

Full wwPDB X-ray Structure Validation Report (i)

Dec 2, 2023 - 02:05 pm GMT

PDB ID	:	1W1I
Title	:	Crystal structure of dipeptidyl peptidase IV (DPPIV or CD26) in complex
		with adenosine deaminase
Authors	:	Weihofen, W.A.; Liu, J.; Reutter, W.; Saenger, W.; Fan, H.
Deposited on	:	2004-06-22
Resolution	:	3.03 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 3.03 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	2752 (3.08-3.00)
Clashscore	141614	3096 (3.08-3.00)
Ramachandran outliers	138981	2986 (3.08-3.00)
Sidechain outliers	138945	2988 (3.08-3.00)
RSRZ outliers	127900	2636 (3.08-3.00)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain			
1	А	728	77%		19%	•
1	В	728	79%		17%	·
1	С	728	78%		18%	•
1	D	728	77%		19%	•
2	Е	357	4% 60%	32%		5% ••

Mol	Chain	\mathbf{Length}	Quality of c	Quality of chain				
2	F	357	2% 58%	36% •••				
2	G	357	3% 	36% •••				
2	Н	357	% 5 9%	35% •••				
3	Ι	3	33%	67%				
3	Q	3	33%	67%				
4	J	2	50%	50%				
4	Κ	2	50%	50%				
4	Ν	2	100%					
4	Р	2	100%					
4	R	2	100%					
4	S	2	50%	50%				
4	U	2	100%					
4	W	2	50%	50%				
4	Y	2	100%					
5	L	4	100%					
5	О	4	100%					
5	Т	4	100%					
5	Х	4	75%	25%				
6	М	2	100%					
6	V	2	100%					

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
3	FUC	Ι	3	Х	-	-	-
3	NAG	Q	2	-	-	-	Х
3	FUC	Q	3	Х	-	-	-

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
4	NAG	J	2	-	-	-	Х
4	NAG	R	2	-	-	-	Х
4	NAG	U	2	-	-	-	Х
6	FUC	М	2	Х	-	-	-
6	FUC	V	2	Х	-	-	-
7	NAG	А	860	Х	-	-	-
7	NAG	А	870	Х	-	-	-
7	NAG	В	860	Х	-	-	-
7	NAG	С	860	Х	-	-	-

2 Entry composition (i)

There are 8 unique types of molecules in this entry. The entry contains 35877 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		A	toms		ZeroOcc	AltConf	Trace	
1	Λ	798	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	A	120	5963	3827	982	1128	26	0	0	0
1	В	798	Total	С	Ν	Ο	S	0	0	0
	D	(28	5963	3827	982	1128	26	0		
1	С	728	Total	С	Ν	Ο	S	0	0	0
	U		5963	3827	982	1128	26	0	0	0
1	1 D 728	798	Total	С	Ν	Ο	S	0	0	0
		120	5963	3827	982	1128	26	0	0	U

• Molecule 1 is a protein called DIPEPTIDYL PEPTIDASE IV.

• Molecule 2 is a protein called ADENOSINE DEAMINASE.

Mol	Chain	Residues		Atoms					AltConf	Trace
0	F	250	Total	С	Ν	0	\mathbf{S}	0	0	0
		332	2809	1786	473	537	13	0	0	0
0	Б	250	Total	С	Ν	0	S	0	0	0
	Г	332	2808	1786	472	537	13	0		0
0	C	G 352	Total	С	Ν	0	S	0	0	0
	G		2809	1786	473	537	13	0	0	0
0	H	250	Total	С	Ν	0	S	0	0	0
			2809	1786	473	537	13	0	0	

There are 64 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Е	8	ASP	ASN	conflict	UNP P56658
Е	32	LYS	ARG	conflict	UNP P56658
E	33	ARG	LYS	conflict	UNP P56658
Е	47	LEU	GLN	conflict	UNP P56658
E	57	THR	SER	conflict	UNP P56658
Е	60	ASP	GLU	conflict	UNP P56658
Е	77	ASP	GLU	conflict	UNP P56658
E	79	ILE	VAL	conflict	UNP P56658

Chain	Residue	Modelled	Actual	Comment	Reference
Е	199	GLN	LYS	variant	UNP P56658
Е	246	THR	ALA	variant	UNP P56658
Е	261	ILE	VAL	conflict	UNP P56658
Е	279	ALA	PRO	conflict	UNP P56658
Е	281	ILE	VAL	conflict	UNP P56658
Е	313	LYS	ASN	conflict	UNP P56658
Е	314	ASP	GLU	conflict	UNP P56658
Е	352	ARG	GLY	variant	UNP P56658
F	8	ASP	ASN	conflict	UNP P56658
F	32	LYS	ARG	conflict	UNP P56658
F	33	ARG	LYS	conflict	UNP P56658
F	47	LEU	GLN	conflict	UNP P56658
F	57	THR	SER	conflict	UNP P56658
F	60	ASP	GLU	conflict	UNP P56658
F	77	ASP	GLU	conflict	UNP P56658
F	79	ILE	VAL	conflict	UNP P56658
F	199	GLN	LYS	variant	UNP P56658
F	246	THR	ALA	variant	UNP P56658
F	261	ILE	VAL	conflict	UNP P56658
F	279	ALA	PRO	conflict	UNP P56658
F	281	ILE	VAL	conflict	UNP P56658
F	313	LYS	ASN	conflict	UNP P56658
F	314	ASP	GLU	conflict	UNP P56658
F	352	ARG	GLY	variant	UNP P56658
G	8	ASP	ASN	conflict	UNP P56658
G	32	LYS	ARG	conflict	UNP P56658
G	33	ARG	LYS	conflict	UNP P56658
G	47	LEU	GLN	conflict	UNP P56658
G	57	THR	SER	conflict	UNP P56658
G	60	ASP	GLU	conflict	UNP P56658
G	77	ASP	GLU	conflict	UNP P56658
G	79	ILE	VAL	conflict	UNP P56658
G	199	GLN	LYS	variant	UNP P56658
G	246	THR	ALA	variant	UNP P56658
G	261	ILE	VAL	conflict	UNP P56658
G	279	ALA	PRO	conflict	UNP P56658
G	281	ILE	VAL	conflict	UNP P56658
G	313	LYS	ASN	conflict	UNP P56658
G	314	ASP	GLU	conflict	UNP P56658
G	352	ARG	GLY	variant	UNP P56658
H	8	ASP	ASN	conflict	UNP P56658
H	32	LYS	ARG	conflict	UNP P56658

1W1I

Chain	Residue	Modelled	Actual	Comment	Reference
Н	33	ARG	LYS	conflict	UNP P56658
Н	47	LEU	GLN	conflict	UNP P56658
Н	57	THR	SER	conflict	UNP P56658
Н	60	ASP	GLU	conflict	UNP P56658
Н	77	ASP	GLU	conflict	UNP P56658
Н	79	ILE	VAL	$\operatorname{conflict}$	UNP P56658
Н	199	GLN	LYS	variant	UNP P56658
Н	246	THR	ALA	variant	UNP P56658
Н	261	ILE	VAL	$\operatorname{conflict}$	UNP P56658
Н	279	ALA	PRO	conflict	UNP P56658
Н	281	ILE	VAL	conflict	UNP P56658
Н	313	LYS	ASN	conflict	UNP P56658
Н	314	ASP	GLU	conflict	UNP P56658
H	352	ARG	GLY	variant	UNP P56658

• Molecule 3 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[al pha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace		
3	Ι	3	Total 38	C 22	N 2	O 14	0	0	0
3	Q	3	Total 38	C 22	N 2	0 14	0	0	0

• Molecule 4 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace		
4	J	2	Total 28	C 16	N 2	O 10	0	0	0
4	K	2	Total 28	C 16	N 2	O 10	0	0	0
4	Ν	2	Total 28	C 16	N 2	O 10	0	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
4	Р	2	Total C N O 28 16 2 10	0	0	0
4	R	2	Total C N O 28 16 2 10	0	0	0
4	S	2	Total C N O 28 16 2 10	0	0	0
4	U	2	Total C N O 28 16 2 10	0	0	0
4	W	2	Total C N O 28 16 2 10	0	0	0
4	Y	2	Total C N O 28 16 2 10	0	0	0

• Molecule 5 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-beta-D-mannopyranos e-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluco pyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace		
5	Т	4	Total	С	Ν	0	0	0	0
0	5 L	Т	50	28	2	20	0	0	0
5	0	4	Total	C N O O	0	0	0		
0	0	4	50	28	2	20	0	0	0
5	Т	4	Total	С	Ν	0	0	0	0
0	0 1	4	50	28	2	20	0	0	
5 X	v	4	Total	С	Ν	0	0	0	0
	Λ	4	50	28	2	20		0	

• Molecule 6 is an oligosaccharide called alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-bet a-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace		
6	М	2	Total 24	C 14	N 1	O 9	0	0	0

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace		
6	V	2	Total 24	C 14	N 1	O 9	0	0	0

• Molecule 7 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	А	1	Total C N O 14 8 1 5	0	0
7	А	1	Total C N O 14 8 1 5	0	0
7	А	1	Total C N O 14 8 1 5	0	0
7	А	1	Total C N O 14 8 1 5	0	0
7	В	1	Total C N O 14 8 1 5	0	0
7	В	1	Total C N O 14 8 1 5	0	0
7	В	1	Total C N O 14 8 1 5	0	0
7	В	1	Total C N O 14 8 1 5	0	0
7	С	1	Total C N O 14 8 1 5	0	0
7	С	1	Total C N O 14 8 1 5	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	
7	С	1	Total C N O	0	0	
•		1	14 8 1 5		0	
7	Л	1	Total C N O	0	0	
1	D	1	14 8 1 5	0		
7	Л	1	Total C N O	0	0	
1	D	1	14 8 1 5	0	0	
7	Л	1	Total C N O	0	0	
1	D	1	14 8 1 5	0	0	
7	Л	1	Total C N O	0	0	
			14 8 1 5		0	

• Molecule 8 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
8	Е	1	Total Zn 1 1	0	0
8	F	1	Total Zn 1 1	0	0
8	G	1	Total Zn 1 1	0	0
8	Н	1	Total Zn 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: DIPEPTIDYL PEPTIDASE IV

• Molecule 1: DIPEPTIDYL PEPTIDASE IV

V95 V95 V95 V96 V100 V1100 V1110 V1110 V1110 V1112 V1120 V1160 V16

Y2290 Y2290 S291 1293 1294 1294 1295 1296 1296 1296 1296 1307 1307 1307 1307 1307 1307 1325 1327 1327 1325 1335 1335 1347

 • Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)] 2-acetamido-2-deoxy-beta-D-glucopyranose

α · T		
Chain I:	33%	67%

NAG1 NAG2 FUC3

 • Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)] 2-acetamido-2-deoxy-beta-D-glucopyranose

Chain Q:	33%	67%	
NAG1 NAG2 FUC3			
• Molecule 4: opyranose	2-acetamido-2-dec	oxy-beta-D-glucopyranose-(1-4)-2-acetamid	lo-2-deoxy-beta-D-gluc
Chain J:	50%	50%	
NAG1 NAG2			
• Molecule 4:	2-acetamido-2-deo	oxy-beta-D-glucopyranose-(1-4)-2-acetamid	lo-2-deoxy-beta-D-gluc
opyranose			
Chain K:	50%	50%	• • • • • • • • • • • • • • • • • • •

NAG1 NAG2

• Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain N:

100%

NAG1 NAG2

• Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

NAG1 NAG2 BMA3 MAN4

Chain P:	100%	
NAG1 NAG2		
• Molecule opyranose	4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
Chain R:	100%	
NAG1 NAG2		
• Molecule opyranose	4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
Chain S:	50% 50%	
NAG1 NAG2		
• Molecule opyranose	4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
Chain U:	100%	
NAG1 NAG2		
• Molecule opyranose	4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
Chain W:	50% 50%	•
NAG 1 NAG 2		
• Molecule opyranose	4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
Chain Y:	100%	
NAG1 NAG2		
• Molecule eta-D-gluco	5: alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2 pyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose	2-acetamido-2-deoxy-b
Chain L:	100%	

 $\bullet \ {\rm Molecule \ 5: \ alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose} (1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose (1-4)-2-acetamido-2-deoxy-beta-D-glucopyrano$

Chain O:

100%

NAG1 NAG2 BMA3 MAN4

 $\bullet \ Molecule \ 5: \ alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \\ eta-D-glucopyranose \ (1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \ (1-4)-2-acetamido-2-deoxy-beta-D-glucopyra$

Chain T:	100%	
NAG1 NAG2 BMA3 MAN4 MAN4		
• Molecule 5: eta-D-glucopy	alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2 yranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose	-acetamido-2-deoxy-b
Chain X:	75% 25%	
NAG1 NAG2 BMA3 MAN4		
• Molecule 6:	alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-gluco	ppyranose
Chain M:	100%	
RAG1 FUC2		
• Molecule 6:	alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-gluco	ppyranose
Chain V:	100%	
NAG1 FUC2		

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	158.06Å 168.50Å 236.84Å	Depositor
a, b, c, α , β , γ	90.00° 100.54° 90.00°	Depositor
Bosolution (Å)	30.00 - 3.03	Depositor
Resolution (A)	29.90 - 3.03	EDS
% Data completeness	85.5 (30.00-3.03)	Depositor
(in resolution range)	85.5(29.90-3.03)	EDS
R_{merge}	0.09	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.65 (at 3.06 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.1.9999	Depositor
B B.	0.224 , 0.257	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.224 , 0.255	DCC
R_{free} test set	2048 reflections $(2.03%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	55.9	Xtriage
Anisotropy	0.130	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.32 , 29.2	EDS
L-test for $twinning^2$	$ < L >=0.48, < L^2>=0.31$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.91	EDS
Total number of atoms	35877	wwPDB-VP
Average B, all atoms $(Å^2)$	51.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.55% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: FUC, MAN, ZN, NAG, BMA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.39	0/6135	0.75	15/8344~(0.2%)	
1	В	0.40	0/6135	0.75	16/8344~(0.2%)	
1	С	0.39	0/6135	0.76	14/8344~(0.2%)	
1	D	0.40	0/6135	0.75	19/8344~(0.2%)	
2	Е	0.40	0/2874	0.84	16/3896~(0.4%)	
2	F	0.38	0/2872	0.82	17/3891~(0.4%)	
2	G	0.36	0/2874	0.83	17/3896~(0.4%)	
2	Н	0.36	0/2874	0.81	13/3896~(0.3%)	
All	All	0.39	0/36034	0.78	127/48955~(0.3%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
2	F	0	1
2	Н	0	1
All	All	0	2

There are no bond length outliers.

All (127) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	G	77	ASP	CB-CG-OD2	12.11	129.20	118.30
2	Е	77	ASP	CB-CG-OD2	10.17	127.45	118.30
2	Н	77	ASP	CB-CG-OD2	8.05	125.54	118.30
2	Н	325	LEU	CA-CB-CG	6.80	130.95	115.30
2	F	60	ASP	CB-CG-OD2	6.67	124.30	118.30
2	Е	181	ASP	CB-CG-OD2	6.64	124.28	118.30

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	Observed(°)	$Ideal(^{o})$
2	Е	325	LEU	CA-CB-CG	6.56	130.38	115.30
2	Е	60	ASP	CB-CG-OD2	6.49	124.14	118.30
1	D	302	ASP	CB-CG-OD2	6.49	124.14	118.30
1	В	496	ASP	CB-CG-OD2	6.47	124.12	118.30
2	F	127	ASP	CB-CG-OD2	6.41	124.07	118.30
1	С	535	ASP	CB-CG-OD2	6.38	124.04	118.30
1	А	302	ASP	CB-CG-OD2	6.37	124.03	118.30
2	G	143	ASP	CB-CG-OD2	6.34	124.00	118.30
2	G	325	LEU	CA-CB-CG	6.32	129.84	115.30
2	G	245	ASP	CB-CG-OD2	6.32	123.99	118.30
2	Н	307	ASP	CB-CG-OD2	6.31	123.98	118.30
2	F	181	ASP	CB-CG-OD2	6.21	123.89	118.30
2	Е	307	ASP	CB-CG-OD2	6.13	123.82	118.30
2	G	307	ASP	CB-CG-OD2	6.12	123.81	118.30
2	Н	60	ASP	CB-CG-OD2	6.12	123.81	118.30
2	F	325	LEU	CA-CB-CG	6.10	129.34	115.30
1	В	230	ASP	CB-CG-OD2	6.10	123.79	118.30
2	Н	245	ASP	CB-CG-OD2	6.10	123.79	118.30
1	А	496	ASP	CB-CG-OD2	6.09	123.78	118.30
1	D	329	ASP	CB-CG-OD2	6.09	123.78	118.30
1	А	230	ASP	CB-CG-OD2	6.09	123.78	118.30
2	G	181	ASP	CB-CG-OD2	6.07	123.76	118.30
1	В	556	ASP	CB-CG-OD2	6.03	123.73	118.30
2	F	245	ASP	CB-CG-OD2	6.01	123.71	118.30
2	Н	295	ASP	CB-CG-OD2	6.01	123.71	118.30
1	В	329	ASP	CB-CG-OD2	6.00	123.70	118.30
1	В	274	ASP	CB-CG-OD2	5.97	123.68	118.30
2	G	60	ASP	CB-CG-OD2	5.96	123.67	118.30
1	С	496	ASP	CB-CG-OD2	5.93	123.63	118.30
1	D	535	ASP	CB-CG-OD2	5.92	123.63	118.30
2	Ε	245	ASP	CB-CG-OD2	5.91	123.61	118.30
2	F	93	ASP	CB-CG-OD2	5.89	123.60	118.30
2	Η	181	ASP	CB-CG-OD2	5.86	123.57	118.30
2	Ε	143	ASP	CB-CG-OD2	5.85	123.57	118.30
2	G	295	ASP	CB-CG-OD2	5.81	123.53	118.30
1	В	$10\overline{4}$	ASP	$CB-CG-\overline{OD2}$	$5.8\overline{0}$	123.53	118.30
2	E	93	ASP	CB-CG-OD2	5.80	123.52	118.30
2	F	296	ASP	CB-CG-OD2	5.77	123.49	118.30
2	F	53	ASP	$CB-CG-\overline{OD2}$	$5.7\overline{6}$	123.49	118.30
2	F	305	ASP	CB-CG-OD2	5.75	123.47	118.30
1	С	681	ASP	CB-CG-OD2	5.71	123.44	118.30
2	Ε	185	ASP	CB-CG-OD2	5.71	123.44	118.30

Mol	Chain	Res	Type	Atoms	Ζ	Observed(°)	$Ideal(^{o})$
2	F	307	ASP	CB-CG-OD2	5.71	123.44	118.30
2	F	19	ASP	CB-CG-OD2	5.68	123.41	118.30
2	Н	286	ASP	CB-CG-OD2	5.68	123.41	118.30
2	Е	19	ASP	CB-CG-OD2	5.67	123.40	118.30
2	Н	53	ASP	CB-CG-OD2	5.63	123.37	118.30
2	F	286	ASP	CB-CG-OD2	5.63	123.36	118.30
2	G	305	ASP	CB-CG-OD2	5.62	123.36	118.30
1	С	515	ASP	CB-CG-OD2	5.62	123.36	118.30
1	С	302	ASP	CB-CG-OD2	5.62	123.36	118.30
1	А	535	ASP	CB-CG-OD2	5.61	123.35	118.30
2	Н	296	ASP	CB-CG-OD2	5.61	123.35	118.30
1	D	496	ASP	CB-CG-OD2	5.60	123.34	118.30
2	F	8	ASP	CB-CG-OD2	5.59	123.33	118.30
1	А	104	ASP	CB-CG-OD2	5.58	123.32	118.30
2	Е	314	ASP	CB-CG-OD2	5.56	123.30	118.30
1	D	488	ASP	CB-CG-OD2	5.53	123.28	118.30
2	Е	295	ASP	CB-CG-OD2	5.52	123.27	118.30
2	G	93	ASP	CB-CG-OD2	5.50	123.25	118.30
1	С	393	ASP	CB-CG-OD2	5.49	123.24	118.30
1	D	104	ASP	CB-CG-OD2	5.49	123.24	118.30
1	С	678	ASP	CB-CG-OD2	5.47	123.22	118.30
1	D	390	ASP	CB-CG-OD2	5.47	123.22	118.30
1	В	535	ASP	CB-CG-OD2	5.46	123.21	118.30
1	В	729	ASP	CB-CG-OD2	5.44	123.19	118.30
2	Н	305	ASP	CB-CG-OD2	5.43	123.19	118.30
2	G	296	ASP	CB-CG-OD2	5.41	123.17	118.30
1	В	47	ASP	CB-CG-OD2	5.39	123.16	118.30
1	В	393	ASP	CB-CG-OD2	5.39	123.16	118.30
1	D	274	ASP	CB-CG-OD2	5.39	123.15	118.30
1	D	588	ASP	CB-CG-OD2	5.39	123.16	118.30
2	G	53	ASP	CB-CG-OD2	5.39	123.15	118.30
2	Ε	296	ASP	CB-CG-OD2	5.38	123.14	118.30
2	G	286	ASP	CB-CG-OD2	5.37	123.13	118.30
1	В	302	ASP	CB-CG-OD2	5.35	123.12	118.30
2	F	295	ASP	CB-CG-OD2	5.35	123.12	118.30
1	D	243	ASP	CB-CG-OD2	5.34	123.11	118.30
1	А	556	ASP	CB-CG-OD2	5.34	123.11	118.30
1	D	171	ASP	CB-CG-OD2	5.33	123.10	118.30
1	А	588	ASP	CB-CG-OD2	5.33	123.10	118.30
1	В	678	ASP	$CB-\overline{CG}-\overline{OD2}$	5.33	123.10	118.30
1	А	243	ASP	CB-CG-OD2	5.33	123.10	118.30
1	С	556	ASP	CB-CG-OD2	5.30	123.07	118.30

Mol	Chain	Res	Type	Atoms Z		$Observed(^{o})$	$Ideal(^{o})$
1	В	65	ASP	CB-CG-OD2	5.29	123.06	118.30
1	А	274	ASP	CB-CG-OD2	5.29	123.06	118.30
1	В	620	ASP	CB-CG-OD2	5.28	123.05	118.30
2	Е	305	ASP	CB-CG-OD2	5.27	123.04	118.30
1	А	413	ASP	CB-CG-OD2	5.26	123.04	118.30
1	D	620	ASP	CB-CG-OD2	5.25	123.03	118.30
1	А	488	ASP	CB-CG-OD2	5.25	123.03	118.30
1	А	681	ASP	CB-CG-OD2	5.25	123.03	118.30
2	F	66	ASP	CB-CG-OD2	5.25	123.02	118.30
2	F	41	ASP	CB-CG-OD2	5.24	123.02	118.30
1	А	393	ASP	CB-CG-OD2	5.24	123.02	118.30
1	В	501	ASP	CB-CG-OD2	5.24	123.01	118.30
1	С	274	ASP	CB-CG-OD2	5.24	123.01	118.30
1	С	243	ASP	CB-CG-OD2	5.23	123.00	118.30
1	В	515	ASP	CB-CG-OD2	5.22	123.00	118.30
1	D	200	ASP	CB-CG-OD2	5.22	123.00	118.30
1	С	390	ASP	CB-CG-OD2	5.21	122.99	118.30
2	G	19	ASP	CB-CG-OD2	5.20	122.98	118.30
1	А	729	ASP	CB-CG-OD2	5.18	122.97	118.30
2	G	275	ASP	CB-CG-OD2	5.16	122.94	118.30
1	D	579	ASP	CB-CG-OD2	5.16	122.94	118.30
1	D	413	ASP	CB-CG-OD2	5.15	122.93	118.30
2	Н	41	ASP	CB-CG-OD2	5.14	122.93	118.30
1	D	65	ASP	CB-CG-OD2	5.14	122.92	118.30
1	С	488	ASP	CB-CG-OD2	5.13	122.92	118.30
2	Е	41	ASP	CB-CG-OD2	5.12	122.91	118.30
1	D	515	ASP	CB-CG-OD2	5.12	122.91	118.30
1	С	588	ASP	CB-CG-OD2	5.11	122.90	118.30
2	G	127	ASP	CB-CG-OD2	5.11	122.90	118.30
2	G	229	ASP	CB-CG-OD2	5.10	122.89	118.30
1	А	739	ASP	CB-CG-OD2	5.09	122.88	118.30
2	Е	286	ASP	CB-CG-OD2	5.08	122.88	118.30
1	D	393	ASP	CB-CG-OD2	5.08	122.87	118.30
1	D	681	ASP	CB-CG-OD2	5.07	122.86	118.30
1	С	230	ASP	CB-CG-OD2	5.05	122.84	118.30
2	Н	143	ASP	CB-CG-OD2	5.03	122.83	118.30
2	F	314	ASP	CB-CG-OD2	5.01	122.81	118.30

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
2	F	337	GLU	Peptide
2	Н	113	GLU	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	5963	0	5677	99	0
1	В	5963	0	5677	87	0
1	С	5963	0	5677	86	0
1	D	5963	0	5677	99	0
2	Е	2809	0	2767	79	0
2	F	2808	0	2765	85	0
2	G	2809	0	2767	83	0
2	Н	2809	0	2767	77	0
3	Ι	38	0	34	0	0
3	Q	38	0	34	1	0
4	J	28	0	25	1	0
4	K	28	0	25	3	0
4	N	28	0	25	2	0
4	Р	28	0	25	0	0
4	R	28	0	25	1	0
4	S	28	0	25	1	0
4	U	28	0	25	2	0
4	W	28	0	25	2	0
4	Y	28	0	25	0	0
5	L	50	0	43	0	0
5	0	50	0	43	0	0
5	Т	50	0	43	0	0
5	Х	50	0	43	1	0
6	М	24	0	22	0	0
6	V	24	0	22	0	0
7	A	56	0	52	5	0
7	В	56	0	52	1	0
7	С	42	0	39	3	0
7	D	56	0	52	0	0
8	Е	1	0	0	0	0
8	F	1	0	0	0	0
8	G	1	0	0	0	0

Contre	Continued from previous page									
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes				
8	Н	1	0	0	0	0				
All	All	35877	0	34478	698	0				

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 10.

All (698) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic	Clash
Atom-1		distance (Å)	overlap (Å)
2:F:113:GLU:HB2	2:F:161:TRP:HE1	1.10	1.10
2:G:353:MET:HB2	2:G:354:PRO:CD	1.79	1.10
2:E:113:GLU:HB3	2:E:114:PRO:HD3	1.25	1.08
2:E:113:GLU:HB2	2:E:161:TRP:HE1	1.01	1.08
2:G:283:PHE:HD1	2:G:288:VAL:HG11	1.24	1.00
1:A:253:ARG:NH2	1:B:253:ARG:HH22	1.59	1.00
1:A:253:ARG:HH22	1:B:253:ARG:NH2	1.59	1.00
2:F:113:GLU:HB2	2:F:161:TRP:NE1	1.78	0.97
2:G:113:GLU:HB3	2:G:114:PRO:HD3	1.46	0.94
2:E:240:TYR:O	2:E:242:THR:N	2.01	0.94
2:E:113:GLU:HB2	2:E:161:TRP:NE1	1.84	0.93
2:G:353:MET:HB2	2:G:354:PRO:HD3	1.49	0.92
1:C:253:ARG:HH22	1:D:253:ARG:HH22	0.95	0.90
7:C:870:NAG:H5	7:C:870:NAG:N2	1.85	0.90
2:F:113:GLU:HB3	2:F:114:PRO:HD3	1.54	0.90
2:F:280:VAL:HA	2:F:283:PHE:CD1	2.07	0.88
2:H:76:ARG:HH11	2:H:76:ARG:CG	1.87	0.88
2:E:113:GLU:CB	2:E:114:PRO:HD3	2.02	0.86
2:E:113:GLU:HB3	2:E:114:PRO:CD	2.06	0.85
2:F:240:TYR:HH	2:F:266:SER:HG	1.16	0.83
2:G:283:PHE:CD1	2:G:288:VAL:HG11	2.12	0.82
1:D:39:SER:N	1:D:40:ARG:HH21	1.78	0.81
2:G:109:ASN:O	2:G:122:GLY:HA2	1.81	0.81
2:F:156:ARG:HD2	2:F:185:ASP:O	1.81	0.80
7:A:860:NAG:H83	7:A:860:NAG:H3	1.61	0.80
2:H:156:ARG:HD2	2:H:185:ASP:O	1.80	0.80
2:G:353:MET:HB2	2:G:354:PRO:HD2	1.62	0.80
2:G:156:ARG:HD2	2:G:185:ASP:O	1.81	0.79
2:H:76:ARG:HH11	2:H:76:ARG:HG2	1.47	0.78
2:E:156:ARG:HD2	2:E:185:ASP:O	1.84	0.78
2:F:350:ALA:C	2:F:351:TYR:CA	2.52	0.78
2:E:113:GLU:CB	2:E:114:PRO:CD	2.62	0.77

	to de pagem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:F:353:MET:HB2	2:F:354:PRO:HD2	1.63	0.77
2:G:280:VAL:HA	2:G:283:PHE:HD2	1.49	0.77
2:H:4:THR:N	2:H:5:PRO:HD3	2.01	0.75
2:F:15:HIS:CE1	2:F:214:HIS:CE1	2.75	0.75
2:E:323:LYS:HE3	2:E:351:TYR:HB3	1.69	0.74
4:K:1:NAG:H3	4:K:1:NAG:H82	1.69	0.74
2:F:323:LYS:HE3	2:F:351:TYR:HB3	1.71	0.73
2:F:15:HIS:CD2	2:F:295:ASP:OD1	2.42	0.72
2:E:261:ILE:HD11	2:E:283:PHE:HD2	1.54	0.72
2:H:238:HIS:HB3	2:H:240:TYR:CE2	2.23	0.72
2:E:240:TYR:C	2:E:242:THR:H	1.92	0.72
2:G:323:LYS:HE3	2:G:351:TYR:HB3	1.70	0.72
2:H:323:LYS:HE3	2:H:351:TYR:HB3	1.70	0.71
2:E:278:HIS:O	2:E:281:ILE:HG22	1.91	0.71
2:G:42:THR:HB	2:G:45:GLU:HB3	1.72	0.71
1:D:487:ASN:H	1:D:487:ASN:HD22	1.38	0.70
2:F:42:THR:HB	2:F:45:GLU:HB3	1.74	0.70
2:F:90:LYS:HA	2:F:90:LYS:HE2	1.73	0.70
1:D:340:LEU:HD12	1:D:343:ARG:HD2	1.74	0.70
2:F:253:ARG:HH21	2:F:286:ASP:HB3	1.57	0.69
1:A:487:ASN:HD22	1:A:487:ASN:H	1.39	0.69
2:H:42:THR:HB	2:H:45:GLU:HB3	1.73	0.69
2:E:15:HIS:CD2	2:E:295:ASP:OD1	2.45	0.69
2:E:253:ARG:HH21	2:E:286:ASP:HB3	1.57	0.69
2:F:76:ARG:HB3	2:F:132:LEU:HD21	1.74	0.69
1:A:173:TYR:CE2	1:A:184:ARG:HG3	2.28	0.69
1:C:253:ARG:NH2	1:D:253:ARG:HH22	1.80	0.68
2:G:15:HIS:CE1	2:G:214:HIS:CE1	2.82	0.68
1:C:487:ASN:HD22	1:C:487:ASN:H	1.41	0.68
2:H:15:HIS:CD2	2:H:295:ASP:OD1	2.46	0.68
2:H:253:ARG:HH21	2:H:286:ASP:HB3	1.59	0.68
2:E:42:THR:HB	2:E:45:GLU:HB3	1.74	0.68
1:B:401:THR:HG22	1:B:401:THR:O	1.94	0.68
1:D:401:THR:O	1:D:401:THR:HG22	1.95	0.67
2:F:15:HIS:HE1	2:F:214:HIS:CE1	2.12	0.67
2:F:112:VAL:HG11	2:F:116:PRO:HD3	1.77	0.67
1:C:173:TYR:CE2	1:C:184:ARG:HG3	2.30	0.67
1:C:718:GLN:HA	1:C:718:GLN:NE2	2.09	0.67
2:H:280:VAL:O	2:H:283:PHE:HB2	1.95	0.67
2:G:15:HIS:CD2	2:G:295:ASP:OD1	2.48	0.66
2:G:76:ARG:HB3	2:G:132:LEU:HD21	1.75	0.66

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:E:282:ARG:HD3	2:E:286:ASP:OD2	1.94	0.66
1:C:640:LEU:HD11	1:C:650:GLY:HA3	1.78	0.66
2:E:15:HIS:CE1	2:E:214:HIS:CE1	2.83	0.66
2:G:253:ARG:HH21	2:G:286:ASP:HB3	1.60	0.66
2:H:15:HIS:CE1	2:H:214:HIS:CE1	2.83	0.66
2:E:115:ILE:HD12	2:E:115:ILE:H	1.61	0.66
2:G:90:LYS:HE2	2:G:90:LYS:HA	1.76	0.66
1:A:401:THR:O	1:A:401:THR:HG22	1.96	0.65
1:C:718:GLN:HA	1:C:718:GLN:HE21	1.60	0.65
2:G:34:ARG:HH12	2:G:74:GLY:HA3	1.61	0.65
2:H:278:HIS:O	2:H:281:ILE:HG22	1.97	0.65
1:B:718:GLN:HA	1:B:718:GLN:NE2	2.12	0.65
1:A:718:GLN:NE2	1:A:718:GLN:HA	2.11	0.64
2:E:131:SER:O	2:E:135:GLN:HG3	1.98	0.64
1:D:173:TYR:CE2	1:D:184:ARG:HG3	2.33	0.64
1:A:718:GLN:HA	1:A:718:GLN:HE21	1.63	0.64
1:B:173:TYR:CE2	1:B:184:ARG:HG3	2.33	0.64
1:B:718:GLN:HA	1:B:718:GLN:HE21	1.63	0.63
1:D:640:LEU:HD11	1:D:650:GLY:HA3	1.80	0.63
2:H:90:LYS:HE2	2:H:90:LYS:HA	1.79	0.63
2:G:114:PRO:HG2	2:G:158:GLN:NE2	2.12	0.63
2:F:235:ARG:HD2	2:F:260:GLU:OE2	1.99	0.63
2:G:353:MET:CB	2:G:354:PRO:HD3	2.27	0.63
2:E:261:ILE:HD11	2:E:283:PHE:CD2	2.33	0.63
2:G:129:VAL:O	2:G:133:VAL:HG23	1.99	0.63
2:H:113:GLU:HB3	2:H:114:PRO:HD3	1.81	0.63
2:F:23:LYS:HB2	2:F:26:THR:HG23	1.81	0.62
2:H:261:ILE:HD11	2:H:283:PHE:CD2	2.35	0.62
1:B:150:ASN:O	1:B:151:ASN:HB2	2.00	0.62
2:E:90:LYS:HE2	2:E:90:LYS:HA	1.80	0.62
2:H:4:THR:N	2:H:5:PRO:CD	2.63	0.62
2:F:113:GLU:HB3	2:F:114:PRO:CD	2.27	0.62
2:H:261:ILE:HD11	2:H:283:PHE:HD2	1.65	0.62
1:C:401:THR:HG22	1:C:401:THR:O	2.00	0.62
1:D:718:GLN:HA	1:D:718:GLN:NE2	2.15	0.61
1:D:150:ASN:O	1:D:151:ASN:HB2	2.01	0.61
2:H:282:ARG:NH1	2:H:286:ASP:OD2	2.33	0.61
1:D:358:ARG:HH11	1:D:358:ARG:HB3	1.66	0.61
2:H:23:LYS:HB2	2:H:26:THR:HG23	1.82	0.61
1:B:487:ASN:H	1:B:487:ASN:HD22	1.46	0.61
1:A:170:ASN:N	1:A:170:ASN:HD22	1.98	0.61

	A L O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:G:23:LYS:HB2	2:G:26:THR:HG23	1.83	0.61
2:H:322:PHE:HA	2:H:325:LEU:HD13	1.83	0.61
1:C:170:ASN:N	1:C:170:ASN:HD22	1.99	0.61
2:H:76:ARG:CG	2:H:76:ARG:NH1	2.57	0.61
1:D:170:ASN:N	1:D:170:ASN:HD22	1.99	0.60
2:E:23:LYS:HB2	2:E:26:THR:HG23	1.84	0.60
2:E:322:PHE:HA	2:E:325:LEU:HD13	1.82	0.60
1:A:150:ASN:O	1:A:151:ASN:HB2	2.01	0.60
2:F:322:PHE:HA	2:F:325:LEU:HD13	1.81	0.60
2:G:322:PHE:HA	2:G:325:LEU:HD13	1.82	0.60
2:G:114:PRO:HG2	2:G:158:GLN:HE22	1.67	0.60
2:E:235:ARG:HD2	2:E:260:GLU:OE2	2.01	0.60
7:C:870:NAG:H5	7:C:870:NAG:HN2	1.62	0.60
1:D:481:THR:OG1	1:D:483:HIS:HE1	1.84	0.60
1:A:340:LEU:HB2	1:A:343:ARG:HD2	1.82	0.59
1:B:170:ASN:N	1:B:170:ASN:HD22	2.00	0.59
1:B:640:LEU:HD11	1:B:650:GLY:HA3	1.84	0.59
2:E:15:HIS:HE1	2:E:214:HIS:CE1	2.20	0.59
2:E:114:PRO:HG2	2:E:158:GLN:HE22	1.65	0.59
2:G:113:GLU:HB3	2:G:114:PRO:CD	2.27	0.59
2:H:235:ARG:HD2	2:H:260:GLU:OE2	2.02	0.59
1:B:471:ARG:HG3	1:B:480:TYR:CD2	2.37	0.59
2:G:15:HIS:HE1	2:G:214:HIS:CE1	2.19	0.59
2:H:151:ILE:HG12	2:H:179:ALA:HB3	1.85	0.59
1:C:377:ASN:C	1:C:377:ASN:HD22	2.04	0.59
1:C:358:ARG:HB3	1:C:358:ARG:HH11	1.68	0.59
2:H:76:ARG:HH11	2:H:76:ARG:HG3	1.67	0.59
1:A:581:ARG:HH12	7:A:860:NAG:H82	1.67	0.59
1:B:203:TYR:HA	1:B:207:VAL:HG13	1.85	0.59
2:F:283:PHE:HB3	2:F:288:VAL:HG12	1.84	0.58
1:A:203:TYR:HA	1:A:207:VAL:HG13	1.83	0.58
1:D:330:TYR:CE2	4:W:2:NAG:H83	2.38	0.58
2:G:157:HIS:CD2	2:G:158:GLN:HG2	2.38	0.58
1:B:145:GLU:N	1:B:145:GLU:OE2	2.37	0.58
1:D:718:GLN:HA	1:D:718:GLN:HE21	1.67	0.58
2:H:110:SER:HB2	2:H:122:GLY:C	2.24	0.58
2:H:15:HIS:HE1	2:H:214:HIS:CE1	2.20	0.58
1:A:377:ASN:C	1:A:377:ASN:HD22	2.07	0.58
1:A:377:ASN:ND2	1:A:381:TYR:H	2.02	0.58
2:F:114:PRO:HD2	2:F:161:TRP:CZ2	2.38	0.58
2:G:235:ARG:HD2	2:G:260:GLU:OE2	2.03	0.57

	to de pagem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:F:113:GLU:CB	2:F:114:PRO:HD3	2.31	0.57
2:H:157:HIS:CD2	2:H:158:GLN:HG2	2.38	0.57
1:C:718:GLN:HE21	1:C:718:GLN:CA	2.16	0.57
1:D:377:ASN:ND2	1:D:381:TYR:H	2.03	0.57
2:E:277:GLU:OE2	2:E:281:ILE:HG21	2.04	0.57
2:F:76:ARG:NH1	2:F:128:GLU:OE1	2.37	0.57
2:F:280:VAL:HA	2:F:283:PHE:HD1	1.65	0.57
2:G:151:ILE:HG12	2:G:179:ALA:HB3	1.84	0.57
2:E:151:ILE:HG12	2:E:179:ALA:HB3	1.87	0.57
2:F:151:ILE:HG12	2:F:179:ALA:HB3	1.86	0.57
1:A:471:ARG:HG3	1:A:480:TYR:CD2	2.39	0.57
2:F:157:HIS:CD2	2:F:158:GLN:HG2	2.40	0.57
2:H:76:ARG:HG2	2:H:76:ARG:NH1	2.18	0.57
1:A:640:LEU:HD11	1:A:650:GLY:HA3	1.86	0.57
1:B:358:ARG:HH11	1:B:358:ARG:HB3	1.70	0.57
1:C:471:ARG:HG3	1:C:480:TYR:CD2	2.39	0.57
2:G:169:CYS:HA	2:G:177:VAL:HG21	1.85	0.57
1:C:481:THR:OG1	1:C:483:HIS:HE1	1.87	0.57
2:E:157:HIS:CD2	2:E:158:GLN:HG2	2.39	0.57
1:D:471:ARG:HG3	1:D:480:TYR:CD2	2.39	0.57
1:A:358:ARG:HB3	1:A:358:ARG:HH11	1.69	0.56
2:H:42:THR:HB	2:H:45:GLU:H	1.70	0.56
2:G:34:ARG:HH22	2:G:74:GLY:H	1.52	0.56
1:A:487:ASN:H	1:A:487:ASN:ND2	2.03	0.56
2:F:169:CYS:HA	2:F:177:VAL:HG21	1.86	0.56
1:C:377:ASN:ND2	1:C:381:TYR:H	2.04	0.56
1:A:651:ILE:HG23	1:A:701:LEU:HB3	1.87	0.56
1:B:377:ASN:C	1:B:377:ASN:HD22	2.09	0.56
2:G:109:ASN:O	2:G:122:GLY:CA	2.52	0.56
2:G:323:LYS:O	2:G:327:ILE:HG12	2.06	0.56
2:F:323:LYS:O	2:F:327:ILE:HG12	2.06	0.56
1:C:150:ASN:O	1:C:151:ASN:HB2	2.04	0.56
1:D:377:ASN:C	1:D:377:ASN:HD22	2.08	0.56
2:E:169:CYS:HA	2:E:177:VAL:HG21	1.88	0.56
1:D:487:ASN:H	1:D:487:ASN:ND2	2.02	0.55
1:D:651:ILE:HG23	1:D:701:LEU:HB3	1.88	0.55
1:C:487:ASN:H	1:C:487:ASN:ND2	2.04	0.55
1:D:73:GLU:O	1:D:74:ASN:HB2	2.05	0.55
2:E:175:GLN:C	2:E:176:THR:HG23	2.26	0.55
2:G:76:ARG:HB3	2:G:132:LEU:CD2	2.35	0.55
2:G:101:ARG:HA	2:G:151:ILE:O	2.06	0.55

	A h o	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:H:169:CYS:HA	2:H:177:VAL:HG21	1.88	0.55
1:D:446:SER:HA	1:D:449:LEU:HG	1.88	0.55
1:D:710:ASN:C	1:D:710:ASN:HD22	2.10	0.55
1:D:109:PRO:HG2	1:D:158:SER:O	2.07	0.55
2:F:42:THR:HB	2:F:45:GLU:H	1.72	0.55
2:F:113:GLU:CB	2:F:114:PRO:CD	2.84	0.55
1:C:651:ILE:HG23	1:C:701:LEU:HB3	1.88	0.55
1:D:145:GLU:OE2	1:D:145:GLU:N	2.39	0.55
1:A:481:THR:OG1	1:A:483:HIS:HE1	1.90	0.55
2:H:323:LYS:O	2:H:327:ILE:HG12	2.07	0.55
1:B:718:GLN:HE21	1:B:718:GLN:CA	2.18	0.54
1:A:336:ARG:NH2	2:F:127:ASP:OD1	2.37	0.54
1:B:39:SER:OG	1:B:39:SER:O	2.23	0.54
7:C:860:NAG:H61	7:C:860:NAG:H2	1.88	0.54
2:G:42:THR:HB	2:G:45:GLU:H	1.72	0.54
2:G:282:ARG:HH11	2:G:282:ARG:HB3	1.73	0.54
1:B:39:SER:N	1:B:40:ARG:HH21	2.05	0.54
1:A:109:PRO:HG2	1:A:158:SER:O	2.08	0.54
1:C:234:PRO:HG2	1:D:248:TYR:OH	2.08	0.54
1:B:377:ASN:ND2	1:B:381:TYR:H	2.06	0.54
1:C:203:TYR:HA	1:C:207:VAL:HG13	1.89	0.54
1:D:272:ASN:HD22	1:D:274:ASP:H	1.56	0.54
1:A:76:ILE:HG13	1:A:76:ILE:O	2.06	0.54
1:A:145:GLU:OE2	1:A:145:GLU:N	2.42	0.54
2:E:42:THR:HB	2:E:45:GLU:H	1.72	0.54
2:G:95:VAL:HG11	2:G:98:VAL:HG22	1.89	0.53
1:B:481:THR:OG1	1:B:483:HIS:HE1	1.89	0.53
1:C:109:PRO:HG2	1:C:158:SER:O	2.07	0.53
1:C:145:GLU:OE2	1:C:145:GLU:N	2.41	0.53
1:D:203:TYR:HA	1:D:207:VAL:HG13	1.89	0.53
1:A:487:ASN:ND2	1:A:487:ASN:N	2.56	0.53
4:K:1:NAG:H3	4:K:1:NAG:C8	2.38	0.53
1:B:109:PRO:HG2	1:B:158:SER:O	2.09	0.53
1:D:487:ASN:HD22	1:D:487:ASN:N	2.02	0.53
1:B:696:LYS:HG3	1:B:728:VAL:HG22	1.90	0.53
2:H:95:VAL:HG11	2:H:98:VAL:HG22	1.90	0.53
1:B:76:ILE:O	1:B:76:ILE:HG13	2.07	0.53
2:F:175:GLN:C	2:F:176:THR:HG23	2.29	0.53
2:H:117:TRP:O	2:H:118:ASN:HB2	2.09	0.53
1:B:487:ASN:H	1:B:487:ASN:ND2	2.06	0.53
2:F:114:PRO:HD2	2:F:161:TRP:HZ2	1.73	0.53

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:718:GLN:HE21	1:A:718:GLN:CA	2.19	0.53
2:F:26:THR:HG21	2:F:85:GLU:OE1	2.09	0.53
2:F:283:PHE:HB3	2:F:288:VAL:CG1	2.39	0.53
1:B:308:GLN:HA	1:B:308:GLN:OE1	2.08	0.53
2:G:279:ALA:O	2:G:283:PHE:CD2	2.62	0.53
1:A:177:GLU:HB2	1:A:180:LEU:HD13	1.90	0.52
1:C:446:SER:HA	1:C:449:LEU:HG	1.92	0.52
2:H:235:ARG:HG2	2:H:258:HIS:HB3	1.91	0.52
1:B:680:LEU:HD11	1:B:684:ARG:CZ	2.39	0.52
1:B:710:ASN:C	1:B:710:ASN:HD22	2.12	0.52
1:D:76:ILE:O	1:D:76:ILE:HG13	2.10	0.52
2:E:277:GLU:HB3	2:E:281:ILE:HG21	1.91	0.52
2:H:261:ILE:HD12	2:H:290:TYR:CD2	2.44	0.52
2:H:65:PHE:HB3	2:H:117:TRP:HH2	1.74	0.52
2:H:339:GLU:HA	2:H:342:GLU:HG2	1.91	0.52
1:A:710:ASN:HD22	1:A:710:ASN:C	2.13	0.52
1:C:177:GLU:HB2	1:C:180:LEU:HD13	1.91	0.52
1:D:487:ASN:ND2	1:D:487:ASN:N	2.56	0.52
1:D:701:LEU:HD13	1:D:703:ILE:HD11	1.92	0.52
2:F:101:ARG:HA	2:F:151:ILE:O	2.09	0.52
1:B:651:ILE:HG23	1:B:701:LEU:HB3	1.91	0.52
1:C:487:ASN:HD22	1:C:487:ASN:N	2.04	0.52
2:H:175:GLN:C	2:H:176:THR:HG23	2.29	0.52
2:E:323:LYS:O	2:E:327:ILE:HG12	2.09	0.52
2:F:114:PRO:HG3	2:F:158:GLN:HE22	1.75	0.52
2:G:235:ARG:HG2	2:G:258:HIS:HB3	1.91	0.52
1:A:726:VAL:HG13	1:A:728:VAL:HG23	1.92	0.52
2:F:235:ARG:HG2	2:F:258:HIS:HB3	1.92	0.52
2:H:138:GLN:HE22	2:H:175:GLN:HG2	1.75	0.52
1:B:446:SER:HA	1:B:449:LEU:HG	1.92	0.52
1:D:696:LYS:HG3	1:D:728:VAL:HG22	1.91	0.52
2:E:114:PRO:HG2	2:E:158:GLN:NE2	2.25	0.51
1:D:293:MET:HG2	1:D:315:TRP:HB3	1.92	0.51
1:A:446:SER:HA	1:A:449:LEU:HG	1.91	0.51
1:B:75:ASN:OD1	7:B:870:NAG:O5	2.29	0.51
2:F:95:VAL:HG11	2:F:98:VAL:HG22	1.92	0.51
2:G:175:GLN:C	2:G:176:THR:HG23	2.30	0.51
2:H:65:PHE:HB3	2:H:117:TRP:CH2	2.46	0.51
1:C:487:ASN:ND2	1:C:487:ASN:N	2.57	0.51
1:D:662:TYR:CE1	1:D:710:ASN:ND2	2.78	0.51
2:F:322:PHE:HA	2:F:325:LEU:CD1	2.41	0.51

	t i c	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:338:ASN:HD22	1:D:339:CYS:N	2.08	0.51
2:E:86:PHE:O	2:E:89:MET:HG2	2.10	0.51
2:E:235:ARG:HG2	2:E:258:HIS:HB3	1.92	0.51
2:F:15:HIS:HD2	2:F:295:ASP:OD1	1.88	0.51
1:B:177:GLU:HB2	1:B:180:LEU:HD13	1.93	0.51
1:D:308:GLN:HA	1:D:308:GLN:OE1	2.11	0.51
1:A:39:SER:N	1:A:40:ARG:HH21	2.09	0.51
1:B:114:ILE:HG23	1:B:135:TYR:HB3	1.93	0.51
1:C:696:LYS:HG3	1:C:728:VAL:HG22	1.93	0.51
2:F:90:LYS:HG3	2:F:98:VAL:HG21	1.92	0.51
2:F:272:TRP:NE1	2:F:278:HIS:HA	2.26	0.51
2:G:339:GLU:HA	2:G:342:GLU:HG2	1.93	0.51
2:H:26:THR:HG21	2:H:85:GLU:OE1	2.11	0.51
1:D:196:ASN:OD1	1:D:227:GLN:HG3	2.11	0.51
2:F:261:ILE:HD12	2:F:290:TYR:CD2	2.46	0.51
1:D:630:SER:OG	1:D:740:HIS:NE2	2.43	0.50
2:E:339:GLU:HA	2:E:342:GLU:HG2	1.94	0.50
2:F:339:GLU:HA	2:F:342:GLU:HG2	1.94	0.50
1:A:696:LYS:HG3	1:A:728:VAL:HG22	1.93	0.50
1:C:626:ILE:HG23	1:C:636:THR:HG23	1.94	0.50
2:E:95:VAL:HG11	2:E:98:VAL:HG22	1.93	0.50
1:D:718:GLN:HE21	1:D:718:GLN:CA	2.24	0.50
2:G:352:ARG:O	2:G:352:ARG:HG3	2.10	0.50
1:B:487:ASN:ND2	1:B:487:ASN:N	2.60	0.50
1:C:308:GLN:OE1	1:C:308:GLN:HA	2.11	0.50
2:E:322:PHE:HA	2:E:325:LEU:CD1	2.42	0.50
2:H:233:THR:OG1	2:H:235:ARG:O	2.27	0.50
1:C:272:ASN:HD22	1:C:274:ASP:H	1.59	0.50
1:D:449:LEU:O	1:D:450:ASN:HB2	2.11	0.50
1:D:662:TYR:HE1	1:D:710:ASN:ND2	2.08	0.50
1:D:726:VAL:HG13	1:D:728:VAL:HG23	1.93	0.50
2:G:322:PHE:HA	2:G:325:LEU:CD1	2.41	0.50
2:G:29:TYR:OH	2:G:33:ARG:NH1	2.45	0.50
1:C:114:ILE:HG23	1:C:135:TYR:HB3	1.93	0.49
2:G:131:SER:O	2:G:134:ASN:HB2	2.13	0.49
2:H:29:TYR:OH	2:H:33:ARG:NH1	2.45	0.49
1:A:75:ASN:HD21	7:A:870:NAG:H62	1.77	0.49
1:B:142:LEU:HD12	1:B:142:LEU:H	1.77	0.49
1:C:173:TYR:CE2	1:C:184:ARG:CG	2.96	0.49
1:D:177:GLU:HB2	1:D:180:LEU:HD13	1.94	0.49
2:F:225:LYS:HD2	2:F:248:LEU:HD13	1.93	0.49

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:G:261:ILE:HD12	2:G:290:TYR:CD2	2.46	0.49
1:B:196:ASN:OD1	1:B:227:GLN:HG3	2.12	0.49
2:F:353:MET:CB	2:F:354:PRO:HD2	2.40	0.49
1:A:487:ASN:HD22	1:A:487:ASN:N	2.02	0.49
1:C:125:ARG:HG2	1:C:126:HIS:NE2	2.28	0.49
1:C:710:ASN:C	1:C:710:ASN:HD22	2.15	0.49
2:E:225:LYS:HD2	2:E:248:LEU:HD13	1.93	0.49
2:G:86:PHE:O	2:G:89:MET:HG2	2.13	0.49
1:D:680:LEU:HD11	1:D:684:ARG:CZ	2.43	0.49
2:E:102:TYR:CE2	2:E:133:VAL:HG11	2.48	0.49
2:H:116:PRO:O	2:H:119:GLN:HG2	2.13	0.49
2:H:321:GLU:OE2	2:H:324:ARG:NH2	2.46	0.49
1:A:680:LEU:HD11	1:A:684:ARG:CZ	2.42	0.49
1:D:405:ILE:HG13	1:D:429:ARG:HD3	1.95	0.49
2:E:261:ILE:HD12	2:E:290:TYR:CD2	2.48	0.49
2:H:225:LYS:HD2	2:H:248:LEU:HD13	1.95	0.49
1:A:114:ILE:HG23	1:A:135:TYR:HB3	1.95	0.49
1:B:114:ILE:CG2	1:B:135:TYR:HB3	2.42	0.49
1:C:105:TYR:HB2	1:C:114:ILE:HD11	1.95	0.49
1:D:328:CYS:HA	1:D:338:ASN:O	2.12	0.49
2:E:29:TYR:OH	2:E:33:ARG:NH1	2.46	0.49
1:B:449:LEU:O	1:B:450:ASN:HB2	2.13	0.49
2:H:79:ILE:O	2:H:82:ILE:HG12	2.13	0.49
2:H:134:ASN:ND2	2:H:175:GLN:O	2.46	0.49
1:A:291:ALA:HB2	2:F:80:LYS:HG2	1.94	0.48
1:A:308:GLN:HA	1:A:308:GLN:OE1	2.13	0.48
1:A:272:ASN:HD22	1:A:274:ASP:H	1.60	0.48
2:H:101:ARG:HA	2:H:151:ILE:O	2.12	0.48
1:D:184:ARG:NH1	1:D:187:TRP:HA	2.28	0.48
1:B:405:ILE:HG13	1:B:429:ARG:HD3	1.94	0.48
1:C:125:ARG:HG2	1:C:126:HIS:CE1	2.49	0.48
1:C:318:ARG:NH1	1:C:668:GLU:OE2	2.47	0.48
1:C:680:LEU:HD11	1:C:684:ARG:CZ	2.43	0.48
1:D:114:ILE:HG23	1:D:135:TYR:HB3	1.95	0.48
1:C:184:ARG:NH1	1:C:187:TRP:HA	2.28	0.48
1:D:125:ARG:HG2	1:D:126:HIS:NE2	2.29	0.48
1:D:378:GLU:CD	1:D:378:GLU:H	2.17	0.48
2:E:126:PRO:O	2:E:130:VAL:HG23	2.12	0.48
1:A:449:LEU:O	1:A:450:ASN:HB2	2.14	0.48
1:B:272:ASN:HD22	1:B:274:ASP:H	1.61	0.48
1:C:662:TYR:CE1	1:C:710:ASN:ND2	2.82	0.48

	ti a	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:E:272:TRP:NE1	2:E:278:HIS:HA	2.28	0.48
2:G:34:ARG:NH1	2:G:74:GLY:HA3	2.27	0.48
1:C:726:VAL:HG13	1:C:728:VAL:HG23	1.95	0.48
2:G:90:LYS:HG3	2:G:98:VAL:HG21	1.96	0.48
2:H:102:TYR:CE2	2:H:133:VAL:HG11	2.47	0.48
2:H:272:TRP:NE1	2:H:278:HIS:HA	2.29	0.48
1:B:388:GLN:HB2	1:B:391:LYS:HB2	1.96	0.48
1:D:114:ILE:CG2	1:D:135:TYR:HB3	2.44	0.48
2:F:233:THR:OG1	2:F:235:ARG:O	2.28	0.48
2:E:60:ASP:OD2	2:E:60:ASP:N	2.45	0.48
2:F:86:PHE:O	2:F:89:MET:HG2	2.13	0.48
1:A:125:ARG:HG2	1:A:126:HIS:NE2	2.29	0.48
1:B:105:TYR:HB2	1:B:114:ILE:HD11	1.96	0.47
1:B:125:ARG:HG2	1:B:126:HIS:NE2	2.29	0.47
1:C:388:GLN:HB2	1:C:391:LYS:HB2	1.95	0.47
1:D:751:ILE:HG23	1:D:752:TYR:N	2.29	0.47
2:E:101:ARG:HA	2:E:151:ILE:O	2.14	0.47
2:E:321:GLU:OE2	2:E:324:ARG:NH2	2.47	0.47
1:C:76:ILE:O	1:C:76:ILE:HG13	2.13	0.47
1:B:701:LEU:HD13	1:B:703:ILE:HD11	1.95	0.47
2:E:26:THR:HG21	2:E:85:GLU:OE1	2.14	0.47
2:G:60:ASP:OD2	2:G:60:ASP:N	2.43	0.47
2:H:86:PHE:O	2:H:89:MET:HG2	2.14	0.47
1:A:76:ILE:HG13	1:A:89:PHE:HB3	1.96	0.47
1:A:318:ARG:NH1	1:A:668:GLU:OE2	2.47	0.47
1:C:114:ILE:CG2	1:C:135:TYR:HB3	2.45	0.47
2:G:154:CYS:SG	2:G:180:ILE:HD11	2.54	0.47
7:A:860:NAG:H3	7:A:860:NAG:C8	2.34	0.47
2:H:322:PHE:HA	2:H:325:LEU:CD1	2.43	0.47
1:B:142:LEU:HD12	1:B:142:LEU:N	2.30	0.47
1:C:76:ILE:HG13	1:C:89:PHE:HB3	1.97	0.47
1:C:378:GLU:H	1:C:378:GLU:CD	2.18	0.47
1:D:290:PRO:HD2	1:D:315:TRP:CD1	2.50	0.47
2:E:56:LEU:HB3	2:E:57:THR:H	1.52	0.47
2:F:29:TYR:OH	2:F:33:ARG:NH1	2.48	0.47
2:G:15:HIS:HD2	2:G:295:ASP:OD1	1.94	0.47
2:F:154:CYS:SG	2:F:180:ILE:HD11	2.55	0.47
2:H:154:CYS:SG	2:H:180:ILE:HD11	2.55	0.47
3:Q:1:NAG:H62	3:Q:3:FUC:O2	2.14	0.47
2:F:240:TYR:CZ	2:F:266:SER:OG	2.60	0.46
1:A:125:ARG:HG2	1:A:126:HIS:CE1	2.50	0.46

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:D:125:ARG:HG2	1:D:126:HIS:CE1	2.49	0.46
2:G:225:LYS:HD2	2:G:248:LEU:HD13	1.96	0.46
1:B:40:ARG:H	1:B:40:ARG:HE	1.64	0.46
1:B:308:GLN:HB3	4:N:1:NAG:O6	2.15	0.46
1:C:125:ARG:HG2	1:C:126:HIS:CD2	2.51	0.46
2:E:281:ILE:HG23	2:E:282:ARG:N	2.29	0.46
2:F:321:GLU:OE2	2:F:324:ARG:NH2	2.48	0.46
2:G:272:TRP:NE1	2:G:278:HIS:HA	2.31	0.46
1:A:114:ILE:CG2	1:A:135:TYR:HB3	2.44	0.46
1:A:221:THR:OG1	4:K:1:NAG:H5	2.16	0.46
1:A:405:ILE:HG13	1:A:429:ARG:HD3	1.98	0.46
1:B:76:ILE:HG13	1:B:89:PHE:HB3	1.96	0.46
1:B:662:TYR:CE1	1:B:710:ASN:ND2	2.84	0.46
1:B:718:GLN:NE2	1:B:718:GLN:CA	2.76	0.46
1:C:76:ILE:HD11	1:C:89:PHE:CD1	2.50	0.46
2:H:54:LYS:O	2:H:56:LEU:HD22	2.15	0.46
2:H:60:ASP:OD2	2:H:60:ASP:N	2.44	0.46
2:H:114:PRO:HD2	2:H:161:TRP:CZ2	2.51	0.46
1:A:388:GLN:HB2	1:A:391:LYS:HB2	1.97	0.46
1:A:608:GLU:OE2	1:A:608:GLU:HA	2.15	0.46
2:E:90:LYS:HG3	2:E:98:VAL:HG21	1.97	0.46
2:E:313:LYS:HD2	2:E:313:LYS:N	2.31	0.46
1:A:630:SER:OG	1:A:740:HIS:NE2	2.41	0.46
1:D:76:ILE:HG13	1:D:89:PHE:HB3	1.96	0.46
2:H:191:SER:HA	2:H:194:PHE:CE2	2.49	0.46
1:C:689:MET:HB3	1:C:722:ALA:HB2	1.97	0.46
1:D:105:TYR:HB2	1:D:114:ILE:HD11	1.97	0.46
1:D:388:GLN:HB2	1:D:391:LYS:HB2	1.97	0.46
1:B:378:GLU:CD	1:B:378:GLU:H	2.18	0.46
2:E:154:CYS:SG	2:E:180:ILE:HD11	2.56	0.46
2:F:181:ASP:CG	2:F:182:LEU:H	2.20	0.45
2:H:90:LYS:HG3	2:H:98:VAL:HG21	1.97	0.45
1:C:291:ALA:HB1	2:G:84:TYR:HB2	1.98	0.45
1:C:630:SER:OG	1:C:740:HIS:NE2	2.44	0.45
1:A:626:ILE:HG23	1:A:636:THR:HG23	1.99	0.45
1:B:125:ARG:HG2	1:B:126:HIS:CE1	2.52	0.45
1:C:219:ASN:HB2	4:S:1:NAG:H82	1.98	0.45
1:C:662:TYR:HE1	1:C:710:ASN:ND2	2.14	0.45
1:D:689:MET:HB3	1:D:722:ALA:HB2	1.99	0.45
1:A:92:ASN:OD1	7:A:870:NAG:O5	2.33	0.45
1:A:127:SER:HB3	1:A:211:TYR:CD1	2.51	0.45

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:340:LEU:HD23	1:A:340:LEU:HA	1.64	0.45
1:A:466:LYS:HB3	1:A:467:TYR:CD2	2.51	0.45
2:H:13:GLU:OE1	2:H:294:THR:HG22	2.17	0.45
1:C:448:GLU:HA	1:C:448:GLU:OE2	2.16	0.45
1:C:449:LEU:O	1:C:450:ASN:HB2	2.15	0.45
2:G:13:GLU:OE1	2:G:294:THR:HG22	2.16	0.45
2:G:111:LYS:HE2	2:G:111:LYS:HB3	1.83	0.45
2:G:233:THR:OG1	2:G:235:ARG:O	2.29	0.45
1:A:689:MET:HB3	1:A:722:ALA:HB2	1.98	0.45
1:C:142:LEU:HD12	1:C:142:LEU:H	1.82	0.45
1:C:544:LEU:HD12	1:C:576:ALA:O	2.15	0.45
1:D:626:ILE:HG23	1:D:636:THR:HG23	1.97	0.45
2:F:5:PRO:O	2:F:7:PHE:N	2.50	0.45
1:A:173:TYR:CE2	1:A:184:ARG:CG	2.97	0.45
2:G:282:ARG:HB3	2:G:282:ARG:NH1	2.31	0.45
1:A:196:ASN:OD1	1:A:227:GLN:HG3	2.16	0.45
1:A:429:ARG:HB3	1:A:456:TYR:HA	1.99	0.45
1:B:125:ARG:HG2	1:B:126:HIS:CD2	2.51	0.45
1:C:196:ASN:OD1	1:C:227:GLN:HG3	2.16	0.45
1:C:405:ILE:HG13	1:C:429:ARG:HD3	1.98	0.45
1:C:608:GLU:OE2	1:C:608:GLU:HA	2.16	0.45
2:F:133:VAL:O	2:F:134:ASN:C	2.54	0.45
1:C:466:LYS:HB3	1:C:467:TYR:CD2	2.52	0.45
2:F:13:GLU:OE1	2:F:294:THR:HG22	2.17	0.45
2:G:23:LYS:HA	2:G:24:PRO:HD2	1.78	0.45
2:G:26:THR:HG21	2:G:85:GLU:OE1	2.16	0.45
2:H:261:ILE:HD12	2:H:290:TYR:HD2	1.82	0.45
1:A:436:LEU:HD12	1:A:436:LEU:HA	1.80	0.45
1:A:662:TYR:CE1	1:A:710:ASN:ND2	2.85	0.45
1:B:425:MET:HA	1:B:426:PRO:HD3	1.70	0.45
1:B:662:TYR:HE1	1:B:710:ASN:ND2	2.15	0.45
2:E:116:PRO:O	2:E:119:GLN:HG2	2.17	0.45
2:G:181:ASP:CG	2:G:182:LEU:H	2.20	0.45
2:G:321:GLU:OE2	2:G:324:ARG:NH2	2.50	0.45
1:A:175:LYS:HG3	1:A:182:SER:HB3	2.00	0.44
2:E:191:SER:HA	2:E:194:PHE:CE2	2.51	0.44
2:F:325:LEU:HD22	2:F:326:ASN:N	2.32	0.44
1:A:125:ARG:HG2	1:A:126:HIS:CD2	2.52	0.44
1:A:142:LEU:HD12	1:A:142:LEU:H	1.82	0.44
1:B:173:TYR:CE2	1:B:184:ARG:CG	3.00	0.44
1:B:554:LYS:HE2	1:B:554:LYS:HB3	1.82	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:379:GLU:H	1:A:379:GLU:HG2	1.68	0.44
1:B:184:ARG:NH1	1:B:187:TRP:HA	2.32	0.44
1:D:429:ARG:HB3	1:D:456:TYR:HA	2.00	0.44
2:F:191:SER:HA	2:F:194:PHE:CE2	2.52	0.44
1:A:544:LEU:HD12	1:A:576:ALA:O	2.18	0.44
1:D:125:ARG:HG2	1:D:126:HIS:CD2	2.52	0.44
1:D:318:ARG:NH1	1:D:668:GLU:OE2	2.51	0.44
2:F:262:CYS:CB	2:F:265:SER:HB3	2.46	0.44
2:G:34:ARG:NH2	2:G:74:GLY:H	2.15	0.44
1:D:40:ARG:H	1:D:40:ARG:HE	1.64	0.44
1:D:448:GLU:OE2	1:D:448:GLU:HA	2.17	0.44
1:D:598:LEU:HD22	1:D:671:MET:HG2	2.00	0.44
1:D:608:GLU:OE2	1:D:608:GLU:HA	2.18	0.44
2:E:240:TYR:C	2:E:242:THR:N	2.57	0.44
2:G:191:SER:HA	2:G:194:PHE:CE2	2.53	0.44
1:A:751:ILE:HG23	1:A:752:TYR:N	2.33	0.44
1:B:474:GLY:HA3	1:B:557:THR:O	2.18	0.44
1:D:142:LEU:HD12	1:D:142:LEU:H	1.82	0.44
1:D:184:ARG:HD3	1:D:186:THR:O	2.18	0.44
2:H:11:LYS:HD2	2:H:304:LEU:HD23	1.99	0.44
1:A:378:GLU:CD	1:A:378:GLU:H	2.20	0.44
1:C:403:GLU:OE1	1:C:585:TYR:HA	2.17	0.44
1:C:651:ILE:HG21	1:C:755:MET:HE2	1.99	0.44
2:E:15:HIS:N	2:E:293:ASN:OD1	2.41	0.44
1:B:127:SER:HB3	1:B:211:TYR:CD1	2.52	0.44
1:C:142:LEU:HD12	1:C:142:LEU:N	2.33	0.44
1:D:142:LEU:HD12	1:D:142:LEU:N	2.33	0.44
1:D:302:ASP:HB3	1:D:314:GLN:HB2	2.00	0.44
1:D:661:TYR:OH	1:D:718:GLN:HG3	2.18	0.44
2:F:11:LYS:HD2	2:F:304:LEU:HD23	2.00	0.44
1:C:116:LEU:O	1:C:132:TYR:HA	2.18	0.43
1:B:76:ILE:HD11	1:B:89:PHE:CD1	2.53	0.43
1:B:487:ASN:HD22	1:B:487:ASN:N	2.09	0.43
1:B:608:GLU:OE2	1:B:608:GLU:HA	2.16	0.43
1:B:726:VAL:HG13	1:B:728:VAL:HG23	1.99	0.43
1:C:50:LYS:HD3	1:C:50:LYS:HA	1.93	0.43
1:D:76:ILE:HD11	1:D:89:PHE:CD1	2.53	0.43
2:E:233:THR:OG1	2:E:235:ARG:O	2.30	0.43
1:A:474:GLY:HA3	1:A:557:THR:O	2.18	0.43
1:B:689:MET:HB3	1:B:722:ALA:HB2	1.99	0.43
1:D:358:ARG:HB3	1:D:358:ARG:NH1	2.32	0.43

	le le pagem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:466:LYS:HB3	1:D:467:TYR:CD2	2.53	0.43
1:B:358:ARG:HB3	1:B:358:ARG:NH1	2.33	0.43
2:F:240:TYR:N	2:F:240:TYR:CD1	2.87	0.43
2:G:163:SER:O	2:G:166:VAL:HG12	2.18	0.43
1:A:105:TYR:HB2	1:A:114:ILE:HD11	1.99	0.43
1:A:701:LEU:HD13	1:A:703:ILE:HD11	1.99	0.43
1:B:651:ILE:HG21	1:B:755:MET:HE2	2.01	0.43
2:E:112:VAL:HG13	2:E:112:VAL:O	2.19	0.43
1:A:310:ARG:NH1	1:A:368:GLY:O	2.49	0.43
1:B:184:ARG:HD3	1:B:186:THR:O	2.17	0.43
1:B:429:ARG:HB3	1:B:456:TYR:HA	1.99	0.43
2:E:132:LEU:HD12	2:E:132:LEU:HA	1.63	0.43
1:B:436:LEU:HD12	1:B:436:LEU:HA	1.83	0.43
2:E:124:LEU:CD2	2:E:128:GLU:HB3	2.49	0.43
2:F:338:ASP:HB3	2:F:339:GLU:H	1.66	0.43
2:H:313:LYS:HD2	2:H:313:LYS:N	2.34	0.43
1:D:338:ASN:ND2	1:D:339:CYS:N	2.66	0.43
2:E:56:LEU:HA	2:E:56:LEU:HD13	1.78	0.43
2:F:116:PRO:O	2:F:119:GLN:HG2	2.18	0.43
1:A:116:LEU:O	1:A:132:TYR:HA	2.19	0.43
2:E:125:THR:HG23	2:E:128:GLU:HB2	2.01	0.43
1:B:315:TRP:O	1:B:323:SER:HB2	2.19	0.43
1:B:626:ILE:HG23	1:B:636:THR:HG23	2.00	0.43
2:F:313:LYS:N	2:F:313:LYS:HD2	2.34	0.43
1:A:567:LEU:HD22	1:A:573:ILE:HD12	2.01	0.42
1:C:56:LYS:HE2	1:C:495:GLU:OE1	2.19	0.42
1:C:429:ARG:HB3	1:C:456:TYR:HA	2.00	0.42
1:C:701:LEU:HD13	1:C:703:ILE:HD11	2.00	0.42
1:D:153:GLN:HE22	1:D:170:ASN:ND2	2.17	0.42
1:D:330:TYR:CD2	4:W:2:NAG:H83	2.54	0.42
2:G:135:GLN:H	2:G:135:GLN:HG2	1.61	0.42
2:G:325:LEU:HD22	2:G:326:ASN:N	2.34	0.42
2:H:243:LEU:HD22	2:H:282:ARG:NH2	2.34	0.42
4:N:1:NAG:H61	4:N:2:NAG:C1	2.49	0.42
1:A:184:ARG:NH1	1:A:187:TRP:HA	2.34	0.42
1:A:367:ASP:CG	1:A:369:ASN:HD22	2.23	0.42
1:C:71:LYS:HZ3	1:C:74:ASN:H	1.66	0.42
1:D:50:LYS:HD3	1:D:50:LYS:HA	1.90	0.42
2:F:349:LYS:HE3	2:F:349:LYS:HB2	1.85	0.42
2:G:82:ILE:HG12	2:G:83:ALA:N	2.34	0.42
2:G:114:PRO:HD2	2:G:161:TRP:CZ2	2.54	0.42

Interatomic Clash				
Atom-1	Atom-2	distance $(Å)$	overlap (Å)	
2:G:280:VAL:HA	2:G:283:PHE:CD2	2.39	0.42	
2:H:163:SER:O	2:H:166:VAL:HG12	2.19	0.42	
4:U:1:NAG:H61	4:U:2:NAG:N2	2.34	0.42	
1:B:448:GLU:OE2	1:B:448:GLU:HA	2.18	0.42	
1:B:466:LYS:HB3	1:B:467:TYR:CD2	2.54	0.42	
2:F:26:THR:HG21	2:F:85:GLU:OE2	2.19	0.42	
1:A:661:TYR:OH	1:A:718:GLN:HG3	2.19	0.42	
2:E:113:GLU:HG3	2:E:161:TRP:CD1	2.54	0.42	
2:H:106:LEU:HD23	2:H:106:LEU:HA	1.89	0.42	
1:B:125:ARG:O	1:B:125:ARG:HG3	2.19	0.42	
1:C:358:ARG:HB3	1:C:358:ARG:NH1	2.33	0.42	
1:C:474:GLY:HA3	1:C:557:THR:O	2.20	0.42	
1:D:548:ALA:HB3	1:D:635:VAL:HG21	2.01	0.42	
2:E:13:GLU:OE1	2:E:294:THR:HG22	2.18	0.42	
1:A:142:LEU:HD12	1:A:142:LEU:N	2.34	0.42	
1:C:759:ILE:HD13	1:C:759:ILE:HA	1.90	0.42	
2:F:194:PHE:HA	2:F:195:PRO:HD3	1.89	0.42	
2:H:9:LYS:HB3	2:H:10:PRO:HD2	2.01	0.42	
2:H:103:SER:HA	2:H:104:PRO:HD2	1.90	0.42	
2:H:181:ASP:CG	2:H:182:LEU:H	2.22	0.42	
1:A:285:ILE:HG21	1:A:336:ARG:HA	2.00	0.42	
1:A:554:LYS:HE2	1:A:554:LYS:HB3	1.81	0.42	
1:C:153:GLN:HE22	1:C:170:ASN:ND2	2.17	0.42	
1:D:689:MET:HB3	1:D:722:ALA:CB	2.50	0.42	
2:F:261:ILE:HD12	2:F:290:TYR:HD2	1.84	0.42	
2:G:103:SER:HA	2:G:104:PRO:HD2	1.89	0.42	
2:H:15:HIS:HD2	2:H:295:ASP:OD1	1.92	0.42	
1:A:76:ILE:HD11	1:A:89:PHE:CD1	2.54	0.42	
1:A:358:ARG:HB3	1:A:358:ARG:NH1	2.34	0.42	
1:B:661:TYR:OH	1:B:718:GLN:HG3	2.20	0.42	
1:C:127:SER:HB3	1:C:211:TYR:CD1	2.55	0.42	
1:C:184:ARG:HD3	1:C:186:THR:O	2.19	0.42	
1:C:661:TYR:OH	1:C:718:GLN:HG3	2.20	0.42	
1:D:379:GLU:H	1:D:379:GLU:HG2	1.65	0.42	
1:D:436:LEU:HD12	1:D:436:LEU:HA	1.86	0.42	
2:E:23:LYS:HA	2:E:24:PRO:HD2	1.78	0.42	
2:G:9:LYS:HB3	2:G:10:PRO:HD2	2.02	0.42	
1:A:662:TYR:HE1	1:A:710:ASN:ND2	2.18	0.42	
1:B:318:ARG:NH1	1:B:668:GLU:OE2	2.52	0.42	
2:E:15:HIS:HD2	2:E:295:ASP:OD1	1.92	0.42	
1:C:554:LYS:HE2	1:C:554:LYS:HB3	1.81	0.42	

			Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:626:ILE:O	1:D:650:GLY:HA2	2.20	0.42
2:F:23:LYS:HA	2:F:24:PRO:HD2	1.78	0.42
2:F:163:SER:O	2:F:166:VAL:HG12	2.20	0.42
1:C:164:LEU:HD23	1:C:164:LEU:HA	1.84	0.41
1:D:272:ASN:ND2	1:D:274:ASP:H	2.18	0.41
2:E:194:PHE:HA	2:E:195:PRO:HD3	1.90	0.41
2:F:56:LEU:HB3	2:F:57:THR:H	1.73	0.41
2:G:125:THR:O	2:G:129:VAL:HG23	2.20	0.41
2:G:313:LYS:HD2	2:G:313:LYS:N	2.34	0.41
1:A:137:LEU:HD23	1:A:140:ARG:HH12	1.85	0.41
1:A:336:ARG:CZ	2:F:128:GLU:HB2	2.50	0.41
2:E:181:ASP:CG	2:E:182:LEU:H	2.23	0.41
4:U:1:NAG:H83	4:U:1:NAG:H3	2.03	0.41
2:F:294:THR:HG23	2:F:297:PRO:HD3	2.02	0.41
1:A:472:CYS:O	1:A:478:PRO:HA	2.20	0.41
1:C:170:ASN:N	1:C:170:ASN:ND2	2.68	0.41
1:D:82:GLU:OE1	1:D:82:GLU:HA	2.20	0.41
1:D:481:THR:OG1	1:D:483:HIS:CE1	2.71	0.41
2:F:4:THR:O	2:F:6:ALA:N	2.54	0.41
2:G:261:ILE:HG22	2:G:263:PRO:HD3	2.02	0.41
2:G:349:LYS:HE3	2:G:349:LYS:HB2	1.85	0.41
2:H:113:GLU:CB	2:H:114:PRO:HD3	2.50	0.41
2:H:116:PRO:HB2	2:H:117:TRP:CD1	2.56	0.41
1:A:164:LEU:HD23	1:A:164:LEU:HA	1.87	0.41
2:E:9:LYS:HB3	2:E:10:PRO:HD2	2.03	0.41
1:B:56:LYS:HE2	1:B:495:GLU:OE1	2.20	0.41
1:C:530:LEU:HA	1:C:531:PRO:HD3	1.91	0.41
1:D:173:TYR:CE2	1:D:184:ARG:CG	3.00	0.41
1:A:302:ASP:HB3	1:A:314:GLN:HB2	2.03	0.41
1:A:689:MET:HB3	1:A:722:ALA:CB	2.50	0.41
1:B:482:LEU:HD23	1:B:494:LEU:HD11	2.03	0.41
1:D:137:LEU:HD23	1:D:140:ARG:HH12	1.86	0.41
2:E:262:CYS:CB	2:E:265:SER:HB3	2.51	0.41
1:B:763:PHE:HB3	1:B:765:LEU:HD13	2.03	0.41
1:C:315:TRP:O	1:C:323:SER:HB2	2.21	0.41
2:E:294:THR:HG23	2:E:297:PRO:HD3	2.03	0.41
2:H:112:VAL:HG23	2:H:115:ILE:HG12	2.03	0.41
4:R:1:NAG:H61	4:R:2:NAG:H82	2.02	0.41
1:A:147:ARG:CZ	4:J:1:NAG:H83	2.51	0.41
1:A:612:GLN:O	1:A:615:LYS:HB2	2.21	0.41
1:C:472:CYS:O	1:C:478:PRO:HA	2.21	0.41

	to ac pagem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:544:LEU:HD21	1:C:606:GLN:HG3	2.02	0.41
1:D:154:TRP:CE2	1:D:212:SER:HB2	2.56	0.41
1:D:482:LEU:HD23	1:D:494:LEU:HD11	2.03	0.41
2:E:163:SER:O	2:E:166:VAL:HG12	2.21	0.41
2:E:231:LEU:HD12	2:E:231:LEU:HA	1.88	0.41
2:F:60:ASP:OD2	2:F:60:ASP:N	2.44	0.41
2:F:179:ALA:HB2	2:F:334:PHE:CD2	2.56	0.41
2:G:66:ASP:OD2	2:G:117:TRP:HZ3	2.03	0.41
2:G:262:CYS:CB	2:G:265:SER:HB3	2.50	0.41
1:A:127:SER:HB3	1:A:211:TYR:CG	2.56	0.41
1:A:401:THR:O	1:A:401:THR:CG2	2.66	0.41
1:A:482:LEU:HD23	1:A:494:LEU:HD11	2.02	0.41
1:B:377:ASN:ND2	1:B:379:GLU:H	2.19	0.41
1:B:472:CYS:O	1:B:478:PRO:HA	2.20	0.41
1:B:751:ILE:HG23	1:B:752:TYR:N	2.36	0.41
1:D:127:SER:HB3	1:D:211:TYR:CD1	2.56	0.41
2:F:15:HIS:N	2:F:293:ASN:OD1	2.44	0.41
2:F:42:THR:CB	2:F:45:GLU:HB3	2.48	0.41
2:F:291:SER:HB3	2:F:329:ALA:HB2	2.02	0.41
2:F:342:GLU:HA	2:F:345:ASP:HB2	2.03	0.41
2:G:56:LEU:HB3	2:G:57:THR:H	1.61	0.41
2:H:185:ASP:OD2	2:H:188:ILE:HG13	2.20	0.41
1:A:82:GLU:HA	1:A:82:GLU:OE1	2.21	0.40
1:A:448:GLU:OE2	1:A:448:GLU:HA	2.21	0.40
1:A:626:ILE:O	1:A:650:GLY:HA2	2.21	0.40
1:B:545:ASP:HB3	1:B:577:SER:OG	2.20	0.40
1:D:65:ASP:OD2	1:D:466:LYS:HB2	2.22	0.40
1:D:544:LEU:HD12	1:D:576:ALA:O	2.21	0.40
2:E:109:ASN:O	2:E:122:GLY:HA2	2.20	0.40
1:A:651:ILE:HG21	1:A:755:MET:HE2	2.03	0.40
1:C:626:ILE:O	1:C:650:GLY:HA2	2.21	0.40
2:E:106:LEU:HD23	2:E:106:LEU:HA	1.86	0.40
2:H:342:GLU:HA	2:H:345:ASP:HB2	2.03	0.40
5:X:3:BMA:H3	5:X:4:MAN:H2	1.38	0.40
1:B:137:LEU:HD23	1:B:140:ARG:HH12	1.85	0.40
1:D:56:LYS:HE2	1:D:495:GLU:OE1	2.21	0.40
1:D:164:LEU:HD23	1:D:164:LEU:HA	1.90	0.40
1:D:401:THR:O	1:D:401:THR:CG2	2.65	0.40
2:E:23:LYS:HB3	2:E:23:LYS:HE2	1.82	0.40
2:G:283:PHE:HB3	2:G:288:VAL:HG12	2.03	0.40
2:H:110:SER:HB2	2:H:123:ASP:N	2.36	0.40

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:170:ASN:N	1:A:170:ASN:ND2	2.68	0.40
1:B:116:LEU:O	1:B:132:TYR:HA	2.22	0.40
1:D:291:ALA:HB1	2:H:84:TYR:HB2	2.03	0.40
1:D:372:TYR:CE2	1:D:386:TYR:CD1	3.10	0.40
2:F:102:TYR:CE2	2:F:133:VAL:HG11	2.57	0.40
1:B:150:ASN:O	1:B:151:ASN:CB	2.69	0.40
1:B:423:LYS:HB3	1:B:425:MET:HG2	2.03	0.40
1:C:689:MET:HB3	1:C:722:ALA:CB	2.51	0.40
2:G:23:LYS:HE2	2:G:23:LYS:HB3	1.83	0.40
2:G:342:GLU:HA	2:G:345:ASP:HB2	2.03	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perc	entiles
1	А	726/728~(100%)	674 (93%)	49 (7%)	3~(0%)	34	69
1	В	726/728~(100%)	674 (93%)	49 (7%)	3~(0%)	34	69
1	С	726/728~(100%)	670 (92%)	52 (7%)	4 (1%)	25	60
1	D	726/728~(100%)	669~(92%)	54 (7%)	3~(0%)	34	69
2	Е	350/357~(98%)	320 (91%)	21~(6%)	9~(3%)	5	24
2	F	348/357~(98%)	311 (89%)	28 (8%)	9~(3%)	5	24
2	G	350/357~(98%)	318 (91%)	26 (7%)	6 (2%)	9	35
2	Н	350/357~(98%)	319 (91%)	26 (7%)	5 (1%)	11	40
All	All	4302/4340~(99%)	3955 (92%)	305 (7%)	42 (1%)	15	49

All (42) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	Е	56	LEU
2	Е	113	GLU
2	Е	241	HIS
2	Е	338	ASP
2	F	6	ALA
2	F	338	ASP
2	G	338	ASP
2	Н	338	ASP
1	А	521	GLU
1	В	521	GLU
1	С	521	GLU
1	D	521	GLU
2	Е	354	PRO
2	F	5	PRO
2	F	113	GLU
2	G	56	LEU
1	А	596	ARG
1	В	73	GLU
1	С	332	GLU
1	С	596	ARG
2	F	241	HIS
1	А	450	ASN
1	С	450	ASN
1	D	450	ASN
1	D	596	ARG
2	Е	19	ASP
2	Е	238	HIS
2	Е	295	ASP
2	Е	337	GLU
2	F	295	ASP
2	G	238	HIS
2	G	295	ASP
2	Н	238	HIS
2	Η	295	ASP
1	В	450	ASN
2	F	238	HIS
2	F	313	LYS
2	G	113	GLU
2	G	353	MET
2	Н	19	ASP
2	F	114	PRO
2	Н	114	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	P	erc	entiles
1	А	653/653~(100%)	596~(91%)	57~(9%)		10	34
1	В	653/653~(100%)	593~(91%)	60 (9%)		9	31
1	\mathbf{C}	653/653~(100%)	591~(90%)	62 (10%)		8	30
1	D	653/653~(100%)	591~(90%)	62 (10%)		8	30
2	Ε	307/310~(99%)	262~(85%)	45 (15%)		3	13
2	\mathbf{F}	306/310~(99%)	267~(87%)	39~(13%)		4	18
2	G	307/310~(99%)	262~(85%)	45 (15%)		3	13
2	Н	307/310~(99%)	265~(86%)	42 (14%)		3	15
All	All	3839/3852~(100%)	3427 (89%)	412 (11%)		6	24

All (412) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	40	ARG
1	А	76	ILE
1	А	114	ILE
1	А	140	ARG
1	А	144	THR
1	А	170	ASN
1	А	184	ARG
1	А	191	GLU
1	А	207	VAL
1	А	214	LEU
1	А	223	LEU
1	А	230	ASP
1	А	237	GLU
1	А	246	LEU
1	А	253	ARG
1	А	272	ASN
1	А	292	SER
1	А	303	VAL
1	А	318	ARG

\mathbf{Mol}	Chain	Res	Type
1	А	358	ARG
1	А	361	GLU
1	А	375	ILE
1	А	377	ASN
1	А	379	GLU
1	А	390	ASP
1	А	399	LYS
1	А	410	LEU
1	А	423	LYS
1	А	429	ARG
1	А	436	LEU
1	А	471	ARG
1	А	482	LEU
1	А	487	ASN
1	А	492	ARG
1	А	505	GLN
1	А	507	VAL
1	А	514	LEU
1	А	523	LYS
1	А	536	LYS
1	А	543	LEU
1	А	554	LYS
1	А	589	LYS
1	А	597	ARG
1	А	598	LEU
1	А	603	VAL
1	А	608	GLU
1	А	621	ASN
1	А	622	LYS
1	А	658	ARG
1	А	673	LEU
1	А	679	ASN
1	А	685	ASN
1	А	689	MET
1	A	701	LEU
1	A	702	LEU
1	А	710	ASN
1	A	761	GLN
1	В	40	ARG
1	В	73	GLU
1	В	76	ILE
1	В	114	ILE

Mol	Chain	Res	Type
1	В	140	ARG
1	В	144	THR
1	В	170	ASN
1	В	184	ARG
1	В	191	GLU
1	В	207	VAL
1	В	214	LEU
1	В	223	LEU
1	В	230	ASP
1	В	237	GLU
1	В	246	LEU
1	В	253	ARG
1	В	272	ASN
1	В	303	VAL
1	В	318	ARG
1	В	338	ASN
1	В	358	ARG
1	В	361	GLU
1	В	375	ILE
1	В	377	ASN
1	В	379	GLU
1	В	385	CYS
1	В	390	ASP
1	В	399	LYS
1	В	410	LEU
1	В	423	LYS
1	В	429	ARG
1	В	436	LEU
1	В	471	ARG
1	В	482	LEU
1	В	485	SER
1	В	487	ASN
1	В	492	ARG
1	В	505	GLN
1	В	507	VAL
1	В	514	LEU
1	В	523	LYS
1	В	536	LYS
1	В	543	LEU
1	В	554	LYS
1	В	589	LYS
1	В	597	ARG

Mol	Chain	Res	Type
1	В	598	LEU
1	В	603	VAL
1	В	608	GLU
1	В	621	ASN
1	В	622	LYS
1	В	658	ARG
1	В	673	LEU
1	В	679	ASN
1	В	685	ASN
1	В	689	MET
1	В	701	LEU
1	В	702	LEU
1	В	710	ASN
1	В	761	GLN
1	С	40	ARG
1	С	71	LYS
1	С	73	GLU
1	С	76	ILE
1	С	91	GLU
1	С	114	ILE
1	С	140	ARG
1	С	144	THR
1	С	170	ASN
1	С	184	ARG
1	С	191	GLU
1	С	207	VAL
1	С	214	LEU
1	С	223	LEU
1	С	230	ASP
1	С	237	GLU
1	С	246	LEU
1	С	253	ARG
1	С	272	ASN
1	С	303	VAL
1	С	318	ARG
1	С	332	GLU
1	С	338	ASN
1	С	358	ARG
1	С	361	GLU
1	C	375	ILE
1	С	377	ASN
1	С	379	GLU

Mol	Chain	Res	Type
1	С	385	CYS
1	С	390	ASP
1	С	399	LYS
1	С	410	LEU
1	С	423	LYS
1	С	429	ARG
1	С	436	LEU
1	С	471	ARG
1	С	482	LEU
1	С	487	ASN
1	С	492	ARG
1	С	505	GLN
1	С	507	VAL
1	С	514	LEU
1	С	523	LYS
1	С	536	LYS
1	С	543	LEU
1	С	554	LYS
1	С	589	LYS
1	С	597	ARG
1	С	598	LEU
1	С	603	VAL
1	С	608	GLU
1	С	621	ASN
1	С	622	LYS
1	С	658	ARG
1	С	673	LEU
1	С	679	ASN
1	C	685	ASN
1	С	689	MET
1	С	701	LEU
1	C	702	LEU
1	С	710	ASN
1	С	761	GLN
1	D	40	ARG
1	D	71	LYS
1	D	76	ILE
1	D	114	ILE
1	D	140	ARG
1	D	144	THR
1	D	170	ASN
1	D	184	ARG

Mol	Chain	Chain Res Typ	
1	D	191	GLU
1	D	207	VAL
1	D	214	LEU
1	D	223	LEU
1	D	230	ASP
1	D	237	GLU
1	D	246	LEU
1	D	253	ARG
1	D	272	ASN
1	D	285	ILE
1	D	293	MET
1	D	303	VAL
1	D	318	ARG
1	D	336	ARG
1	D	358	ARG
1	D	361	GLU
1	D	375	ILE
1	D	377	ASN
1	D	378	GLU
1	D	379	GLU
1	D	385	CYS
1	D	390	ASP
1	D	399	LYS
1	D	410	LEU
1	D	423	LYS
1	D	429	ARG
1	D	436	LEU
1	D	471	ARG
1	D	482	LEU
1	D	487	ASN
1	D	492	ARG
1	D	505	GLN
1	D	507	VAL
1	D	514	LEU
1	D	523	LYS
1	D	536	LYS
1	D	543	LEU
1	D	554	LYS
1	D	589	LYS
1	D	597	ARG
1	D	598	LEU
1	D	603	VAL

Mol	Chain	Res	Type
1	D	608	GLU
1	D	621	ASN
1	D	622	LYS
1	D	658	ARG
1	D	673	LEU
1	D	679	ASN
1	D	685	ASN
1	D	689	MET
1	D	701	LEU
1	D	702	LEU
1	D	710	ASN
1	D	761	GLN
2	Е	4	THR
2	Е	18	LEU
2	Е	38	LEU
2	Е	44	GLU
2	Е	47	LEU
2	Е	52	MET
2	Е	54	LYS
2	Е	56	LEU
2	Е	57	THR
2	Е	60	ASP
2	Е	75	CYS
2	Е	98	VAL
2	Е	100	VAL
2	Е	110	SER
2	Е	121	GLU
2	Е	124	LEU
2	Е	125	THR
2	Е	128	GLU
2	Ε	131	SER
2	Е	132	LEU
2	Е	146	VAL
2	Е	168	LEU
2	E	177	VAL
2	Е	182	LEU
2	E	206	LYS
2	Е	231	LEU
2	Е	235	ARG
2	Е	251	ARG
2	Е	252	LEU
2	Е	254	GLN

Mol	Chain	Res	Type
2	Е	276	THR
2	Е	282	ARG
2	Е	292	LEU
2	Е	303	THR
2	Е	313	LYS
2	Е	320	GLU
2	Е	325	LEU
2	Е	331	LYS
2	Е	335	LEU
2	Е	338	ASP
2	Е	341	LYS
2	Е	343	LEU
2	Е	347	LEU
2	Е	352	ARG
2	Ε	353	MET
2	F	4	THR
2	F	18	LEU
2	F	38	LEU
2	F	44	GLU
2	F	47	LEU
2	F	52	MET
2	F	54	LYS
2	F	57	THR
2	F	60	ASP
2	F	76	ARG
2	F	98	VAL
2	F	100	VAL
2	F	121	GLU
2	F	$1\overline{2}\overline{4}$	LEU
2	F	125	THR
2	F	146	VAL
2	F	168	LEU
2	F	177	VAL
2	F	182	LEU
2	F	206	LYS
2	F	212	THR
2	F	230	THR
2	F	231	LEU
2	F	251	ARG
2	F	252	LEU
2	F	254	GLN
2	F	276	THR

Mol	Chain	Res	Type
2	F	292	LEU
2	F	303	THR
2	F	313	LYS
2	F	320	GLU
2	F	325	LEU
2	F	331	LYS
2	F	335	LEU
2	F	338	ASP
2	F	341	LYS
2	F	343	LEU
2	F	347	LEU
2	F	355	SER
2	G	4	THR
2	G	18	LEU
2	G	38	LEU
2	G	44	GLU
2	G	47	LEU
2	G	52	MET
2	G	54	LYS
2	G	57	THR
2	G	60	ASP
2	G	76	ARG
2	G	82	ILE
2	G	98	VAL
2	G	100	VAL
2	G	112	VAL
2	G	113	GLU
2	G	121	GLU
2	G	124	LEU
2	G	125	THR
2	G	146	VAL
2	G	168	LEU
2	G	177	VAL
2	G	182	LEU
2	G	206	LYS
2	G	230	THR
2	G	231	LEU
2	G	240	TYR
2	G	251	ARG
2	G	252	LEU
2	G	254	GLN
2	G	276	THR

Mol	Chain	Res	Type
2	G	281	ILE
2	G	292	LEU
2	G	303	THR
2	G	313	LYS
2	G	320	GLU
2	G	325	LEU
2	G	331	LYS
2	G	335	LEU
2	G	338	ASP
2	G	341	LYS
2	G	343	LEU
2	G	347	LEU
2	G	352	ARG
2	G	353	MET
2	G	355	SER
2	Н	4	THR
2	Н	18	LEU
2	Н	38	LEU
2	Н	44	GLU
2	Н	47	LEU
2	Н	52	MET
2	Н	54	LYS
2	Н	57	THR
2	Н	60	ASP
2	Н	76	ARG
2	Н	98	VAL
2	Н	100	VAL
2	Н	111	LYS
2	Н	112	VAL
2	Н	121	GLU
2	Н	124	LEU
2	Н	125	THR
2	Η	132	LEU
2	Н	139	GLU
2	Η	146	VAL
2	Н	168	LEU
2	Н	177	VAL
2	Н	182	LEU
2	Η	206	LYS
2	Н	231	LEU
2	Η	251	ARG
2	Н	252	LEU

Mol	Chain	Res	Type
2	Н	254	GLN
2	Н	276	THR
2	Н	283	PHE
2	Н	292	LEU
2	Н	303	THR
2	Н	313	LYS
2	Н	320	GLU
2	Н	325	LEU
2	Н	331	LYS
2	Н	335	LEU
2	Н	337	GLU
2	Н	341	LYS
2	Н	343	LEU
2	Н	347	LEU
2	Н	355	SER

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (99) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	51	ASN
1	А	75	ASN
1	А	103	ASN
1	А	170	ASN
1	А	247	GLN
1	А	272	ASN
1	А	314	GLN
1	А	345	HIS
1	А	369	ASN
1	А	377	ASN
1	А	483	HIS
1	А	487	ASN
1	А	505	GLN
1	А	572	ASN
1	А	621	ASN
1	А	679	ASN
1	А	694	ASN
1	А	710	ASN
1	A	718	GLN
1	А	731	GLN
1	В	51	ASN
1	В	74	ASN
1	В	103	ASN

Mol	Chain	Res	Type
1	В	170	ASN
1	В	247	GLN
1	В	272	ASN
1	В	314	GLN
1	В	338	ASN
1	В	345	HIS
1	В	369	ASN
1	В	377	ASN
1	В	483	HIS
1	В	487	ASN
1	В	505	GLN
1	В	572	ASN
1	В	621	ASN
1	В	679	ASN
1	В	694	ASN
1	В	710	ASN
1	В	718	GLN
1	В	731	GLN
1	С	51	ASN
1	С	170	ASN
1	С	247	GLN
1	С	272	ASN
1	С	314	GLN
1	С	338	ASN
1	С	377	ASN
1	С	483	HIS
1	С	487	ASN
1	С	505	GLN
1	С	572	ASN
1	С	621	ASN
1	С	679	ASN
1	С	694	ASN
1	С	710	ASN
1	С	718	GLN
1	С	731	GLN
1	D	51	ASN
1	D	103	ASN
1	D	170	ASN
1	D	272	ASN
1	D	314	GLN
1	D	338	ASN
1	D	369	ASN

Mol	Chain	Res	Type
1	D	377	ASN
1	D	483	HIS
1	D	487	ASN
1	D	505	GLN
1	D	572	ASN
1	D	621	ASN
1	D	679	ASN
1	D	694	ASN
1	D	710	ASN
1	D	718	GLN
1	D	731	GLN
2	Е	48	ASN
2	Е	134	ASN
2	Ε	157	HIS
2	Е	158	GLN
2	Ε	210	HIS
2	Е	254	GLN
2	F	48	ASN
2	F	134	ASN
2	F	157	HIS
2	F	158	GLN
2	F	210	HIS
2	F	254	GLN
2	G	48	ASN
2	G	134	ASN
2	G	157	HIS
2	G	158	GLN
2	G	210	HIS
2	G	254	GLN
2	Н	48	ASN
2	Н	134	ASN
2	Н	157	HIS
2	Н	210	HIS
2	Н	254	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

44 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Bog	Link	Bond lengths		Bond angles			
WIOI	Type	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
3	NAG	Ι	1	3,1	14,14,15	0.63	0	$17,\!19,\!21$	0.95	0
3	NAG	Ι	2	3	14,14,15	0.53	0	$17,\!19,\!21$	1.53	3 (17%)
3	FUC	Ι	3	3	10,10,11	0.60	0	$14,\!14,\!16$	1.65	3 (21%)
4	NAG	J	1	4,1	14,14,15	0.55	0	$17,\!19,\!21$	1.18	2 (11%)
4	NAG	J	2	4	14,14,15	0.60	0	$17,\!19,\!21$	1.99	4 (23%)
4	NAG	К	1	4,1	14,14,15	0.67	0	$17,\!19,\!21$	1.86	7 (41%)
4	NAG	Κ	2	4	$14,\!14,\!15$	0.56	0	$17,\!19,\!21$	1.71	4 (23%)
5	NAG	L	1	5,1	$14,\!14,\!15$	0.70	0	$17,\!19,\!21$	1.64	3 (17%)
5	NAG	L	2	5	$14,\!14,\!15$	0.79	1 (7%)	$17,\!19,\!21$	1.54	3 (17%)
5	BMA	L	3	5	11,11,12	0.51	0	$15,\!15,\!17$	2.49	6 (40%)
5	MAN	L	4	5	11,11,12	0.70	0	$15,\!15,\!17$	1.72	4 (26%)
6	NAG	М	1	6,1	14,14,15	0.39	0	$17,\!19,\!21$	2.00	2 (11%)
6	FUC	М	2	6	10,10,11	0.73	0	$14,\!14,\!16$	1.34	1 (7%)
4	NAG	Ν	1	4,1	$14,\!14,\!15$	0.57	0	$17,\!19,\!21$	1.46	4 (23%)
4	NAG	Ν	2	4	$14,\!14,\!15$	0.63	0	$17,\!19,\!21$	2.14	6 (35%)
5	NAG	Ο	1	5,1	$14,\!14,\!15$	0.58	0	$17,\!19,\!21$	2.31	6 (35%)
5	NAG	Ο	2	5	14,14,15	0.63	0	$17,\!19,\!21$	1.38	2 (11%)
5	BMA	Ο	3	5	11,11,12	0.62	0	$15,\!15,\!17$	1.69	4 (26%)
5	MAN	Ο	4	5	11,11,12	0.61	0	$15,\!15,\!17$	2.07	6 (40%)
4	NAG	Р	1	4,1	14,14,15	0.81	0	$17,\!19,\!21$	2.38	4 (23%)
4	NAG	Р	2	4	14,14,15	0.56	0	17,19,21	2.24	3 (17%)
3	NAG	Q	1	3,1	14,14,15	0.51	0	17,19,21	1.13	1 (5%)
3	NAG	Q	2	3	14,14,15	0.66	0	17,19,21	1.55	5 (29%)
3	FUC	Q	3	3	10,10,11	0.59	0	14,14,16	1.43	2 (14%)
4	NAG	R	1	4,1	14,14,15	0.80	0	17,19,21	3.03	7 (41%)
4	NAG	R	2	4	14,14,15	0.62	0	17,19,21	1.59	2 (11%)

Mal	Turne	Chain	Dec	Tink	Bond lengths		Bond angles			
	Type	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
4	NAG	S	1	4,1	14,14,15	0.57	0	17,19,21	1.32	2 (11%)
4	NAG	S	2	4	14,14,15	0.53	0	17,19,21	1.72	4 (23%)
5	NAG	Т	1	5,1	14,14,15	0.61	0	17,19,21	1.96	4 (23%)
5	NAG	Т	2	5	14,14,15	0.52	0	17,19,21	0.99	1 (5%)
5	BMA	Т	3	5	11,11,12	0.63	0	$15,\!15,\!17$	1.76	4 (26%)
5	MAN	Т	4	5	11,11,12	0.51	0	$15,\!15,\!17$	2.37	4 (26%)
4	NAG	U	1	4,1	14,14,15	0.65	0	17,19,21	<mark>3.03</mark>	9 (52%)
4	NAG	U	2	4	14,14,15	0.69	0	17,19,21	3.20	7 (41%)
6	NAG	V	1	6,1	14,14,15	0.57	0	17,19,21	1.72	4 (23%)
6	FUC	V	2	6	10,10,11	0.74	0	14,14,16	1.88	4 (28%)
4	NAG	W	1	4,1	14,14,15	0.52	0	17,19,21	1.63	4 (23%)
4	NAG	W	2	4	14,14,15	0.56	0	17,19,21	1.48	1 (5%)
5	NAG	Х	1	5,1	14,14,15	0.54	0	17,19,21	1.80	5 (29%)
5	NAG	Х	2	5	14,14,15	0.59	0	17,19,21	1.28	2 (11%)
5	BMA	Х	3	5	11,11,12	0.61	0	$15,\!15,\!17$	1.67	3 (20%)
5	MAN	Х	4	5	11,11,12	0.61	0	$15,\!15,\!17$	0.97	0
4	NAG	Y	1	4,1	14,14,15	0.67	0	17,19,21	2.21	7 (41%)
4	NAG	Y	2	4	14,14,15	0.59	0	17,19,21	1.92	4 (23%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	NAG	Ι	1	3,1	-	2/6/23/26	0/1/1/1
3	NAG	Ι	2	3	-	3/6/23/26	0/1/1/1
3	FUC	Ι	3	3	1/1/4/5	-	0/1/1/1
4	NAG	J	1	4,1	-	0/6/23/26	0/1/1/1
4	NAG	J	2	4	-	2/6/23/26	0/1/1/1
4	NAG	К	1	4,1	-	3/6/23/26	0/1/1/1
4	NAG	К	2	4	-	4/6/23/26	0/1/1/1
5	NAG	L	1	5,1	-	2/6/23/26	0/1/1/1
5	NAG	L	2	5	-	2/6/23/26	0/1/1/1
5	BMA	L	3	5	-	2/2/19/22	0/1/1/1
5	MAN	L	4	5	-	1/2/19/22	0/1/1/1
6	NAG	М	1	6,1	-	2/6/23/26	0/1/1/1

1W11

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
6	FUC	М	2	6	1/1/4/5	-	0/1/1/1
4	NAG	Ν	1	4,1	-	4/6/23/26	0/1/1/1
4	NAG	N	2	4	-	4/6/23/26	0/1/1/1
5	NAG	0	1	5,1	-	2/6/23/26	0/1/1/1
5	NAG	0	2	5	-	4/6/23/26	0/1/1/1
5	BMA	0	3	5	-	0/2/19/22	0/1/1/1
5	MAN	0	4	5	-	2/2/19/22	0/1/1/1
4	NAG	Р	1	4,1	-	5/6/23/26	0/1/1/1
4	NAG	Р	2	4	-	0/6/23/26	0/1/1/1
3	NAG	Q	1	3,1	-	4/6/23/26	0/1/1/1
3	NAG	Q	2	3	-	3/6/23/26	0/1/1/1
3	FUC	Q	3	3	1/1/4/5	-	0/1/1/1
4	NAG	R	1	4,1	-	3/6/23/26	0/1/1/1
4	NAG	R	2	4	-	2/6/23/26	0/1/1/1
4	NAG	S	1	4,1	-	2/6/23/26	0/1/1/1
4	NAG	S	2	4	-	4/6/23/26	0/1/1/1
5	NAG	Т	1	5,1	-	2/6/23/26	0/1/1/1
5	NAG	Т	2	5	-	2/6/23/26	0/1/1/1
5	BMA	Т	3	5	-	0/2/19/22	0/1/1/1
5	MAN	Т	4	5	-	2/2/19/22	0/1/1/1
4	NAG	U	1	4,1	-	3/6/23/26	0/1/1/1
4	NAG	U	2	4	-	4/6/23/26	0/1/1/1
6	NAG	V	1	6,1	-	3/6/23/26	0/1/1/1
6	FUC	V	2	6	1/1/4/5	-	0/1/1/1
4	NAG	W	1	4,1	-	2/6/23/26	0/1/1/1
4	NAG	W	2	4	-	2/6/23/26	0/1/1/1
5	NAG	Х	1	5,1	-	2/6/23/26	0/1/1/1
5	NAG	Х	2	5	-	2/6/23/26	0/1/1/1
5	BMA	X	3	5	-	2/2/19/22	0/1/1/1
5	MAN	Х	4	5	-	2/2/19/22	0/1/1/1
4	NAG	Y	1	4,1	-	0/6/23/26	0/1/1/1
4	NAG	Y	2	4	-	5/6/23/26	0/1/1/1

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
5	L	2	NAG	O5-C1	-2.05	1.40	1.43

Mol	Chain	Ros	Type	Atoms	7	Observed $(^{o})$	Ideal(°)
11101	U	$\frac{1005}{2}$	NAC	C1-O5-C5	8.40	123 70	112 10
	P	$\frac{2}{2}$	NAG	C1-O5-C5	7.43	120.10	112.13
4	I	1	NAG	C1-O5-C5	6.97	122.20	112.13
4	D D	1	NAG	$\frac{\text{C1-C3-C3}}{\text{C2 N2 C7}}$	6.05	121.04	112.13
5	T	1	MAN	$C_{2}-N_{2}-C_{1}$	6.99	191.51	122.90
6	I M	4	NAC	C1 - O5 - C5	6.68	121.01	112.19
5		1	NAG	C1-O5-C5	6.35	121.25	112.19
	U	$\frac{1}{2}$	NAG	C1-O3-C3	6.07	120.79	112.19
4	B	1	NAG	$C_{1} O_{5} C_{5}$	5.07	101.00	122.90 112.10
4	N N	$\frac{1}{2}$	NAG	C1 - O5 - C5	5.97	120.28	112.19 112.19
4	D		NAG	$\frac{\text{C1-O3-C3}}{\text{C2 N2 C7}}$	5.00	120.28	112.19
4		1	NAG NAC	$\frac{\text{C2-N2-C1}}{\text{C4}\text{ C2}\text{ C2}}$	5.90	131.30	122.90
4	D	1	NAG	C4-C3-C2	5.41	110.94	111.02
4	N V	1	NAG	C4-C5-C2	0.10 4.02	118.38	111.02
0	V	1	NAG	C1-O5-C5	4.95	110.07	112.19
4	I D	1	NAG	C1-O3-C3	4.09	110.02	112.19
4	n V		NAG	$\begin{array}{c} C4 - C5 - C2 \\ \hline C2 & N2 & C7 \end{array}$	4.11	110.01	111.02
4	I II		NAG	$\frac{\text{C2-N2-C7}}{\text{C2-N2-C7}}$	4.02	129.40	122.90
4	0		MAG	$C_2 - N_2 - C_1$	4.00	129.40	122.90
5	U	4		OE CE CE	-4.00	104.09	109.07
0 F		3	DMA DMA	03-03-04	4.55	114.31	107.20
5 F		<u>う</u>	BMA	03-03-04	4.51	120.77	110.35
5		1	NAG	CI-O5-C5	4.47	118.25	112.19
4	U	2	NAG	05-C1-C2	4.39	118.21	111.29
6	V	2	FUC	C3-C4-C5	4.35	110.55	109.77
4	W	2	NAG	C4-C3-C2	4.28	117.30	111.02
4	Y		NAG	C4-C3-C2	4.27	117.28	111.02
5		4	MAN	C1-C2-C3	4.22	114.80	109.07
4	K		NAG	C1-C2-N2	4.20	117.07	110.49
5	T V		NAG	C2-N2-C7	-4.19	116.94	122.90
5	A I	1	NAG	CI-O5-C5	-4.17	106.54	112.19
4	J	2	NAG	O_5 -CI-C2	-4.10	104.81	111.29
5	0 W	2	NAG	CI-O5-C5	4.01	117.62	112.19
4	W	1	NAG	05-C1-C2	-4.01	104.96	111.29
5	L	3	BMA	03-C3-C4	3.97	119.53	110.35
4	R	1	NAG	C3-C4-C5	3.97	117.32	110.24
4	K	1	NAG	C2-N2-C7	3.94	128.51	122.90
5	L	3	BMA	CI-O5-C5	3.93	117.52	112.19
5	T	4	MAN	C3-C4-C5	3.89	117.17	110.24
4	Ű	1	NAG	C3-C4-C5	3.88	117.17	110.24
4	S	2	NAG	C2-N2-C7	3.88	128.42	122.90
5	L	1	NAG	C3-C4-C5	3.82	117.06	110.24
4	S	1	NAG	C2-N2-C7	-3.76	117.54	122.90

All (163) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
3	Ι	2	NAG	C3-C4-C5	3.72	116.88	110.24
4	K	2	NAG	C3-C4-C5	3.72	116.87	110.24
4	J	2	NAG	C3-C4-C5	3.70	116.84	110.24
4	J	2	NAG	C1-O5-C5	3.57	117.03	112.19
5	L	2	NAG	O5-C5-C4	-3.55	102.20	110.83
5	Х	3	BMA	C3-C4-C5	3.52	116.53	110.24
4	Y	2	NAG	O5-C5-C6	3.52	112.72	107.20
4	Р	1	NAG	C8-C7-N2	3.49	122.00	116.10
4	U	2	NAG	C8-C7-N2	3.48	122.00	116.10
5	L	3	BMA	O3-C3-C2	3.48	116.66	109.99
6	М	2	FUC	C3-C4-C5	3.47	115.18	109.77
5	Х	3	BMA	C1-C2-C3	-3.46	105.41	109.67
5	0	4	MAN	O5-C1-C2	-3.40	105.53	110.77
4	Р	2	NAG	O5-C5-C6	3.38	112.50	107.20
4	U	2	NAG	O5-C5-C4	3.34	118.96	110.83
4	W	1	NAG	O5-C5-C6	3.31	112.39	107.20
4	Ν	2	NAG	C3-C4-C5	3.26	116.06	110.24
5	L	3	BMA	C2-C3-C4	-3.24	105.29	110.89
4	Κ	1	NAG	C4-C3-C2	3.24	115.77	111.02
3	Ι	3	FUC	C1-C2-C3	-3.23	105.70	109.67
4	R	1	NAG	C8-C7-N2	3.17	121.47	116.10
4	Ν	1	NAG	C4-C3-C2	3.15	115.64	111.02
5	Х	2	NAG	C2-N2-C7	-3.10	118.50	122.90
6	V	2	FUC	C2-C3-C4	3.08	116.22	110.89
3	Q	3	FUC	C1-O5-C5	3.07	119.73	112.78
4	S	2	NAG	C3-C4-C5	3.06	115.70	110.24
4	J	2	NAG	O5-C5-C4	3.04	118.23	110.83
5	Т	4	MAN	O5-C5-C4	3.04	118.22	110.83
6	V	2	FUC	O5-C1-C2	-3.02	106.10	110.77
5	Х	1	NAG	O7-C7-C8	-3.02	116.44	122.06
4	Κ	2	NAG	O5-C1-C2	-3.02	106.53	111.29
5	0	4	MAN	O2-C2-C1	3.01	115.31	109.15
5	Т	2	NAG	C1-O5-C5	3.00	116.26	112.19
5	0	3	BMA	O5-C5-C6	2.98	111.88	107.20
4	Y	1	NAG	O3-C3-C4	-2.96	103.50	110.35
4	Y	2	NAG	C1-C2-N2	2.91	115.47	110.49
4	U	1	NAG	O5-C1-C2	2.91	115.89	111.29
3	Q	2	NAG	C2-N2-C7	2.91	127.04	122.90
5	0	3	BMA	C1-O5-C5	2.90	116.13	112.19
5	Т	3	BMA	O3-C3-C2	2.90	115.55	109.99
4	Р	1	NAG	O7-C7-C8	-2.89	116.69	122.06
4	Р	1	NAG	C4-C3-C2	2.87	115.22	111.02

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	Т	3	BMA	C1-O5-C5	2.85	116.06	112.19
4	U	1	NAG	C8-C7-N2	2.85	120.92	116.10
4	Ν	2	NAG	O5-C1-C2	2.84	115.77	111.29
5	L	4	MAN	O5-C5-C6	2.83	111.63	107.20
5	0	1	NAG	O7-C7-C8	-2.82	116.83	122.06
3	Ι	3	FUC	O5-C1-C2	-2.78	106.47	110.77
5	L	1	NAG	O5-C1-C2	-2.75	106.95	111.29
4	Y	2	NAG	C4-C3-C2	-2.74	107.00	111.02
5	L	3	BMA	C3-C4-C5	-2.74	105.36	110.24
3	Q	2	NAG	O5-C1-C2	2.73	115.60	111.29
4	R	2	NAG	C3-C4-C5	2.71	115.07	110.24
4	Y	1	NAG	O4-C4-C3	-2.70	104.10	110.35
5	Т	1	NAG	O5-C1-C2	-2.70	107.03	111.29
4	Р	2	NAG	O5-C5-C4	2.70	117.39	110.83
5	0	1	NAG	C6-C5-C4	-2.69	106.70	113.00
4	W	1	NAG	C2-N2-C7	-2.68	119.09	122.90
4	Κ	1	NAG	O5-C1-C2	-2.65	107.10	111.29
3	Q	1	NAG	C4-C3-C2	2.65	114.90	111.02
4	K	2	NAG	C1-O5-C5	2.64	115.77	112.19
5	Х	1	NAG	C3-C4-C5	-2.64	105.53	110.24
5	Т	1	NAG	O3-C3-C4	-2.63	104.27	110.35
3	Ι	2	NAG	C1-C2-N2	2.62	114.97	110.49
3	Q	2	NAG	C4-C3-C2	2.62	114.86	111.02
4	Y	1	NAG	C3-C4-C5	2.60	114.88	110.24
5	Т	3	BMA	C2-C3-C4	-2.59	106.42	110.89
5	0	4	MAN	O5-C5-C6	2.58	111.25	107.20
4	U	2	NAG	C3-C4-C5	2.57	114.82	110.24
4	S	1	NAG	O3-C3-C2	-2.56	104.16	109.47
6	V	1	NAG	C1-C2-N2	2.56	114.86	110.49
4	U	1	NAG	O5-C5-C6	-2.56	103.20	107.20
5	0	1	NAG	C4-C3-C2	2.55	114.75	111.02
6	V	1	NAG	C3-C4-C5	-2.54	105.70	110.24
4	Ν	1	NAG	O5-C1-C2	-2.54	107.28	111.29
4	U	2	NAG	O7-C7-C8	-2.53	117.36	122.06
6	V	2	FUC	O5-C5-C4	2.53	114.06	109.52
6	М	1	NAG	O4-C4-C5	2.51	115.52	109.30
5	0	3	BMA	O2-C2-C3	-2.50	105.12	110.14
5	L	4	MAN	C1-O5-C5	2.50	115.57	112.19
4	N	1	NAG	C2-N2-C7	-2.49	119.36	122.90
6	V	1	NAG	O5-C5-C6	2.48	111.09	107.20
4	W	1	NAG	C3-C4-C5	-2.47	105.84	110.24
4	N	2	NAG	C4-C3-C2	2.44	114.60	111.02

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	U	1	NAG	O7-C7-C8	-2.41	117.58	122.06
4	Κ	1	NAG	C8-C7-N2	2.40	120.15	116.10
5	0	1	NAG	O5-C5-C4	2.39	116.64	110.83
5	0	2	NAG	C3-C4-C5	-2.38	105.99	110.24
3	Q	3	FUC	O5-C5-C6	2.37	112.44	107.33
5	Т	4	MAN	O2-C2-C1	2.35	113.97	109.15
4	Κ	1	NAG	C1-O5-C5	2.33	115.36	112.19
4	R	1	NAG	O7-C7-C8	-2.32	117.75	122.06
4	S	2	NAG	O5-C5-C4	2.32	116.47	110.83
4	S	2	NAG	O5-C1-C2	-2.31	107.64	111.29
5	L	2	NAG	O4-C4-C5	2.26	114.91	109.30
5	Х	1	NAG	C6-C5-C4	2.26	118.30	113.00
5	0	1	NAG	O5-C5-C6	-2.25	103.68	107.20
4	Y	1	NAG	O4-C4-C5	2.24	114.87	109.30
5	Х	2	NAG	O4-C4-C3	-2.24	105.17	110.35
4	J	1	NAG	O5-C5-C6	2.22	110.69	107.20
4	U	1	NAG	O3-C3-C2	-2.22	104.88	109.47
5	L	1	NAG	C2-N2-C7	-2.21	119.75	122.90
4	Ν	2	NAG	O5-C5-C6	2.20	110.66	107.20
4	J	1	NAG	C4-C3-C2	2.20	114.24	111.02
4	Ν	1	NAG	O4-C4-C3	-2.19	105.29	110.35
4	Ν	2	NAG	O7-C7-C8	-2.18	118.01	122.06
4	Y	1	NAG	O5-C5-C6	-2.17	103.80	107.20
3	Q	2	NAG	C1-O5-C5	2.16	115.12	112.19
5	L	2	NAG	C1-O5-C5	-2.16	109.27	112.19
4	Κ	1	NAG	O7-C7-C8	-2.14	118.09	122.06
5	0	4	MAN	C2-C3-C4	-2.12	107.23	110.89
4	Κ	1	NAG	C1-C2-N2	2.11	114.10	110.49
5	0	4	MAN	C1-O5-C5	2.09	115.03	112.19
5	Ο	3	BMA	C2-C3-C4	-2.09	107.28	110.89
5	Х	3	BMA	O5-C1-C2	-2.06	107.59	110.77
5	L	4	MAN	O5-C5-C4	-2.06	105.82	110.83
4	Κ	2	NAG	$C4-C3-C\overline{2}$	2.05	114.03	111.02
3	Ι	3	FUC	$C3-C4-C\overline{5}$	2.05	112.97	109.77
3	Q	2	NAG	O5-C5-C6	2.05	110.42	107.20
3	Ι	2	NAG	O5-C5-C4	2.02	115.73	110.83
5	Х	1	NAG	O3-C3-C2	2.01	113.63	109.47

All (4) chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
3	Ι	3	FUC	C1

Continued from previous page...

Mol	Chain	Res	Type	Atom
3	Q	3	FUC	C1
6	М	2	FUC	C1
6	V	2	FUC	C1

All (95) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	Ι	1	NAG	C8-C7-N2-C2
3	Ι	1	NAG	O7-C7-N2-C2
3	Q	1	NAG	C8-C7-N2-C2
3	Q	1	NAG	O7-C7-N2-C2
3	Q	2	NAG	C1-C2-N2-C7
3	Q	2	NAG	C8-C7-N2-C2
3	Q	2	NAG	O7-C7-N2-C2
4	K	1	NAG	C8-C7-N2-C2
4	K	1	NAG	O7-C7-N2-C2
4	K	2	NAG	C8-C7-N2-C2
4	K	2	NAG	O7-C7-N2-C2
4	N	2	NAG	C8-C7-N2-C2
4	N	2	NAG	O7-C7-N2-C2
4	Р	1	NAG	C8-C7-N2-C2
4	Р	1	NAG	O7-C7-N2-C2
4	R	1	NAG	C1-C2-N2-C7
4	R	1	NAG	C8-C7-N2-C2
4	R	1	NAG	O7-C7-N2-C2
4	U	1	NAG	C8-C7-N2-C2
4	U	1	NAG	O7-C7-N2-C2
4	U	2	NAG	C8-C7-N2-C2
4	U	2	NAG	O7-C7-N2-C2
4	W	1	NAG	C8-C7-N2-C2
4	W	1	NAG	O7-C7-N2-C2
5	L	2	NAG	C8-C7-N2-C2
5	L	2	NAG	O7-C7-N2-C2
6	V	1	NAG	C1-C2-N2-C7
6	V	1	NAG	C8-C7-N2-C2
6	V	1	NAG	O7-C7-N2-C2
4	S	1	NAG	C8-C7-N2-C2
5	0	2	NAG	C8-C7-N2-C2
5	0	2	NAG	O7-C7-N2-C2
4	N	1	NAG	O5-C5-C6-O6
5	Т	2	NAG	O5-C5-C6-O6
6	М	1	NAG	O5-C5-C6-O6

Mol	Chain	Res	Type	Atoms
5	0	1	NAG	O5-C5-C6-O6
5	Т	4	MAN	O5-C5-C6-O6
5	0	2	NAG	O5-C5-C6-O6
5	Т	1	NAG	O5-C5-C6-O6
4	Ν	1	NAG	C8-C7-N2-C2
4	S	1	NAG	O7-C7-N2-C2
4	W	2	NAG	C8-C7-N2-C2
4	W	2	NAG	O7-C7-N2-C2
4	Y	2	NAG	C8-C7-N2-C2
4	Y	2	NAG	O7-C7-N2-C2
4	J	2	NAG	O5-C5-C6-O6
4	S	2	NAG	O5-C5-C6-O6
5	L	1	NAG	O5-C5-C6-O6
4	N	1	NAG	C4-C5-C6-O6
5	0	4	MAN	O5-C5-C6-O6
4	R	2	NAG	O5-C5-C6-O6
5	Т	1	NAG	C4-C5-C6-O6
6	М	1	NAG	C4-C5-C6-O6
5	Т	2	NAG	C4-C5-C6-O6
5	Т	4	MAN	C4-C5-C6-O6
5	0	1	NAG	C4-C5-C6-O6
5	0	2	NAG	C4-C5-C6-O6
5	Х	4	MAN	O5-C5-C6-O6
3	Q	1	NAG	O5-C5-C6-O6
5	L	1	NAG	C4-C5-C6-O6
5	Х	4	MAN	C4-C5-C6-O6
4	Ν	1	NAG	O7-C7-N2-C2
4	R	2	NAG	C4-C5-C6-O6
4	S	2	NAG	C4-C5-C6-O6
5	Х	2	NAG	O5-C5-C6-O6
4	K	2	NAG	C4-C5-C6-O6
5	0	4	MAN	C4-C5-C6-O6
5	L	3	BMA	O5-C5-C6-O6
5	L	3	BMA	C4-C5-C6-O6
5	Х	2	NAG	C4-C5-C6-O6
4	Y	2	NAG	C4-C5-C6-O6
5	Х	1	NAG	O5-C5-C6-O6
4	Y	2	NAG	O5-C5-C6-O6
5	Х	3	BMA	C4-C5-C6-O6
3	Ι	2	NAG	C8-C7-N2-C2
5	Х	1	NAG	C4-C5-C6-O6
3	Q	1	NAG	C4-C5-C6-O6

Continued from previous page...

Mol	Chain	Res	Type	Atoms
4	U	2	NAG	O5-C5-C6-O6
5	L	4	MAN	O5-C5-C6-O6
3	Ι	2	NAG	O7-C7-N2-C2
4	N	2	NAG	O5-C5-C6-O6
4	Р	1	NAG	C3-C2-N2-C7
4	U	1	NAG	C3-C2-N2-C7
3	Ι	2	NAG	C4-C5-C6-O6
4	J	2	NAG	C4-C5-C6-O6
4	K	2	NAG	O5-C5-C6-O6
5	Х	3	BMA	O5-C5-C6-O6
4	U	2	NAG	C1-C2-N2-C7
4	K	1	NAG	C3-C2-N2-C7
4	Y	2	NAG	C3-C2-N2-C7
4	Р	1	NAG	C4-C5-C6-O6
4	Р	1	NAG	O5-C5-C6-O6
4	N	2	NAG	C4-C5-C6-O6
4	S	2	NAG	C3-C2-N2-C7
4	S	2	NAG	C1-C2-N2-C7

Continued from previous page...

There are no ring outliers.

14 monomers are involved in 14 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	U	2	NAG	1	0
5	Х	4	MAN	1	0
4	K	1	NAG	3	0
4	R	1	NAG	1	0
4	J	1	NAG	1	0
3	Q	1	NAG	1	0
3	Q	3	FUC	1	0
4	R	2	NAG	1	0
5	Х	3	BMA	1	0
4	W	2	NAG	2	0
4	Ν	2	NAG	1	0
4	U	1	NAG	2	0
4	N	1	NAG	2	0
4	S	1	NAG	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

Of 19 ligands modelled in this entry, 4 are monoatomic - leaving 15 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Bos	Link	Bo	ond leng	ths	В	ond ang	les
WIOI	туре	Ullalli	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
7	NAG	А	840	1	14,14,15	0.45	0	$17,\!19,\!21$	2.02	5 (29%)
7	NAG	D	840	1	14,14,15	0.74	0	$17,\!19,\!21$	2.40	5 (29%)
7	NAG	В	810	1	14,14,15	0.63	0	$17,\!19,\!21$	2.88	6 (35%)
7	NAG	D	870	1	14,14,15	0.82	0	17,19,21	1.76	4 (23%)
7	NAG	С	870	1	14,14,15	0.63	0	17,19,21	2.42	4 (23%)
7	NAG	В	870	1	14,14,15	0.37	0	17,19,21	2.88	6 (35%)
7	NAG	С	840	1	14,14,15	0.46	0	$17,\!19,\!21$	1.91	5 (29%)
7	NAG	D	860	1	14,14,15	0.37	0	17,19,21	2.14	4 (23%)
7	NAG	С	860	1	14,14,15	0.77	1 (7%)	17,19,21	2.17	5 (29%)
7	NAG	В	860	1	14,14,15	0.64	0	17,19,21	2.02	5 (29%)
7	NAG	В	840	1	14,14,15	0.57	0	17,19,21	2.46	5 (29%)
7	NAG	А	870	1	14,14,15	0.46	0	17,19,21	1.56	2 (11%)

Mal	Turne	Chain	Dec	Tinle	Bo	Bond lengths			Bond angles		
IVIOI	Moi Type Chain	Ites	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2		
7	NAG	А	850	1	14,14,15	0.58	0	17,19,21	1.73	3 (17%)	
7	NAG	D	810	1	14,14,15	0.53	0	17,19,21	2.02	6 (35%)	
7	NAG	A	860	1	14,14,15	0.64	0	17,19,21	2.16	7 (41%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
7	NAG	А	840	1	-	2/6/23/26	0/1/1/1
7	NAG	D	840	1	-	2/6/23/26	0/1/1/1
7	NAG	В	810	1	-	3/6/23/26	0/1/1/1
7	NAG	D	870	1	-	5/6/23/26	0/1/1/1
7	NAG	С	870	1	-	3/6/23/26	0/1/1/1
7	NAG	В	870	1	-	4/6/23/26	0/1/1/1
7	NAG	С	840	1	-	0/6/23/26	0/1/1/1
7	NAG	D	860	1	-	4/6/23/26	0/1/1/1
7	NAG	С	860	1	1/1/5/7	2/6/23/26	0/1/1/1
7	NAG	В	860	1	1/1/5/7	3/6/23/26	0/1/1/1
7	NAG	В	840	1	-	4/6/23/26	0/1/1/1
7	NAG	А	870	1	1/1/5/7	4/6/23/26	0/1/1/1
7	NAG	А	850	1	-	0/6/23/26	0/1/1/1
7	NAG	D	810	1	-	2/6/23/26	0/1/1/1
7	NAG	А	860	1	1/1/5/7	4/6/23/26	0/1/1/1

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
7	С	860	NAG	C1-C2	2.21	1.55	1.52

All (72) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	В	870	NAG	O5-C1-C2	-7.74	99.06	111.29
7	D	840	NAG	C1-O5-C5	7.20	121.95	112.19
7	В	840	NAG	C1-O5-C5	6.69	121.25	112.19
7	В	810	NAG	C1-O5-C5	6.48	120.97	112.19

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
7	С	870	NAG	C2-N2-C7	6.15	131.67	122.90
7	С	870	NAG	O5-C5-C6	6.06	116.71	107.20
7	А	840	NAG	C1-O5-C5	5.99	120.31	112.19
7	В	860	NAG	C2-N2-C7	5.77	131.11	122.90
7	В	810	NAG	C1-C2-N2	5.64	120.13	110.49
7	С	840	NAG	C1-O5-C5	5.48	119.62	112.19
7	В	870	NAG	C1-O5-C5	5.41	119.52	112.19
7	А	860	NAG	C2-N2-C7	5.36	130.54	122.90
7	D	860	NAG	C1-O5-C5	5.34	119.43	112.19
7	В	810	NAG	C2-N2-C7	5.27	130.41	122.90
7	В	870	NAG	C4-C3-C2	-4.98	103.72	111.02
7	С	860	NAG	C1-O5-C5	4.94	118.89	112.19
7	D	860	NAG	C4-C3-C2	-4.76	104.03	111.02
7	D	870	NAG	C2-N2-C7	4.54	129.37	122.90
7	С	860	NAG	C1-C2-N2	4.48	118.15	110.49
7	D	810	NAG	C1-O5-C5	4.27	117.98	112.19
7	А	870	NAG	C1-O5-C5	4.12	117.77	112.19
7	В	840	NAG	C2-N2-C7	3.98	128.57	122.90
7	D	840	NAG	C2-N2-C7	3.70	128.18	122.90
7	D	810	NAG	C3-C4-C5	-3.68	103.67	110.24
7	В	810	NAG	C4-C3-C2	-3.47	105.93	111.02
7	А	850	NAG	C4-C3-C2	3.46	116.09	111.02
7	А	850	NAG	C3-C4-C5	3.45	116.39	110.24
7	D	810	NAG	O5-C5-C6	3.41	112.55	107.20
7	В	810	NAG	C3-C4-C5	-3.41	104.16	110.24
7	А	850	NAG	C1-O5-C5	3.32	116.69	112.19
7	В	840	NAG	C1-C2-N2	3.17	115.90	110.49
7	D	840	NAG	C4-C3-C2	3.16	115.64	111.02
7	С	870	NAG	C1-C2-N2	3.12	115.82	110.49
7	А	860	NAG	C8-C7-N2	3.11	121.37	116.10
7	С	860	NAG	O5-C5-C6	3.08	112.03	107.20
7	А	840	NAG	O5-C5-C6	2.94	111.81	107.20
7	D	860	NAG	C2-N2-C7	-2.77	118.96	122.90
7	А	870	NAG	O5-C1-C2	-2.75	106.95	111.29
7	D	810	NAG	C4-C3-C2	-2.75	107.00	111.02
7	В	860	NAG	O5-C1-C2	2.71	115.56	111.29
7	С	840	NAG	C4-C3-C2	-2.69	107.07	111.02
7	В	870	NAG	C1-C2-N2	2.65	115.02	110.49
7	С	870	NAG	C3-C4-C5	-2.64	105.53	110.24
7	С	860	NAG	$C4-C3-C\overline{2}$	-2.63	107.16	111.02
7	D	870	NAG	C4-C3-C2	2.61	114.85	111.02
7	В	860	NAG	C1-C2-N2	2.57	114.88	110.49

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	А	860	NAG	O7-C7-C8	-2.57	117.28	122.06
7	D	840	NAG	O5-C1-C2	2.57	115.34	111.29
7	А	860	NAG	C3-C4-C5	-2.50	105.78	110.24
7	В	840	NAG	O5-C5-C6	2.48	111.09	107.20
7	В	870	NAG	O3-C3-C2	2.43	114.49	109.47
7	А	840	NAG	C3-C4-C5	-2.41	105.93	110.24
7	В	810	NAG	O4-C4-C5	2.40	115.27	109.30
7	С	840	NAG	O4-C4-C5	2.39	115.24	109.30
7	А	860	NAG	O4-C4-C5	2.37	115.18	109.30
7	С	840	NAG	C8-C7-N2	2.33	120.05	116.10
7	А	840	NAG	O7-C7-C8	-2.32	117.75	122.06
7	С	860	NAG	O7-C7-C8	-2.29	117.80	122.06
7	D	870	NAG	O5-C1-C2	2.29	114.91	111.29
7	В	860	NAG	C3-C4-C5	2.26	114.27	110.24
7	В	870	NAG	C2-N2-C7	-2.25	119.70	122.90
7	А	860	NAG	O3-C3-C2	2.24	114.10	109.47
7	D	810	NAG	O3-C3-C2	2.23	114.08	109.47
7	D	810	NAG	O4-C4-C5	2.22	114.80	109.30
7	С	840	NAG	O7-C7-C8	-2.17	118.03	122.06
7	D	870	NAG	C1-O5-C5	2.14	115.09	112.19
7	D	840	NAG	C6-C5-C4	-2.12	108.05	113.00
7	В	840	NAG	O4-C4-C5	2.09	114.50	109.30
7	D	860	NAG	O5-C5-C6	2.07	110.45	107.20
7	В	860	NAG	C1-O5-C5	2.05	114.97	112.19
7	А	860	NAG	C1-O5-C5	2.04	114.96	112.19
7	A	840	NAG	C6-C5-C4	-2.04	108.23	113.00

All (4) chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
7	А	860	NAG	C1
7	А	870	NAG	C1
7	В	860	NAG	C1
7	С	860	NAG	C1

All (42) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
7	А	860	NAG	C3-C2-N2-C7
7	А	860	NAG	C8-C7-N2-C2
7	А	860	NAG	O7-C7-N2-C2
7	А	870	NAG	C8-C7-N2-C2

Mol	Chain	Res	Type	Atoms
7	А	870	NAG	O7-C7-N2-C2
7	В	810	NAG	C1-C2-N2-C7
7	В	810	NAG	C8-C7-N2-C2
7	В	810	NAG	O7-C7-N2-C2
7	В	860	NAG	C3-C2-N2-C7
7	С	860	NAG	C8-C7-N2-C2
7	С	860	NAG	O7-C7-N2-C2
7	С	870	NAG	C8-C7-N2-C2
7	С	870	NAG	O7-C7-N2-C2
7	D	840	NAG	C8-C7-N2-C2
7	D	840	NAG	O7-C7-N2-C2
7	D	870	NAG	C8-C7-N2-C2
7	D	870	NAG	O7-C7-N2-C2
7	В	840	NAG	C8-C7-N2-C2
7	В	840	NAG	O7-C7-N2-C2
7	В	860	NAG	C4-C5-C6-O6
7	D	870	NAG	O5-C5-C6-O6
7	D	870	NAG	C4-C5-C6-O6
7	D	860	NAG	O5-C5-C6-O6
7	В	860	NAG	O5-C5-C6-O6
7	В	870	NAG	O5-C5-C6-O6
7	D	860	NAG	C4-C5-C6-O6
7	D	860	NAG	C8-C7-N2-C2
7	В	870	NAG	C4-C5-C6-O6
7	А	870	NAG	O5-C5-C6-O6
7	В	840	NAG	C1-C2-N2-C7
7	В	870	NAG	C8-C7-N2-C2
7	D	860	NAG	O7-C7-N2-C2
7	А	840	NAG	C4-C5-C6-O6
7	А	840	NAG	O5-C5-C6-O6
7	С	870	NAG	O5-C5-C6-O6
7	А	870	NAG	C4-C5-C6-O6
7	В	870	NAG	O7-C7-N2-C2
7	А	860	NAG	O5-C5-C6-O6
7	D	870	NAG	C3-C2-N2-C7
7	D	810	NAG	C8-C7-N2-C2
7	D	810	NAG	O7-C7-N2-C2
7	В	840	NAG	C4-C5-C6-O6

Continued from previous page...

There are no ring outliers.

5 monomers are involved in 9 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
7	С	870	NAG	2	0
7	В	870	NAG	1	0
7	С	860	NAG	1	0
7	А	870	NAG	2	0
7	А	860	NAG	3	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$\mathbf{OWAB}(\mathbf{A}^2)$	Q<0.9
1	А	728/728~(100%)	-0.51	0 100 100	25, 42, 71, 86	0
1	В	728/728~(100%)	-0.46	0 100 100	17, 42, 71, 86	0
1	С	728/728~(100%)	-0.49	1 (0%) 95 89	25, 43, 71, 86	0
1	D	728/728~(100%)	-0.52	0 100 100	25, 43, 71, 86	0
2	Ε	352/357~(98%)	0.09	14 (3%) 38 16	21,66,82,88	0
2	F	352/357~(98%)	0.10	6 (1%) 70 42	40, 67, 84, 88	0
2	G	352/357~(98%)	0.00	10 (2%) 53 24	36,67,83,88	0
2	Η	352/357~(98%)	-0.03	2 (0%) 89 72	40, 67, 84, 88	0
All	All	4320/4340 (99%)	-0.32	33 (0%) 86 65	17, 49, 79, 88	0

All (33) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
2	Е	293	ASN	4.0
2	Ε	262	CYS	3.9
2	G	293	ASN	3.4
2	Ε	15	HIS	3.3
2	G	247	THR	3.3
2	G	242	THR	3.0
2	Е	295	ASP	2.9
2	Е	294	THR	2.9
2	G	262	CYS	2.8
2	Е	291	SER	2.8
2	Е	237	GLY	2.8
2	F	314	ASP	2.7
2	G	229	ASP	2.6
2	G	237	GLY	2.6
2	G	42	THR	2.6
2	F	262	CYS	2.5

Mol	Chain	Res	Type	RSRZ
2	Е	260	GLU	2.5
2	Е	17	HIS	2.3
2	G	260	GLU	2.3
2	Н	219	GLY	2.3
2	F	246	THR	2.2
2	Н	54	LYS	2.2
2	Е	261	ILE	2.1
2	Е	238	HIS	2.1
1	С	766	PRO	2.1
2	F	293	ASN	2.1
2	G	15	HIS	2.1
2	Е	16	VAL	2.0
2	G	16	VAL	2.0
2	F	291	SER	2.0
2	Е	181	ASP	2.0
2	F	247	THR	2.0
2	Е	292	LEU	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} extsf{-}\mathbf{B} extsf{-}\mathbf{factors}(\mathbf{A}^2)$	Q < 0.9
3	NAG	Q	2	14/15	0.69	0.45	$90,\!91,\!92,\!92$	0
4	NAG	J	2	14/15	0.75	0.46	78,79,80,80	0
4	NAG	R	2	14/15	0.76	0.45	78,79,80,80	0
4	NAG	U	2	14/15	0.79	0.43	67,69,71,71	0
5	MAN	0	4	11/12	0.80	0.29	48,49,50,50	0
4	NAG	Y	2	14/15	0.82	0.39	61,62,64,64	0
4	NAG	Р	2	14/15	0.82	0.39	58,60,60,60	0
5	MAN	Т	4	11/12	0.84	0.37	70,71,72,72	0
4	NAG	R	1	14/15	0.85	0.29	70,73,74,76	0
4	NAG	Ν	2	14/15	0.85	0.32	$60,\!61,\!62,\!62$	0
5	BMA	Х	3	11/12	0.85	0.27	64,65,66,68	0

1W1I

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
3	NAG	Ι	2	14/15	0.86	0.42	81,82,82,83	0
3	FUC	Q	3	10/11	0.86	0.43	86,86,87,87	0
5	MAN	L	4	11/12	0.87	0.24	58,59,60,61	0
5	MAN	Х	4	11/12	0.87	0.31	69,69,70,71	0
6	FUC	М	2	10/11	0.87	0.28	73,74,75,75	0
6	NAG	V	1	14/15	0.87	0.29	81,83,84,86	0
4	NAG	J	1	14/15	0.88	0.23	67,70,72,75	0
4	NAG	W	2	14/15	0.88	0.33	62,65,66,66	0
6	FUC	V	2	10/11	0.88	0.32	85,86,86,86	0
6	NAG	М	1	14/15	0.89	0.25	74,75,76,76	0
4	NAG	S	2	14/15	0.89	0.36	$66,\!68,\!68,\!69$	0
3	FUC	Ι	3	10/11	0.89	0.40	79,80,80,80	0
5	BMA	Т	3	11/12	0.89	0.27	62,64,65,68	0
4	NAG	Y	1	14/15	0.90	0.27	$53,\!56,\!58,\!60$	0
4	NAG	S	1	14/15	0.90	0.28	59,61,62,64	0
4	NAG	Κ	1	14/15	0.90	0.28	57,60,62,62	0
3	NAG	Q	1	14/15	0.90	0.23	82,84,86,88	0
4	NAG	W	1	14/15	0.90	0.28	$58,\!60,\!61,\!63$	0
4	NAG	Р	1	14/15	0.90	0.25	$50,\!53,\!55,\!56$	0
4	NAG	Κ	2	14/15	0.91	0.32	62,64,66,66	0
3	NAG	Ι	1	14/15	0.92	0.25	74,77,80,80	0
5	NAG	L	2	14/15	0.92	0.23	$52,\!54,\!54,\!56$	0
4	NAG	Ν	1	14/15	0.93	0.27	$55,\!57,\!58,\!59$	0
5	NAG	Х	2	14/15	0.93	0.20	$55,\!56,\!59,\!62$	0
5	NAG	L	1	14/15	0.93	0.16	$42,\!43,\!46,\!49$	0
4	NAG	U	1	14/15	0.93	0.20	54,57,60,64	0
5	NAG	0	2	14/15	0.94	0.21	$35,\!37,\!38,\!39$	0
5	BMA	0	3	11/12	0.94	0.18	41,43,45,46	0
5	NAG	X	1	14/15	0.94	0.18	$4\overline{2,}45,\!48,\!52$	0
5	BMA	L	3	11/12	0.94	0.28	56, 58, 58, 58	0
5	NAG	Т	2	14/15	0.94	0.21	52,54,57,60	0
5	NAG	Т	1	14/15	0.95	0.12	41,42,47,49	0
5	NAG	0	1	14/15	0.97	0.15	$30,\!31,\!33,\!3\overline{3}$	0

Continued from previous page...

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathbf{A}^2)$	Q<0.9
7	NAG	D	870	14/15	0.65	0.38	90,91,93,93	0
7	NAG	С	870	14/15	0.76	0.31	88,89,90,90	0
7	NAG	А	870	14/15	0.78	0.33	88,88,90,90	0
7	NAG	А	860	14/15	0.79	0.30	67,68,71,71	0
7	NAG	С	860	14/15	0.80	0.38	68,69,71,71	0
7	NAG	В	870	14/15	0.81	0.24	87,88,88,89	0
7	NAG	D	810	14/15	0.83	0.34	69,71,72,72	0
7	NAG	D	840	14/15	0.86	0.19	48,50,51,51	0
7	NAG	В	860	14/15	0.86	0.31	64,65,66,66	0
7	NAG	D	860	14/15	0.87	0.30	63,66,67,67	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathbf{\AA}^2)$	Q<0.9
8	ZN	F	501	1/1	0.87	0.10	62,62,62,62	0
7	NAG	В	810	14/15	0.88	0.27	64,65,66,66	0
7	NAG	В	840	14/15	0.90	0.16	46,48,49,49	0
7	NAG	А	850	14/15	0.92	0.21	52,54,57,60	0
7	NAG	С	840	14/15	0.93	0.26	$51,\!54,\!55,\!55$	0
7	NAG	А	840	14/15	0.96	0.21	48,50,50,50	0
8	ZN	Н	501	1/1	0.96	0.19	58, 58, 58, 58	0
8	ZN	G	501	1/1	0.98	0.23	58,58,58,58	0
8	ZN	Е	501	1/1	0.99	0.33	$53,\!53,\!53,\!53$	0

6.5 Other polymers (i)

There are no such residues in this entry.

