

# Full wwPDB X-ray Structure Validation Report (i)

#### Sep 19, 2023 – 02:08 AM EDT

| PDB ID       | : | 3VON                                       |
|--------------|---|--------------------------------------------|
| Title        | : | Crystalstructure of the ubiquitin protease |
| Authors      | : | Sato, Y.; Fukai, S.                        |
| Deposited on | : | 2012-01-30                                 |
| Resolution   | : | 3.15  Å(reported)                          |
|              |   |                                            |

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Xtriage (Phenix)               | : | 1.13                                                               |
| EDS                            | : | 2.35.1                                                             |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| Refmac                         | : | 5.8.0158                                                           |
| CCP4                           | : | 7.0.044 (Gargrove)                                                 |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.35.1                                                             |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $X\text{-}RAY\;DIFFRACTION$ 

The reported resolution of this entry is 3.15 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | Whole archive           | Similar resolution                                          |  |  |  |  |
|-----------------------|-------------------------|-------------------------------------------------------------|--|--|--|--|
| Wiethe                | $(\# \mathbf{Entries})$ | $(\# { m Entries},  { m resolution}  { m range}({ m \AA}))$ |  |  |  |  |
| R <sub>free</sub>     | 130704                  | 1665 (3.20-3.12)                                            |  |  |  |  |
| Ramachandran outliers | 138981                  | 1770 (3.20-3.12)                                            |  |  |  |  |
| Sidechain outliers    | 138945                  | 1769(3.20-3.12)                                             |  |  |  |  |
| RSRZ outliers         | 127900                  | 1616 (3.20-3.12)                                            |  |  |  |  |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain |     |    |
|-----|-------|--------|------------------|-----|----|
| 1   | ٨     | 000    | %                |     |    |
|     | A     | 228    | 85%              | 7%  | 8% |
|     |       |        | 7%               |     |    |
| 1   | H     | 228    | 84%              | 10% | 6% |
|     |       |        |                  |     |    |
| 1   | Ο     | 228    | 88%              | 7%  | 5% |
|     |       |        | 2%               |     |    |
| 1   | V     | 228    | 90%              | •   | 6% |
|     |       |        | 4%               |     |    |
| 1   | с     | 228    | 87%              | 8%  | 5% |
|     |       |        | 13%              |     |    |
| 1   | j     | 228    | 83%              | 9%  | 8% |



Chain Length Quality of chain Mol 2В 13895% 5% 2D 1387% • 93% 2F 13892% 7% • Ι 213885% 14% . .% Κ 213894% 6% .% 2М 13891% 9% 2% Р 213891% 9% ... 2 $\mathbf{R}$ 13898% Т 213810% • 89% .% W 213810% • 89% 2Υ 1385%• 94% .% 2138 $\mathbf{a}$ 93% 6% • .% 2d 13893% 7% .% 2f 9% • 13890% .% 2h 1387% 93% 3% 2k 1389% 91%  $\mathbf{2}$ 138 $\mathbf{m}$ 96% • • .% 21380 7% 93% С 3 148••• 84% 14% Е 8% •• 3 14891%  $\mathbf{G}$ 3 148•• 89% 10% 3 J • 14891% 9% % L 1483 91% 9% • Ν 1483 9% •• 89% 3 Q 1488% •• 90%

Continued from previous page...



| Mol | Chain | Length | Quality of chain |       |
|-----|-------|--------|------------------|-------|
| 3   | S     | 148    | 90%              | 9% •  |
| 3   | U     | 148    | 91%              | 7% •• |
| 3   | Х     | 148    | 89%              | 11% • |
| 3   | Z     | 148    | 91%              | 9%    |
| 3   | b     | 148    | 91%              | 8% •  |
| 3   | е     | 148    | 88%              | 9% •• |
| 3   | g     | 148    | 91%              | 9%    |
| 3   | i     | 148    | 91%              | 9%    |
| 3   | 1     | 148    | %<br>            | 9% •• |
| 3   | n     | 148    | .%<br>91%        | 9% •  |
| 3   | р     | 148    | %<br><b>9</b> 0% | 9% •  |



#### 3VON

# 2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 51450 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues |       | At   | oms |     |   | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|------|-----|-----|---|---------|---------|-------|
| 1   | Δ     | 910      | Total | С    | Ν   | 0   | S | 0       | 0       | 0     |
|     | 210   | 1731     | 1111  | 284  | 330 | 6   | 0 | 0       | 0       |       |
| 1   | ц     | 214      | Total | С    | Ν   | 0   | S | 0       | 0       | 0     |
|     | ГП    | 214      | 1767  | 1133 | 290 | 339 | 5 | 0       | 0       | 0     |
| 1   | 1 0   | 216      | Total | С    | Ν   | 0   | S | 0       | 0       | 0     |
|     | 0     |          | 1786  | 1148 | 292 | 340 | 6 |         | 0       | 0     |
| 1   | V     | 215      | Total | С    | Ν   | 0   | S | 0       | 0       | 0     |
|     | v     |          | 1777  | 1140 | 292 | 339 | 6 | 0       |         | U     |
| 1   | 0     | 217      | Total | С    | Ν   | 0   | S | 0       | 0       | 0     |
|     |       | 217      | 1785  | 1144 | 293 | 342 | 6 | 0       | 0       | 0     |
| 1   | 1 ј   | 210      | Total | С    | Ν   | 0   | S | 0       | 0       | 0     |
|     |       |          | 1730  | 1112 | 284 | 329 | 5 |         | U       |       |

• Molecule 1 is a protein called Ubiquitin thioesterase OTUB1.

There are 6 discrepancies between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment        | Reference  |  |
|-------|---------|----------|--------|----------------|------------|--|
| А     | 44      | SER      | -      | expression tag | UNP Q96FW1 |  |
| Н     | 44      | SER      | -      | expression tag | UNP Q96FW1 |  |
| 0     | 44      | SER      | -      | expression tag | UNP Q96FW1 |  |
| V     | 44      | SER      | -      | expression tag | UNP Q96FW1 |  |
| с     | 44      | SER      | -      | expression tag | UNP Q96FW1 |  |
| j     | 44      | SER      | -      | expression tag | UNP Q96FW1 |  |

• Molecule 2 is a protein called Ubiquitin-conjugating enzyme E2 variant 2.

| Mol | Chain | Residues |       | At  | oms |     |   | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|-----|-----|-----|---|---------|---------|-------|
| 9   | В     | 138      | Total | С   | Ν   | 0   | S | 0       | 0       | 0     |
|     |       | 150      | 1096  | 689 | 191 | 208 | 8 | 0       | 0       | 0     |
| 0   | Л     | 127      | Total | С   | Ν   | 0   | S | 0       | 0       | 0     |
|     | 2 D   | 157      | 1092  | 687 | 190 | 207 | 8 | 0       | 0       | 0     |
| 0   | 9 F   | 190      | Total | С   | Ν   | 0   | S | 0       | 0       | 0     |
| 2 F | 199   | 1096     | 689   | 191 | 208 | 8   | 0 | 0       | U       |       |



| Mol | Chain | Residues |       | At  | oms |     |              | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|-----|-----|-----|--------------|---------|---------|-------|
|     | т     | 190      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
|     | 1     | 138      | 1096  | 689 | 191 | 208 | 8            | 0       | 0       | 0     |
| 0   | V     | 190      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
|     | ñ     | 199      | 1096  | 689 | 191 | 208 | 8            | 0       | 0       | 0     |
| 2   | М     | 138      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
| 2   | 111   | 150      | 1096  | 689 | 191 | 208 | 8            | 0       | 0       | 0     |
| 2   | р     | 138      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| 2   | I     | 130      | 1096  | 689 | 191 | 208 | 8            | 0       | 0       | 0     |
| 2   | B     | 137      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
|     | 10    | 107      | 1092  | 687 | 190 | 207 | 8            | 0       | 0       | 0     |
| 2   | Т     | 138      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
|     | 1     | 100      | 1096  | 689 | 191 | 208 | 8            | 0       | 0       | 0     |
| 2   | W     | 137      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
|     |       |          | 1092  | 687 | 190 | 207 | 8            | Ŭ       | 0       | 0     |
| 2   | Y     | 137      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
|     | -     | 101      | 1092  | 687 | 190 | 207 | 8            | Ŭ       |         | 0     |
| 2   | a     | 138      | Total | С   | Ν   | Ο   | S            | 0       | 0       | 0     |
|     |       | 100      | 1096  | 689 | 191 | 208 | 8            | Ŭ       | 0       | 0     |
| 2   | d     | 138      | Total | С   | Ν   | Ο   | S            | 0       | 0       | 0     |
|     |       |          | 1096  | 689 | 191 | 208 | 8            | Ŭ       |         |       |
| 2   | f     | 137      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
|     |       |          | 1092  | 687 | 190 | 207 | 8            |         |         |       |
| 2   | h     | 138      | Total | С   | N   | 0   | S            | 0       | 0       | 0     |
|     |       |          | 1096  | 689 | 191 | 208 | 8            |         | _       |       |
| 2   | k     | 138      | Total | С   | N   | 0   | S            | 0       | 0       | 0     |
|     |       |          | 1096  | 689 | 191 | 208 | 8            |         | _       |       |
| 2   | 2 m   | 137      | Total | C   | N   | 0   | S            | 0       | 0       | 0     |
|     |       |          | 1092  | 687 | 190 | 207 | 8            |         |         |       |
| 2   | О     | 138      | Total | C   | N   | 0   | S            | 0       | 0       | 0     |
|     | ~     |          | 1096  | 689 | 191 | 208 | 8            | , v     | Ŭ       |       |

• Molecule 3 is a protein called Ubiquitin-conjugating enzyme E2 N.

| Mol | Chain | Residues |       | At  | oms |     |   | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|-----|-----|-----|---|---------|---------|-------|
| 9   | 2 C   | 1.47     | Total | С   | Ν   | 0   | S | 0       | 0       | 0     |
| 3   | C     | 147      | 1175  | 755 | 202 | 214 | 4 | 0       | 0       | 0     |
| 2   | 3 E   | E 147    | Total | С   | Ν   | 0   | S | 0       | 0       | 0     |
| J   |       |          | 1175  | 755 | 202 | 214 | 4 |         | 0       |       |
| 2   | С     | 147      | Total | С   | Ν   | 0   | S | 0       | 0       | 0     |
| J   | 3 G   |          | 1175  | 755 | 202 | 214 | 4 |         |         | 0     |
| 2   | 3 J   | 147      | Total | С   | Ν   | 0   | S | 0       | 0       | 0     |
| J   |       |          | 1175  | 755 | 202 | 214 | 4 |         | 0       | U     |



|     |       |          | 5     | • • |     |     |              |         |         | _     |
|-----|-------|----------|-------|-----|-----|-----|--------------|---------|---------|-------|
| Mol | Chain | Residues |       | At  | oms |     |              | ZeroOcc | AltConf | Trace |
| 9   | т     | 1.47     | Total | С   | Ν   | 0   | $\mathbf{S}$ | 0       | 0       | 0     |
| 9   | L     | 141      | 1175  | 755 | 202 | 214 | 4            | 0       | 0       | 0     |
| 9   | N     | 147      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
| 3   | IN    |          | 1175  | 755 | 202 | 214 | 4            | 0       | 0       | 0     |
| 9   | 0     | 1.47     | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
| 3   | Q     | 147      | 1175  | 755 | 202 | 214 | 4            | 0       | 0       | 0     |
| 9   | C     | 140      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
| 9   | S     | 148      | 1179  | 757 | 203 | 215 | 4            | 0       | 0       | 0     |
| 9   | TT    | 1.47     | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
| 3   | U     | 147      | 1175  | 755 | 202 | 214 | 4            | 0       | 0       | 0     |
| 9   | v     | 1.47     | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
| 3   | Λ     | 147      | 1175  | 755 | 202 | 214 | 4            | 0       | 0       | 0     |
| 9   | 7     | 148      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
| 9   | L     |          | 1179  | 757 | 203 | 215 | 4            | 0       | 0       | 0     |
| 2   | h     | 147      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
| ა   | U     | 141      | 1175  | 755 | 202 | 214 | 4            | 0       | 0       | 0     |
| 2   | 0     | 1.47     | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
| ა   | е     | 141      | 1175  | 755 | 202 | 214 | 4            | 0       | 0       | 0     |
| 9   | ar.   | 149      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
| 9   | g     | 140      | 1179  | 757 | 203 | 215 | 4            | 0       | 0       | 0     |
| 9   | ;     | 149      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
| 9   | 1     | 140      | 1179  | 757 | 203 | 215 | 4            | 0       | 0       | 0     |
| 9   | 1     | 1.47     | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
| 3   | 3 I   | 147      | 1175  | 755 | 202 | 214 | 4            | 0       | 0       | 0     |
| 9   | 2     | 1.47     | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
| o n | 147   | 1175     | 755   | 202 | 214 | 4   |              | U       | U       |       |
| 2   | n     | 1/12     | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
| 3   | p p   | 140      | 1179  | 757 | 203 | 215 | 4            | 0       | 0       | U     |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.



• Molecule 1: Ubiquitin thioesterase OTUB1





• Molecule 2: Ubiquitin-conjugating enzyme E2 variant 2

| Chain B: | 95% | 5% |
|----------|-----|----|
|          |     |    |



• Molecule 2: Ubiquitin-conjugating enzyme E2 variant 2

| Chain D:                                                                                           | 93%                                                                                                                              | 7%    |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------|
| GLY<br>V7<br>E21<br>E21<br>821<br>821<br>821<br>849<br>849<br>849<br>8181<br>8181<br>8108<br>81008 | 4110<br>K133                                                                                                                     |       |
| • Molecule 2: Ubiquitin                                                                            | n-conjugating enzyme E2 variant 2                                                                                                |       |
| Chain F:                                                                                           | 92%                                                                                                                              | 7% •  |
| <b>G6</b><br>E33<br>M60<br>M60<br>M60<br>K72<br>E75<br>M92<br>M92<br>M93                           | V106<br>K116<br>K133<br>Y143                                                                                                     |       |
| • Molecule 2: Ubiquitin                                                                            | n-conjugating enzyme E2 variant 2                                                                                                |       |
| Chain I:                                                                                           | 85%                                                                                                                              | 14% • |
| 06<br>V7<br>K8<br>K14<br>V26<br>V26<br>M35<br>M36<br>M49<br>N57<br>N57                             | R61<br>K72<br>F75<br>F75<br>F82<br>F82<br>F82<br>F82<br>F82<br>F106<br>M106<br>M106<br>M106<br>M100<br>M110<br>M110<br>M110<br>M |       |
| • Molecule 2: Ubiquitin                                                                            | 1-conjugating enzyme E2 variant 2                                                                                                |       |
| Chain K:                                                                                           | 94%                                                                                                                              | 6%    |
|                                                                                                    | WORLDWIDE                                                                                                                        |       |

DB



• Molecule 2: Ubiquitin-conjugating enzyme E2 variant 2



#### C6 K8 K14 C27 C27 C27 C27 C27 C35 K45 N92 N92 N92 N92 N92 N92 K143

• Molecule 2: Ubiquitin-conjugating enzyme E2 variant 2



• Molecule 3: Ubiquitin-conjugating enzyme E2 N



| Chain C:                                                                                                                                                        | 84%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14% •• |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| GLY<br>L4<br>K10<br>K10<br>R14<br>R14<br>K24<br>K24<br>K24<br>E26<br>E26<br>E29<br>E29                                                                          | D44<br>P44<br>R70<br>R92<br>R102<br>L106<br>S107<br>S107<br>S107<br>P117<br>P117<br>P118<br>P118<br>P118<br>P118<br>P119<br>P118<br>P119<br>P119<br>P120<br>P128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128<br>U128 |        |
| • Molecule 3: Ubiquitin                                                                                                                                         | n-conjugating enzyme E2 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Chain E:                                                                                                                                                        | 91%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8% ••  |
| GLY<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>17<br>36<br>193<br>293<br>296                                                                                  | 1106<br>1106<br>1111<br>1111<br>1111<br>1111<br>1111<br>1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| • Molecule 3: Ubiquiti:                                                                                                                                         | n-conjugating enzyme E2 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Chain G:                                                                                                                                                        | 89%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10% •• |
| GLY<br>14<br>R6<br>R6<br>R6<br>R2<br>R2<br>R10<br>1100<br>L100<br>L100<br>L100<br>N116<br>N116                                                                  | D119<br>P120<br>1221<br>A122<br>A122<br>D124<br>Q126<br>A141<br>N150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
| • Molecule 3: Ubiquiti:                                                                                                                                         | n-conjugating enzyme E2 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Chain J:                                                                                                                                                        | 91%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9% •   |
| GLY<br>L4<br>R5<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R5<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1 | R70<br>F71<br>M72<br>K82<br>K92<br>B89<br>C100<br>F100<br>N150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| • Molecule 3: Ubiquiti:                                                                                                                                         | n-conjugating enzyme E2 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Chain L:                                                                                                                                                        | 91%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9% •   |
| GLY<br>L4<br>K10<br>R14<br>B18<br>Y34<br>Y34<br>Y73<br>K74<br>D89<br>K22                                                                                        | 1105<br>L106<br>D118<br>D118<br>D124<br>N150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| • Molecule 3: Ubiquitin                                                                                                                                         | n-conjugating enzyme E2 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Chain N:                                                                                                                                                        | 89%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9% ••  |
| GLY<br>L4<br>230<br>830<br>846<br>846<br>846<br>846<br>846<br>846<br>710<br>010<br>8113                                                                         | P120<br>P124<br>E127<br>Q128<br>R145<br>L146<br>L146<br>N150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| • Molecule 3: Ubiquitin                                                                                                                                         | n-conjugating enzyme E2 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Chain Q:                                                                                                                                                        | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8% ••  |
| GLY<br>L4<br>L4<br>K24<br>R70<br>R70<br>R70<br>R70<br>R70                                                                                                       | R102<br>L106<br>L121<br>N123<br>N123<br>R145<br>R145<br>N150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| • Molecule 3: Ubiquitiz                                                                                                                                         | n-conjugating enzyme E2 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |



| Chain S:                                                                                                                            | 90%                                                                                | 9% •  |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------|
| <b>G3</b><br>L4<br>E18<br>E29<br>E29<br>E61<br>T173<br>E61<br>E61<br>D93<br>D93<br>D93<br>C105                                      | N116<br>N123<br>D124<br>Q128<br>(128<br>N150<br>N150                               |       |
| • Molecule 3: Ubiquitin-                                                                                                            | conjugating enzyme E2 N                                                            |       |
| Chain U:                                                                                                                            | 91%                                                                                | 7% •• |
| GLY<br>L4<br>R14<br>L15<br>L16<br>L16<br>R12<br>B93<br>D93<br>C105<br>L105<br>D93<br>D93<br>C124<br>V124                            | 4129<br>4135<br>1137<br>1137<br>N150                                               |       |
| • Molecule 3: Ubiquitin-                                                                                                            | conjugating enzyme E2 N                                                            |       |
| Chain X:                                                                                                                            | 89%                                                                                | 11% • |
| 6LY<br>14<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76                                             | K82<br>K92<br>L105<br>L105<br>L105<br>A122<br>A122<br>A122<br>A122<br>A126<br>A135 |       |
| • Molecule 3: Ubiquitin-                                                                                                            | conjugating enzyme E2 N                                                            |       |
| Chain Z:                                                                                                                            | 91%                                                                                | 9%    |
| <b>G3</b><br>V20<br>E29<br>E61<br>K74<br>K74<br>K74<br>D89<br>D89<br>D83<br>D83<br>L105<br>L105                                     | 9128<br>9135<br>1137<br>1137<br>1137<br>1137<br>1137<br>1137<br>1136               |       |
| • Molecule 3: Ubiquitin-                                                                                                            | conjugating enzyme E2 N                                                            |       |
| Chain b:                                                                                                                            | 91%                                                                                | 8% •  |
| GLY<br>L4<br>V20<br>B81<br>B89<br>B89<br>B89<br>B89<br>B89<br>B89<br>B89<br>B89<br>B89<br>B89                                       | 1137<br>1141<br>1141<br>1150<br>1150                                               |       |
| • Molecule 3: Ubiquitin-                                                                                                            | conjugating enzyme E2 N                                                            |       |
| Chain e:                                                                                                                            | 88%                                                                                | 9% •• |
| GLY<br>L4<br>19<br>K10<br>K10<br>K10<br>M64<br>M72<br>M72<br>L106<br>L106                                                           | 1111<br>1119<br>1119<br>1119<br>1119<br>1119<br>1128<br>1128                       |       |
| • Molecule 3: Ubiquitin-                                                                                                            | conjugating enzyme E2 N                                                            |       |
| Chain g:                                                                                                                            | 91%                                                                                | 9%    |
| <b>G3</b><br>F6<br>F6<br>M72<br>M72<br>C37<br>173<br>C37<br>173<br>C37<br>C37<br>C37<br>C37<br>C37<br>C37<br>C37<br>C37<br>C37<br>C | 8113<br>113<br>113<br>113<br>113<br>113<br>113<br>113<br>113<br>113                |       |
| • Molecule 3: Ubiquitin-                                                                                                            | conjugating enzyme E2 N                                                            |       |







# 4 Data and refinement statistics (i)

| Property                                           | Value                                           | Source    |
|----------------------------------------------------|-------------------------------------------------|-----------|
| Space group                                        | P 1 21 1                                        | Depositor |
| Cell constants                                     | 102.06Å 137.28Å 257.11Å                         | Deperitor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$             | $90.00^{\circ}$ $90.03^{\circ}$ $90.00^{\circ}$ | Depositor |
| $\mathbf{P}_{\text{oscolution}}(\hat{\mathbf{A}})$ | 50.00 - 3.15                                    | Depositor |
| Resolution (A)                                     | 46.92 - 3.15                                    | EDS       |
| % Data completeness                                | 96.8 (50.00-3.15)                               | Depositor |
| (in resolution range)                              | 96.6~(46.92 - 3.15)                             | EDS       |
| $R_{merge}$                                        | 0.08                                            | Depositor |
| R <sub>sym</sub>                                   | (Not available)                                 | Depositor |
| $< I/\sigma(I) > 1$                                | $3.22 (at 3.12 \text{\AA})$                     | Xtriage   |
| Refinement program                                 | REFMAC 5.5.0109                                 | Depositor |
| D D.                                               | 0.223 , $0.281$                                 | Depositor |
| $\Pi, \Pi_{free}$                                  | 0.223 , $0.280$                                 | DCC       |
| $R_{free}$ test set                                | 5967 reflections $(5.02\%)$                     | wwPDB-VP  |
| Wilson B-factor $(Å^2)$                            | 63.3                                            | Xtriage   |
| Anisotropy                                         | 0.055                                           | Xtriage   |
| Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$        | 0.28, $5.5$                                     | EDS       |
| L-test for $twinning^2$                            | $< L >=0.46, < L^2>=0.29$                       | Xtriage   |
| Estimated twinning fraction                        | 0.427 for h,-k,-l                               | Xtriage   |
| $F_o, F_c$ correlation                             | 0.94                                            | EDS       |
| Total number of atoms                              | 51450                                           | wwPDB-VP  |
| Average B, all atoms $(Å^2)$                       | 80.0                                            | wwPDB-VP  |

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 51.65 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 5.4409e-05. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

# 5 Model quality (i)

# 5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Chain   | Bond | $\mathbf{lengths}$  | Bo                | ond angles                  |
|-----|---------|------|---------------------|-------------------|-----------------------------|
|     | Ullaili | RMSZ | # Z  > 5            | RMSZ              | # Z  > 5                    |
| 1   | А       | 0.36 | 0/1769              | 0.48              | 0/2381                      |
| 1   | Н       | 0.35 | 0/1806              | 0.49              | 0/2434                      |
| 1   | 0       | 0.36 | 0/1826              | 0.47              | 0/2457                      |
| 1   | V       | 0.36 | 0/1816              | 0.48              | 0/2444                      |
| 1   | с       | 0.36 | 0/1824              | 0.49              | 0/2458                      |
| 1   | j       | 0.35 | 0/1768              | 0.47              | 0/2381                      |
| 2   | В       | 0.34 | 0/1119              | 0.50              | 0/1512                      |
| 2   | D       | 0.32 | 0/1115              | 0.51              | 0/1507                      |
| 2   | F       | 0.37 | 0/1119              | 0.54              | 0/1512                      |
| 2   | Ι       | 0.35 | 0/1119              | 0.54              | 0/1512                      |
| 2   | Κ       | 0.34 | 0/1119              | 0.53              | 0/1512                      |
| 2   | М       | 0.34 | 0/1119              | 0.52              | 0/1512                      |
| 2   | Р       | 0.35 | 0/1119              | 0.53              | 0/1512                      |
| 2   | R       | 0.34 | 0/1115              | 0.52              | 0/1507                      |
| 2   | Т       | 0.34 | 0/1119              | 0.51              | 0/1512                      |
| 2   | W       | 0.36 | 0/1115              | 0.52              | 0/1507                      |
| 2   | Y       | 0.33 | 0/1115              | 0.52              | 0/1507                      |
| 2   | a       | 0.34 | 0/1119              | 0.53              | 0/1512                      |
| 2   | d       | 0.34 | 0/1119              | 0.51              | 0/1512                      |
| 2   | f       | 0.32 | 0/1115              | 0.53              | 0/1507                      |
| 2   | h       | 0.38 | 0/1119              | 0.52              | 0/1512                      |
| 2   | k       | 0.35 | 0/1119              | 0.54              | 0/1512                      |
| 2   | m       | 0.34 | 0/1115              | 0.52              | 0/1507                      |
| 2   | 0       | 0.34 | 0/1119              | 0.50              | 0/1512                      |
| 3   | С       | 0.35 | 0/1205              | 0.57              | 1/1640~(0.1%)               |
| 3   | Ε       | 0.33 | 0/1205              | 0.55              | 1/1640~(0.1%)               |
| 3   | G       | 0.36 | 0/1205              | 0.59              | 1/1640~(0.1%)               |
| 3   | J       | 0.34 | 0/1205              | 0.54              | 0/1640                      |
| 3   | L       | 0.34 | 0/1205              | 0.53              | $0/1\overline{640}$         |
| 3   | Ν       | 0.36 | 0/1205              | 0.55              | 0/1640                      |
| 3   | Q       | 0.34 | 0/1205              | 0.59              | $1/1640~(0.1\overline{\%})$ |
| 3   | S       | 0.34 | 0/1209              | $\overline{0.50}$ | 0/1645                      |
| 3   | U       | 0.35 | 0/1205              | 0.55              | 1/1640~(0.1%)               |
| 3   | X       | 0.34 | $0/1\overline{205}$ | 0.55              | $0/1\overline{640}$         |



| Mal | Chain | Bond | lengths  | Bo   | ond angles     |
|-----|-------|------|----------|------|----------------|
|     | Unam  | RMSZ | # Z  > 5 | RMSZ | # Z  > 5       |
| 3   | Ζ     | 0.35 | 0/1209   | 0.54 | 0/1645         |
| 3   | b     | 0.35 | 0/1205   | 0.52 | 0/1640         |
| 3   | е     | 0.34 | 0/1205   | 0.58 | 2/1640~(0.1%)  |
| 3   | g     | 0.34 | 0/1209   | 0.50 | 0/1645         |
| 3   | i     | 0.36 | 0/1209   | 0.54 | 0/1645         |
| 3   | 1     | 0.33 | 0/1205   | 0.55 | 1/1640~(0.1%)  |
| 3   | n     | 0.32 | 0/1205   | 0.51 | 0/1640         |
| 3   | р     | 0.35 | 0/1209   | 0.55 | 1/1645~(0.1%)  |
| All | All   | 0.35 | 0/52637  | 0.52 | 9/71286~(0.0%) |

There are no bond length outliers.

| Mol | Chain | Res | Type | Atoms    | Z    | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|----------|------|------------------|---------------|
| 3   | G     | 121 | LEU  | CA-CB-CG | 7.25 | 131.98           | 115.30        |
| 3   | С     | 106 | LEU  | CA-CB-CG | 6.32 | 129.83           | 115.30        |
| 3   | 1     | 106 | LEU  | CA-CB-CG | 6.17 | 129.50           | 115.30        |
| 3   | е     | 106 | LEU  | CA-CB-CG | 6.05 | 129.21           | 115.30        |
| 3   | е     | 146 | LEU  | CA-CB-CG | 5.66 | 128.33           | 115.30        |
| 3   | Е     | 54  | LEU  | CA-CB-CG | 5.48 | 127.91           | 115.30        |
| 3   | р     | 4   | LEU  | CA-CB-CG | 5.39 | 127.70           | 115.30        |
| 3   | U     | 4   | LEU  | CA-CB-CG | 5.13 | 127.09           | 115.30        |
| 3   | Q     | 106 | LEU  | CA-CB-CG | 5.10 | 127.02           | 115.30        |

All (9) bond angle outliers are listed below:

There are no chirality outliers.

There are no planarity outliers.

### 5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.



| Mol | Chain | Analysed                      | Favoured  | Allowed | Outliers | Perce | ntiles |
|-----|-------|-------------------------------|-----------|---------|----------|-------|--------|
| 1   | А     | 204/228~(90%)                 | 195 (96%) | 8 (4%)  | 1 (0%)   | 29    | 65     |
| 1   | Н     | 208/228~(91%)                 | 199 (96%) | 7 (3%)  | 2(1%)    | 15    | 51     |
| 1   | Ο     | 210/228~(92%)                 | 202 (96%) | 7 (3%)  | 1 (0%)   | 29    | 65     |
| 1   | V     | 209/228~(92%)                 | 201 (96%) | 7 (3%)  | 1 (0%)   | 29    | 65     |
| 1   | с     | 211/228~(92%)                 | 200 (95%) | 9 (4%)  | 2 (1%)   | 17    | 53     |
| 1   | j     | 204/228~(90%)                 | 190 (93%) | 11 (5%) | 3(2%)    | 10    | 41     |
| 2   | В     | 136/138~(99%)                 | 134 (98%) | 2 (2%)  | 0        | 100   | 100    |
| 2   | D     | 135/138~(98%)                 | 129 (96%) | 5 (4%)  | 1 (1%)   | 22    | 59     |
| 2   | F     | 136/138~(99%)                 | 130 (96%) | 4 (3%)  | 2 (2%)   | 10    | 41     |
| 2   | Ι     | 136/138~(99%)                 | 122 (90%) | 11 (8%) | 3 (2%)   | 6     | 32     |
| 2   | K     | 136/138~(99%)                 | 132 (97%) | 4 (3%)  | 0        | 100   | 100    |
| 2   | М     | 136/138~(99%)                 | 133 (98%) | 2 (2%)  | 1 (1%)   | 22    | 59     |
| 2   | Р     | 136/138~(99%)                 | 128 (94%) | 6 (4%)  | 2(2%)    | 10    | 41     |
| 2   | R     | 135/138~(98%)                 | 129 (96%) | 6 (4%)  | 0        | 100   | 100    |
| 2   | Т     | 136/138~(99%)                 | 128 (94%) | 5 (4%)  | 3 (2%)   | 6     | 32     |
| 2   | W     | 135/138~(98%)                 | 129 (96%) | 5 (4%)  | 1 (1%)   | 22    | 59     |
| 2   | Y     | 135/138~(98%)                 | 130 (96%) | 4 (3%)  | 1 (1%)   | 22    | 59     |
| 2   | a     | 136/138~(99%)                 | 128 (94%) | 5 (4%)  | 3(2%)    | 6     | 32     |
| 2   | d     | 136/138~(99%)                 | 133 (98%) | 2 (2%)  | 1 (1%)   | 22    | 59     |
| 2   | f     | 135/138~(98%)                 | 129 (96%) | 5 (4%)  | 1 (1%)   | 22    | 59     |
| 2   | h     | 136/138~(99%)                 | 132 (97%) | 3 (2%)  | 1 (1%)   | 22    | 59     |
| 2   | k     | 136/138~(99%)                 | 127 (93%) | 9 (7%)  | 0        | 100   | 100    |
| 2   | m     | 135/138~(98%)                 | 130 (96%) | 5 (4%)  | 0        | 100   | 100    |
| 2   | О     | 136/138~(99%)                 | 131 (96%) | 3 (2%)  | 2(2%)    | 10    | 41     |
| 3   | С     | 145/148 (98%)                 | 135 (93%) | 7 (5%)  | 3 (2%)   | 7     | 33     |
| 3   | Е     | 145/148 (98%)                 | 137 (94%) | 8 (6%)  | 0        | 100   | 100    |
| 3   | G     | 145/148 (98%)                 | 134 (92%) | 9 (6%)  | 2 (1%)   | 11    | 43     |
| 3   | J     | 145/148~(98%)                 | 136 (94%) | 9 (6%)  | 0        | 100   | 100    |
| 3   | L     | 145/148 (98%)                 | 139 (96%) | 6 (4%)  | 0        | 100   | 100    |
| 3   | N     | 145/148 (98%)                 | 136 (94%) | 7 (5%)  | 2 (1%)   | 11    | 43     |
| 3   | Q     | $\overline{145/148} \ (98\%)$ | 135 (93%) | 8 (6%)  | 2 (1%)   | 11    | 43     |
| 3   | S     | 146/148 (99%)                 | 142 (97%) | 3 (2%)  | 1 (1%)   | 22    | 59     |



| Mol | Chain | Analysed        | Favoured   | Allowed  | Outliers | Perce | entiles |
|-----|-------|-----------------|------------|----------|----------|-------|---------|
| 3   | U     | 145/148~(98%)   | 136 (94%)  | 9 (6%)   | 0        | 100   | 100     |
| 3   | Х     | 145/148~(98%)   | 135~(93%)  | 8 (6%)   | 2(1%)    | 11    | 43      |
| 3   | Z     | 146/148~(99%)   | 142 (97%)  | 4 (3%)   | 0        | 100   | 100     |
| 3   | b     | 145/148~(98%)   | 135~(93%)  | 10 (7%)  | 0        | 100   | 100     |
| 3   | е     | 145/148 (98%)   | 136 (94%)  | 7 (5%)   | 2(1%)    | 11    | 43      |
| 3   | g     | 146/148~(99%)   | 140 (96%)  | 6 (4%)   | 0        | 100   | 100     |
| 3   | i     | 146/148~(99%)   | 135~(92%)  | 11 (8%)  | 0        | 100   | 100     |
| 3   | 1     | 145/148~(98%)   | 134 (92%)  | 11 (8%)  | 0        | 100   | 100     |
| 3   | n     | 145/148 (98%)   | 139 (96%)  | 6 (4%)   | 0        | 100   | 100     |
| 3   | р     | 146/148~(99%)   | 136 (93%)  | 10 (7%)  | 0        | 100   | 100     |
| All | All   | 6303/6516~(97%) | 5983 (95%) | 274 (4%) | 46 (1%)  | 22    | 59      |

Continued from previous page...

All (46) Ramachandran outliers are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type |
|-----|-------|----------------|------|
| 2   | F     | 93             | ASN  |
| 1   | Н     | 152            | GLN  |
| 2   | Ι     | 107            | ALA  |
| 2   | Т     | 93             | ASN  |
| 1   | V     | 152            | GLN  |
| 1   | j     | 152            | GLN  |
| 2   | Ι     | 26             | VAL  |
| 2   | а     | 27             | GLY  |
| 2   | а     | 93             | ASN  |
| 1   | с     | 152            | GLN  |
| 1   | j     | 263            | PRO  |
| 2   | 0     | 27             | GLY  |
| 3   | G     | 119            | ASP  |
| 3   | Ν     | 120            | PRO  |
| 2   | Р     | 27             | GLY  |
| 3   | Q     | 121            | LEU  |
| 2   | Т     | 92             | ASN  |
| 3   | Х     | 120            | PRO  |
| 3   | Х     | 122            | ALA  |
| 2   | f     | 57             | ASN  |
| 2   | 0     | 40             | ASP  |
| 3   | С     | 119            | ASP  |
| 1   | Н     | 263            | PRO  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | М     | 27  | GLY  |
| 3   | N     | 44  | ASP  |
| 1   | 0     | 152 | GLN  |
| 2   | Y     | 40  | ASP  |
| 1   | с     | 263 | PRO  |
| 3   | е     | 123 | ASN  |
| 2   | h     | 27  | GLY  |
| 1   | A     | 263 | PRO  |
| 3   | С     | 116 | ASN  |
| 2   | D     | 57  | ASN  |
| 3   | G     | 122 | ALA  |
| 3   | S     | 123 | ASN  |
| 2   | F     | 92  | ASN  |
| 2   | Ι     | 105 | VAL  |
| 2   | Р     | 54  | PRO  |
| 3   | Q     | 123 | ASN  |
| 2   | Т     | 27  | GLY  |
| 2   | a     | 92  | ASN  |
| 3   | е     | 120 | PRO  |
| 1   | j     | 88  | ASP  |
| 3   | С     | 117 | PRO  |
| 2   | W     | 29  | GLY  |
| 2   | d     | 29  | GLY  |

### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed      | Rotameric | Outliers | Percentiles |
|-----|-------|---------------|-----------|----------|-------------|
| 1   | А     | 193/207~(93%) | 178 (92%) | 15 (8%)  | 12 40       |
| 1   | Н     | 197/207~(95%) | 177 (90%) | 20 (10%) | 7 27        |
| 1   | Ο     | 198/207~(96%) | 182 (92%) | 16 (8%)  | 11 39       |
| 1   | V     | 198/207~(96%) | 190 (96%) | 8 (4%)   | 31 64       |
| 1   | с     | 199/207~(96%) | 183 (92%) | 16 (8%)  | 12 39       |
| 1   | j     | 193/207~(93%) | 176 (91%) | 17 (9%)  | 10 34       |



| $\alpha$ $\cdot$ $\cdot$ $\cdot$ | C     |          |      |
|----------------------------------|-------|----------|------|
| I 'ontimuod                      | trom  | mromonie | naao |
| Commutate                        | 11011 | pretious | puye |
|                                  | 9     | 1        | 1 0  |

| Mol | Chain | Analysed       | Rotameric | Outliers | Perce | entiles |
|-----|-------|----------------|-----------|----------|-------|---------|
| 2   | В     | 123/123~(100%) | 116 (94%) | 7~(6%)   | 20    | 53      |
| 2   | D     | 123/123~(100%) | 115 (94%) | 8 (6%)   | 17    | 48      |
| 2   | F     | 123/123~(100%) | 113~(92%) | 10 (8%)  | 11    | 39      |
| 2   | Ι     | 123/123~(100%) | 104 (85%) | 19 (15%) | 2     | 12      |
| 2   | Κ     | 123/123~(100%) | 115 (94%) | 8 (6%)   | 17    | 48      |
| 2   | М     | 123/123~(100%) | 112 (91%) | 11 (9%)  | 9     | 33      |
| 2   | Р     | 123/123~(100%) | 112 (91%) | 11 (9%)  | 9     | 33      |
| 2   | R     | 123/123~(100%) | 121 (98%) | 2 (2%)   | 62    | 83      |
| 2   | Т     | 123/123~(100%) | 110 (89%) | 13 (11%) | 6     | 25      |
| 2   | W     | 123/123~(100%) | 110 (89%) | 13 (11%) | 6     | 25      |
| 2   | Y     | 123/123~(100%) | 117 (95%) | 6 (5%)   | 25    | 59      |
| 2   | a     | 123/123~(100%) | 116 (94%) | 7 (6%)   | 20    | 53      |
| 2   | d     | 123/123~(100%) | 115 (94%) | 8 (6%)   | 17    | 48      |
| 2   | f     | 123/123~(100%) | 111 (90%) | 12 (10%) | 8     | 28      |
| 2   | h     | 123/123~(100%) | 115 (94%) | 8 (6%)   | 17    | 48      |
| 2   | k     | 123/123~(100%) | 110 (89%) | 13 (11%) | 6     | 25      |
| 2   | m     | 123/123~(100%) | 118 (96%) | 5 (4%)   | 30    | 63      |
| 2   | 0     | 123/123~(100%) | 115 (94%) | 8 (6%)   | 17    | 48      |
| 3   | С     | 126/126~(100%) | 105 (83%) | 21 (17%) | 2     | 9       |
| 3   | Е     | 126/126~(100%) | 113 (90%) | 13 (10%) | 7     | 26      |
| 3   | G     | 126/126~(100%) | 112 (89%) | 14 (11%) | 6     | 24      |
| 3   | J     | 126/126~(100%) | 113 (90%) | 13 (10%) | 7     | 26      |
| 3   | L     | 126/126~(100%) | 113 (90%) | 13 (10%) | 7     | 26      |
| 3   | Ν     | 126/126~(100%) | 112 (89%) | 14 (11%) | 6     | 24      |
| 3   | Q     | 126/126~(100%) | 113 (90%) | 13 (10%) | 7     | 26      |
| 3   | S     | 126/126~(100%) | 111 (88%) | 15 (12%) | 5     | 21      |
| 3   | U     | 126/126~(100%) | 114 (90%) | 12 (10%) | 8     | 30      |
| 3   | Х     | 126/126~(100%) | 112 (89%) | 14 (11%) | 6     | 24      |
| 3   | Ζ     | 126/126 (100%) | 113 (90%) | 13 (10%) | 7     | 26      |
| 3   | b     | 126/126~(100%) | 114 (90%) | 12 (10%) | 8     | 30      |
| 3   | е     | 126/126~(100%) | 110 (87%) | 16 (13%) | 4     | 19      |



| Mol | Chain | Analysed        | Rotameric  | Outliers | Per | centiles |
|-----|-------|-----------------|------------|----------|-----|----------|
| 3   | g     | 126/126~(100%)  | 113 (90%)  | 13 (10%) | 7   | 26       |
| 3   | i     | 126/126~(100%)  | 112 (89%)  | 14 (11%) | 6   | 24       |
| 3   | 1     | 126/126~(100%)  | 111 (88%)  | 15 (12%) | 5   | 21       |
| 3   | n     | 126/126~(100%)  | 113 (90%)  | 13 (10%) | 7   | 26       |
| 3   | р     | 126/126~(100%)  | 111 (88%)  | 15 (12%) | 5   | 21       |
| All | All   | 5660/5724~(99%) | 5146 (91%) | 514 (9%) | 9   | 32       |

Continued from previous page...

All (514) residues with a non-rotameric side chain are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 70  | GLN  |
| 1   | А     | 91  | CYS  |
| 1   | А     | 113 | ARG  |
| 1   | А     | 124 | ASP  |
| 1   | А     | 131 | THR  |
| 1   | А     | 133 | PHE  |
| 1   | А     | 135 | ILE  |
| 1   | А     | 144 | ASP  |
| 1   | А     | 171 | LEU  |
| 1   | А     | 188 | LYS  |
| 1   | А     | 195 | GLU  |
| 1   | А     | 198 | ARG  |
| 1   | А     | 217 | HIS  |
| 1   | А     | 248 | ILE  |
| 1   | А     | 256 | LYS  |
| 2   | В     | 32  | SER  |
| 2   | В     | 49  | MET  |
| 2   | В     | 50  | ILE  |
| 2   | В     | 93  | ASN  |
| 2   | В     | 101 | ARG  |
| 2   | В     | 129 | LYS  |
| 2   | В     | 133 | LYS  |
| 3   | С     | 10  | LYS  |
| 3   | С     | 13  | GLN  |
| 3   | С     | 14  | ARG  |
| 3   | С     | 18  | GLU  |
| 3   | С     | 24  | LYS  |
| 3   | С     | 26  | GLU  |
| 3   | С     | 29  | GLU  |
| 3   | С     | 43  | GLN  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 3   | С     | 44  | ASP  |
| 3   | С     | 70  | ARG  |
| 3   | С     | 92  | LYS  |
| 3   | С     | 102 | ARG  |
| 3   | С     | 106 | LEU  |
| 3   | С     | 107 | SER  |
| 3   | С     | 108 | ILE  |
| 3   | С     | 116 | ASN  |
| 3   | С     | 121 | LEU  |
| 3   | С     | 127 | GLU  |
| 3   | С     | 128 | GLN  |
| 3   | С     | 129 | TRP  |
| 3   | С     | 146 | LEU  |
| 2   | D     | 21  | GLU  |
| 2   | D     | 31  | VAL  |
| 2   | D     | 35  | LEU  |
| 2   | D     | 49  | MET  |
| 2   | D     | 81  | ARG  |
| 2   | D     | 108 | LYS  |
| 2   | D     | 110 | GLN  |
| 2   | D     | 133 | LYS  |
| 3   | Е     | 6   | ARG  |
| 3   | Е     | 14  | ARG  |
| 3   | Е     | 54  | LEU  |
| 3   | Е     | 73  | THR  |
| 3   | Е     | 87  | CYS  |
| 3   | E     | 92  | LYS  |
| 3   | E     | 93  | ASP  |
| 3   | Е     | 96  | SER  |
| 3   | Е     | 106 | LEU  |
| 3   | Е     | 107 | SER  |
| 3   | Е     | 111 | LEU  |
| 3   | E     | 124 | ASP  |
| 3   | E     | 138 | GLU  |
| 2   | F     | 39  | GLU  |
| 2   | F     | 55  | ARG  |
| 2   | F     | 60  | ASN  |
| 2   | F     | 62  | ILE  |
| 2   | F     | 72  | LYS  |
| 2   | F     | 75  | GLU  |
| 2   | F     | 93  | ASN  |
| 2   | F     | 105 | VAL  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | F     | 116 | LYS  |
| 2   | F     | 133 | LYS  |
| 3   | G     | 4   | LEU  |
| 3   | G     | 6   | ARG  |
| 3   | G     | 24  | LYS  |
| 3   | G     | 64  | MET  |
| 3   | G     | 103 | THR  |
| 3   | G     | 105 | LEU  |
| 3   | G     | 107 | SER  |
| 3   | G     | 116 | ASN  |
| 3   | G     | 121 | LEU  |
| 3   | G     | 123 | ASN  |
| 3   | G     | 124 | ASP  |
| 3   | G     | 128 | GLN  |
| 3   | G     | 141 | ARG  |
| 3   | G     | 150 | ASN  |
| 1   | Н     | 53  | GLU  |
| 1   | Н     | 65  | ASP  |
| 1   | Н     | 70  | GLN  |
| 1   | Н     | 77  | LYS  |
| 1   | Н     | 83  | ARG  |
| 1   | Н     | 105 | LEU  |
| 1   | Н     | 106 | ASP  |
| 1   | Н     | 109 | LYS  |
| 1   | Н     | 120 | LYS  |
| 1   | Н     | 125 | LEU  |
| 1   | Н     | 132 | GLU  |
| 1   | Н     | 144 | ASP  |
| 1   | Н     | 148 | GLN  |
| 1   | Н     | 163 | ASN  |
| 1   | Н     | 171 | LEU  |
| 1   | Н     | 194 | ILE  |
| 1   | Н     | 199 | THR  |
| 1   | Н     | 215 | SER  |
| 1   | Н     | 256 | LYS  |
| 1   | Н     | 260 | LEU  |
| 2   | Ι     | 8   | LYS  |
| 2   | Ι     | 14  | ARG  |
| 2   | Ι     | 30  | THR  |
| 2   | Ι     | 35  | LEU  |
| 2   | Ι     | 49  | MET  |
| 2   | Ι     | 56  | THR  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | Ι     | 57  | ASN  |
| 2   | Ι     | 61  | ARG  |
| 2   | Ι     | 72  | LYS  |
| 2   | Ι     | 75  | GLU  |
| 2   | Ι     | 82  | PHE  |
| 2   | Ι     | 91  | ILE  |
| 2   | Ι     | 101 | ARG  |
| 2   | Ι     | 105 | VAL  |
| 2   | Ι     | 109 | TRP  |
| 2   | Ι     | 110 | GLN  |
| 2   | Ι     | 111 | ASN  |
| 2   | Ι     | 120 | GLN  |
| 2   | Ι     | 125 | LEU  |
| 3   | J     | 6   | ARG  |
| 3   | J     | 13  | GLN  |
| 3   | J     | 15  | LEU  |
| 3   | J     | 43  | GLN  |
| 3   | J     | 53  | LYS  |
| 3   | J     | 64  | MET  |
| 3   | J     | 70  | ARG  |
| 3   | J     | 72  | MET  |
| 3   | J     | 82  | LYS  |
| 3   | J     | 89  | ASP  |
| 3   | J     | 92  | LYS  |
| 3   | J     | 102 | ARG  |
| 3   | J     | 105 | LEU  |
| 2   | К     | 8   | LYS  |
| 2   | K     | 16  | LEU  |
| 2   | K     | 35  | LEU  |
| 2   | K     | 64  | SER  |
| 2   | K     | 68  | GLU  |
| 2   | K     | 97  | MET  |
| 2   | K     | 101 | ARG  |
| 2   | K     | 110 | GLN  |
| 3   | L     | 10  | LYS  |
| 3   | L     | 14  | ARG  |
| 3   | L     | 18  | GLU  |
| 3   | L     | 34  | TYR  |
| 3   | L     | 73  | THR  |
| 3   | L     | 74  | LYS  |
| 3   | L     | 89  | ASP  |
| 3   | L     | 92  | LYS  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 3   | L     | 105 | LEU  |
| 3   | L     | 106 | LEU  |
| 3   | L     | 118 | ASP  |
| 3   | L     | 121 | LEU  |
| 3   | L     | 124 | ASP  |
| 2   | М     | 39  | GLU  |
| 2   | М     | 49  | MET  |
| 2   | М     | 55  | ARG  |
| 2   | М     | 59  | GLU  |
| 2   | М     | 62  | ILE  |
| 2   | М     | 64  | SER  |
| 2   | М     | 81  | ARG  |
| 2   | М     | 84  | THR  |
| 2   | Μ     | 93  | ASN  |
| 2   | М     | 101 | ARG  |
| 2   | М     | 105 | VAL  |
| 3   | Ν     | 30  | SER  |
| 3   | Ν     | 44  | ASP  |
| 3   | Ν     | 45  | SER  |
| 3   | Ν     | 51  | THR  |
| 3   | N     | 53  | LYS  |
| 3   | N     | 105 | LEU  |
| 3   | N     | 109 | GLN  |
| 3   | N     | 113 | SER  |
| 3   | N     | 124 | ASP  |
| 3   | N     | 127 | GLU  |
| 3   | N     | 128 | GLN  |
| 3   | N     | 141 | ARG  |
| 3   | Ν     | 145 | ARG  |
| 3   | N     | 146 | LEU  |
| 1   | 0     | 51  | ARG  |
| 1   | 0     | 69  | GLN  |
| 1   | 0     | 70  | GLN  |
| 1   | 0     | 73  | LYS  |
| 1   | 0     | 109 | LYS  |
| 1   | 0     | 134 | THR  |
| 1   | 0     | 144 | ASP  |
| 1   | 0     | 152 | GLN  |
| 1   | 0     | 166 | SER  |
| 1   | 0     | 171 | LEU  |
| 1   | 0     | 186 | GLU  |
| 1   | 0     | 192 | HIS  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | 0     | 195 | GLU  |
| 1   | 0     | 217 | HIS  |
| 1   | 0     | 248 | ILE  |
| 1   | 0     | 254 | GLU  |
| 2   | Р     | 8   | LYS  |
| 2   | Р     | 43  | LEU  |
| 2   | Р     | 44  | THR  |
| 2   | Р     | 47  | THR  |
| 2   | Р     | 60  | ASN  |
| 2   | Р     | 72  | LYS  |
| 2   | Р     | 101 | ARG  |
| 2   | Р     | 102 | SER  |
| 2   | Р     | 118 | VAL  |
| 2   | Р     | 120 | GLN  |
| 2   | Р     | 133 | LYS  |
| 3   | Q     | 16  | LEU  |
| 3   | Q     | 24  | LYS  |
| 3   | Q     | 43  | GLN  |
| 3   | Q     | 64  | MET  |
| 3   | Q     | 70  | ARG  |
| 3   | Q     | 89  | ASP  |
| 3   | Q     | 92  | LYS  |
| 3   | Q     | 102 | ARG  |
| 3   | Q     | 106 | LEU  |
| 3   | Q     | 123 | ASN  |
| 3   | Q     | 129 | TRP  |
| 3   | Q     | 135 | GLN  |
| 3   | Q     | 145 | ARG  |
| 2   | R     | 66  | LYS  |
| 2   | R     | 133 | LYS  |
| 3   | S     | 4   | LEU  |
| 3   | S     | 18  | GLU  |
| 3   | S     | 29  | GLU  |
| 3   | S     | 61  | GLU  |
| 3   | S     | 73  | THR  |
| 3   | S     | 89  | ASP  |
| 3   | S     | 92  | LYS  |
| 3   | S     | 93  | ASP  |
| 3   | S     | 105 | LEU  |
| 3   | S     | 116 | ASN  |
| 3   | S     | 123 | ASN  |
| 3   | S     | 124 | ASP  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 3   | S     | 128 | GLN  |
| 3   | S     | 146 | LEU  |
| 3   | S     | 150 | ASN  |
| 2   | Т     | 20  | GLU  |
| 2   | Т     | 23  | GLN  |
| 2   | Т     | 26  | VAL  |
| 2   | Т     | 35  | LEU  |
| 2   | Т     | 39  | GLU  |
| 2   | Т     | 49  | MET  |
| 2   | Т     | 55  | ARG  |
| 2   | Т     | 62  | ILE  |
| 2   | Т     | 93  | ASN  |
| 2   | Т     | 97  | MET  |
| 2   | Т     | 105 | VAL  |
| 2   | Т     | 129 | LYS  |
| 2   | Т     | 133 | LYS  |
| 3   | U     | 4   | LEU  |
| 3   | U     | 14  | ARG  |
| 3   | U     | 16  | LEU  |
| 3   | U     | 20  | VAL  |
| 3   | U     | 43  | GLN  |
| 3   | U     | 93  | ASP  |
| 3   | U     | 105 | LEU  |
| 3   | U     | 123 | ASN  |
| 3   | U     | 125 | VAL  |
| 3   | U     | 129 | TRP  |
| 3   | U     | 135 | GLN  |
| 3   | U     | 137 | ILE  |
| 1   | V     | 59  | LYS  |
| 1   | V     | 70  | GLN  |
| 1   | V     | 71  | LYS  |
| 1   | V     | 90  | ASN  |
| 1   | V     | 147 | GLU  |
| 1   | V     | 151 | LYS  |
| 1   | V     | 171 | LEU  |
| 1   | V     | 248 | ILE  |
| 2   | W     | 23  | GLN  |
| 2   | W     | 58  | TYR  |
| 2   | W     | 80  | VAL  |
| 2   | W     | 86  | ILE  |
| 2   | W     | 99  | ASP  |
| 2   | W     | 108 | LYS  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | W     | 110 | GLN  |
| 2   | W     | 118 | VAL  |
| 2   | W     | 120 | GLN  |
| 2   | W     | 123 | ARG  |
| 2   | W     | 124 | ARG  |
| 2   | W     | 133 | LYS  |
| 2   | W     | 142 | THR  |
| 3   | Х     | 6   | ARG  |
| 3   | Х     | 13  | GLN  |
| 3   | Х     | 15  | LEU  |
| 3   | Х     | 24  | LYS  |
| 3   | Х     | 43  | GLN  |
| 3   | Х     | 48  | GLU  |
| 3   | Х     | 55  | GLU  |
| 3   | Х     | 61  | GLU  |
| 3   | Х     | 82  | LYS  |
| 3   | Х     | 92  | LYS  |
| 3   | Х     | 102 | ARG  |
| 3   | Х     | 105 | LEU  |
| 3   | Х     | 121 | LEU  |
| 3   | Х     | 135 | GLN  |
| 2   | Y     | 35  | LEU  |
| 2   | Y     | 61  | ARG  |
| 2   | Y     | 68  | GLU  |
| 2   | Y     | 101 | ARG  |
| 2   | Y     | 112 | SER  |
| 2   | Y     | 133 | LYS  |
| 3   | Ζ     | 20  | VAL  |
| 3   | Ζ     | 29  | GLU  |
| 3   | Ζ     | 61  | GLU  |
| 3   | Z     | 73  | THR  |
| 3   | Ζ     | 74  | LYS  |
| 3   | Ζ     | 89  | ASP  |
| 3   | Ζ     | 93  | ASP  |
| 3   | Ζ     | 105 | LEU  |
| 3   | Ζ     | 121 | LEU  |
| 3   | Ζ     | 128 | GLN  |
| 3   | Ζ     | 135 | GLN  |
| 3   | Ζ     | 137 | ILE  |
| 3   | Z     | 145 | ARG  |
| 2   | a     | 8   | LYS  |
| 2   | a     | 14  | ARG  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | a     | 35  | LEU  |
| 2   | a     | 45  | ARG  |
| 2   | a     | 93  | ASN  |
| 2   | a     | 105 | VAL  |
| 2   | a     | 127 | MET  |
| 3   | b     | 20  | VAL  |
| 3   | b     | 81  | ASP  |
| 3   | b     | 89  | ASP  |
| 3   | b     | 93  | ASP  |
| 3   | b     | 105 | LEU  |
| 3   | b     | 106 | LEU  |
| 3   | b     | 123 | ASN  |
| 3   | b     | 128 | GLN  |
| 3   | b     | 129 | TRP  |
| 3   | b     | 137 | ILE  |
| 3   | b     | 141 | ARG  |
| 3   | b     | 149 | MET  |
| 1   | с     | 47  | LEU  |
| 1   | с     | 70  | GLN  |
| 1   | с     | 76  | HIS  |
| 1   | с     | 106 | ASP  |
| 1   | с     | 120 | LYS  |
| 1   | с     | 131 | THR  |
| 1   | с     | 134 | THR  |
| 1   | с     | 143 | MET  |
| 1   | с     | 144 | ASP  |
| 1   | с     | 157 | ASP  |
| 1   | с     | 171 | LEU  |
| 1   | с     | 188 | LYS  |
| 1   | с     | 195 | GLU  |
| 1   | с     | 217 | HIS  |
| 1   | с     | 248 | ILE  |
| 1   | с     | 254 | GLU  |
| 2   | d     | 31  | VAL  |
| 2   | d     | 44  | THR  |
| 2   | d     | 64  | SER  |
| 2   | d     | 75  | GLU  |
| 2   | d     | 79  | SER  |
| 2   | d     | 101 | ARG  |
| 2   | d     | 123 | ARG  |
| 2   | d     | 133 | LYS  |
| 3   | е     | 9   | ILE  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 3   | е     | 10  | LYS  |
| 3   | е     | 11  | GLU  |
| 3   | е     | 14  | ARG  |
| 3   | е     | 26  | GLU  |
| 3   | е     | 64  | MET  |
| 3   | е     | 70  | ARG  |
| 3   | е     | 72  | MET  |
| 3   | е     | 106 | LEU  |
| 3   | е     | 111 | LEU  |
| 3   | е     | 118 | ASP  |
| 3   | е     | 119 | ASP  |
| 3   | е     | 123 | ASN  |
| 3   | е     | 128 | GLN  |
| 3   | е     | 129 | TRP  |
| 3   | е     | 146 | LEU  |
| 2   | f     | 8   | LYS  |
| 2   | f     | 28  | ASP  |
| 2   | f     | 35  | LEU  |
| 2   | f     | 49  | MET  |
| 2   | f     | 59  | GLU  |
| 2   | f     | 68  | GLU  |
| 2   | f     | 72  | LYS  |
| 2   | f     | 93  | ASN  |
| 2   | f     | 101 | ARG  |
| 2   | f     | 110 | GLN  |
| 2   | f     | 117 | VAL  |
| 2   | f     | 125 | LEU  |
| 3   | g     | 4   | LEU  |
| 3   | g     | 6   | ARG  |
| 3   | g     | 72  | MET  |
| 3   | g     | 73  | THR  |
| 3   | g     | 87  | CYS  |
| 3   | g     | 89  | ASP  |
| 3   | g     | 92  | LYS  |
| 3   | g     | 94  | LYS  |
| 3   | g     | 106 | LEU  |
| 3   | g     | 107 | SER  |
| 3   | g     | 113 | SER  |
| 3   | g     | 121 | LEU  |
| 3   | g     | 128 | GLN  |
| 2   | h     | 24  | LYS  |
| 2   | h     | 47  | THR  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | h     | 49  | MET  |
| 2   | h     | 55  | ARG  |
| 2   | h     | 62  | ILE  |
| 2   | h     | 101 | ARG  |
| 2   | h     | 105 | VAL  |
| 2   | h     | 130 | GLU  |
| 3   | i     | 4   | LEU  |
| 3   | i     | 6   | ARG  |
| 3   | i     | 14  | ARG  |
| 3   | i     | 18  | GLU  |
| 3   | i     | 23  | ILE  |
| 3   | i     | 26  | GLU  |
| 3   | i     | 103 | THR  |
| 3   | i     | 105 | LEU  |
| 3   | i     | 106 | LEU  |
| 3   | i     | 118 | ASP  |
| 3   | i     | 121 | LEU  |
| 3   | i     | 128 | GLN  |
| 3   | i     | 129 | TRP  |
| 3   | i     | 135 | GLN  |
| 1   | j     | 48  | VAL  |
| 1   | j     | 70  | GLN  |
| 1   | j     | 73  | LYS  |
| 1   | j     | 90  | ASN  |
| 1   | j     | 100 | HIS  |
| 1   | j     | 115 | LYS  |
| 1   | j     | 122 | LYS  |
| 1   | j     | 131 | THR  |
| 1   | j     | 143 | MET  |
| 1   | j     | 144 | ASP  |
| 1   | j     | 147 | GLU  |
| 1   | j     | 163 | ASN  |
| 1   | j     | 171 | LEU  |
| 1   | j     | 179 | THR  |
| 1   | j     | 199 | THR  |
| 1   | j     | 206 | GLN  |
| 1   | j     | 213 | LYS  |
| 2   | k     | 14  | ARG  |
| 2   | k     | 24  | LYS  |
| 2   | k     | 38  | ASP  |
| 2   | k     | 49  | MET  |
| 2   | k     | 57  | ASN  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | k     | 82  | PHE  |
| 2   | k     | 89  | ASN  |
| 2   | k     | 101 | ARG  |
| 2   | k     | 102 | SER  |
| 2   | k     | 109 | TRP  |
| 2   | k     | 111 | ASN  |
| 2   | k     | 125 | LEU  |
| 2   | k     | 127 | MET  |
| 3   | 1     | 6   | ARG  |
| 3   | 1     | 15  | LEU  |
| 3   | 1     | 18  | GLU  |
| 3   | 1     | 24  | LYS  |
| 3   | 1     | 26  | GLU  |
| 3   | 1     | 72  | MET  |
| 3   | 1     | 82  | LYS  |
| 3   | 1     | 89  | ASP  |
| 3   | l     | 105 | LEU  |
| 3   | 1     | 106 | LEU  |
| 3   | 1     | 107 | SER  |
| 3   | 1     | 116 | ASN  |
| 3   | 1     | 132 | ASN  |
| 3   | 1     | 141 | ARG  |
| 3   | 1     | 149 | MET  |
| 2   | m     | 12  | ASN  |
| 2   | m     | 30  | THR  |
| 2   | m     | 31  | VAL  |
| 2   | m     | 35  | LEU  |
| 2   | m     | 68  | GLU  |
| 3   | n     | 13  | GLN  |
| 3   | n     | 14  | ARG  |
| 3   | n     | 73  | THR  |
| 3   | n     | 87  | CYS  |
| 3   | n     | 89  | ASP  |
| 3   | n     | 92  | LYS  |
| 3   | n     | 94  | LYS  |
| 3   | n     | 102 | ARG  |
| 3   | n     | 105 | LEU  |
| 3   | n     | 106 | LEU  |
| 3   | n     | 121 | LEU  |
| 3   | n     | 128 | GLN  |
| 3   | n     | 150 | ASN  |
| 2   | 0     | 55  | ARG  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | 0     | 60  | ASN  |
| 2   | 0     | 93  | ASN  |
| 2   | 0     | 101 | ARG  |
| 2   | 0     | 105 | VAL  |
| 2   | 0     | 106 | LEU  |
| 2   | 0     | 130 | GLU  |
| 2   | 0     | 133 | LYS  |
| 3   | р     | 4   | LEU  |
| 3   | р     | 9   | ILE  |
| 3   | р     | 14  | ARG  |
| 3   | р     | 51  | THR  |
| 3   | р     | 72  | MET  |
| 3   | р     | 89  | ASP  |
| 3   | р     | 90  | ILE  |
| 3   | р     | 105 | LEU  |
| 3   | р     | 111 | LEU  |
| 3   | р     | 116 | ASN  |
| 3   | р     | 127 | GLU  |
| 3   | р     | 130 | LYS  |
| 3   | р     | 139 | THR  |
| 3   | р     | 141 | ARG  |
| 3   | р     | 146 | LEU  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (98) such sidechains are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type |
|-----|-------|----------------|------|
| 1   | А     | 70             | GLN  |
| 1   | А     | 76             | HIS  |
| 1   | А     | 219            | HIS  |
| 2   | В     | 60             | ASN  |
| 2   | В     | 89             | ASN  |
| 2   | В     | 93             | ASN  |
| 2   | В     | 120            | GLN  |
| 3   | С     | 43             | GLN  |
| 3   | С     | 109            | GLN  |
| 3   | С     | 135            | GLN  |
| 2   | D     | 12             | ASN  |
| 2   | D     | 23             | GLN  |
| 2   | D     | 110            | GLN  |
| 2   | D     | 120            | GLN  |
| 2   | F     | 12             | ASN  |
| 2   | F     | 60             | ASN  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | F     | 89  | ASN  |
| 3   | G     | 79  | ASN  |
| 3   | G     | 116 | ASN  |
| 3   | G     | 123 | ASN  |
| 3   | G     | 135 | GLN  |
| 1   | Н     | 70  | GLN  |
| 1   | Н     | 112 | GLN  |
| 1   | Н     | 148 | GLN  |
| 2   | Ι     | 60  | ASN  |
| 2   | Ι     | 110 | GLN  |
| 2   | Ι     | 111 | ASN  |
| 3   | J     | 109 | GLN  |
| 3   | J     | 116 | ASN  |
| 2   | K     | 23  | GLN  |
| 2   | Κ     | 92  | ASN  |
| 3   | L     | 13  | GLN  |
| 3   | L     | 116 | ASN  |
| 2   | М     | 60  | ASN  |
| 2   | М     | 110 | GLN  |
| 2   | М     | 120 | GLN  |
| 3   | Ν     | 100 | GLN  |
| 1   | 0     | 45  | ASN  |
| 1   | 0     | 70  | GLN  |
| 2   | Р     | 60  | ASN  |
| 2   | Р     | 87  | ASN  |
| 3   | Q     | 100 | GLN  |
| 3   | Q     | 123 | ASN  |
| 3   | Q     | 128 | GLN  |
| 2   | R     | 120 | GLN  |
| 3   | S     | 13  | GLN  |
| 3   | S     | 116 | ASN  |
| 2   | Т     | 12  | ASN  |
| 2   | Т     | 60  | ASN  |
| 2   | Т     | 120 | GLN  |
| 3   | U     | 13  | GLN  |
| 3   | U     | 43  | GLN  |
| 3   | U     | 123 | ASN  |
| 3   | U     | 135 | GLN  |
| 1   | V     | 70  | GLN  |
| 1   | V     | 90  | ASN  |
| 1   | V     | 219 | HIS  |
| 1   | V     | 225 | GLN  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | W     | 87  | ASN  |
| 2   | W     | 93  | ASN  |
| 2   | W     | 110 | GLN  |
| 2   | W     | 120 | GLN  |
| 3   | Х     | 109 | GLN  |
| 3   | Х     | 123 | ASN  |
| 3   | Х     | 128 | GLN  |
| 2   | Y     | 110 | GLN  |
| 2   | Y     | 120 | GLN  |
| 3   | Ζ     | 116 | ASN  |
| 2   | a     | 120 | GLN  |
| 3   | b     | 123 | ASN  |
| 1   | с     | 66  | ASN  |
| 1   | с     | 219 | HIS  |
| 1   | с     | 245 | ASN  |
| 2   | d     | 89  | ASN  |
| 2   | d     | 93  | ASN  |
| 2   | d     | 120 | GLN  |
| 3   | е     | 79  | ASN  |
| 3   | е     | 123 | ASN  |
| 2   | f     | 23  | GLN  |
| 3   | g     | 43  | GLN  |
| 3   | g     | 116 | ASN  |
| 2   | h     | 12  | ASN  |
| 2   | h     | 23  | GLN  |
| 2   | h     | 110 | GLN  |
| 3   | i     | 109 | GLN  |
| 1   | j     | 219 | HIS  |
| 2   | k     | 60  | ASN  |
| 2   | k     | 92  | ASN  |
| 2   | k     | 111 | ASN  |
| 2   | k     | 120 | GLN  |
| 3   | 1     | 109 | GLN  |
| 3   | 1     | 116 | ASN  |
| 3   | 1     | 123 | ASN  |
| 2   | m     | 23  | GLN  |
| 3   | n     | 13  | GLN  |
| 2   | 0     | 60  | ASN  |
| 2   | 0     | 120 | GLN  |
| 3   | р     | 43  | GLN  |

Continued from previous page...



#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

### 5.6 Ligand geometry (i)

There are no ligands in this entry.

### 5.7 Other polymers (i)

There are no such residues in this entry.

### 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Fit of model and data (i)

## 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed       | <RSRZ $>$ | #RSRZ>2      | $OWAB(A^2)$       | Q<0.9 |
|-----|-------|----------------|-----------|--------------|-------------------|-------|
| 1   | А     | 210/228~(92%)  | 0.12      | 3 (1%) 75 63 | 58, 87, 128, 158  | 0     |
| 1   | Н     | 214/228~(93%)  | 0.64      | 17 (7%) 12 6 | 95, 128, 181, 205 | 0     |
| 1   | Ο     | 216/228~(94%)  | -0.01     | 1 (0%) 91 86 | 59, 78, 110, 142  | 0     |
| 1   | V     | 215/228~(94%)  | 0.10      | 5 (2%) 60 46 | 57, 78, 113, 153  | 0     |
| 1   | с     | 217/228~(95%)  | 0.19      | 9 (4%) 37 22 | 58, 87, 133, 174  | 0     |
| 1   | j     | 210/228~(92%)  | 0.85      | 30 (14%) 2 1 | 97, 131, 177, 194 | 0     |
| 2   | В     | 138/138~(100%) | -0.29     | 0 100 100    | 47, 62, 80, 106   | 0     |
| 2   | D     | 137/138~(99%)  | -0.15     | 0 100 100    | 59, 84, 113, 138  | 0     |
| 2   | F     | 138/138~(100%) | -0.26     | 0 100 100    | 42, 57, 83, 102   | 0     |
| 2   | Ι     | 138/138~(100%) | -0.01     | 0 100 100    | 61, 88, 118, 152  | 0     |
| 2   | K     | 138/138~(100%) | -0.21     | 1 (0%) 87 81 | 53, 67, 82, 99    | 0     |
| 2   | М     | 138/138~(100%) | -0.23     | 1 (0%) 87 81 | 51, 66, 86, 113   | 0     |
| 2   | Р     | 138/138~(100%) | 0.07      | 3 (2%) 62 47 | 71, 98, 131, 153  | 0     |
| 2   | R     | 137/138~(99%)  | -0.28     | 0 100 100    | 53, 67, 84, 94    | 0     |
| 2   | Т     | 138/138~(100%) | -0.17     | 0 100 100    | 56, 73, 103, 132  | 0     |
| 2   | W     | 137/138~(99%)  | 0.01      | 1 (0%) 87 81 | 69, 94, 122, 138  | 0     |
| 2   | Y     | 137/138~(99%)  | -0.18     | 0 100 100    | 54, 70, 87, 97    | 0     |
| 2   | a     | 138/138~(100%) | -0.19     | 1 (0%) 87 81 | 53, 71, 103, 127  | 0     |
| 2   | d     | 138/138~(100%) | -0.26     | 1 (0%) 87 81 | 48, 62, 81, 105   | 0     |
| 2   | f     | 137/138~(99%)  | -0.02     | 1 (0%) 87 81 | 61, 83, 109, 131  | 0     |
| 2   | h     | 138/138~(100%) | -0.24     | 1 (0%) 87 81 | 42, 57, 81, 100   | 0     |
| 2   | k     | 138/138~(100%) | 0.08      | 4 (2%) 51 35 | 64, 89, 117, 155  | 0     |
| 2   | m     | 137/138~(99%)  | -0.17     | 0 100 100    | 54, 69, 84, 98    | 0     |
| 2   | О     | 138/138~(100%) | -0.25     | 1 (0%) 87 81 | 50, 65, 87, 107   | 0     |



| Mol | Chain | Analysed                      | <RSRZ $>$ | #RSRZ>2       | $OWAB(A^2)$      | Q<0.9 |
|-----|-------|-------------------------------|-----------|---------------|------------------|-------|
| 3   | С     | 147/148~(99%)                 | -0.14     | 0 100 100     | 40, 63, 95, 119  | 0     |
| 3   | Е     | 147/148~(99%)                 | -0.15     | 0 100 100     | 51, 81, 135, 155 | 0     |
| 3   | G     | 147/148~(99%)                 | -0.21     | 0 100 100     | 39, 56, 92, 104  | 0     |
| 3   | J     | 147/148~(99%)                 | -0.01     | 2 (1%) 75 63  | 57, 78, 116, 136 | 0     |
| 3   | L     | 147/148~(99%)                 | -0.13     | 1 (0%) 87 81  | 54, 83, 138, 167 | 0     |
| 3   | N     | 147/148~(99%)                 | -0.17     | 0 100 100     | 54, 68, 97, 106  | 0     |
| 3   | Q     | 147/148~(99%)                 | -0.21     | 0 100 100     | 49, 65, 95, 109  | 0     |
| 3   | S     | 148/148 (100%)                | -0.18     | 0 100 100     | 49, 75, 103, 115 | 0     |
| 3   | U     | 147/148~(99%)                 | -0.15     | 0 100 100     | 50, 66, 98, 114  | 0     |
| 3   | Х     | 147/148~(99%)                 | -0.24     | 0 100 100     | 50, 67, 98, 110  | 0     |
| 3   | Z     | 148/148~(100%)                | -0.21     | 0 100 100     | 49, 75, 105, 116 | 0     |
| 3   | b     | 147/148~(99%)                 | -0.23     | 0 100 100     | 49, 66, 96, 113  | 0     |
| 3   | е     | 147/148~(99%)                 | -0.23     | 0 100 100     | 40, 63, 96, 108  | 0     |
| 3   | g     | 148/148~(100%)                | -0.13     | 0 100 100     | 48, 81, 136, 158 | 0     |
| 3   | i     | 148/148~(100%)                | -0.21     | 0 100 100     | 39, 57, 93, 111  | 0     |
| 3   | 1     | 147/148~(99%)                 | -0.05     | 2 (1%) 75 63  | 57, 82, 121, 145 | 0     |
| 3   | n     | 147/148~(99%)                 | -0.12     | 1 (0%) 87 81  | 58, 86, 140, 166 | 0     |
| 3   | р     | $1\overline{48/148}\ (100\%)$ | -0.13     | 1 (0%) 87 81  | 55, 70, 101, 115 | 0     |
| All | All   | 6411/6516 (98%)               | -0.06     | 87 (1%) 75 63 | 39, 74, 129, 205 | 0     |

All (87) RSRZ outliers are listed below:

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | j     | 96  | PHE  | 5.6  |
| 1   | Н     | 68  | TYR  | 5.5  |
| 1   | с     | 45  | ASN  | 5.0  |
| 1   | j     | 82  | ILE  | 4.8  |
| 1   | Н     | 81  | TYR  | 4.4  |
| 1   | j     | 95  | ALA  | 4.3  |
| 2   | Κ     | 6   | GLY  | 4.2  |
| 1   | j     | 269 | LEU  | 4.2  |
| 1   | j     | 145 | LEU  | 4.0  |
| 1   | Н     | 57  | LEU  | 3.9  |
| 1   | j     | 57  | LEU  | 3.8  |
| 1   | j     | 83  | ARG  | 3.8  |
| 1   | j     | 264 | GLY  | 3.8  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | с     | 242 | GLY  | 3.5  |
| 1   | Н     | 156 | ALA  | 3.4  |
| 1   | Н     | 106 | ASP  | 3.4  |
| 1   | j     | 155 | VAL  | 3.4  |
| 1   | Н     | 60  | GLU  | 3.3  |
| 1   | j     | 159 | LEU  | 3.3  |
| 2   | W     | 26  | VAL  | 3.3  |
| 1   | Н     | 82  | ILE  | 3.2  |
| 1   | j     | 67  | ILE  | 3.2  |
| 1   | j     | 252 | GLY  | 3.2  |
| 1   | Н     | 96  | PHE  | 3.2  |
| 1   | Н     | 95  | ALA  | 3.2  |
| 1   | j     | 154 | SER  | 3.1  |
| 1   | С     | 57  | LEU  | 2.9  |
| 1   | с     | 97  | GLY  | 2.9  |
| 1   | j     | 267 | ASP  | 2.9  |
| 2   | Р     | 6   | GLY  | 2.9  |
| 1   | Н     | 145 | LEU  | 2.8  |
| 1   | j     | 55  | SER  | 2.8  |
| 1   | j     | 191 | GLU  | 2.8  |
| 1   | С     | 49  | SER  | 2.8  |
| 2   | Р     | 63  | TYR  | 2.8  |
| 1   | с     | 267 | ASP  | 2.7  |
| 1   | j     | 50  | GLU  | 2.7  |
| 1   | j     | 107 | ASP  | 2.7  |
| 2   | k     | 139 | GLU  | 2.7  |
| 1   | V     | 107 | ASP  | 2.7  |
| 2   | a     | 6   | GLY  | 2.6  |
| 2   | h     | 38  | ASP  | 2.6  |
| 1   | j     | 49  | SER  | 2.6  |
| 1   | j     | 84  | LYS  | 2.6  |
| 3   | p     | 117 | PRO  | 2.6  |
| 2   | d     | 6   | GLY  | 2.6  |
| 1   | Н     | 161 | SER  | 2.5  |
| 1   | Ο     | 68  | TYR  | 2.5  |
| 1   | V     | 74  | ASP  | 2.5  |
| 2   | 0     | 38  | ASP  | 2.5  |
| 3   | L     | 150 | ASN  | 2.5  |
| 1   | j     | 52  | LEU  | 2.4  |
| 1   | j     | 75  | LEU  | 2.4  |
| 1   | c     | 243 | THR  | 2.4  |
| 1   | j     | 251 | GLU  | 2.4  |



| 3VON |
|------|
|      |
|      |

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 3   | 1     | 116 | ASN  | 2.4  |
| 1   | j     | 99  | SER  | 2.4  |
| 1   | Н     | 191 | GLU  | 2.4  |
| 1   | Н     | 64  | ASP  | 2.3  |
| 2   | М     | 27  | GLY  | 2.3  |
| 3   | 1     | 150 | ASN  | 2.3  |
| 2   | k     | 6   | GLY  | 2.3  |
| 3   | J     | 120 | PRO  | 2.3  |
| 1   | j     | 100 | HIS  | 2.3  |
| 1   | j     | 74  | ASP  | 2.3  |
| 3   | n     | 150 | ASN  | 2.3  |
| 1   | Н     | 66  | ASN  | 2.2  |
| 2   | k     | 28  | ASP  | 2.2  |
| 2   | f     | 78  | PRO  | 2.2  |
| 1   | j     | 263 | PRO  | 2.2  |
| 1   | Н     | 269 | LEU  | 2.2  |
| 1   | Н     | 69  | GLN  | 2.2  |
| 1   | А     | 132 | GLU  | 2.2  |
| 1   | j     | 162 | PHE  | 2.2  |
| 1   | V     | 263 | PRO  | 2.1  |
| 1   | Н     | 135 | ILE  | 2.1  |
| 2   | Р     | 26  | VAL  | 2.1  |
| 2   | k     | 27  | GLY  | 2.1  |
| 1   | А     | 85  | THR  | 2.1  |
| 1   | V     | 264 | GLY  | 2.1  |
| 1   | V     | 45  | ASN  | 2.1  |
| 3   | J     | 29  | GLU  | 2.1  |
| 1   | с     | 96  | PHE  | 2.1  |
| 1   | j     | 68  | TYR  | 2.1  |
| 1   | А     | 60  | GLU  | 2.0  |
| 1   | с     | 244 | THR  | 2.0  |
| 1   | j     | 54  | LEU  | 2.0  |

Continued from previous page...

### 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

# 6.3 Carbohydrates (i)

There are no monosaccharides in this entry.



# 6.4 Ligands (i)

There are no ligands in this entry.

# 6.5 Other polymers (i)

There are no such residues in this entry.

