

wwPDB X-ray Structure Validation Summary Report (i)

Oct 5, 2023 – 04:36 AM EDT

PDB ID : 6VF2

Title : DNA Polymerase Mu, 8-oxorGTP:At Product State Ternary Complex, 50 mM

Mg2+ (960 min)

Authors: Jamsen, J.A.; Wilson, S.H.

Deposited on : 2020-01-03

Resolution : 1.60 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org*A user guide is available at

https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (i)) were used in the production of this report:

MolProbity : FAILED

Mogul : 1.8.5 (274361), CSD as541be (2020)

Xtriage (Phenix) : 1.13

EDS : FAILED

Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)

Validation Pipeline (wwPDB-VP) : 2.35.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\ DIFFRACTION$

The reported resolution of this entry is 1.60 Å.

There are no overall percentile quality scores available for this entry.

MolProbity and EDS failed to run properly - the sequence quality summary graphics cannot be shown.

2 Entry composition (i)

There are 10 unique types of molecules in this entry. The entry contains 3372 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called DNA-directed DNA/RNA polymerase mu.

Mol	Chain	Residues		\mathbf{At}	oms			ZeroOcc	AltConf	Trace
1	A	326	Total 2660	C 1697	N 479	O 475	S 9	0	19	0

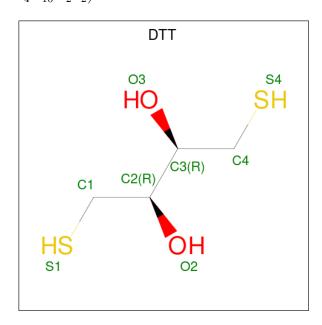
There are 18 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	127	GLY	-	expression tag	UNP Q9NP87
A	128	SER	-	expression tag	UNP Q9NP87
A	129	ALA	-	expression tag	UNP Q9NP87
A	130	ALA	-	expression tag	UNP Q9NP87
A	131	ALA	-	expression tag	UNP Q9NP87
A	?	-	PRO	deletion	UNP Q9NP87
A	?	-	GLY	deletion	UNP Q9NP87
A	?	-	ALA	deletion	UNP Q9NP87
A	?	-	ALA	deletion	UNP Q9NP87
A	?	-	VAL	deletion	UNP Q9NP87
A	?	-	GLY	deletion	UNP Q9NP87
A	?	-	GLY	deletion	UNP Q9NP87
A	?	-	SER	deletion	UNP Q9NP87
A	?	-	THR	deletion	UNP Q9NP87
A	?	-	ARG	deletion	UNP Q9NP87
A	?	-	PRO	deletion	UNP Q9NP87
A	?	-	CYS	deletion	UNP Q9NP87
A	410	GLY	PRO	conflict	UNP Q9NP87

• Molecule 2 is a DNA chain called DNA (5'-D(*CP*GP*GP*CP*AP*TP*AP*CP*G)-3').

Mol	Chain	Residues		\mathbf{At}	oms			ZeroOcc	AltConf	Trace
2	Т	9	Total 182	C 87	N 36	O 51	P 8	0	0	0

• Molecule 3 is a DNA chain called DNA (5'-D(*CP*GP*TP*AP*(8GM))-3').

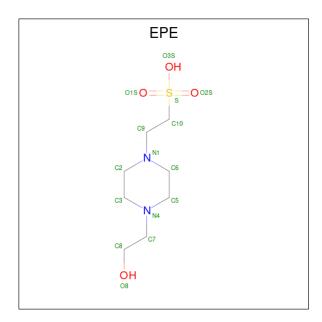


Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
3	Þ	5	Total	С	N	О	Р	0	0	0
'	Г	9	103	49	20	30	4	U	0	U

• Molecule 4 is a DNA chain called DNA (5'-D(P*GP*CP*G)-3').

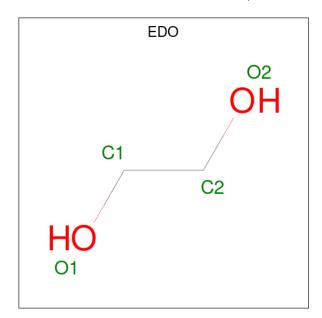
Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
4	D	4	Total	C	N	0	P	0	0	0
			83	38	10	25	4			

• Molecule 5 is 2,3-DIHYDROXY-1,4-DITHIOBUTANE (three-letter code: DTT) (formula: $C_4H_{10}O_2S_2$).


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	A	1	Total S 1 1	0	0

• Molecule 6 is SODIUM ION (three-letter code: NA) (formula: Na) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	A	2	Total Na 2 2	0	0


• Molecule 7 is 4-(2-HYDROXYETHYL)-1-PIPERAZINE ETHANESULFONIC ACID (three-letter code: EPE) (formula: $C_8H_{18}N_2O_4S$).

Mol	Chain	Residues	A	ton	ns		ZeroOcc	AltConf
7	A	1	Total 5	C 1	O 3	S 1	0	0

 \bullet Molecule 8 is 1,2-ETHANEDIOL (three-letter code: EDO) (formula: $\mathrm{C_2H_6O_2}).$

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
8	A	1	Total C O 3 2 1	0	0
8	A	1	Total C O 4 2 2	0	0
8	A	1	Total C O 4 2 2	0	0

Continued on next page...

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
8	A	1	Total C O 4 2 2	0	0
8	Р	1	Total C O 4 2 2	0	0

• Molecule 9 is MAGNESIUM ION (three-letter code: MG) (formula: Mg) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
9	A	1	Total Mg 1 1	0	0

• Molecule 10 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
10	A	247	Total O 253 253	0	18
10	Т	34	Total O 35 35	0	1
10	Р	13	Total O 14 14	0	1
10	D	14	Total O 14 14	0	0

MolProbity and EDS failed to run properly - this section is therefore empty.

3 Data and refinement statistics (i)

EDS failed to run properly - this section is therefore incomplete.

Property	Value	Source	
Space group	P 21 21 21	Depositor	
Cell constants	60.28Å 62.30Å 118.57Å	Depositor	
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor	
Resolution (Å)	34.98 - 1.60	Depositor	
% Data completeness	99.9 (34.98-1.60)	Depositor	
(in resolution range)	,	-	
R_{merge}	0.07	Depositor	
R_{sym}	(Not available)	Depositor	
$< I/\sigma(I) > 1$	1.94 (at 1.60Å)	Xtriage	
Refinement program	PHENIX 1.15.2_3472	Depositor	
R, R_{free}	0.168 , 0.193	Depositor	
Wilson B-factor $(Å^2)$	22.6	Xtriage	
Anisotropy	0.156	Xtriage	
L-test for twinning ²	$< L > = 0.49, < L^2> = 0.33$	Xtriage	
Estimated twinning fraction	0.015 for k,h,-l	Xtriage	
Total number of atoms	3372	wwPDB-VP	
Average B, all atoms (\mathring{A}^2)	29.0	wwPDB-VP	

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 6.21% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of <|L|>, $< L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

4 Model quality (i)

4.1 Standard geometry (i)

MolProbity failed to run properly - this section is therefore empty.

4.2 Too-close contacts (i)

MolProbity failed to run properly - this section is therefore empty.

4.3 Torsion angles (i)

4.3.1 Protein backbone (i)

MolProbity failed to run properly - this section is therefore empty.

4.3.2 Protein sidechains (i)

MolProbity failed to run properly - this section is therefore empty.

4.3.3 RNA (i)

MolProbity failed to run properly - this section is therefore empty.

4.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

4.5 Carbohydrates (i)

There are no monosaccharides in this entry.

4.6 Ligand geometry (i)

Of 10 ligands modelled in this entry, 1 is modelled with single atom and 3 are monoatomic - leaving 6 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The

Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mol Type Chain Res		Link	Bond lengths			Bond angles			
MIOI	Type	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
8	EDO	A	508	-	3,3,3	0.38	0	2,2,2	0.40	0
8	EDO	A	507	-	3,3,3	0.48	0	2,2,2	0.10	0
8	EDO	P	101	-	3,3,3	0.39	0	2,2,2	0.60	0
8	EDO	A	506	-	3,3,3	0.42	0	2,2,2	0.36	0
8	EDO	A	505	-	2,2,3	0.64	0	1,1,2	0.30	0
7	EPE	A	504	-	4,4,15	1.00	0	5,6,20	1.58	1 (20%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
8	EDO	A	508	-	-	1/1/1/1	-
8	EDO	A	506	-	-	1/1/1/1	-
8	EDO	A	507	-	-	1/1/1/1	-
8	EDO	P	101	-	-	0/1/1/1	-

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$Observed(^o)$	$\operatorname{Ideal}({}^{o})$
7	A	504	EPE	O2S-S-O1S	-3.38	108.91	118.02

There are no chirality outliers.

All (3) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
8	A	508	EDO	O1-C1-C2-O2
8	A	506	EDO	O1-C1-C2-O2
8	A	507	EDO	O1-C1-C2-O2

There are no ring outliers.

No monomer is involved in short contacts.

4.7 Other polymers (i)

There are no such residues in this entry.

4.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

5 Fit of model and data (i)

5.1 Protein, DNA and RNA chains (i)

EDS failed to run properly - this section is therefore empty.

5.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS failed to run properly - this section is therefore empty.

5.3 Carbohydrates (i)

EDS failed to run properly - this section is therefore empty.

5.4 Ligands (i)

EDS failed to run properly - this section is therefore empty.

5.5 Other polymers (i)

EDS failed to run properly - this section is therefore empty.

