

Full wwPDB X-ray Structure Validation Report (i)

Nov 6, 2023 – 05:21 AM EST

PDB ID	:	5VZ2
Title	:	Structure of ClpP from Staphylococcus aureus in complex with Acyldepsipep-
		tide
Authors	:	Griffith, E.C.; Lee, R.E.
Deposited on	:	2017-05-26
Resolution	:	2.26 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.26 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Matria	Whole archive	Similar resolution
Metric	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R _{free}	130704	1377 (2.26-2.26)
Clashscore	141614	1487 (2.26-2.26)
Ramachandran outliers	138981	1449 (2.26-2.26)
Sidechain outliers	138945	1450 (2.26-2.26)
RSRZ outliers	127900	1356 (2.26-2.26)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	203	83%	•	12%
1	В	203	83%	5%	12%
1	С	203	% • 84%	••	12%
1	D	203	85%	•	13%
1	Е	203	83%	•	12%

Mol	Chain	Length	Quality of chain	
1	F	203	81% 6% •	12%
1	G	203	[%] 83% 5%	11%
1	Ι	203	82% 5%	12%
1	K	203	82%	12%
1	L	203	86% •	12%
1	М	203	85% •	12%
1	Ν	203	84% •	12%
1	S	203	[%] 82% 6%	12%
1	Т	203	85% •	11%
2	Н	7	86%	14%
2	J	7	71% 29%	
2	Ο	7	71% 29%	
2	Р	7	86%	14%
2	Q	7	71% 29%	
2	R	7	86%	14%
2	U	7	86%	14%
2	V	7	71% 29%	
2	Х	7	86%	14%
2	Y	7	71% 29%	
2	Z	7	86%	14%
2	a	7	86%	14%
2	b	7	86%	14%
2	с	7	86%	14%

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 20469 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1		170	Total	С	Ν	0	S	0	0	0
	A	179	1364	858	233	267	6	0	0	0
1	р	170	Total	С	Ν	Ο	S	0	0	0
	D	179	1363	857	233	267	6	0	0	0
1	C	178	Total	С	Ν	0	S	0	0	0
		170	1358	854	232	266	6	0	0	0
1	п	177	Total	С	Ν	0	S	0	0	0
	D	111	1355	852	231	266	6	0	0	0
1	F	178	Total	С	Ν	Ο	\mathbf{S}	0	0	0
L	Ľ	170	1351	850	231	264	6	0	0	0
1	F	170	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	Ľ	115	1364	857	233	268	6	0	0	0
1	G	180	Total	С	Ν	Ο	\mathbf{S}	0	0	Ο
1	G 100	100	1365	859	233	267	6	0	0	0
1	т	179	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
1	1	115	1369	862	233	268	6	0	0	0
1	K	178	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
		110	1365	859	232	268	6	0	0	0
1	L	179	Total	С	Ν	Ο	\mathbf{S}	0	0	0
		110	1364	858	233	267	6	0	0	0
1	М	179	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
	111	115	1363	857	233	267	6	0	0	0
1	N	178	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
		110	1361	856	232	267	6	0	0	0
1	S	179	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
		110	1360	855	232	267	6		· · ·	
1	Т	181	Total	С	Ν	Ο	\mathbf{S}	0	0	0
		101	1376	865	235	270	6		0 0	

• Molecule 1 is a protein called ATP-dependent Clp protease proteolytic subunit.

There are 112 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled Actua		Comment	Reference	
А	196	LEU	-	expression tag	UNP Q2G036	
				<i>a</i> 1	,	

Chain	Residue	Modelled	Actual	Comment	Reference
А	197	GLU	-	expression tag	UNP Q2G036
А	198	HIS	-	expression tag	UNP Q2G036
А	199	HIS	-	expression tag	UNP Q2G036
А	200	HIS	-	expression tag	UNP Q2G036
А	201	HIS	-	expression tag	UNP Q2G036
A	202	HIS	-	expression tag	UNP Q2G036
A	203	HIS	-	expression tag	UNP Q2G036
В	196	LEU	-	expression tag	UNP Q2G036
В	197	GLU	-	expression tag	UNP Q2G036
В	198	HIS	-	expression tag	UNP Q2G036
В	199	HIS	-	expression tag	UNP Q2G036
В	200	HIS	-	expression tag	UNP Q2G036
В	201	HIS	-	expression tag	UNP Q2G036
В	202	HIS	-	expression tag	UNP Q2G036
В	203	HIS	-	expression tag	UNP Q2G036
С	196	LEU	-	expression tag	UNP Q2G036
С	197	GLU	-	expression tag	UNP Q2G036
С	198	HIS	-	expression tag	UNP Q2G036
С	199	HIS	-	expression tag	UNP Q2G036
С	200	HIS	-	expression tag	UNP Q2G036
С	201	HIS	-	expression tag	UNP Q2G036
С	202	HIS	-	expression tag	UNP $Q2G036$
С	203	HIS	-	expression tag	UNP Q2G036
D	196	LEU	-	expression tag	UNP $Q2G036$
D	197	GLU	-	expression tag	UNP Q2G036
D	198	HIS	-	expression tag	UNP Q2G036
D	199	HIS	-	expression tag	UNP $Q2G036$
D	200	HIS	-	expression tag	UNP Q2G036
D	201	HIS	-	expression tag	UNP Q2G036
D	202	HIS	-	expression tag	UNP Q2G036
D	203	HIS	-	expression tag	UNP Q2G036
E	196	LEU	-	expression tag	UNP Q2G036
E	197	GLU	-	expression tag	UNP Q2G036
E	198	HIS	-	expression tag	UNP Q2G036
E	199	HIS	-	expression tag	UNP Q2G036
E	200	HIS	-	expression tag	UNP Q2G036
Е	201	HIS	-	expression tag	UNP $Q2G036$
Е	202	HIS	-	expression tag	UNP Q2G036
E	203	HIS	-	expression tag	UNP $Q2\overline{G036}$
F	196	LEU	-	expression tag	UNP $Q2G036$
F	197	GLU	-	expression tag	UNP $\overline{\text{Q2G036}}$
F	198	HIS	-	expression tag	UNP Q2G036

Continued from previous page...

Chain	Residue	Modelled	Actual	Comment	Reference
F	199	HIS		expression tag	UNP $Q2G036$
F	200	HIS	_	expression tag	UNP $O2G036$
F	200	HIS	_	expression tag	UNP Q2G036
F	202	HIS	_	expression tag	UNP $Q2G036$
F	203	HIS	-	expression tag	UNP $Q2G036$
G	196	LEU	_	expression tag	UNP Q2G036
G	197	GLU	_	expression tag	UNP Q2G036
G	198	HIS	_	expression tag	UNP $Q2G036$
G	199	HIS	_	expression tag	UNP $Q2G036$
G	200	HIS	_	expression tag	UNP Q2G036
G	201	HIS	_	expression tag	UNP Q2G036
G	202	HIS	_	expression tag	UNP Q2G036
G	203	HIS	_	expression tag	UNP Q2G036
I	196	LEU	_	expression tag	UNP Q2G036
I	197	GLU	_	expression tag	UNP Q2G036
I	198	HIS	_	expression tag	UNP Q2G036
I	199	HIS	_	expression tag	UNP Q2G036
I	200	HIS	_	expression tag	UNP Q2G036
I	201	HIS	_	expression tag	UNP Q2G036
I	202	HIS	_	expression tag	UNP Q2G036
I	203	HIS	_	expression tag	UNP Q2G036
K	196	LEU	_	expression tag	UNP Q2G036
K	197	GLU	_	expression tag	UNP Q2G036
K	198	HIS	_	expression tag	UNP Q2G036
K	199	HIS	_	expression tag	UNP Q2G036
K	200	HIS	-	expression tag	UNP Q2G036
K	201	HIS	_	expression tag	UNP Q2G036
K	202	HIS	-	expression tag	UNP Q2G036
K	203	HIS	_	expression tag	UNP Q2G036
L	196	LEU	_	expression tag	UNP Q2G036
L	197	GLU	_	expression tag	UNP Q2G036
L	198	HIS	_	expression tag	UNP Q2G036
L	199	HIS	-	expression tag	UNP Q2G036
L	200	HIS	-	expression tag	UNP Q2G036
L	201	HIS	-	expression tag	UNP Q2G036
L	202	HIS	-	expression tag	UNP Q2G036
L	203	HIS	-	expression tag	UNP Q2G036
М	196	LEU	-	expression tag	UNP Q2G036
М	197	GLU	-	expression tag	UNP Q2G036
М	198	HIS	-	expression tag	UNP Q2G036
М	199	HIS	-	expression tag	UNP Q2G036
М	200	HIS	-	expression tag	UNP Q2G036

Continued from previous page...

Chain	Residue	Modelled	Actual	Comment	Reference		
М	201	HIS	-	expression tag	UNP Q2G036		
М	202	HIS	-	expression tag	UNP Q2G036		
М	203	HIS	-	expression tag	UNP Q2G036		
N	196	LEU	-	expression tag	UNP Q2G036		
N	197	GLU	-	expression tag	UNP Q2G036		
N	198	HIS	-	expression tag	UNP Q2G036		
N	199	HIS	-	expression tag	UNP Q2G036		
N	200	HIS	-	expression tag	UNP Q2G036		
N	201	HIS	-	expression tag	UNP Q2G036		
N	202	HIS	-	expression tag	UNP Q2G036		
N	203	HIS	-	expression tag	UNP Q2G036		
S	196	LEU	-	expression tag	UNP Q2G036		
S	197	GLU	-	expression tag	UNP Q2G036		
S	198	HIS	-	expression tag	UNP Q2G036		
S	199	HIS	-	expression tag	UNP Q2G036		
S	200	HIS	-	expression tag	UNP Q2G036		
S	201	HIS	-	expression tag	UNP Q2G036		
S	202	HIS	-	expression tag	UNP Q2G036		
S	203	HIS	-	expression tag	UNP Q2G036		
Т	196	LEU	-	expression tag	UNP Q2G036		
Т	197	GLU	-	expression tag	UNP Q2G036		
Т	198	HIS	-	expression tag	UNP Q2G036		
Т	199	HIS	-	expression tag	UNP Q2G036		
Т	200	HIS	-	expression tag	UNP Q2G036		
Т	201	HIS	-	expression tag	UNP Q2G036		
Т	202	HIS	-	expression tag	UNP Q2G036		
Т	203	HIS	-	expression tag	UNP Q2G036		

Continued from previous page...

• Molecule 2 is a protein called Acyldepsipeptide.

Mol	Chain	Residues	A	Aton	ns		ZeroOcc	AltConf	Trace	
о п	н	7	Total	С	Ν	0	0	0	0	
2	11	1	51	37	6	8	0	0	0	
2	T	7	Total	С	Ν	Ο	0	0	0	
2	0	1	51	37	6	8	0	0	0	
2	0	7	Total	С	Ν	Ο	0	0	0	
	0	1	51	37	6	8	0	0	0	
9	D	7	Total	С	Ν	Ο	0	0	0	
2	T	1	51	37	6	8	0	0	0	
2	0	7	Total	С	Ν	Ο	0	0	0	
	Q	1	51	37	6	8	0	0	0	
2 R	В	7	Total	С	Ν	0	0	0	0	
	К	R	1	51	37	6	8	0		0

Mol	Chain	Residues	A	ton	ns		ZeroOcc	AltConf	Trace	
0	TT	7	Total	С	Ν	0	0	0	0	
<u> </u>	U	1	51	37	6	8	0	0	0	
0	V	7	Total	С	Ν	Ο	0	0	0	
	v	1	51	37	6	8	0	0	0	
2	v	7	Total	С	Ν	0	0	0	0	
	Λ	1	51	37	6	8	0	0	0	
2	v	7	Total	С	Ν	Ο	0	0	0	
	1	1	1	51	37	6	8	0	0	0
2	7	7 7	Total	С	Ν	Ο	0	0	0	
		1	51	37	6	8	0	0	0	
2	0	7	Total	С	Ν	Ο	0	0	0	
2	a	1	51	37	6	8	0	0	0	
2	h	7	Total	С	Ν	Ο	0	0	0	
	U	1	51	37	6	8	0	0	0	
2 с	C	7	Total	С	N	0	0	0	0	
	с	(51	37	6	8	0	0	0	

• Molecule 3 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	60	Total O 60 60	0	0
3	В	62	Total O 62 62	0	0
3	С	21	TotalO2121	0	0
3	D	23	TotalO2323	0	0
3	Е	27	TotalO2727	0	0
3	F	54	$\begin{array}{ccc} \text{Total} & \text{O} \\ 54 & 54 \end{array}$	0	0
3	G	63	Total O 63 63	0	0
3	Ι	68	Total O 68 68	0	0
3	К	61	Total O 61 61	0	0
3	L	64	Total O 64 64	0	0
3	М	48	Total O 48 48	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	Ν	33	Total O 33 33	0	0
3	S	40	$\begin{array}{cc} \text{Total} & \text{O} \\ 40 & 40 \end{array}$	0	0
3	Т	50	$\begin{array}{cc} \text{Total} & \text{O} \\ 50 & 50 \end{array}$	0	0
3	U	1	Total O 1 1	0	0
3	Х	1	Total O 1 1	0	0
3	a	1	Total O 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: ATP-dependent Clp protease proteolytic subunit

• Molecule 1: ATP-dependent Clp protease proteolytic subunit

Chain S: 82% 6	% 12%
MET MET 14 15 14 15 15 16 16 118 18 19 19 19 19 19 19 19 19 19 19 19 19 19	STH STH STH STH STH STH STH
• Molecule 1: ATP-dependent Clp protease proteolytic subunit	
Chain T: 85%	• 11%
MET ASIN LEEU LEEU TTHR TTHR TTHR AING AING AING AING AING AING AING AING	
• Molecule 2: Acyldepsipeptide	
Chain H: 86%	14%
• Molecule 2: Acyldepsipeptide	
Chain J: 71% 29	9%
γcP5 A6 P7	
• Molecule 2: Acyldepsipeptide	
Chain O: 71% 2	9%
• Molecule 2: Acyldepsipeptide	
Chain P: 86%	14%
0127 A Contraction of the second seco	
• Molecule 2: Acyldepsipeptide	
Chain Q: 71% 2	9%
Molecule 2: Acyldensipentide	

Chain R:	86%	14%
P 131		
• Molecule 2: Acyldepsipeptide		
Chain U:	86%	14%
PTS1 A CPE P7		
• Molecule 2: Acyldepsipeptide		
Chain V: 7	1%	29%
9151 F2 A6 A6 P7		
• Molecule 2: Acyldepsipeptide		
Chain X:	86%	14%
9151 VCP5 A6		
• Molecule 2: Acyldepsipeptide		
Chain Y: 7	1%	29%
91S1 VCP5 A6 A6		
• Molecule 2: Acyldepsipeptide		
Chain Z:	86%	14%
PTS1 VCP5 A6 P7		
• Molecule 2: Acyldepsipeptide		
Chain a:	86%	14%
9181 7 86 P7		

• Molecule 2: Acyldepsipeptide

Chain b:	14%	14%
• Molecul	e 2: Acyldepsipeptide	
Chain c:	86%	14%
9TS1 YCP5 A6 P7		

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	94.56Å 126.13Å 145.79Å	Depositor
a, b, c, α , β , γ	90.00° 93.42° 90.00°	Depositor
Bosolution (Å)	50.00 - 2.26	Depositor
Resolution (A)	38.45 - 2.26	EDS
% Data completeness	97.4 (50.00-2.26)	Depositor
(in resolution range)	97.4 (38.45-2.26)	EDS
R_{merge}	0.07	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	2.72 (at 2.27\AA)	Xtriage
Refinement program	REFMAC 5.8.0158	Depositor
B B.	0.179 , 0.219	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.185 , 0.219	DCC
R_{free} test set	1996 reflections (1.29%)	wwPDB-VP
Wilson B-factor $(Å^2)$	33.9	Xtriage
Anisotropy	0.116	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.33 , 35.5	EDS
L-test for $twinning^2$	$ < L >=0.47, < L^2>=0.30$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.95	EDS
Total number of atoms	20469	wwPDB-VP
Average B, all atoms $(Å^2)$	38.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.01% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: YCP, MP8, 9TS $\,$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.92	0/1381	0.95	4/1864~(0.2%)	
1	В	0.90	0/1380	0.97	4/1863~(0.2%)	
1	С	0.81	0/1375	0.85	1/1856~(0.1%)	
1	D	0.82	0/1372	0.91	1/1851~(0.1%)	
1	Е	0.83	0/1368	0.85	1/1847~(0.1%)	
1	F	0.89	0/1381	0.95	3/1865~(0.2%)	
1	G	0.95	0/1382	0.92	1/1867~(0.1%)	
1	Ι	0.95	0/1386	0.97	5/1871~(0.3%)	
1	Κ	0.94	1/1382~(0.1%)	0.96	3/1864~(0.2%)	
1	L	0.90	0/1381	0.89	0/1864	
1	М	0.83	0/1380	0.88	2/1864~(0.1%)	
1	Ν	0.83	0/1378	0.91	4/1860~(0.2%)	
1	S	0.83	0/1377	0.92	4/1860~(0.2%)	
1	Т	0.89	0/1393	0.93	3/1881~(0.2%)	
2	Н	0.92	0/29	0.88	0/37	
2	J	0.94	0/29	0.91	0/37	
2	0	1.22	0/29	0.87	0/37	
2	Р	1.06	0/29	0.87	0/37	
2	Q	1.05	0/29	0.89	0/37	
2	R	1.02	0/29	0.87	0/37	
2	U	1.07	0/29	0.99	0/37	
2	V	0.93	0/29	1.13	0/37	
2	Х	1.05	0/29	0.92	0/37	
2	Y	0.95	0/29	0.86	0/37	
2	Ζ	1.06	0/29	0.92	0/37	
2	a	1.00	0/29	0.82	0/37	
2	b	1.08	0/29	0.80	0/37	
2	с	0.99	0/29	0.81	0/37	
All	All	0.88	1/19722~(0.0%)	0.92	36/26595~(0.1%)	

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	Κ	119	GLU	CD-OE2	-5.53	1.19	1.25

All (36) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms Z		$Observed(^{o})$	$Ideal(^{o})$
1	Κ	99	MET	CG-SD-CE	-7.86	87.63	100.20
1	F	172	ASP	CB-CG-OD1	7.40	124.96	118.30
1	S	28	ARG	NE-CZ-NH1	6.98	123.79	120.30
1	В	152	ARG	NE-CZ-NH1	6.87	123.74	120.30
1	К	157	ARG	NE-CZ-NH2	-6.80	116.90	120.30
1	Ν	172	ASP	CB-CG-OD1	6.77	124.40	118.30
1	Т	157	ARG	NE-CZ-NH2	-6.50	117.05	120.30
1	В	37	ASP	CB-CG-OD1	6.35	124.02	118.30
1	Ι	87	ASP	CB-CG-OD1	6.32	123.99	118.30
1	А	157	ARG	NE-CZ-NH2	-6.15	117.22	120.30
1	Т	172	ASP	CB-CG-OD1	6.08	123.78	118.30
1	В	112	ARG	NE-CZ-NH2	-6.03	117.29	120.30
1	А	23	ARG	NE-CZ-NH1	6.02	123.31	120.30
1	Ι	157	ARG	NE-CZ-NH2	-6.01	117.29	120.30
1	Т	112	ARG	NE-CZ-NH1	5.80	123.20	120.30
1	Ν	157	ARG	NE-CZ-NH2	-5.79	117.40	120.30
1	S	187	ASP	CB-CG-OD2	5.76	123.49	118.30
1	Ν	157	ARG	NE-CZ-NH1	5.71	123.16	120.30
1	S	187	ASP	CB-CG-OD1	-5.71	113.16	118.30
1	Ι	87	ASP	CB-CG-OD2	-5.64	113.22	118.30
1	С	152	ARG	NE-CZ-NH1	5.56	123.08	120.30
1	Ν	172	ASP	CB-CG-OD2	-5.56	113.30	118.30
1	М	19	ASP	CB-CG-OD1	5.53	123.28	118.30
1	Ι	28	ARG	NE-CZ-NH1	5.47	123.04	120.30
1	А	152	ARG	NE-CZ-NH2	-5.42	117.59	120.30
1	М	87	ASP	CB-CG-OD1	5.41	123.17	118.30
1	S	37	ASP	CB-CG-OD1	5.35	123.12	118.30
1	Ι	157	ARG	NE-CZ-NH1	5.35	122.97	120.30
1	F	28	ARG	NE-CZ-NH1	5.31	122.95	120.30
1	D	19	ASP	CB-CG-OD1	5.31	123.08	118.30
1	В	28	ARG	NE-CZ-NH1	5.25	122.93	120.30
1	K	112	ARG	NE-CZ-NH1	5.15	122.87	120.30
1	F	187	ASP	CB-CG-OD1	-5.13	113.69	118.30
1	E	37	ASP	CB-CG-OD1	5.09	122.88	118.30
1	G	157	ARG	NE-CZ-NH2	-5.02	117.79	120.30
1	А	112	ARG	NE-CZ-NH1	5.01	122.81	120.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	${ m H}({ m model})$	H(added)	Clashes	Symm-Clashes
1	А	1364	0	1365	4	0
1	В	1363	0	1363	4	0
1	С	1358	0	1361	4	0
1	D	1355	0	1361	1	0
1	Е	1351	0	1349	5	0
1	F	1364	0	1362	7	0
1	G	1365	0	1357	8	0
1	Ι	1369	0	1368	8	0
1	Κ	1365	0	1366	7	0
1	L	1364	0	1365	3	0
1	М	1363	0	1362	2	0
1	Ν	1361	0	1364	4	0
1	S	1360	0	1354	5	0
1	Т	1376	0	1370	7	0
2	Н	51	0	42	0	0
2	J	51	0	42	1	0
2	0	51	0	42	1	0
2	Р	51	0	42	0	0
2	Q	51	0	42	1	0
2	R	51	0	42	0	0
2	U	51	0	42	0	0
2	V	51	0	42	1	0
2	Х	51	0	42	0	0
2	Y	51	0	42	1	0
2	Ζ	51	0	42	0	0
2	a	51	0	42	0	0
2	b	51	0	42	0	0
2	с	51	0	42	0	0
3	А	60	0	0	0	0
3	В	62	0	0	0	0
3	С	21	0	0	0	0
3	D	23	0	0	1	0
3	Е	27	0	0	0	0
3	F	54	0	0	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	G	63	0	0	0	0
3	Ι	68	0	0	0	0
3	Κ	61	0	0	0	0
3	L	64	0	0	0	0
3	М	48	0	0	0	0
3	Ν	33	0	0	0	0
3	S	40	0	0	0	0
3	Т	50	0	0	0	0
3	U	1	0	0	0	0
3	Х	1	0	0	0	0
3	a	1	0	0	0	0
All	All	20469	0	19655	55	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 1.

All (55) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:I:42:ASN:ND2	1:T:33:GLY:HA3	2.08	0.69
1:K:119:GLU:OE1	1:L:72:THR:HG21	1.96	0.66
1:K:119:GLU:OE1	1:L:72:THR:CG2	2.48	0.62
1:F:63:TYR:CE1	1:F:91:ILE:HD13	2.38	0.59
1:K:109:LYS:HE3	1:K:157:ARG:NH1	2.17	0.58
1:A:93:ILE:HG22	1:A:115:LEU:CD1	2.37	0.54
1:T:90:THR:C	1:T:91:ILE:HD12	2.29	0.52
1:G:93:ILE:HG22	1:G:115:LEU:HD12	1.93	0.50
1:A:93:ILE:HG22	1:A:115:LEU:HD12	1.92	0.50
1:M:33:GLY:HA3	1:N:42:ASN:OD1	2.12	0.49
3:D:301:HOH:O	1:S:134:THR:HG21	2.14	0.48
1:S:93:ILE:HG22	1:S:115:LEU:CD1	2.43	0.48
1:C:105:ALA:O	1:C:157:ARG:HD3	2.14	0.48
1:E:58:LYS:O	1:E:86:PRO:HB3	2.13	0.48
1:I:71:VAL:HG22	1:I:99:MET:CE	2.44	0.48
1:I:148:GLU:OE2	1:I:152:ARG:NH1	2.47	0.47
1:B:63:TYR:CE1	1:B:91:ILE:HD13	2.49	0.47
1:T:91:ILE:HD12	1:T:91:ILE:N	2.31	0.46
1:M:105:ALA:O	1:M:157:ARG:HD3	2.16	0.46
1:B:105:ALA:O	1:B:157:ARG:HD3	2.17	0.45
1:N:71:VAL:HG22	1:N:99:MET:HE3	1.99	0.45
1:N:71:VAL:HG22	1:N:99:MET:CE	2.47	0.45

	1.5	Interatomic	Clash overlap (Å)	
Atom-1	Atom-2	distance (Å)		
1:E:20:ILE:HD11	1:F:50:PHE:HB2	1.99	0.45	
1:F:105:ALA:O	1:F:157:ARG:HD3	2.17	0.44	
1:F:84:ILE:HB	1:F:86:PRO:HD2	1.99	0.44	
1:L:27:ASP:OD2	2:Y:1:9TS:C6	2.66	0.44	
1:G:105:ALA:O	1:G:157:ARG:HD3	2.18	0.43	
1:I:190:MET:HE3	2:V:2:PHE:HB3	2.00	0.43	
1:N:20:ILE:HD11	1:S:50:PHE:HB2	2.00	0.43	
1:K:124:GLN:HB2	1:K:125:PRO:HD2	2.01	0.43	
1:B:161:SER:O	1:B:165:ILE:HG12	2.19	0.42	
1:A:85:LYS:N	1:A:86:PRO:CD	2.82	0.42	
1:I:42:ASN:ND2	1:T:33:GLY:CA	2.80	0.42	
1:G:63:TYR:CE1	1:G:91:ILE:HD13	2.55	0.42	
1:C:91:ILE:HD11	2:O:6:ALA:HB1	2.01	0.41	
1:I:42:ASN:ND2	1:T:33:GLY:O	2.52	0.41	
1:I:79:ASP:HB3	1:T:115:LEU:HD13	2.01	0.41	
1:F:28:ARG:HG2	1:F:51:LEU:HD22	2.01	0.41	
1:K:115:LEU:HD21	1:K:190:MET:CE	2.50	0.41	
1:C:99:MET:HB2	1:C:99:MET:HE3	1.93	0.41	
1:A:79:ASP:HB3	1:G:115:LEU:HD13	2.02	0.41	
1:F:93:ILE:HD12	1:G:45:VAL:HG11	2.02	0.41	
1:G:24:LEU:HD13	1:G:31:MET:HE2	2.02	0.41	
1:S:33:GLY:HA3	1:T:42:ASN:ND2	2.36	0.41	
1:E:105:ALA:O	1:E:157:ARG:HD3	2.21	0.41	
1:I:115:LEU:HD13	1:K:79:ASP:HB3	2.03	0.41	
1:K:115:LEU:HD21	1:K:190:MET:HE3	2.02	0.41	
1:G:124:GLN:HB2	1:G:125:PRO:HD2	2.03	0.41	
1:B:91:ILE:HD11	2:J:6:ALA:HB1	2.02	0.40	
1:E:23:ARG:NH1	1:E:27:ASP:OD2	2.54	0.40	
1:E:61:TYR:CZ	2:Q:7:MP8:HB	2.56	0.40	
1:G:24:LEU:HD13	1:G:31:MET:CE	2.51	0.40	
1:F:63:TYR:CD1	1:F:91:ILE:HD13	2.57	0.40	
1:C:152:ARG:O	1:C:155:SER:HB3	2.21	0.40	
1:D:133:ALA:HB3	1:S:124:GLN:OE1	2.21	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	175/203~(86%)	173 (99%)	2 (1%)	0	100	100
1	В	175/203~(86%)	170 (97%)	5(3%)	0	100	100
1	\mathbf{C}	174/203~(86%)	170 (98%)	4 (2%)	0	100	100
1	D	173/203~(85%)	167 (96%)	6 (4%)	0	100	100
1	Ε	174/203~(86%)	172 (99%)	2 (1%)	0	100	100
1	F	175/203~(86%)	172 (98%)	3~(2%)	0	100	100
1	G	176/203~(87%)	173 (98%)	3(2%)	0	100	100
1	Ι	175/203~(86%)	171 (98%)	4 (2%)	0	100	100
1	K	174/203~(86%)	169 (97%)	5 (3%)	0	100	100
1	L	175/203~(86%)	171 (98%)	4 (2%)	0	100	100
1	М	175/203~(86%)	173 (99%)	2 (1%)	0	100	100
1	Ν	174/203~(86%)	171 (98%)	3 (2%)	0	100	100
1	S	175/203~(86%)	174 (99%)	1 (1%)	0	100	100
1	Т	177/203~(87%)	172 (97%)	5 (3%)	0	100	100
2	Н	3/7~(43%)	2~(67%)	1 (33%)	0	100	100
2	J	3/7~(43%)	2~(67%)	1 (33%)	0	100	100
2	Ο	3/7~(43%)	2(67%)	1 (33%)	0	100	100
2	Р	3/7~(43%)	2~(67%)	1 (33%)	0	100	100
2	Q	3/7~(43%)	2~(67%)	1 (33%)	0	100	100
2	R	3/7~(43%)	2(67%)	1 (33%)	0	100	100
2	U	3/7~(43%)	2(67%)	1 (33%)	0	100	100
2	V	3/7~(43%)	2 (67%)	1 (33%)	0	100	100
2	Х	3/7~(43%)	2 (67%)	1 (33%)	0	100	100
2	Y	3/7~(43%)	2(67%)	1 (33%)	0	100	100
2	Ζ	3/7~(43%)	2(67%)	1 (33%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{ntiles}		
2	a	3/7~(43%)	2~(67%)	1 (33%)	0	100	100		
2	b	3/7~(43%)	2~(67%)	1 (33%)	0	100	100		
2	с	3/7~(43%)	2~(67%)	1 (33%)	0	100	100		
All	All	2489/2940~(85%)	2426 (98%)	63~(2%)	0	100	100		

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
1	А	145/171~(85%)	143~(99%)	2(1%)	67	76	
1	В	145/171~(85%)	143~(99%)	2(1%)	67	76	
1	С	145/171~(85%)	143~(99%)	2(1%)	67	76	
1	D	145/171~(85%)	143~(99%)	2(1%)	67	76	
1	Ε	143/171~(84%)	141 (99%)	2(1%)	67	76	
1	F	145/171~(85%)	141 (97%)	4 (3%)	43	52	
1	G	143/171~(84%)	141 (99%)	2(1%)	67	76	
1	Ι	146/171~(85%)	144 (99%)	2(1%)	67	76	
1	Κ	145/171~(85%)	143~(99%)	2(1%)	67	76	
1	L	145/171~(85%)	142 (98%)	3~(2%)	53	62	
1	М	145/171~(85%)	143~(99%)	2(1%)	67	76	
1	Ν	145/171~(85%)	143~(99%)	2(1%)	67	76	
1	S	144/171~(84%)	141 (98%)	3(2%)	53	62	
1	Т	145/171~(85%)	143~(99%)	2(1%)	67	76	
2	Н	3/3~(100%)	3 (100%)	0	100	100	
2	J	3/3~(100%)	3 (100%)	0	100	100	
2	Ο	3/3~(100%)	3 (100%)	0	100	100	
2	Р	3/3~(100%)	3~(100%)	0	100	100	

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
2	Q	3/3~(100%)	3~(100%)	0	100	100
2	R	3/3~(100%)	3~(100%)	0	100	100
2	U	3/3~(100%)	3~(100%)	0	100	100
2	V	3/3~(100%)	3~(100%)	0	100	100
2	Х	3/3~(100%)	3~(100%)	0	100	100
2	Y	3/3~(100%)	3~(100%)	0	100	100
2	Z	3/3~(100%)	3~(100%)	0	100	100
2	a	3/3~(100%)	3~(100%)	0	100	100
2	b	3/3~(100%)	3~(100%)	0	100	100
2	с	3/3~(100%)	3 (100%)	0	100	100
All	All	2068/2436~(85%)	2036 (98%)	32 (2%)	65	75

All (32) residues with a non-rotameric sidechain are listed below:

Mol	ol Chain Res		Type
1	А	123	HIS
1	А	157	ARG
1	В	123	HIS
1	В	157	ARG
1	С	123	HIS
1	С	157	ARG
1	D	123	HIS
1	D	157	ARG
1	Е	123	HIS
1	Е	157	ARG
1	F	19	ASP
1	F	123	HIS
1	F	125	PRO
1	F	157	ARG
1	G	123	HIS
1	G	157	ARG
1	Ι	123	HIS
1	Ι	157	ARG
1	Κ	123	HIS
1	Κ	157	ARG
1	L	95	MET
1	L	123	HIS
1	L	157	ARG

Mol	Chain	Res	Type
1	М	123	HIS
1	М	157	ARG
1	N	123	HIS
1	N	157	ARG
1	S	95	MET
1	S	123	HIS
1	S	157	ARG
1	Т	123	HIS
1	Т	157	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

28 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	B	ond leng	gths	E	Bond ang	gles
IVIOI	туре	Unain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
2	YCP	Y	5	2	6,8,9	0.75	0	5,9,11	1.15	1 (20%)
2	YCP	0	5	2	6,8,9	0.78	0	5,9,11	1.14	1 (20%)
2	YCP	Х	5	2	6,8,9	0.72	0	5,9,11	1.22	1 (20%)
2	MP8	Х	7	2	5,8,9	0.38	0	3,10,12	0.24	0
2	MP8	0	7	2	5,8,9	0.32	0	3,10,12	0.23	0
2	YCP	J	5	2	6,8,9	0.89	0	5,9,11	1.11	1 (20%)
2	YCP	Р	5	2	6,8,9	0.73	0	5,9,11	1.19	1 (20%)
2	MP8	b	7	2	5,8,9	0.31	0	3,10,12	0.20	0
2	MP8	Q	7	2	5,8,9	0.18	0	3,10,12	0.18	0
2	YCP	a	5	2	6,8,9	0.56	0	5,9,11	1.38	1 (20%)

Mal	Mol Type Chain B		Dog	Tink	B	Bond lengths			Bond angles		
IVIOI	Type	Unann	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
2	MP8	a	7	2	$5,\!8,\!9$	0.30	0	3,10,12	0.38	0	
2	MP8	Н	7	2	5,8,9	0.29	0	3,10,12	0.38	0	
2	MP8	U	7	2	5,8,9	0.55	0	3,10,12	0.25	0	
2	YCP	b	5	2	6,8,9	0.58	0	5,9,11	1.26	1 (20%)	
2	MP8	V	7	2	5,8,9	0.54	0	3,10,12	0.16	0	
2	YCP	Z	5	2	6,8,9	0.55	0	5,9,11	1.24	1 (20%)	
2	YCP	U	5	2	6,8,9	0.82	0	5,9,11	1.30	1 (20%)	
2	MP8	Y	7	2	5,8,9	0.45	0	3,10,12	0.29	0	
2	YCP	с	5	2	6,8,9	0.71	0	5,9,11	1.34	1 (20%)	
2	MP8	J	7	2	5,8,9	0.25	0	3,10,12	0.36	0	
2	MP8	Z	7	2	5,8,9	0.19	0	3,10,12	0.32	0	
2	MP8	с	7	2	5,8,9	0.40	0	3,10,12	0.13	0	
2	YCP	R	5	2	6,8,9	0.72	0	5,9,11	1.30	1 (20%)	
2	YCP	Н	5	2	6,8,9	0.49	0	5,9,11	1.13	1 (20%)	
2	MP8	R	7	2	5,8,9	0.26	0	3,10,12	0.12	0	
2	YCP	Q	5	2	6,8,9	0.77	0	5,9,11	1.41	1 (20%)	
2	YCP	V	5	2	6,8,9	0.51	0	5,9,11	1.30	1 (20%)	
2	MP8	Р	7	2	5,8,9	0.47	0	3,10,12	0.15	0	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	YCP	Y	5	2	-	0/1/10/12	0/1/1/1
2	YCP	0	5	2	-	0/1/10/12	0/1/1/1
2	YCP	Х	5	2	-	0/1/10/12	0/1/1/1
2	MP8	Х	7	2	-	0/0/11/13	0/1/1/1
2	MP8	0	7	2	-	0/0/11/13	0/1/1/1
2	YCP	J	5	2	-	0/1/10/12	0/1/1/1
2	YCP	Р	5	2	-	0/1/10/12	0/1/1/1
2	MP8	b	7	2	-	0/0/11/13	0/1/1/1
2	MP8	Q	7	2	-	0/0/11/13	0/1/1/1
2	YCP	a	5	2	-	0/1/10/12	0/1/1/1
2	MP8	а	7	2	-	0/0/11/13	0/1/1/1
2	MP8	Н	7	2	-	0/0/11/13	0/1/1/1
2	MP8	U	7	2	-	0/0/11/13	0/1/1/1
2	YCP	b	5	2	-	0/1/10/12	0/1/1/1
2	MP8	V	7	2	-	0/0/11/13	0/1/1/1
2	YCP	Ζ	5	2	-	0/1/10/12	0/1/1/1

Continued on next page...

RLDWIDE

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	YCP	U	5	2	-	0/1/10/12	0/1/1/1
2	MP8	Y	7	2	-	0/0/11/13	0/1/1/1
2	YCP	с	5	2	-	0/1/10/12	0/1/1/1
2	MP8	J	7	2	-	0/0/11/13	0/1/1/1
2	MP8	Z	7	2	-	0/0/11/13	0/1/1/1
2	MP8	с	7	2	-	0/0/11/13	0/1/1/1
2	YCP	R	5	2	-	0/1/10/12	0/1/1/1
2	YCP	Н	5	2	-	0/1/10/12	0/1/1/1
2	MP8	R	7	2	-	0/0/11/13	0/1/1/1
2	YCP	Q	5	2	-	0/1/10/12	0/1/1/1
2	YCP	V	5	2	-	0/1/10/12	0/1/1/1
2	MP8	Р	7	2	-	0/0/11/13	0/1/1/1

There are no bond length outliers.

All (14) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	a	5	YCP	O-C-CA	-2.98	116.97	124.78
2	Q	5	YCP	O-C-CA	-2.94	117.08	124.78
2	с	5	YCP	O-C-CA	-2.92	117.13	124.78
2	U	5	YCP	O-C-CA	-2.86	117.28	124.78
2	V	5	YCP	O-C-CA	-2.78	117.48	124.78
2	R	5	YCP	O-C-CA	-2.78	117.48	124.78
2	b	5	YCP	O-C-CA	-2.66	117.82	124.78
2	Х	5	YCP	O-C-CA	-2.65	117.83	124.78
2	Ζ	5	YCP	O-C-CA	-2.64	117.85	124.78
2	Р	5	YCP	O-C-CA	-2.50	118.22	124.78
2	Y	5	YCP	O-C-CA	-2.49	118.26	124.78
2	Н	5	YCP	O-C-CA	-2.47	118.31	124.78
2	J	5	YCP	O-C-CA	-2.42	118.44	124.78
2	0	5	YCP	O-C-CA	-2.38	118.53	124.78

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	Q	7	MP8	1	0

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	Q < 0.9
1	А	179/203~(88%)	-0.62	0 100 100	22, 29, 51, 62	0
1	В	179/203~(88%)	-0.51	0 100 100	24, 33, 57, 79	0
1	С	178/203~(87%)	-0.41	2 (1%) 80 82	25, 43, 66, 98	0
1	D	177/203~(87%)	-0.35	1 (0%) 89 89	33, 44, 68, 92	0
1	Е	178/203~(87%)	-0.30	1 (0%) 89 89	31, 43, 63, 80	0
1	F	179/203~(88%)	-0.55	2 (1%) 80 82	24, 34, 54, 67	0
1	G	180/203~(88%)	-0.46	2 (1%) 80 82	21, 28, 48, 77	0
1	Ι	179/203~(88%)	-0.49	1 (0%) 89 89	20, 28, 50, 69	0
1	K	178/203~(87%)	-0.54	1 (0%) 89 89	21, 29, 50, 78	0
1	L	179/203~(88%)	-0.59	0 100 100	21, 31, 54, 76	0
1	М	179/203~(88%)	-0.42	0 100 100	27, 37, 56, 83	0
1	N	178/203~(87%)	-0.58	0 100 100	26, 37, 59, 74	0
1	S	179/203~(88%)	-0.48	2 (1%) 80 82	30, 40, 61, 75	0
1	Т	181/203~(89%)	-0.47	1 (0%) 89 89	23, 33, 58, 88	0
2	Н	4/7~(57%)	-0.07	0 100 100	37, 42, 47, 54	0
2	J	4/7~(57%)	0.10	0 100 100	40, 47, 52, 57	0
2	Ο	4/7~(57%)	0.36	0 100 100	47, 54, 56, 62	0
2	Р	4/7~(57%)	1.13	1 (25%) 0 0	46, 56, 59, 65	0
2	Q	4/7~(57%)	1.51	1 (25%) 0 0	47, 53, 57, 75	0
2	R	4/7~(57%)	-0.17	0 100 100	37, 46, 48, 57	0
2	U	4/7~(57%)	0.90	0 100 100	44, 54, 56, 64	0
2	V	4/7~(57%)	0.06	0 100 100	38, 44, 51, 58	0
2	X	4/7~(57%)	0.04	0 100 100	37, 42, 46, 57	0
2	Y	4/7~(57%)	0.09	0 100 100	40, 50, 55, 62	0

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2			>2	$OWAB(Å^2)$	Q<0.9
2	Z	4/7~(57%)	0.12	0	100	1	00	44, 51, 52, 61	0
2	a	4/7~(57%)	-0.22	0	100	1	00	43, 47, 55, 62	0
2	b	4/7~(57%)	0.91	1 (2	25%)	0	0	44, 52, 54, 65	0
2	с	4/7~(57%)	-0.05	0	100	1	00	38, 50, 50, 64	0
All	All	2559/2940 (87%)	-0.47	16 (0	9%) 8	89	89	20, 36, 59, 98	0

Continued from previous page...

All (16) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
2	Q	4	PRO	5.8
1	С	6	THR	3.6
1	Е	6	THR	2.9
2	b	4	PRO	2.9
1	S	6	THR	2.8
1	F	18	TYR	2.8
1	S	18	TYR	2.7
1	G	6	THR	2.7
1	Т	4	ILE	2.6
2	Р	4	PRO	2.4
1	Κ	4	ILE	2.4
1	Ι	18	TYR	2.4
1	F	6	THR	2.2
1	С	7	VAL	2.2
1	G	4	ILE	2.0
1	D	6	THR	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
2	MP8	U	7	8/9	0.85	0.21	44,46,52,60	0
2	YCP	b	5	8/9	0.90	0.25	$57,\!65,\!72,\!72$	0
2	YCP	Q	5	8/9	0.91	0.14	$56,\!67,\!72,\!72$	0
2	YCP	a	5	8/9	0.91	0.15	54,62,67,71	0
2	YCP	с	5	8/9	0.92	0.17	$52,\!58,\!63,\!64$	0
2	YCP	U	5	8/9	0.92	0.17	57,60,63,67	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors($Å^2$)	Q<0.9
2	YCP	Р	5	8/9	0.93	0.18	55,63,69,70	0
2	YCP	Ζ	5	8/9	0.93	0.17	58,63,69,70	0
2	YCP	R	5	8/9	0.93	0.11	51,54,58,62	0
2	MP8	V	7	8/9	0.93	0.16	39,40,46,49	0
2	MP8	Y	7	8/9	0.93	0.19	40,44,50,55	0
2	YCP	J	5	8/9	0.94	0.10	47,59,61,61	0
2	YCP	Х	5	8/9	0.94	0.11	$39,\!54,\!56,\!59$	0
2	MP8	0	7	8/9	0.94	0.20	47,50,60,65	0
2	MP8	с	7	8/9	0.94	0.20	42,47,50,51	0
2	YCP	V	5	8/9	0.95	0.17	48,55,61,61	0
2	MP8	Р	7	8/9	0.95	0.29	54,58,62,64	0
2	MP8	Z	7	8/9	0.95	0.18	42,46,54,56	0
2	MP8	a	7	8/9	0.95	0.17	46,48,51,52	0
2	YCP	0	5	8/9	0.95	0.13	$57,\!62,\!66,\!67$	0
2	MP8	Х	7	8/9	0.96	0.11	$37,\!40,\!42,\!44$	0
2	MP8	Q	7	8/9	0.96	0.13	$44,\!48,\!53,\!56$	0
2	MP8	R	7	8/9	0.96	0.15	$41,\!44,\!46,\!47$	0
2	YCP	Н	5	8/9	0.96	0.15	$46,\!54,\!61,\!61$	0
2	MP8	b	7	8/9	0.96	0.20	$4\overline{5},\!48,\!51,\!52$	0
2	MP8	J	7	8/9	0.96	0.17	$4\overline{3},\!46,\!48,\!50$	0
2	MP8	Н	7	8/9	0.97	0.16	$3\overline{9,41,45,45}$	0
2	YCP	Y	5	8/9	0.97	0.14	$4\overline{6,60,64,65}$	0

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

