-5.23	114.79	117.40
32	2	877	С	C6-N1-C2	-5.23	118.21	120.30
32	2	1431	С	P-O3'-C3'	5.22	125.97	119.70
32	2	1384	U	C5-C6-N1	5.22	125.31	122.70
32	2	1515	U	N1-C2-O2	5.22	126.45	122.80
32	2	659	G	N3-C4-N9	5.22	129.13	126.00
32	2	11	А	N9-C4-C5	-5.22	103.71	105.80
32	2	106	U	O5'-P-OP1	-5.22	101.00	105.70
32	2	1619	С	C6-N1-C2	-5.22	118.21	120.30
32	2	1167	А	N9-C1'-C2'	-5.22	106.26	112.00
32	2	1328	G	N9-C4-C5	-5.21	103.31	105.40
32	2	1465	А	C5-N7-C8	-5.21	101.29	103.90
32	2	570	G	N1-C6-O6	-5.21	116.77	119.90
32	2	1716	U	N1-C2-O2	5.21	126.45	122.80
32	2	114	С	N3-C4-C5	5.21	123.98	121.90
32	2	1715	С	N1-C2-O2	5.21	122.03	118.90
32	2	1052	А	O5'-P-OP2	-5.21	101.01	105.70
32	2	688	А	N7-C8-N9	5.20	116.40	113.80
32	2	1566	U	C2-N1-C1'	5.20	123.94	117.70
32	2	104	А	O5'-P-OP1	-5.20	101.02	105.70
32	2	827	G	C8-N9-C1'	5.20	133.76	127.00
32	2	724	G	C5-C6-N1	5.20	114.10	111.50
32	2	571	С	N3-C2-O2	-5.19	118.27	121.90
32	2	1255	U	N3-C2-O2	-5.19	118.57	122.20
32	2	1875	U	N1-C2-O2	5.19	126.43	122.80
32	2	977	С	N1-C2-O2	5.19	122.01	118.90
32	2	1039	А	N1-C6-N6	-5.19	115.49	118.60
32	2	826	U	OP2-P-O3'	5.19	116.61	105.20
32	2	838	С	C4-C5-C6	-5.18	114.81	117.40
32	2	1409	U	O4'-C1'-N1	5.18	112.34	108.20
32	2	1168	U	O3'-P-O5'	5.18	113.83	104.00
32	2	1073	С	C5-C6-N1	5.17	123.59	121.00
32	2	1286	С	N1-C2-O2	5.17	122.00	118.90
32	2	549	С	N3-C2-O2	-5.17	118.28	121.90
32	2	596	A	C5-N7-C8	-5.17	101.32	103.90
32	2	11	A	N3-C4-N9	5.16	131.53	127.40
32	2	61	A	C6-C5-N7	-5.16	128.69	132.30
32	2	11	A	C4-N9-C1'	5.16	135.58	126.30
32	2	688	A	C5-N7-C8	-5.16	101.32	103.90
32	2	1433	G	N3-C2-N2	-5.15	116.29	119.90
32	2	1439	A	N1-C6-N6	-5.15	115.51	118.60
32	2	1441	U	C6-N1-C2	-5.15	117.91	121.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	2	1184	G	C2-N3-C4	-5.15	109.33	111.90
32	2	549	С	N1-C2-O2	5.15	121.99	118.90
32	2	1433	G	N1-C2-N2	5.15	120.83	116.20
32	2	447	С	N1-C2-O2	5.14	121.99	118.90
32	2	627	G	N3-C4-C5	-5.14	126.03	128.60
32	2	1163	А	C8-N9-C4	-5.14	103.74	105.80
32	2	1260	G	N3-C4-C5	-5.14	126.03	128.60
32	2	1424	U	O4'-C1'-N1	5.14	112.31	108.20
32	2	20	G	C6-C5-N7	-5.14	127.32	130.40
32	2	546	U	N1-C2-O2	5.14	126.39	122.80
32	2	643	U	OP2-P-O3'	5.13	116.50	105.20
32	2	661	G	N9-C4-C5	5.13	107.45	105.40
32	2	501	U	C2-N1-C1'	5.12	123.84	117.70
32	2	892	U	N3-C2-O2	-5.12	118.62	122.20
32	2	1311	С	OP1-P-O3'	5.12	116.46	105.20
32	2	567	U	C5-C6-N1	5.12	125.26	122.70
24	Ζ	42	LEU	CA-CB-CG	5.11	127.06	115.30
32	2	1312	А	C4-N9-C1'	5.11	135.50	126.30
32	2	560	U	C5-C6-N1	5.11	125.25	122.70
32	2	857	А	O4'-C1'-N9	-5.11	104.12	108.20
32	2	1004	U	C5-C6-N1	5.11	125.25	122.70
32	2	1360	А	N7-C8-N9	5.11	116.35	113.80
32	2	1330	G	C5-C6-O6	-5.10	125.54	128.60
32	2	558	А	C8-N9-C4	5.10	107.84	105.80
32	2	1212	U	C2-N1-C1'	5.09	123.81	117.70
32	2	1056	G	C8-N9-C4	5.09	108.44	106.40
32	2	663	А	OP2-P-O3'	5.09	116.39	105.20
32	2	880	U	OP1-P-OP2	5.08	127.23	119.60
32	2	43	А	O4'-C1'-N9	5.08	112.27	108.20
32	2	693	G	C6-N1-C2	-5.08	122.05	125.10
32	2	901	U	N3-C2-O2	-5.08	118.64	122.20
32	2	1186	С	N3-C2-O2	-5.08	118.34	121.90
32	2	57	G	C4-N9-C1'	5.08	133.10	126.50
32	2	730	G	N3-C4-C5	-5.08	126.06	128.60
32	2	1616	G	C4-C5-C6	5.07	121.84	118.80
32	2	1621	А	N9-C4-C5	-5.07	103.77	105.80
32	2	982	C	N1-C2-O2	5.07	121.94	118.90
32	2	873	G	N9-C4-C5	-5.07	103.37	105.40
32	2	1030	C	C5-C6-N1	5.07	123.53	121.00
32	2	1167	A	C4-C5-N7	5.07	113.23	110.70
32	2	1487	U	N1-C2-O2	5.06	126.34	122.80
32	2	659	G	N3-C2-N2	5.06	123.44	119.90

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	2	845	U	C2-N1-C1'	5.05	123.77	117.70
32	2	1417	G	C8-N9-C1'	-5.05	120.43	127.00
32	2	817	С	O5'-P-OP1	-5.04	101.16	105.70
32	2	832	С	C5-C6-N1	5.04	123.52	121.00
32	2	11	А	C8-N9-C1'	-5.04	118.62	127.70
32	2	571	С	C5-C6-N1	-5.04	118.48	121.00
32	2	640	G	C5-C6-N1	5.04	114.02	111.50
32	2	1438	U	C6-N1-C2	-5.04	117.98	121.00
32	2	149	С	C6-N1-C2	-5.04	118.29	120.30
32	2	1001	А	C8-N9-C4	-5.04	103.79	105.80
32	2	877	С	N1-C2-O2	5.03	121.92	118.90
32	2	605	С	N1-C2-O2	5.03	121.92	118.90
32	2	1247	U	C4-C5-C6	-5.03	116.68	119.70
32	2	1013	U	N3-C2-O2	-5.03	118.68	122.20
32	2	1604	U	C5-C6-N1	5.03	125.21	122.70
32	2	1292	G	C5-N7-C8	-5.03	101.79	104.30
32	2	1833	А	N7-C8-N9	5.02	116.31	113.80
32	2	1257	С	C4-C5-C6	-5.02	114.89	117.40
32	2	873	G	C5-N7-C8	-5.02	101.79	104.30
32	2	885	А	N3-C4-C5	5.02	130.31	126.80
32	2	1440	G	O5'-P-OP1	-5.01	101.19	105.70
32	2	1605	G	C8-N9-C1'	-5.01	120.48	127.00
32	2	733	А	C5-C6-N1	5.01	120.21	117.70
32	2	71	А	N7-C8-N9	5.01	116.31	113.80
32	2	662	А	C5-C6-N1	5.01	120.20	117.70
32	2	872	U	N3-C4-C5	5.00	117.60	114.60
32	2	1360	А	C4-C5-C6	5.00	119.50	117.00

There are no chirality outliers.

All (16) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	158	VAL	Peptide
2	С	106	ASP	Peptide
3	D	210	GLU	Peptide
8	Ι	185	GLU	Peptide
9	J	20	GLU	Peptide
10	Κ	87	VAL	Peptide
14	Р	111	MET	Peptide
14	Р	133	ALA	Peptide
16	R	83	GLN	Peptide
18	Т	79	LEU	Peptide

Mol	Chain	Res	Type	Group
19	U	77	LYS	Peptide
22	Х	108	GLY	Peptide
22	Х	109	ARG	Peptide
22	Х	117	ILE	Peptide
22	Х	63	GLN	Peptide
27	d	23	VAL	Peptide

Continued from previous page...

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	204/206~(99%)	181 (89%)	23 (11%)	0	100	100
2	С	215/217~(99%)	199 (93%)	16 (7%)	0	100	100
3	D	220/223~(99%)	177 (80%)	41 (19%)	2 (1%)	17	54
4	Е	258/260~(99%)	231 (90%)	27 (10%)	0	100	100
5	F	203/206~(98%)	181 (89%)	22 (11%)	0	100	100
6	G	230/232~(99%)	214 (93%)	16 (7%)	0	100	100
7	Н	182/184~(99%)	170 (93%)	12 (7%)	0	100	100
8	Ι	184/199~(92%)	165 (90%)	19 (10%)	0	100	100
9	J	183/185~(99%)	163 (89%)	20 (11%)	0	100	100
10	K	92/96~(96%)	72 (78%)	19 (21%)	1 (1%)	14	50
11	L	138/140~(99%)	123 (89%)	15 (11%)	0	100	100
12	М	123/125~(98%)	99~(80%)	24 (20%)	0	100	100
13	Ν	148/150~(99%)	134 (90%)	14 (10%)	0	100	100
14	Р	119/127 (94%)	89 (75%)	30 (25%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
15	Q	125/127~(98%)	115~(92%)	10 (8%)	0	100	100
16	R	123/125~(98%)	112 (91%)	11 (9%)	0	100	100
17	S	133/135~(98%)	108 (81%)	25~(19%)	0	100	100
18	Т	141/143~(99%)	129 (92%)	12 (8%)	0	100	100
19	U	101/103~(98%)	91 (90%)	10 (10%)	0	100	100
20	V	85/87~(98%)	75~(88%)	10 (12%)	0	100	100
21	W	127/129~(98%)	112 (88%)	15~(12%)	0	100	100
22	Х	142/144~(99%)	116 (82%)	24 (17%)	2 (1%)	11	45
23	Y	132/134~(98%)	123~(93%)	9~(7%)	0	100	100
24	Z	61/63~(97%)	52 (85%)	9~(15%)	0	100	100
25	b	79/81~(98%)	68~(86%)	11 (14%)	0	100	100
26	с	61/63~(97%)	55~(90%)	6 (10%)	0	100	100
27	d	35/37~(95%)	29~(83%)	6 (17%)	0	100	100
28	е	44/63~(70%)	37~(84%)	7~(16%)	0	100	100
29	f	64/71~(90%)	47 (73%)	17 (27%)	0	100	100
30	g	315/317~(99%)	279 (89%)	36 (11%)	0	100	100
31	k	630/788~(80%)	572 (91%)	58 (9%)	0	100	100
All	All	4897/5160 (95%)	4318 (88%)	574 (12%)	5 (0%)	54	83

All (5) Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
22	Х	117	ILE
3	D	211	PRO
10	Κ	54	TYR
3	D	216	PRO
22	Х	64	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	171/173~(99%)	171 (100%)	0	100	100
2	С	176/176~(100%)	172 (98%)	4 (2%)	50	71
3	D	182/182~(100%)	178 (98%)	4 (2%)	52	72
4	Ε	221/221~(100%)	220 (100%)	1 (0%)	88	94
5	F	173/173~(100%)	172 (99%)	1 (1%)	86	93
6	G	198/198~(100%)	193~(98%)	5(2%)	47	70
7	Н	165/165~(100%)	164 (99%)	1 (1%)	86	93
8	Ι	150/160~(94%)	149 (99%)	1 (1%)	84	91
9	J	158/158~(100%)	155 (98%)	3 (2%)	57	76
10	K	89/89~(100%)	88 (99%)	1 (1%)	73	85
11	L	125/125~(100%)	122 (98%)	3 (2%)	49	71
12	М	101/101 (100%)	100 (99%)	1 (1%)	76	86
13	Ν	127/127~(100%)	127 (100%)	0	100	100
14	Р	105/105~(100%)	104 (99%)	1 (1%)	76	86
15	Q	107/107~(100%)	106 (99%)	1 (1%)	78	88
16	R	113/113 (100%)	113 (100%)	0	100	100
17	S	120/120~(100%)	119 (99%)	1 (1%)	81	89
18	Т	115/115~(100%)	113 (98%)	2 (2%)	60	79
19	U	96/96~(100%)	94 (98%)	2 (2%)	53	74
20	V	74/74~(100%)	72 (97%)	2(3%)	44	68
21	W	110/110 (100%)	109 (99%)	1 (1%)	78	88
22	Х	119/119~(100%)	117 (98%)	2 (2%)	60	79
23	Y	112/112~(100%)	110 (98%)	2 (2%)	59	77
24	Z	56/56~(100%)	56 (100%)	0	100	100
25	b	70/70~(100%)	69~(99%)	1 (1%)	67	82
26	с	56/56~(100%)	55 (98%)	1 (2%)	59	77
27	d	33/33~(100%)	31 (94%)	2(6%)	18	50
28	е	40/54~(74%)	39~(98%)	1 (2%)	47	70
29	f	43/62~(69%)	43 (100%)	0	100	100
30	g	259/261~(99%)	258 (100%)	1 (0%)	91	95
31	k	553/703~(79%)	544 (98%)	9(2%)	62	80
All	All	4217/4414 (96%)	4163 (99%)	54 (1%)	70	83

Mol	Chain	Res	Type
2	С	89	GLN
2	С	111	VAL
2	С	113	LEU
2	С	179	VAL
3	D	76	ARG
3	D	154	ASP
3	D	190	ARG
3	D	212	LYS
4	Е	106	LYS
5	F	166	ARG
6	G	25	ARG
6	G	98	ARG
6	G	129	VAL
6	G	151	ASP
6	G	214	LYS
7	Н	83	LYS
8	Ι	47	ARG
9	J	78	ARG
9	J	101	VAL
9	J	175	ARG
10	K	55	VAL
11	L	29	LYS
11	L	67	ARG
11	L	124	THR
12	М	86	VAL
14	Р	47	ARG
15	Q	7	VAL
17	S	132	ARG
18	Т	63	ARG
18	T	105	LEU
19	U	65	ILE
19	U	68	ARG
20	V	4	ASP
20	V	12	TYR
21	W	103	ILE
22	X	23	ARG
22	Х	83	VAL
23	Y	112	LYS
$\overline{23}$	Y	115	ASP
25	b	65	THR
$\overline{26}$	с	67	ARG
$\overline{27}$	d	23	VAL

All (54) residues with a non-rotameric sidechain are listed below:

\mathbf{Mol}	Chain	\mathbf{Res}	Type
27	d	28	THR
28	е	39	LEU
30	g	316	MET
31	k	62	ARG
31	k	343	ARG
31	k	373	ARG
31	k	535	LYS
31	k	546	LYS
31	k	621	ARG
31	k	622	ARG
31	k	712	LYS
31	k	762	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (56) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	193	GLN
2	С	59	HIS
2	С	209	ASN
3	D	101	GLN
3	D	165	ASN
3	D	174	HIS
4	Е	57	ASN
4	Е	98	ASN
4	Е	209	HIS
5	F	122	ASN
5	F	169	ASN
7	Н	74	GLN
7	Н	108	GLN
7	Н	147	ASN
8	Ι	111	GLN
9	J	48	GLN
9	J	112	GLN
10	Κ	17	GLN
13	N	21	ASN
13	N	69	ASN
13	N	105	ASN
13	N	123	HIS
14	Р	98	ASN
14	Р	103	ASN
15	Q	83	GLN
15	Q	100	GLN

Mol	Chain	Res	Type
15	Q	103	ASN
16	R	48	ASN
16	R	105	GLN
17	S	12	GLN
17	S	63	GLN
17	S	71	GLN
17	S	122	HIS
17	S	127	HIS
18	Т	77	ASN
19	U	40	ASN
19	U	48	HIS
20	V	33	GLN
20	V	35	ASN
21	W	80	ASN
21	W	92	ASN
23	Y	77	ASN
23	Y	110	GLN
25	b	51	GLN
27	d	20	GLN
29	f	123	ASN
30	g	187	GLN
30	g	237	GLN
31	k	56	ASN
31	k	255	ASN
31	k	302	GLN
31	k	377	HIS
31	k	506	ASN
31	k	513	GLN
31	k	547	ASN
31	k	638	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
32	2	1613/1910~(84%)	714 (44%)	22 (1%)

All (714) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
32	2	5	U
32	2	9	U

Mol	Chain	Res	Type
32	2	10	G
32	2	13	С
32	2	19	А
32	2	25	С
32	2	26	А
32	2	27	U
32	2	32	U
32	2	34	G
32	2	40	A
32	2	42	G
32	2	45	U
32	2	46	A
32	2	47	А
32	2	50	С
32	2	55	A
32	2	57	G
32	2	58	U
32	2	59	С
32	2	60	U
32	2	66	U
32	2	72	А
32	2	73	U
32	2	74	U
32	2	75	U
32	2	77	U
32	2	82	U
32	2	84	А
32	2	93	А
32	2	96	G
32	2	98	U
32	2	100	A
32	2	101	U
32	2	102	U
32	2	104	A
32	2	108	A
32	2	114	С
32	2	115	G
32	2	116	U
32	2	127	G
32	2	130	C
32	2	131	С
32	2	133	U

Mol	Chain	Res	Type
32	2	134	U
32	2	137	U
32	2	138	А
32	2	141	U
32	2	148	А
32	2	420	А
32	2	422	U
32	2	441	U
32	2	446	U
32	2	448	U
32	2	449	С
32	2	450	G
32	2	453	С
32	2	454	С
32	2	455	U
32	2	457	U
32	2	458	G
32	2	459	G
32	2	460	А
32	2	461	А
32	2	466	U
32	2	478	А
32	2	479	U
32	2	480	А
32	2	481	А
32	2	482	A
32	2	488	А
32	2	490	U
32	2	491	G
32	2	492	U
32	2	493	С
32	2	494	U
32	2	496	С
32	2	498	G
32	2	499	A
32	2	500	С
32	2	503	U
32	2	504	U
32	2	505	U
32	2	513	С
32	2	514	A
32	2	519	A

Mol	Chain	Res	Type
32	2	520	А
32	2	524	U
32	2	525	U
32	2	526	С
32	2	529	A
32	2	530	U
32	2	534	A
32	2	535	U
32	2	537	G
32	2	539	С
32	2	540	U
32	2	542	G
32	2	543	U
32	2	544	G
32	2	551	A
32	2	558	A
32	2	562	A
32	2	568	С
32	2	571	С
32	2	573	С
32	2	577	С
32	2	579	А
32	2	584	С
32	2	585	G
32	2	587	U
32	2	592	G
32	2	599	G
32	2	600	G
32	2	601	С
32	2	604	A
32	2	605	С
32	2	606	С
32	2	615	A
32	2	622	A
32	2	623	A
32	2	624	С
32	2	626	G
32	2	631	U
32	2	635	G
32	2	644	С
32	2	647	G
32	2	656	С

Mol	Chain	Res	Type
32	2	659	G
32	2	663	A
32	2	664	А
32	2	665	С
32	2	667	G
32	2	674	С
32	2	675	A
32	2	679	A
32	2	680	A
32	2	682	G
32	2	686	G
32	2	687	С
32	2	688	А
32	2	689	G
32	2	693	G
32	2	694	С
32	2	695	G
32	2	698	С
32	2	700	А
32	2	701	A
32	2	702	U
32	2	707	С
32	2	708	A
32	2	711	С
32	2	717	U
32	2	718	С
32	2	720	G
32	2	722	G
32	2	730	G
32	2	731	A
32	2	732	С
32	2	738	A
32	2	740	A
32	2	743	G
32	2	744	A
32	2	745	U
32	2	748	A
32	2	749	G
32	2	753	С
32	2	754	С
32	2	755	A
32	2	756	U

Mol	Chain	Res	Type
32	2	758	С
32	2	759	G
32	2	760	G
32	2	763	С
32	2	765	U
32	2	766	G
32	2	767	U
32	2	769	А
32	2	770	U
32	2	771	U
32	2	773	G
32	2	774	А
32	2	782	С
32	2	783	A
32	2	786	G
32	2	790	A
32	2	797	А
32	2	803	G
32	2	804	А
32	2	805	А
32	2	806	С
32	2	808	А
32	2	814	G
32	2	820	G
32	2	822	С
32	2	823	U
32	2	824	G
32	2	825	G
32	2	826	U
32	2	827	G
32	2	828	C
32	2	829	С
32	2	830	A
32	2	831	G
32	2	833	A
32	2	835	C
32	2	836	С
32	2	837	G
32	2	839	G
32	2	840	G
32	2	841	U
32	2	842	А

Mol	Chain	Res	Type
32	2	843	А
32	2	844	U
32	2	845	U
32	2	848	A
32	2	855	А
32	2	856	U
32	2	857	А
32	2	858	G
32	2	859	С
32	2	869	А
32	2	876	G
32	2	879	G
32	2	880	U
32	2	883	A
32	2	885	A
32	2	886	A
32	2	887	G
32	2	889	U
32	2	890	С
32	2	891	G
32	2	892	U
32	2	893	А
32	2	902	U
32	2	903	U
32	2	904	G
32	2	915	G
32	2	916	С
32	2	918	G
32	2	919	G
32	2	921	С
32	2	923	G
32	2	926	U
32	2	927	U
32	2	928	С
32	2	929	С
32	2	930	A
32	2	931	A
32	2	933	G
32	2	937	С
32	2	942	С
32	2	943	С
32	2	944	U

Mol	Chain	Res	Type
32	2	949	G
32	2	951	U
32	2	952	A
32	2	954	С
32	2	959	А
32	2	960	G
32	2	962	С
32	2	963	С
32	2	964	U
32	2	968	G
32	2	969	G
32	2	972	С
32	2	974	U
32	2	977	С
32	2	980	A
32	2	984	G
32	2	985	G
32	2	986	А
32	2	987	С
32	2	989	U
32	2	997	G
32	2	998	А
32	2	999	А
32	2	1000	А
32	2	1007	G
32	2	1011	G
32	2	1012	U
32	2	1014	С
32	2	1020	А
32	2	1021	G
32	2	1025	U
32	2	1027	U
32	2	1028	U
32	2	1029	G
32	2	1030	С
32	2	1035	A
32	2	1036	U
32	2	1039	A
32	2	1040	U
32	2	1049	A
32	2	1053	A
32	2	1056	G

Mol	Chain	Res	Type
32	2	1057	А
32	2	1058	А
32	2	1060	А
32	2	1061	G
32	2	1062	G
32	2	1065	G
32	2	1066	U
32	2	1067	U
32	2	1069	G
32	2	1070	G
32	2	1072	U
32	2	1073	С
32	2	1076	U
32	2	1077	U
32	2	1079	U
32	2	1087	U
32	2	1090	А
32	2	1095	С
32	2	1096	А
32	2	1097	U
32	2	1098	С
32	2	1099	G
32	2	1102	А
32	2	1106	U
32	2	1108	А
32	2	1109	А
32	2	1115	А
32	2	1118	G
32	2	1122	G
32	2	1131	C
32	2	1132	U
32	2	1133	А
32	2	1134	С
32	2	1135	U
32	2	1142	G
32	2	1144	A
32	2	1149	С
32	2	1151	A
32	2	1159	U
32	2	1160	U
32	2	1162	С
32	2	1167	А

Mol	Chain	Res	Type
32	2	1168	U
32	2	1169	С
32	2	1173	С
32	2	1176	U
32	2	1179	А
32	2	1182	А
32	2	1186	С
32	2	1202	G
32	2	1203	G
32	2	1204	U
32	2	1205	G
32	2	1209	U
32	2	1210	U
32	2	1213	А
32	2	1214	А
32	2	1215	U
32	2	1217	А
32	2	1218	С
32	2	1225	G
32	2	1228	А
32	2	1232	U
32	2	1234	С
32	2	1235	G
32	2	1244	А
32	2	1248	С
32	2	1252	G
32	2	1254	G
32	2	1255	U
32	2	1257	С
32	2	1263	G
32	2	1264	G
32	2	1265	А
32	2	1276	А
32	2	1284	A
32	2	1286	С
32	2	1290	A
32	2	1295	А
32	2	1297	U
32	2	1299	A
32	2	1300	С
32	2	1301	G
32	2	1302	G

Mol	Chain	Res	Type
32	2	1303	А
32	2	1304	А
32	2	1307	G
32	2	1308	С
32	2	1309	А
32	2	1310	С
32	2	1311	С
32	2	1312	А
32	2	1313	С
32	2	1315	А
32	2	1318	А
32	2	1319	G
32	2	1321	G
32	2	1322	G
32	2	1327	U
32	2	1328	G
32	2	1331	G
32	2	1332	С
32	2	1333	U
32	2	1336	А
32	2	1337	U
32	2	1339	U
32	2	1340	G
32	2	1341	А
32	2	1342	С
32	2	1343	U
32	2	1346	А
32	2	1347	С
32	2	1349	С
32	2	1350	G
32	2	1351	G
32	2	1353	G
32	2	1354	А
32	2	1355	A
32	2	1356	A
32	2	1357	C
32	2	1358	U
32	2	1359	С
32	2	1361	С
32	2	1362	С
32	2	1363	A
32	2	1364	G

Mol	Chain	Res	Type
32	2	1366	U
32	2	1367	С
32	2	1369	А
32	2	1370	G
32	2	1371	А
32	2	1372	С
32	2	1374	С
32	2	1375	А
32	2	1376	А
32	2	1378	А
32	2	1379	А
32	2	1380	G
32	2	1381	G
32	2	1382	А
32	2	1383	U
32	2	1384	U
32	2	1385	G
32	2	1386	А
32	2	1387	С
32	2	1388	А
32	2	1391	U
32	2	1392	U
32	2	1393	G
32	2	1394	А
32	2	1396	А
32	2	1397	G
32	2	1398	С
32	2	1399	U
32	2	1400	С
32	2	1403	U
32	2	1404	С
32	2	1405	U
32	2	1406	U
32	2	1408	А
32	2	1409	U
32	2	1410	U
32	2	1411	U
32	2	1412	U
32	2	1413	G
32	2	1414	U
32	2	1415	G
32	2	1417	G

Mol	Chain	Res	Type
32	2	1418	U
32	2	1419	G
32	2	1420	G
32	2	1421	U
32	2	1422	G
32	2	1423	G
32	2	1425	G
32	2	1426	С
32	2	1427	А
32	2	1429	G
32	2	1431	С
32	2	1432	С
32	2	1437	U
32	2	1438	U
32	2	1439	A
32	2	1440	G
32	2	1445	U
32	2	1446	G
32	2	1450	U
32	2	1454	U
32	2	1455	U
32	2	1458	С
32	2	1459	U
32	2	1466	U
32	2	1467	U
32	2	1468	G
32	2	1471	А
32	2	1473	А
32	2	1474	А
32	2	1475	С
32	2	1476	G
32	2	1477	A
32	2	1478	A
32	2	1482	G
32	2	1491	С
32	2	1492	U
32	2	1493	А
32	2	1494	C
32	2	1495	U
32	2	1496	A
32	2	1497	A
32	2	1498	А

Mol	Chain	Res	Type	
32	2	1499	U	
32	2	1500	А	
32	2	1501	G	
32	2	1502	U	
32	2	1503	G	
32	2	1504	G	
32	2	1506	G	
32	2	1510	G	
32	2	1511	С	
32	2	1512	А	
32	2	1513	U	
32	2	1514	U	
32	2	1515	U	
32	2	1516	G	
32	2	1518	U	
32	2	1519	G	
32	2	1521	U	
32	2	1522	U	
32	2	1529	U	
32	2	1537	G	
32	2	1540	А	
32	2	1542	U	
32	2	1551	С	
32	2	1554	G	
32	2	1557	G	
32	2	1558	А	
32	2	1559	U	
32	2	1565	U	
32	2	1567	U	
32	2	1573	А	
32	2	1574	А	
32	2	1576	А	
32	2	1577	А	
32	2	1578	С	
32	2	1579	A	
32	2	1580	G	
32	2	1581	G	
32	2	1582	U	
32	2	1583	С	
32	2	1584	U	
32	2	1585	G	
32	2	1586	U	

Mol	Chain	Res	Type	
32	2	1590	G	
32	2	1593	С	
32	2	1594	U	
32	2	1595	U	
32	2	1597	G	
32	2	1598	А	
32	2	1599	С	
32	2	1600	G	
32	2	1601	U	
32	2	1602	U	
32	2	1603	С	
32	2	1605	G	
32	2	1606	G	
32	2	1607	G	
32	2	1608	С	
32	2	1611	С	
32	2	1612	А	
32	2	1613	С	
32	2	1614	G	
32	2	1618	G	
32	2	1619	С	
32	2	1620	U	
32	2	1621	А	
32	2	1623	А	
32	2	1625	U	
32	2	1626	G	
32	2	1630	G	
32	2	1631	А	
32	2	1634	С	
32	2	1636	G	
32	2	1638	G	
32	2	1642	С	
32	2	1643	U	
32	2	1644	А	
32	2	1646	С	
32	2	1649	U	
32	2	1650	G	
32	2	1651	G	
32	2	1652	С	
32	2	1653	С	
32	2	1656	G	
32	2	1662	U	

Mol	Chain	Res	Type
32	2	1666	U
32	2	1667	А
32	2	1668	А
32	2	1669	U
32	2	1670	С
32	2	1672	U
32	2	1673	G
32	2	1675	G
32	2	1676	А
32	2	1681	С
32	2	1687	U
32	2	1688	G
32	2	1689	С
32	2	1690	U
32	2	1692	G
32	2	1693	G
32	2	1694	G
32	2	1695	А
32	2	1696	U
32	2	1697	А
32	2	1698	G
32	2	1700	G
32	2	1701	С
32	2	1703	U
32	2	1704	U
32	2	1705	G
32	2	1709	U
32	2	1710	U
32	2	1711	А
32	2	1713	U
32	2	1715	С
32	2	1716	U
32	2	1720	С
32	2	1721	А
32	2	1722	A
32	2	1732	С
32	2	1733	С
32	2	1734	U
32	2	1735	А
32	2	1736	G
32	2	1740	G
32	2	1742	G

Mol	Chain	Res	Type
32	2	1743	С
32	2	1744	А
32	2	1745	А
32	2	1749	А
32	2	1750	U
32	2	1752	А
32	2	1753	G
32	2	1754	\mathbf{C}
32	2	1755	U
32	2	1756	U
32	2	1757	G
32	2	1759	G
32	2	1765	U
32	2	1766	А
32	2	1767	С
32	2	1770	С
32	2	1771	С
32	2	1774	G
32	2	1775	С
32	2	1781	G
32	2	1782	U
32	2	1783	А
32	2	1786	С
32	2	1787	А
32	2	1788	С
32	2	1790	G
32	2	1791	С
32	2	1792	С
32	2	1793	С
32	2	1794	G
32	2	1795	U
32	2	1797	G
32	2	1798	С
32	2	1799	U
32	2	1800	А
32	2	1801	G
32	2	1802	U
32	2	1803	А
32	2	1804	С
32	2	1805	С
32	2	1807	A
32	2	1809	U

Mol	Chain	Res	Type	
32	2	1811	А	
32	2	1812	А	
32	2	1821	U	
32	2	1826	С	
32	2	1827	С	
32	2	1838	С	
32	2	1839	U	
32	2	1841	А	
32	2	1844	G	
32	2	1845	А	
32	2	1846	А	
32	2	1847	G	
32	2	1848	G	
32	2	1850	G	
32	2	1851	G	
32	2	1852	С	
32	2	1853	А	
32	2	1855	С	
32	2	1858	С	
32	2	1861	С	
32	2	1863	С	
32	2	1864	А	
32	2	1865	G	
32	2	1867	G	
32	2	1869	G	
32	2	1882	А	
32	2	1884	А	
32	2	1888	G	
32	2	1891	С	
32	2	1893	U	
32	2	1894	U	
32	2	1895	U	
32	2	1896	A	
32	2	1897	G	
32	2	1900	G	
32	2	1901	A	
32	2	1905	А	
32	2	1906	A	
32	2	1907	A	
32	2	1909	G	

All (22) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
32	2	541	U
32	2	826	U
32	2	856	U
32	2	1056	G
32	2	1108	А
32	2	1168	U
32	2	1181	U
32	2	1346	А
32	2	1358	U
32	2	1383	U
32	2	1430	G
32	2	1431	С
32	2	1495	U
32	2	1502	U
32	2	1578	С
32	2	1605	G
32	2	1633	С
32	2	1643	U
32	2	1667	А
32	2	1734	U
32	2	1753	G
32	2	1866	A

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
32	2	34
29	f	3
14	Р	3
10	Κ	1
5	F	1
3	D	1
31	k	1
2	С	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	2	1169:C	O3'	1170:U	Р	30.51
1	2	921:C	O3'	922:G	Р	23.31
1	2	1128:U	O3'	1129:A	Р	22.80
1	2	1588:A	O3'	1589:U	Р	17.38
1	2	1616:G	O3'	1617:C	Р	13.69
1	f	137:ASP	С	138:ARG	N	12.35
1	2	1179:A	O3'	1180:C	Р	11.43
1	2	1859:A	O3'	1860:U	Р	11.20
1	2	1164:U	O3'	1165:U	Р	10.82
1	2	1165:U	O3'	1166:A	Р	10.56
1	2	1784:C	O3'	1785:A	Р	10.46
1	2	1182:A	O3'	1183:U	Р	10.22
1	2	1184:G	O3'	1185:C	Р	9.57
1	2	1590:G	O3'	1591:C	Р	7.83
1	2	1609:C	O3'	1610:G	Р	7.76
1	f	136:LYS	С	137:ASP	N	6.90
1	2	1586:U	O3'	1587:G	Р	6.33
1	2	1180:C	O3'	1181:U	Р	6.32
1	2	1183:U	O3'	1184:G	Р	6.23
1	2	1858:C	O3'	1859:A	Р	6.11
1	2	1591:C	O3'	1592:C	Р	5.49
1	2	1297:U	O3'	1298:G	Р	5.36
1	2	1163:A	O3'	1164:U	Р	4.79
1	K	26:ASP	С	27:PHE	N	4.75
1	2	1783:A	O3'	1784:C	Р	4.69
1	2	1595:U	O3'	1596:A	Р	4.65
1	f	129:GLY	С	130:VAL	N	4.44
1	2	1176:U	O3'	1177:A	Р	4.40

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	F	224:ASN	С	225:ARG	Ν	4.34
1	2	1522:U	O3'	1523:A	Р	4.21
1	2	1177:A	O3'	1178:A	Р	3.95
1	Р	79:HIS	С	80:MET	N	3.90
1	2	1205:G	O3'	1206:U	Р	3.58
1	2	1280:A	O3'	1281:U	Р	3.32
1	2	1529:U	O3'	1530:U	Р	3.32
1	D	224:ASP	С	225:TYR	Ν	3.22
1	2	1647:C	O3'	1648:U	Р	3.20
1	2	1193:G	O3'	1194:G	Р	3.18
1	2	1351:G	O3'	1352:G	Р	3.18
1	Р	70:ASN	С	71:GLU	N	3.17
1	2	1223:U	O3'	1224:C	Р	3.17
1	k	60:GLN	С	61:LEU	N	3.16
1	Р	108:ARG	С	109:PRO	Ν	3.14
1	2	1587:G	O3'	1588:A	Р	3.11
1	С	60:SER	С	61:LEU	Ν	1.19

Continued from previous page...

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-21644. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 192

Y Index: 192

Z Index: 192

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 224

Y Index: 131

Z Index: 127

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.018. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is $881~{\rm nm^3};$ this corresponds to an approximate mass of 796 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.270 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-21644 and PDB model 6WDR. Per-residue inclusion information can be found in section 3 on page 9.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.018 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.018).

9.4 Atom inclusion (i)

At the recommended contour level, 92% of all backbone atoms, 88% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.018) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.8760	0.3970
2	0.9390	0.4170
А	0.9480	0.4780
С	0.9450	0.5100
D	0.7440	0.2880
Е	0.9580	0.5260
F	0.7810	0.3070
G	0.9140	0.4250
Н	0.8810	0.3970
Ι	0.9190	0.4800
J	0.9490	0.4960
K	0.8360	0.2430
L	0.9550	0.5420
М	0.4310	0.1370
Ν	0.9010	0.4590
Р	0.8070	0.2300
Q	0.8950	0.3780
R	0.8460	0.3910
S	0.7420	0.2260
Т	0.8940	0.3060
U	0.8350	0.3810
V	0.9350	0.5080
W	0.9790	0.5620
Х	0.9040	0.4970
Y	0.9440	0.4850
Z	0.7460	0.2200
b	0.9500	0.4720
с	0.6980	0.3250
d	0.9280	0.4310
e	0.6850	0.4080
f	0.6110	0.1540
g	0.8470	0.3050
k	0.5170	0.2580

