

wwPDB EM Validation Summary Report (i)

Nov 12, 2022 – 02:37 PM EST

PDB ID	:	6VE7
EMDB ID	:	EMD-20858
Title	:	The inner junction complex of Chlamydomonas reinhardtii doublet micro-
		tubule
Authors	:	Khalifa, A.A.Z.; Ichikawa, M.; Bui, K.H.
Deposited on	:	2019-12-30
Resolution	:	3.60 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 43
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.60 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive (#Entries)	${f EM} {f structures} \ (\#{f Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	240	74%	25%
2	В	633	24%	6% •
2	С	633	19% 91%	6% •
3	0	451	97%	•
3	1	451	18%	•
3	5	451	<u>6%</u> 96%	•
3	6	451	39% 95%	5%
3	7	451	9%	5%
3	D	451	• 95%	5%

Chain Length Quality of chain Mol 8% Е 3 4515% 95% 8% F 3 45195% 5% 10% 3 G 4515% 95% • L 3 45195% 3 М 4515% 95% 5% Р 3 45195% 5% 6% \mathbf{S} 3 4515% 95% 6% 3 Х 4515% 95% 13% Υ 3 4515% 95% 7% . Ζ 3 45196% 17% 3 451е 97% • f • 3 45195% 10% 3 h 45195% 5% ÷ 3 k 45195% • • 3 451 \mathbf{m} 97% • 8% • 3 4510 97% 15% $\mathbf{3}$ 451 \mathbf{S} 95% 5% 6% • 3 451у 96% 7% ••• Η 4 13797% 19% • 54 44397% 9% • 58 443 96% 7% 59443 97% • 5Ι 44396% • 6% J 443• 597% Κ 5443 97% •

Continued from previous page...

Continued from previous page... Chain Length Quality of chain Mol 6% 5Ν 44397% • . 5Ο 44396% 7% 5Q 443. 96% R 544397% • • Т 544396% U 5443 97% • 18% V 5443 97% • 20% 5443 \mathbf{a} 97% • 12% . 5 \mathbf{b} 443 96% 7% 5i 44397% • 9% 5443j 96% • 6% . 4435р 98% 5% 5443 • q 98% 5% 5r 44399% • 12% 5443 \mathbf{t} 98% • 6% 5443• u 96% 15% 5443v 97% • 7% 443• 5W 96% 35% W 6 86 90% 10% 37% 6 86 Х 90% 10% • 3 7190• 91% 8% 6% • 7 190 \mathbf{c} 91% 8% 190791% g 8% • 6% 7190 \mathbf{Z} 8% • 91% 19% 8 2307 6% 86% 8%

Continued from previous page...

Mol	Chain	Length	Quality of chain		
			31%		
8	d	307	86%	8%	6%
			10%		
8	1	307	86%	8%	6%
			11%		
8	n	307	86%	8%	6%

2 Entry composition (i)

There are 12 unique types of molecules in this entry. The entry contains 192224 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Flagellar associated protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	А	179	Total 1391	C 881	N 249	O 256	${S \atop 5}$	0	0

• Molecule 2 is a protein called FAP52.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	В	619	Total 4707	C 2963	N 820	O 898	S 26	0	0
2	С	619	Total 4707	C 2963	N 820	O 898	S 26	0	0

• Molecule 3 is a protein called Tubulin alpha.

Mol	Chain	Residues		At	oms			AltConf	Trace
2	а	198	Total	С	Ν	0	S	0	0
Ð	5 D	420	3329	2109	566	632	22	0	0
3	F 498	498	Total	С	Ν	0	S	0	0
5		428	3329	2109	566	632	22	0	0
3	F	128	Total	С	Ν	Ο	\mathbf{S}	0	0
5	Г	420	3329	2109	566	632	22	0	0
3	C	428	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
0	G		3329	2109	566	632	22	0	0
3	L	431	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
0			3349	2120	569	638	22	0	0
3	М	428	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	111	420	3329	2109	566	632	22	0	0
3	Р	428	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
0	1	420	3329	2109	566	632	22	0	0
3	S	428	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
0	5	420	3329	2109	566	632	22	0	0
3	x	428	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	- Э — Л	420	3329	2109	566	632	22	0	0
3	V	428	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	L	720	3329	2109	566	632	22	U	U

Mol	Chain	Residues		At	oms			AltConf	Trace
0	7	490	Total	С	Ν	0	S	0	0
3		430	3379	2138	575	644	22	0	0
9	0	126	Total	С	Ν	0	S	0	0
0	е	430	3379	2138	575	644	22	0	0
9	t	491	Total	С	Ν	0	S	0	0
0	1	401	3349	2120	569	638	22	0	0
9	h	198	Total	С	Ν	0	S	0	0
0	11	420	3329	2109	566	632	22	0	0
9	1.	491	Total	С	Ν	0	S	0	0
0	K	401	3349	2120	569	638	22	0	0
2	m	426	Total	С	Ν	0	S	0	0
0		430	3379	2138	575	644	22	0	0
9		426	Total	С	Ν	0	S	0	0
0	0	430	3379	2138	575	644	22	0	0
2	G	198	Total	С	Ν	0	S	0	0
5	5	420	3329	2109	566	632	22	0	0
3	N/	436	Total	С	Ν	0	S	0	0
5	У	430	3379	2138	575	644	22	0	0
2	0	426	Total	С	Ν	0	S	0	0
5	0	430	3379	2138	575	644	22	0	0
2	1	426	Total	С	Ν	0	S	0	0
5	1	430	3379	2138	575	644	22	0	0
2	5	426	Total	С	Ν	0	S	0	0
5	5	430	3379	2138	575	644	22	0	0
2	6	199	Total	С	Ν	0	S	0	0
0	U	420	3329	2109	566	632	22	U	
3	3 7	428	Total	С	Ν	0	S	0	0
5		7 428	3329	2109	566	632	22	U	U

Continued from previous page...

• Molecule 4 is a protein called Protein Flattop homolog.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	Н	135	Total 1069	C 674	N 190	O 202	${ m S} { m 3}$	0	0

• Molecule 5 is a protein called Tubulin beta.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	Ι	428	Total 3350	C 2110	N 576	0 643	S 30	0	0
				2110	570	045	30		
5	т	128	Total	С	Ν	Ο	\mathbf{S}	0	0
9	J	J 420	3359	2110	576	643	30	0	U

Continued	from	nrevious	naae
Continueu.	jiom	pretious	page

Mol	Chain	Residues		At	oms			AltConf	Trace
F	IZ.	499	Total	С	Ν	0	S	0	0
6	n	428	3359	2110	576	643	30	0	0
F	N	499	Total	С	Ν	0	S	0	0
6	IN	428	3359	2110	576	643	30	0	0
F	0	499	Total	С	Ν	0	S	0	0
0	0	420	3359	2110	576	643	30	0	0
5	0	198	Total	С	Ν	0	S	0	0
5	Q	420	3359	2110	576	643	30	0	0
5	В	428	Total	С	Ν	0	\mathbf{S}	0	0
5	п	420	3359	2110	576	643	30	0	0
5	т	428	Total	С	Ν	Ο	\mathbf{S}	0	0
5	T	420	3359	2110	576	643	30	0	0
5	T	428	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	0	420	3359	2110	576	643	30	0	0
5	V	428	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	v	420	3359	2110	576	643	30	0	0
5	а	428	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	a	120	3359	2110	576	643	30	0	0
5	h	428	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
		420	3359	2110	576	643	30	0	0
5	i	428	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	1	120	3359	2110	576	643	30	0	0
5	i	428	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	J	120	3359	2110	576	643	30	0	0
5	n	437	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	Р	101	3430	2152	585	663	30	Ŭ	0
5	a	437	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	Ч	101	3430	2152	585	663	30	Ŭ	Ŭ
5	r	437	Total	С	Ν	Ο	S	0	0
	-		3430	2152	585	663	30	Ŭ	Ŭ
5	t	437	Total	С	Ν	0	S	0	0
			3430	2152	585	663	30		_
5	u	428	Total	C	N	0	S	0	0
			3359	2110	576	643	30		
5	v	428	'I'otal	C	N	0	S	0	0
			3359	2110	576	643	30		
5	W	428	Total	C	N	0	S	0	0
			3359	2110	576	643	30		
5	4	428	Total	C	N	U 0.49	S	0	0
			3359	2110	576	643	30		
5	8	428	'I'otal	C	N	U ata	S	0	0
	-		3359	2110	576	643	30	ļ	Ű

Continued from previous page...

Mol	Chain	Residues	Atoms					AltConf	Trace
5	9	428	Total 3359	C 2110	N 576	O 643	S 30	0	0

• Molecule 6 is a protein called FAP276.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	W	86	Total	C	N	0	S	0	0
			701	438	131	129	3		
6	v	86	Total	С	Ν	Ο	\mathbf{S}	0	0
0	Х	X 80	701	438	131	129	3	0	0

• Molecule 7 is a protein called Cilia- and flagella-associated protein 20.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	0	197	Total	С	Ν	0	\mathbf{S}	0	0
1	C	107	1538	988	267	276	7	0	0
7	C.	197	Total	С	Ν	0	S	0	0
1	g	107	1538	988	267	276	7	0	0
7	7	197	Total	С	Ν	0	S	0	0
1	Z	107	1538	988	267	276	7	0	0
7	2	197	Total	С	Ν	0	S	0	0
1	3	107	1538	988	267	276	7	0	0

• Molecule 8 is a protein called PACRG.

Mol	Chain	Residues		At	oms			AltConf	Trace
0	d	200	Total	С	Ν	0	S	0	0
0	u	290	2271	1453	391	420	7	0	0
0	1	200	Total	С	Ν	0	S	0	0
0	1	290	2271	1453	391	420	$\overline{7}$	0	0
0	n	200	Total	С	Ν	0	S	0	0
0	11	290	2271	1453	391	420	$\overline{7}$	0	0
0	0	200	Total	С	Ν	0	S	0	0
0	2	290	2271	1453	391	420	7	0	0

• Molecule 9 is GUANOSINE-5'-TRIPHOSPHATE (three-letter code: GTP) (formula: $C_{10}H_{16}N_5O_{14}P_3$).

Mol	Chain	Residues		Ato	oms			AltConf
0	D	1	Total	С	Ν	Ο	Р	0
9	D	1	32	10	5	14	3	0
0	Б	1	Total	С	Ν	0	Р	0
9	E	1	32	10	5	14	3	0
0	Б	1	Total	С	Ν	0	Р	0
9	Г	L	32	10	5	14	3	0
0	C	1	Total	С	Ν	0	Р	0
9	G	L	32	10	5	14	3	0
0	т	1	Total	С	Ν	0	Р	0
9	L	L	32	10	5	14	3	0
0	м	1	Total	С	Ν	0	Р	0
9	111	L	32	10	5	14	3	0
0	D	1	Total	С	Ν	0	Р	0
9	1	L	32	10	5	14	3	0
0	C	1	Total	С	Ν	0	Р	0
9	U U	T	32	10	5	14	3	0
0	v	1	Total	С	Ν	Ο	Р	0
9	Λ	T	32	10	5	14	3	0
0	V	1	Total	С	Ν	Ο	Р	0
9	1	L	32	10	5	14	3	0
0	7	1	Total	С	Ν	Ο	Р	0
9		T	32	10	5	14	3	0
0	0	1	Total	С	Ν	Ο	Р	0
9	е	T	32	10	5	14	3	0
0	f	1	Total	С	Ν	0	Р	0
9	1	1	32	10	5	14	3	0
Ω	h	1	Total	С	Ν	Ο	Р	0
9	11	1	32	10	5	14	3	U

Mol	Chain	Residues		Ato	oms			AltConf
0	l,	1	Total	С	Ν	0	Р	0
9	K	L	32	10	5	14	3	0
0	m	1	Total	С	Ν	Ο	Р	0
3	111	T	32	10	5	14	3	0
0	0	1	Total	С	Ν	Ο	Р	0
3	0	T	32	10	5	14	3	0
0	g	1	Total	С	Ν	Ο	Р	0
3	ه	T	32	10	5	14	3	0
0	V	1	Total	С	Ν	0	Р	0
3	у	T	32	10	5	14	3	0
9	0	1	Total	С	Ν	Ο	Р	0
5	0	I	32	10	5	14	3	0
Q	1	1	Total	\mathbf{C}	Ν	Ο	Р	0
5	T	I	32	10	5	14	3	0
Q	5	1	Total	\mathbf{C}	Ν	Ο	Р	0
5	0	T	32	10	5	14	3	0
9	6	1	Total	\mathbf{C}	Ν	Ο	Р	0
5	U	L	32	10	5	14	3	0
9	7	1	Total	\mathbf{C}	Ν	Ο	Р	0
9	1	L I	32	10	5	14	3	0

Continued from previous page...

• Molecule 10 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
10	D	1	Total Mg 1 1	0
10	Е	1	Total Mg 1 1	0
10	F	1	Total Mg 1 1	0
10	G	1	Total Mg 1 1	0
10	L	1	Total Mg 1 1	0
10	М	1	Total Mg 1 1	0
10	Р	1	Total Mg 1 1	0
10	S	1	Total Mg 1 1	0
10	Х	1	Total Mg 1 1	0

Mol	Chain	Residues	Atoms	AltConf
10	Y	1	Total Mg 1 1	0
10	Z	1	Total Mg 1 1	0
10	е	1	Total Mg 1 1	0
10	f	1	Total Mg 1 1	0
10	h	1	Total Mg 1 1	0
10	k	1	Total Mg 1 1	0
10	m	1	Total Mg 1 1	0
10	О	1	Total Mg 1 1	0
10	р	1	Total Mg 1 1	0
10	S	1	Total Mg 1 1	0
10	0	1	Total Mg 1 1	0
10	1	1	Total Mg 1 1	0
10	5	1	Total Mg 1 1	0
10	6	1	Total Mg 1 1	0
10	7	1	Total Mg 1 1	0

Continued from previous page...

• Molecule 11 is GUANOSINE-5'-DIPHOSPHATE (three-letter code: GDP) (formula: $C_{10}H_{15}N_5O_{11}P_2$).

Mol	Chain	Residues		Ate	oms			AltConf
11	т	1	Total	С	Ν	0	Р	0
	1	1	28	10	5	11	2	0
11	т	1	Total	С	Ν	0	Р	0
	J	L	28	10	5	11	2	0
11	V	1	Total	С	Ν	0	Р	0
	K	L	28	10	5	11	2	0
11	N	1	Total	С	Ν	0	Р	0
	IN	L	28	10	5	11	2	0
11	0	1	Total	С	Ν	0	Р	0
11	0	L	28	10	5	11	2	0
11	0	1	Total	С	Ν	Ο	Р	0
	Q	L	28	10	5	11	2	0
11	р	1	Total	С	Ν	Ο	Р	0
	n	L	28	10	5	11	2	0
11	Т	1	Total	С	Ν	Ο	Р	0
	1	L	28	10	5	11	2	0
11	T	1	Total	С	Ν	Ο	Р	0
	U	L	28	10	5	11	2	0
11	V	1	Total	С	Ν	Ο	Р	0
	v	L	28	10	5	11	2	0
11	0	1	Total	С	Ν	0	Р	0
	a	L	28	10	5	11	2	0
11	h	1	Total	С	Ν	0	Р	0
11	U	T	28	10	5	11	2	0
11	i	1	Total	$\overline{\mathbf{C}}$	N	Ο	Р	0
	1	1	28	10	5	11	2	U
11	i	1	Total	С	Ν	Ο	Р	0
11	J	L 1	28	10	5	11	2	U

Mol	Chain	Residues		Ate	oms			AltConf
11	n	1	Total	С	Ν	0	Р	0
	р	L	28	10	5	11	2	0
11	a	1	Total	С	Ν	Ο	Р	0
11	Ч	T	28	10	5	11	2	0
11	r	1	Total	С	Ν	Ο	Р	0
11	1	T	28	10	5	11	2	0
11	+	1	Total	С	Ν	Ο	Р	0
11	U	T	28	10	5	11	2	0
11	11	1	Total	С	Ν	Ο	Р	0
11	u	T	28	10	5	11	2	0
11	V	1	Total	С	Ν	Ο	Р	0
11	v	I	28	10	5	11	2	0
11	337	1	Total	С	Ν	Ο	Р	0
11	vv	I	28	10	5	11	2	0
11	4	1	Total	С	Ν	Ο	Р	0
11	4	I	28	10	5	11	2	0
11	8	1	Total	\mathbf{C}	Ν	Ο	Р	0
	0	1	28	10	5	11	2	U
11	0	1	Total	С	N	O	Р	0
	J	L	28	10	5	11	2	0

Continued from previous page...

• Molecule 12 is TAXOL (three-letter code: TA1) (formula: $C_{47}H_{51}NO_{14}$).

Mol	Chain	Residues	I	AltConf			
12	J	1	Total 62	С 47	N 1	0 14	0

Continued from previous page...

Mol	Chain	Residues	Atoms				AltConf	
10	V	1	Total	С	Ν	0	0	
12	v	L	62	47	1	14	0	
10		1	Total	С	Ν	0	0	
12	a	L	62	47	1	14	0	
10	h	1	Total	С	Ν	0	0	
	D	L	62	47	1	14	0	
10	;	1	Total	С	Ν	0	0	
12	1	L	62	47	1	14	0	
10	;	1	Total	С	Ν	0	0	
	J	L	62	47	1	14	0	
19	n	1	Total	С	Ν	0	0	
12	р	T	62	47	1	14	0	
19	a	1	Total	С	Ν	Ο	0	
12	Ч	T	62	47	1	14	0	
19	r	1	Total	С	Ν	Ο	0	
12	1	I	62	47	1	14	0	
12	t	1	Total	С	Ν	Ο	0	
12	0	T	62	47	1	14	0	
19	11	1	Total	С	Ν	0	0	
12	u	I	62	47	1	14	0	
19	v	1	Total	С	Ν	Ο	0	
12	v	I	62	47	1	14	0	
12	w	1	Total	С	Ν	Ο	0	
12	vv	T	62	47	1	14	0	
12	4	1	Total	С	Ν	Ο	0	
12	Т	T	62	47	1	14	0	
12	8	1	Total	С	Ν	Ο	0	
	0	1	62	47	1	14	U	
12	9	1	Total	\mathbf{C}	Ν	0	0	
	5	1	62	47	1	14	0	

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Flagellar associated protein

D199 P218 P251 P254 P254 P253 P264 P253 P264 P264 P264 P264 P305 <t

GLU GLU TYR

• Molecule 3: Tubulin alpha

• Molecule 5: Tubulin beta		
Chain J:	97%	
M1 P41 F45 F45 A110 F111 F111 F111 F125 P128 F125 F128 F128 F128 F128	E158 D161 P173 E194 E194 P249 R276 R276 R276 R276 R276 R276 R276 R276 R276 R276 R270 R270 R272 R260 R2	D417 D427 A428 SER ALA GLU GLU GLU GLU GLU GLU
GLV GLU GLU ALA ALA		
\bullet Molecule 5: Tubulin beta		
Chain K:	97%	.
MI B39 B41 P41 P41 P41 P41 P41 P41 P41 P	D427 A428 SER A128 A12 A12 A12 C1U C1U C1U C1U C1U C1U C1U C1U C1U C1U	
• Molecule 5: Tubulin beta		
Chain N:	97%	
M1 P41 L44 C44 C44 C44 C44 C44 C44 C44	D1 97 D1 97 D2 49 R2 76 A283 A283 L284 A285 K3 62 K3 62 K3 62 K3 62 K3 62 K3 62	D427 A428 SER ALA ALA ALA GLU GLU CLU CLU CLU CLU CLU CLU
GLU GLU ALA		
\bullet Molecule 5: Tubulin beta		
Chain O:	96%	-
M1 D26 D41 D41 H28 C127 C127 C127 C127 D128 C127 D128	ALA ALA ALA ALA ALA ALA ALA ALA	
• Molecule 5: Tubulin beta		
Chain Q:	96%	
M1 D41 L44 E53 M66 M66 M66 M66 M66 M66 M104 M114 M114 M1122 M122 M123 M123	D128 B177 D177 D177 D197 F212 F213 F213 P249 R276 R213 C213 L294 R276	E401 E410 B417 A428 A428 A12 A12 GLU GLU GLU
CLU PHE CLU CLU CLU CLU CLU CLU CLU CLU		
\bullet Molecule 5: Tubulin beta		
Chain R:	97%	.

 \bullet Molecule 5: Tubulin beta

• Molecule 5: Tubulin beta

• Molecule 7: Cilia- and flagella-associated protein 20

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	270713	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	45	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	4000	Depositor
Magnification	59000	Depositor
Image detector	FEI FALCON II (4k x 4k)	Depositor
Maximum map value	0.185	Depositor
Minimum map value	-0.078	Depositor
Average map value	0.002	Depositor
Map value standard deviation	0.021	Depositor
Recommended contour level	0.04	Depositor
Map size (Å)	237.125, 204.75, 393.75	wwPDB
Map dimensions	450, 234, 271	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.875, 0.875, 0.875	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: GDP, MG, TA1, GTP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	B	ond angles
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.29	0/1429	0.45	0/1933
2	В	0.31	0/4800	0.54	1/6511~(0.0%)
2	С	0.31	0/4800	0.54	1/6511~(0.0%)
3	0	0.31	0/3451	0.45	0/4678
3	1	0.29	0/3451	0.45	0/4678
3	5	0.33	0/3451	0.51	0/4678
3	6	0.27	0/3400	0.44	0/4609
3	7	0.28	0/3400	0.44	0/4609
3	D	0.33	0/3400	0.46	0/4609
3	Ε	0.34	0/3400	0.52	0/4609
3	F	0.29	0/3400	0.44	0/4609
3	G	0.30	0/3400	0.44	0/4609
3	L	0.32	0/3420	0.46	0/4636
3	М	0.32	0/3400	0.47	0/4609
3	Р	0.31	0/3400	0.46	0/4609
3	S	0.31	0/3400	0.45	0/4609
3	Х	0.31	0/3400	0.48	0/4609
3	Y	0.29	0/3400	0.45	0/4609
3	Ζ	0.29	0/3451	0.46	0/4678
3	е	0.28	0/3451	0.45	0/4678
3	f	0.31	0/3420	0.47	0/4636
3	h	0.29	0/3400	0.45	0/4609
3	k	0.33	0/3420	0.50	0/4636
3	m	0.31	0/3451	0.45	0/4678
3	0	0.31	0/3451	0.45	0/4678
3	s	0.29	0/3400	0.44	0/4609
3	У	0.33	0/3451	0.46	0/4678
4	Н	0.30	0/1098	0.51	0/1490
5	4	0.28	0/3433	0.45	0/4646
5	8	0.34	0/3433	0.52	0/4646
5	9	0.29	0/3433	0.44	0/4646
5	Ι	0.31	$0/3\overline{433}$	0.45	$0/4\overline{646}$

Mal	Chain	Bond	lengths	B	ond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
5	J	0.30	0/3433	0.44	0/4646
5	K	0.31	0/3433	0.46	0/4646
5	Ν	0.29	0/3433	0.44	0/4646
5	0	0.31	0/3433	0.45	0/4646
5	Q	0.29	0/3433	0.45	0/4646
5	R	0.31	0/3433	0.45	0/4646
5	Т	0.32	0/3433	0.48	0/4646
5	U	0.31	0/3433	0.45	0/4646
5	V	0.28	0/3433	0.44	0/4646
5	a	0.28	0/3433	0.43	0/4646
5	b	0.28	0/3433	0.45	0/4646
5	i	0.29	0/3433	0.44	0/4646
5	j	0.29	0/3433	0.44	0/4646
5	р	0.32	0/3505	0.45	0/4742
5	q	0.32	0/3505	0.46	1/4742~(0.0%)
5	r	0.31	0/3505	0.44	0/4742
5	t	0.32	0/3505	0.49	0/4742
5	u	0.30	0/3433	0.45	0/4646
5	V	0.28	0/3433	0.44	0/4646
5	W	0.29	0/3433	0.44	0/4646
6	W	0.31	0/717	0.54	1/967~(0.1%)
6	Х	0.31	0/717	0.54	1/967~(0.1%)
7	3	0.34	0/1572	0.50	0/2124
7	с	0.34	0/1572	0.50	0/2124
7	g	0.34	0/1572	0.50	0/2124
7	Z	0.34	0/1572	0.50	0/2124
8	2	0.31	0/2325	0.51	1/3151~(0.0%)
8	d	0.31	0/2325	0.51	1/3151~(0.0%)
8	1	0.31	0/2325	0.51	$1/3151 \ (0.0\%)$
8	n	0.31	0/2325	0.51	1/3151~(0.0%)
All	All	0.31	0/193897	0.47	9/262616~(0.0%)

There are no bond length outliers.

The worst 5 of 9 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
8	1	111	LYS	CD-CE-NZ	9.43	133.39	111.70
8	2	111	LYS	CD-CE-NZ	9.42	133.37	111.70
8	d	111	LYS	CD-CE-NZ	9.41	133.35	111.70
8	n	111	LYS	CD-CE-NZ	9.40	133.33	111.70
5	q	30	ILE	C-N-CA	6.37	137.61	121.70

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	173/240~(72%)	150 (87%)	21~(12%)	2(1%)	13	51
2	В	615/633~(97%)	541 (88%)	72 (12%)	2(0%)	41	75
2	С	615/633~(97%)	541 (88%)	72 (12%)	2~(0%)	41	75
3	0	434/451~(96%)	408 (94%)	26~(6%)	0	100	100
3	1	434/451~(96%)	409 (94%)	25~(6%)	0	100	100
3	5	434/451~(96%)	402 (93%)	32 (7%)	0	100	100
3	6	424/451~(94%)	398 (94%)	26 (6%)	0	100	100
3	7	424/451~(94%)	401 (95%)	23~(5%)	0	100	100
3	D	424/451~(94%)	396 (93%)	28 (7%)	0	100	100
3	Е	424/451~(94%)	393 (93%)	31 (7%)	0	100	100
3	F	424/451~(94%)	395 (93%)	29~(7%)	0	100	100
3	G	424/451~(94%)	400 (94%)	24 (6%)	0	100	100
3	L	427/451~(95%)	399 (93%)	28 (7%)	0	100	100
3	М	424/451~(94%)	394 (93%)	30~(7%)	0	100	100
3	Р	424/451~(94%)	394 (93%)	30~(7%)	0	100	100
3	S	424/451~(94%)	389(92%)	35~(8%)	0	100	100
3	Х	424/451~(94%)	398 (94%)	26~(6%)	0	100	100
3	Y	424/451~(94%)	393 (93%)	31 (7%)	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
3	Ζ	434/451~(96%)	406 (94%)	28~(6%)	0	100	100
3	е	434/451~(96%)	411 (95%)	23~(5%)	0	100	100
3	f	427/451~(95%)	397~(93%)	30~(7%)	0	100	100
3	h	424/451 (94%)	399 (94%)	25~(6%)	0	100	100
3	k	427/451~(95%)	391 (92%)	36 (8%)	0	100	100
3	m	434/451~(96%)	408 (94%)	26 (6%)	0	100	100
3	О	434/451~(96%)	407 (94%)	27~(6%)	0	100	100
3	\mathbf{S}	424/451~(94%)	398 (94%)	26 (6%)	0	100	100
3	У	434/451~(96%)	413 (95%)	21 (5%)	0	100	100
4	Н	133/137~(97%)	115 (86%)	18 (14%)	0	100	100
5	4	426/443~(96%)	400 (94%)	26~(6%)	0	100	100
5	8	426/443~(96%)	400 (94%)	25~(6%)	1 (0%)	47	79
5	9	426/443~(96%)	399 (94%)	27~(6%)	0	100	100
5	Ι	426/443~(96%)	404 (95%)	22 (5%)	0	100	100
5	J	426/443~(96%)	404 (95%)	22 (5%)	0	100	100
5	К	426/443~(96%)	398 (93%)	28 (7%)	0	100	100
5	Ν	426/443~(96%)	403 (95%)	23~(5%)	0	100	100
5	Ο	426/443~(96%)	405 (95%)	21 (5%)	0	100	100
5	Q	426/443~(96%)	397 (93%)	29 (7%)	0	100	100
5	R	426/443~(96%)	396 (93%)	30 (7%)	0	100	100
5	Т	426/443~(96%)	400 (94%)	26 (6%)	0	100	100
5	U	426/443~(96%)	396 (93%)	30 (7%)	0	100	100
5	V	426/443~(96%)	396 (93%)	30 (7%)	0	100	100
5	a	426/443~(96%)	406 (95%)	20 (5%)	0	100	100
5	b	426/443~(96%)	398 (93%)	28 (7%)	0	100	100
5	i	426/443~(96%)	397 (93%)	29 (7%)	0	100	100
5	j	426/443 (96%)	399 (94%)	27 (6%)	0	100	100
5	р	435/443~(98%)	414 (95%)	21 (5%)	0	100	100
5	q	435/443 (98%)	415 (95%)	20 (5%)	0	100	100
5	r	435/443~(98%)	418 (96%)	17 (4%)	0	100	100
5	t	435/443~(98%)	416 (96%)	19 (4%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
5	u	426/443~(96%)	395~(93%)	31 (7%)	0	100	100
5	v	426/443~(96%)	393~(92%)	33 (8%)	0	100	100
5	W	426/443~(96%)	405 (95%)	21 (5%)	0	100	100
6	W	84/86~(98%)	69~(82%)	15 (18%)	0	100	100
6	х	84/86~(98%)	69~(82%)	15 (18%)	0	100	100
7	3	185/190~(97%)	170 (92%)	15 (8%)	0	100	100
7	с	185/190~(97%)	170 (92%)	15 (8%)	0	100	100
7	g	185/190~(97%)	170 (92%)	15 (8%)	0	100	100
7	Z	185/190~(97%)	170 (92%)	15 (8%)	0	100	100
8	2	286/307~(93%)	268~(94%)	18 (6%)	0	100	100
8	d	286/307~(93%)	268 (94%)	18 (6%)	0	100	100
8	1	286/307~(93%)	268 (94%)	18 (6%)	0	100	100
8	n	286/307~(93%)	267 (93%)	19 (7%)	0	100	100
All	All	24113/25259~(96%)	22489 (93%)	1617 (7%)	7 (0%)	100	100

Continued from previous page...

5 of 7 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	В	372	CYS
2	С	372	CYS
5	8	143	THR
1	А	22	MET
2	В	411	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentile	\mathbf{s}
1	А	150/206~(73%)	150 (100%)	0	100 100	
2	В	505/517~(98%)	465 (92%)	40 (8%)	12 44	
2	С	505/517~(98%)	465 (92%)	40 (8%)	12 44	

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Outliers Percer	
3	0	366/374~(98%)	366 (100%)	0	100	100
3	1	366/374~(98%)	366 (100%)	0	100	100
3	5	366/374~(98%)	365 (100%)	1 (0%)	92	97
3	6	361/374~(96%)	360 (100%)	1 (0%)	92	97
3	7	361/374~(96%)	361 (100%)	0	100	100
3	D	361/374~(96%)	361 (100%)	0	100	100
3	Ε	361/374~(96%)	361 (100%)	0	100	100
3	F	361/374~(96%)	360 (100%)	1 (0%)	92	97
3	G	361/374~(96%)	361 (100%)	0	100	100
3	L	363/374~(97%)	362 (100%)	1 (0%)	92	97
3	М	361/374~(96%)	360 (100%)	1 (0%)	92	97
3	Р	361/374~(96%)	361 (100%)	0	100	100
3	S	361/374~(96%)	361 (100%)	0	100	100
3	Х	361/374~(96%)	361 (100%)	0	100	100
3	Y	361/374~(96%)	361 (100%)	0	100	100
3	Ζ	366/374~(98%)	364 (100%)	2 (0%)	88	95
3	е	366/374~(98%)	366 (100%)	0	100	100
3	f	363/374~(97%)	361 (99%)	2 (1%)	86	94
3	h	361/374~(96%)	360 (100%)	1 (0%)	92	97
3	k	363/374~(97%)	361 (99%)	2 (1%)	86	94
3	m	366/374~(98%)	366 (100%)	0	100	100
3	0	366/374~(98%)	366 (100%)	0	100	100
3	s	361/374~(96%)	360 (100%)	1 (0%)	92	97
3	у	366/374~(98%)	365 (100%)	1 (0%)	92	97
4	Н	119/121~(98%)	117 (98%)	2 (2%)	60	82
5	4	368/379~(97%)	368 (100%)	0	100	100
5	8	368/379~(97%)	368 (100%)	0	100	100
5	9	368/379~(97%)	368 (100%)	0	100	100
5	Ι	368/379~(97%)	367 (100%)	1 (0%)	92	97
5	J	368/379~(97%)	368 (100%)	0	100	100
5	Κ	368/379~(97%)	368 (100%)	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
5	Ν	368/379~(97%)	368 (100%)	0	100	100	
5	Ο	368/379~(97%)	367~(100%)	1 (0%)	92	97	
5	Q	368/379~(97%)	367~(100%)	1 (0%)	92	97	
5	R	368/379~(97%)	368 (100%)	0	100	100	
5	Т	368/379~(97%)	366 (100%)	2(0%)	88	95	
5	U	368/379~(97%)	368 (100%)	0	100	100	
5	V	368/379~(97%)	368 (100%)	0	100	100	
5	a	368/379~(97%)	368 (100%)	0	100	100	
5	b	368/379~(97%)	367~(100%)	1 (0%)	92	97	
5	i	368/379~(97%)	368 (100%)	0	100	100	
5	j	368/379~(97%)	367 (100%)	1 (0%)	92	97	
5	р	375/379~(99%)	374 (100%)	1 (0%)	92	97	
5	q	375/379~(99%)	375 (100%)	0	100	100	
5	r	375/379~(99%)	375~(100%)	0	100	100	
5	t	375/379~(99%)	373~(100%)	2(0%)	88	95	
5	u	368/379~(97%)	367~(100%)	1 (0%)	92	97	
5	V	368/379~(97%)	368~(100%)	0	100	100	
5	W	368/379~(97%)	367~(100%)	1 (0%)	92	97	
6	W	77/77~(100%)	69~(90%)	8 (10%)	7	33	
6	х	77/77~(100%)	69~(90%)	8 (10%)	7	33	
7	3	173/176~(98%)	158 (91%)	15 (9%)	10	41	
7	с	173/176~(98%)	158 (91%)	15 (9%)	10	41	
7	g	173/176~(98%)	158 (91%)	15 (9%)	10	41	
7	Z	173/176~(98%)	158 (91%)	15 (9%)	10	41	
8	2	244/258~(95%)	217 (89%)	27 (11%)	6	31	
8	d	244/258~(95%)	217 (89%)	27 (11%)	6	31	
8	1	244/258~(95%)	217 (89%)	27 (11%)	6	31	
8	n	244/258~(95%)	217 (89%)	27 (11%)	6	31	
All	All	$20\overline{671/21323}\ (97\%)$	20379 (99%)	292 (1%)	68	85	

5 of 292 residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type	
6	Х	86	THR	
7	3	173	SER	
7	Z	72	LYS	
8	2	86	ASP	
6	W	86	THR	

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 268 such sidechains are listed below:

Mol	Chain	Res	Type
8	2	28	ASN
5	4	291	GLN
5	9	105	HIS
5	U	37	HIS
5	Т	335	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 88 ligands modelled in this entry, 24 are monoatomic - leaving 64 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Bos	Link	B	Bond lengths			Bond angles			
	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2		
12	TA1	t	502	-	68,68,68	0.77	2 (2%)	105,105,105	0.82	4 (3%)		
12	TA1	9	502	-	68,68,68	0.59	2 (2%)	$105,\!105,\!105$	0.77	4 (3%)		
9	GTP	k	501	10	26,34,34	5.15	11 (42%)	32,54,54	1.64	7 (21%)		
12	TA1	b	502	-	68,68,68	0.68	1 (1%)	105,105,105	0.76	4 (3%)		
12	TA1	q	502	-	68,68,68	0.84	2 (2%)	105,105,105	0.87	3 (2%)		
9	GTP	Y	501	10	26,34,34	<mark>5.19</mark>	11 (42%)	32,54,54	1.55	7 (21%)		
12	TA1	j	502	-	68,68,68	0.61	1 (1%)	105,105,105	0.82	4 (3%)		
9	GTP	0	501	10	26,34,34	5.17	11 (42%)	32,54,54	1.58	6 (18%)		
11	GDP	J	501	-	24,30,30	<mark>3.83</mark>	12 (50%)	30,47,47	1.60	6 (20%)		
12	TA1	V	502	-	68,68,68	0.39	0	105,105,105	0.80	4 (3%)		
9	GTP	Z	501	10	26,34,34	5.16	11 (42%)	32,54,54	1.55	7 (21%)		
11	GDP	K	501	-	24,30,30	<mark>3.85</mark>	12 (50%)	30,47,47	1.79	6 (20%)		
11	GDP	V	501	-	24,30,30	<mark>3.82</mark>	12 (50%)	30,47,47	1.59	7 (23%)		
9	GTP	5	501	10	26,34,34	5.16	11 (42%)	32,54,54	1.59	6 (18%)		
9	GTP	е	501	10	26,34,34	5.15	11 (42%)	32,54,54	1.59	7 (21%)		
11	GDP	W	501	-	24,30,30	3.83	12 (50%)	30,47,47	1.49	5 (16%)		
9	GTP	G	501	10	26,34,34	5.16	11 (42%)	32,54,54	1.57	6 (18%)		
9	GTP	S	501	10	26,34,34	5.15	12 (46%)	32,54,54	1.57	6 (18%)		
11	GDP	Т	501	-	24,30,30	<mark>3.82</mark>	12 (50%)	30,47,47	1.65	6 (20%)		
9	GTP	Х	501	10	26,34,34	5.17	11 (42%)	32,54,54	1.53	6 (18%)		
11	GDP	r	501	-	24,30,30	<mark>3.83</mark>	12 (50%)	30,47,47	1.53	6 (20%)		
12	TA1	р	502	-	68,68,68	0.58	2 (2%)	105,105,105	0.78	3 (2%)		
9	GTP	1	501	10	26,34,34	5.16	11 (42%)	32,54,54	1.53	7 (21%)		
11	GDP	R	501	-	24,30,30	<mark>3.89</mark>	13 (54%)	30,47,47	1.73	6 (20%)		
11	GDP	р	501	-	24,30,30	<mark>3.82</mark>	12 (50%)	30,47,47	1.51	6 (20%)		
9	GTP	m	501	10	26,34,34	5.18	11 (42%)	32,54,54	1.59	6 (18%)		
11	GDP	a	501	-	24,30,30	<mark>3.84</mark>	12 (50%)	30,47,47	1.55	7 (23%)		
11	GDP	q	501	-	24,30,30	<mark>3.83</mark>	12 (50%)	30,47,47	1.59	6 (20%)		
11	GDP	Ι	501	-	24,30,30	<mark>3.84</mark>	12 (50%)	30,47,47	1.71	6 (20%)		
9	GTP	Р	501	10	26,34,34	5.17	11 (42%)	32,54,54	1.62	7 (21%)		
11	GDP	U	501	-	24,30,30	3.82	12 (50%)	30,47,47	1.62	6 (20%)		
11	GDP	9	501	-	24,30,30	3.85	12 (50%)	30,47,47	1.50	6 (20%)		
11	GDP	b	501	-	24,30,30	<mark>3.84</mark>	12 (50%)	30,47,47	1.59	6 (20%)		
9	GTP	D	501	10	26,34,34	5.15	11 (42%)	32,54,54	1.69	7 (21%)		
11	GDP	8	501	-	24,30,30	3.82	12 (50%)	30,47,47	1.62	6 (20%)		

Mol	Type	Chain	Bos	Link	B	ond leng	gths	Bond angles		
with	туре	Chain	Ites		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
9	GTP	L	501	10	26,34,34	<mark>5.15</mark>	11 (42%)	32,54,54	1.67	7 (21%)
9	GTP	У	501	10	26,34,34	5.17	11 (42%)	$32,\!54,\!54$	1.62	7 (21%)
11	GDP	Ο	501	-	24,30,30	<mark>3.83</mark>	12 (50%)	30,47,47	1.63	6 (20%)
11	GDP	j	501	-	24,30,30	<mark>3.86</mark>	12 (50%)	30,47,47	1.63	6 (20%)
12	TA1	V	502	-	68,68,68	0.51	1 (1%)	105,105,105	0.75	3 (2%)
12	TA1	r	502	-	68,68,68	0.60	1 (1%)	105,105,105	0.80	4 (3%)
9	GTP	F	501	10	26,34,34	5.14	11 (42%)	32,54,54	1.61	6 (18%)
9	GTP	0	501	10	26,34,34	5.15	11 (42%)	32,54,54	1.66	7 (21%)
9	GTP	f	501	10	26,34,34	5.16	11 (42%)	32,54,54	1.64	7 (21%)
9	GTP	S	501	10	26,34,34	5.15	11 (42%)	32,54,54	1.55	7 (21%)
11	GDP	N	501	-	24,30,30	<mark>3.82</mark>	12 (50%)	30,47,47	1.75	6 (20%)
9	GTP	7	501	10	26,34,34	5.17	11 (42%)	32,54,54	1.53	6 (18%)
9	GTP	М	501	10	26,34,34	5.17	11 (42%)	32,54,54	1.59	6 (18%)
12	TA1	J	502	-	68,68,68	0.55	1 (1%)	105,105,105	0.75	3 (2%)
9	GTP	Е	501	10	26,34,34	<mark>5.18</mark>	11 (42%)	32,54,54	1.59	6 (18%)
9	GTP	6	501	10	26,34,34	5.16	11 (42%)	32,54,54	1.60	7 (21%)
11	GDP	u	501	-	24,30,30	3.82	12 (50%)	30,47,47	1.48	5 (16%)
12	TA1	8	502	-	68,68,68	0.56	1 (1%)	105,105,105	0.75	4 (3%)
11	GDP	4	501	-	24,30,30	<mark>3.84</mark>	12 (50%)	30,47,47	1.66	7 (23%)
12	TA1	4	502	-	68,68,68	0.48	1 (1%)	105,105,105	0.77	5 (4%)
12	TA1	W	502	-	68,68,68	0.53	1 (1%)	105,105,105	0.72	3 (2%)
11	GDP	Q	501	-	24,30,30	<mark>3.85</mark>	12 (50%)	30,47,47	1.58	6 (20%)
11	GDP	V	501	-	24,30,30	4.01	13 (54%)	30,47,47	1.75	6 (20%)
12	TA1	a	502	-	68,68,68	0.56	1 (1%)	105,105,105	0.78	4 (3%)
12	TA1	i	502	-	68,68,68	0.60	1 (1%)	105,105,105	0.74	4 (3%)
11	GDP	i	501	-	24,30,30	<mark>3.83</mark>	12 (50%)	30,47,47	1.58	5 (16%)
12	TA1	u	502	-	68,68,68	0.67	1 (1%)	105,105,105	0.77	4 (3%)
11	GDP	t	501	-	24,30,30	3.84	12 (50%)	30,47,47	1.55	6 (20%)
9	GTP	h	501	10	26,34,34	5.16	11 (42%)	32,54,54	1.57	6 (18%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
12	TA1	t	502	-	-	2/41/127/127	0/7/7/7
12	TA1	9	502	-	-	0/41/127/127	0/7/7/7
9	GTP	k	501	10	-	2/18/38/38	0/3/3/3
12	TA1	b	502	-	-	10/41/127/127	0/7/7/7
12	TA1	q	502	-	-	4/41/127/127	0/7/7/7
9	GTP	Y	501	10	-	5/18/38/38	0/3/3/3
12	TA1	j	502	-	-	11/41/127/127	0/7/7/7
9	GTP	0	501	10	-	5/18/38/38	0/3/3/3
11	GDP	J	501	-	-	5/12/32/32	0/3/3/3
12	TA1	V	502	-	-	5/41/127/127	0/7/7/7
9	GTP	Z	501	10	-	4/18/38/38	0/3/3/3
11	GDP	K	501	-	-	4/12/32/32	0/3/3/3
11	GDP	V	501	-	-	4/12/32/32	0/3/3/3
9	GTP	5	501	10	-	4/18/38/38	0/3/3/3
9	GTP	е	501	10	-	3/18/38/38	0/3/3/3
11	GDP	W	501	-	-	3/12/32/32	0/3/3/3
9	GTP	G	501	10	-	4/18/38/38	0/3/3/3
9	GTP	S	501	10	-	5/18/38/38	0/3/3/3
11	GDP	Т	501	-	-	5/12/32/32	0/3/3/3
9	GTP	Х	501	10	-	3/18/38/38	0/3/3/3
11	GDP	r	501	-	-	5/12/32/32	0/3/3/3
12	TA1	р	502	-	-	1/41/127/127	0/7/7/7
9	GTP	1	501	10	-	2/18/38/38	0/3/3/3
11	GDP	R	501	-	-	4/12/32/32	0/3/3/3
11	GDP	р	501	-	-	5/12/32/32	0/3/3/3
9	GTP	m	501	10	-	4/18/38/38	0/3/3/3
11	GDP	a	501	-	-	2/12/32/32	0/3/3/3
11	GDP	q	501	-	-	4/12/32/32	0/3/3/3
11	GDP	Ι	501	-	-	4/12/32/32	0/3/3/3
9	GTP	Р	501	10	-	5/18/38/38	0/3/3/3
11	GDP	U	501	-	-	4/12/32/32	0/3/3/3
11	GDP	9	501	-	-	3/12/32/32	0/3/3/3
11	GDP	b	501	-	-	3/12/32/32	0/3/3/3
9	GTP	D	501	10	-	4/18/38/38	0/3/3/3
11	GDP	8	501	-	-	3/12/32/32	0/3/3/3

Continued on next page...

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
9	GTP	L	501	10	-	4/18/38/38	0/3/3/3
9	GTP	У	501	10	-	5/18/38/38	0/3/3/3
11	GDP	0	501	-	-	4/12/32/32	0/3/3/3
11	GDP	j	501	-	-	3/12/32/32	0/3/3/3
12	TA1	V	502	-	-	6/41/127/127	0/7/7/7
12	TA1	r	502	-	-	4/41/127/127	0/7/7/7
9	GTP	F	501	10	-	4/18/38/38	0/3/3/3
9	GTP	О	501	10	-	5/18/38/38	0/3/3/3
9	GTP	f	501	10	-	3/18/38/38	0/3/3/3
9	GTP	s	501	10	-	4/18/38/38	0/3/3/3
11	GDP	N	501	-	-	6/12/32/32	0/3/3/3
9	GTP	7	501	10	-	4/18/38/38	0/3/3/3
9	GTP	М	501	10	-	5/18/38/38	0/3/3/3
12	TA1	J	502	-	-	4/41/127/127	0/7/7/7
9	GTP	Е	501	10	-	5/18/38/38	0/3/3/3
9	GTP	6	501	10	-	4/18/38/38	0/3/3/3
11	GDP	u	501	-	-	4/12/32/32	0/3/3/3
12	TA1	8	502	_	-	5/41/127/127	0/7/7/7
11	GDP	4	501	-	-	1/12/32/32	0/3/3/3
12	TA1	4	502	-	-	6/41/127/127	0/7/7/7
12	TA1	W	502	-	-	11/41/127/127	0/7/7/7
11	GDP	Q	501	-	-	4/12/32/32	0/3/3/3
11	GDP	V	501	-	-	4/12/32/32	0/3/3/3
12	TA1	a	502	-	-	2/41/127/127	0/7/7/7
12	TA1	i	502	-	-	8/41/127/127	0/7/7/7
11	GDP	i	501	-	-	6/12/32/32	0/3/3/3
12	TA1	u	502	-	-	14/41/127/127	0/7/7/7
11	GDP	t	501	-	-	3/12/32/32	0/3/3/3
9	GTP	h	501	10	-	2/18/38/38	0/3/3/3

Continued from previous page...

The worst 5 of 574 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
9	Е	501	GTP	C2'-C1'	-16.61	1.28	1.53
9	Ζ	501	GTP	C2'-C1'	-16.59	1.28	1.53
9	m	501	GTP	C2'-C1'	-16.57	1.28	1.53

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
9	5	501	GTP	C2'-C1'	-16.53	1.28	1.53
9	L	501	GTP	C2'-C1'	-16.51	1.28	1.53

The worst 5 of 361 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	f	501	GTP	PB-O3B-PG	-4.62	116.96	132.83
9	0	501	GTP	PB-O3B-PG	-4.36	117.87	132.83
9	L	501	GTP	PA-O3A-PB	-4.32	118.00	132.83
9	m	501	GTP	PB-O3B-PG	-4.30	118.08	132.83
9	У	501	GTP	PB-O3B-PG	-4.21	118.38	132.83

There are no chirality outliers.

5 of 281 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
9	Ε	501	GTP	C5'-O5'-PA-O3A
9	G	501	GTP	C5'-O5'-PA-O1A
9	L	501	GTP	C5'-O5'-PA-O1A
9	М	501	GTP	C5'-O5'-PA-O3A
9	М	501	GTP	O4'-C4'-C5'-O5'

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-20858. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 135

Y Index: 117

Z Index: 225

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 111

Y Index: 45

Z Index: 281

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.04. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1273 nm^3 ; this corresponds to an approximate mass of 1150 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

This section was not generated. The rotationally averaged power spectrum is only generated for cubic maps.

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.278 \AA^{-1}

8.2 Resolution estimates (i)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.60	-	-
Author-provided FSC curve	3.62	4.15	3.68
Unmasked-calculated*	-	-	-

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-20858 and PDB model 6VE7. Per-residue inclusion information can be found in section 3 on page 16.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.04 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.04).

9.4 Atom inclusion (i)

At the recommended contour level, 82% of all backbone atoms, 68% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.04) and Q-score for the entire model and for each chain.

All 0.6792 0.4550 0 0.6968 0.4940 1 0.6243 0.4110 2 0.5899 0.4670 3 0.7393 0.5060 4 0.5818 0.3770 5 0.7120 0.4520 6 0.4705 0.3470 7 0.6556 0.4360 8 0.6680 0.4440 9 0.6875 0.4460 A 0.5733 0.4350 B 0.5519 0.4100 C 0.5970 0.4340 D 0.7483 0.4970 E 0.6892 0.4540 F 0.6895 0.4590 G 0.6783 0.4530 H 0.7073 0.4720 I 0.7298 0.4820 J 0.7082 0.4600 K 0.7437 0.4870 N 0.7013 0.4680 O 0.7470	Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
0 0.6968 0.4940 1 0.6243 0.4110 2 0.5899 0.4670 3 0.7393 0.5060 4 0.5818 0.3770 5 0.7120 0.4520 6 0.4705 0.3470 7 0.6556 0.4360 8 0.6680 0.4440 9 0.6875 0.4460 A 0.5733 0.4350 B 0.5519 0.4100 C 0.5970 0.4340 D 0.7483 0.4970 E 0.6892 0.4540 F 0.6895 0.4590 G 0.6783 0.4530 H 0.7073 0.4720 I 0.7298 0.4820 J 0.7395 0.4840 M 0.7437 0.4870 N 0.7013 0.4680 O 0.7470 0.5000 P 0.7168 0.	All	0.6792	0.4550
1 0.6243 0.4110 2 0.5899 0.4670 3 0.7393 0.5060 4 0.5818 0.3770 5 0.7120 0.4520 6 0.4705 0.3470 7 0.6556 0.4360 8 0.6680 0.4440 9 0.6875 0.4460 A 0.5733 0.4350 B 0.5519 0.4100 C 0.5970 0.4340 D 0.7483 0.4970 E 0.6895 0.4540 F 0.6895 0.4590 G 0.6783 0.4530 H 0.7073 0.4720 I 0.7298 0.4820 J 0.7082 0.4600 K 0.7437 0.4870 N 0.7013 0.4870 N 0.7013 0.4680 O 0.7470 0.5000 P 0.7168 0.4820 Q 0.6910 0.4490 R 0.7539 0.5030 S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170	0	0.6968	0.4940
2 0.5899 0.4670 3 0.7393 0.5060 4 0.5818 0.3770 5 0.7120 0.4520 6 0.4705 0.3470 7 0.6556 0.4360 8 0.6680 0.4440 9 0.6875 0.4460 A 0.5733 0.4350 B 0.5519 0.4100 C 0.5970 0.4340 D 0.7483 0.4970 E 0.6895 0.4540 F 0.6895 0.4530 H 0.7073 0.4720 I 0.7298 0.4820 J 0.7082 0.4600 K 0.7437 0.4870 N 0.713 0.4870 P 0.7168 0.4820 Q 0.6910 0.4490 R 0.7539 0.5030 S 0.7210 0.4680 T 0.7593 0.5030 S 0.7210 0.4680 T 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	1	0.6243	0.4110
3 0.7393 0.5060 4 0.5818 0.3770 5 0.7120 0.4520 6 0.4705 0.3470 7 0.6556 0.4360 8 0.6680 0.4440 9 0.6875 0.4460 A 0.5733 0.4350 B 0.5519 0.4100 C 0.5970 0.4340 D 0.7483 0.4970 E 0.6892 0.4540 F 0.6895 0.4590 G 0.6783 0.4720 I 0.7298 0.4820 J 0.7082 0.4600 K 0.7437 0.4870 N 0.7437 0.4870 N 0.7013 0.4680 O 0.7470 0.5000 P 0.7168 0.4820 J 0.7033 0.4680 O 0.7470 0.5030 S 0.7210 0.4680 T 0.7539 0.5030 S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	2	0.5899	0.4670
4 0.5818 0.3770 5 0.7120 0.4520 6 0.4705 0.3470 7 0.6556 0.4360 8 0.6680 0.4440 9 0.6875 0.4460 A 0.5733 0.4350 B 0.5519 0.4100 C 0.5970 0.4340 D 0.7483 0.4970 E 0.6892 0.4540 F 0.6895 0.4590 G 0.6783 0.4720 I 0.7032 0.4600 K 0.7455 0.4880 L 0.7395 0.4840 M 0.7437 0.4870 N 0.7013 0.4680 O 0.7470 0.5000 P 0.7168 0.4820 Q 0.6910 0.4490 R 0.7539 0.5030 S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	3	0.7393	0.5060
5 0.7120 0.4520 6 0.4705 0.3470 7 0.6556 0.4360 8 0.6680 0.4440 9 0.6875 0.4460 A 0.5733 0.4350 B 0.5519 0.4100 C 0.5970 0.4340 D 0.7483 0.4970 E 0.6892 0.4540 F 0.6895 0.4590 G 0.6783 0.4530 H 0.7073 0.4720 I 0.7082 0.4600 K 0.7455 0.4880 L 0.7395 0.4840 M 0.7437 0.4870 N 0.7013 0.4680 O 0.7470 0.5000 P 0.7168 0.4820 Q 0.6910 0.4490 R 0.7539 0.5030 S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	4	0.5818	0.3770
6 0.4705 0.3470 7 0.6556 0.4360 8 0.6680 0.4440 9 0.6875 0.4460 A 0.5733 0.4350 B 0.5519 0.4100 C 0.5970 0.4340 D 0.7483 0.4970 E 0.6892 0.4540 F 0.6895 0.4590 G 0.6783 0.4530 H 0.7073 0.4720 I 0.7082 0.4600 K 0.7455 0.4880 L 0.7395 0.4840 M 0.7437 0.4870 N 0.7013 0.4680 O 0.7470 0.5000 P 0.7168 0.4820 Q 0.6910 0.4490 R 0.7539 0.5030 S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	5	0.7120	0.4520
7 0.6556 0.4360 8 0.6680 0.4440 9 0.6875 0.4460 A 0.5733 0.4350 B 0.5519 0.4100 C 0.5970 0.4340 D 0.7483 0.4970 E 0.6892 0.4540 F 0.6895 0.4590 G 0.6783 0.4530 H 0.7073 0.4720 I 0.7298 0.4820 J 0.7082 0.4600 K 0.7455 0.4880 L 0.7395 0.4840 M 0.7437 0.4870 N 0.7013 0.4680 O 0.7470 0.5000 P 0.7168 0.4490 R 0.7539 0.5030 S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	6	0.4705	0.3470
8 0.6680 0.4440 9 0.6875 0.4460 A 0.5733 0.4350 B 0.5519 0.4100 C 0.5970 0.4340 D 0.7483 0.4970 E 0.6892 0.4540 F 0.6895 0.4590 G 0.6783 0.4530 H 0.7073 0.4720 I 0.7298 0.4820 J 0.7082 0.4600 K 0.7455 0.4880 L 0.7395 0.4840 M 0.7437 0.4870 N 0.7013 0.4680 O 0.7470 0.5000 P 0.7168 0.4820 Q 0.6910 0.4490 R 0.7539 0.5030 S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	7	0.6556	0.4360
9 0.6875 0.4460 A 0.5733 0.4350 B 0.5519 0.4100 C 0.5970 0.4340 D 0.7483 0.4970 E 0.6892 0.4540 F 0.6895 0.4530 G 0.6783 0.4530 H 0.7073 0.4720 I 0.7082 0.4600 K 0.7485 0.4820 J 0.7082 0.4600 K 0.7455 0.4880 L 0.7395 0.4840 M 0.7437 0.4870 N 0.7013 0.4880 L 0.7395 0.4840 M 0.7437 0.4880 Q 0.6910 0.4680 Q 0.6910 0.4680 T 0.7539 0.5030 S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.	8	0.6680	0.4440
A 0.5733 0.4350 B 0.5519 0.4100 C 0.5970 0.4340 D 0.7483 0.4970 E 0.6892 0.4540 F 0.6895 0.4590 G 0.6783 0.4530 H 0.7073 0.4720 I 0.7298 0.4820 J 0.7082 0.4600 K 0.7455 0.4880 L 0.7395 0.4840 M 0.7437 0.4870 N 0.7013 0.4680 O 0.7168 0.4820 Q 0.6910 0.4490 R 0.7539 0.5030 S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	9	0.6875	0.4460
B 0.5519 0.4100 C 0.5970 0.4340 D 0.7483 0.4970 E 0.6892 0.4540 F 0.6895 0.4590 G 0.6783 0.4530 H 0.7073 0.4720 I 0.7298 0.4820 J 0.7082 0.4600 K 0.7455 0.4880 L 0.7395 0.4840 M 0.7437 0.4870 N 0.7013 0.4680 O 0.7470 0.5000 P 0.7168 0.4820 Q 0.6910 0.4490 R 0.7539 0.5030 S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	А	0.5733	0.4350
C 0.5970 0.4340 D 0.7483 0.4970 E 0.6892 0.4540 F 0.6895 0.4590 G 0.6783 0.4530 H 0.7073 0.4720 I 0.7298 0.4820 J 0.7082 0.4600 K 0.7455 0.4880 L 0.7395 0.4840 M 0.7437 0.4870 N 0.7013 0.4680 O 0.7470 0.5000 P 0.7168 0.4820 Q 0.6910 0.4490 R 0.7539 0.5030 S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	В	0.5519	0.4100
D 0.7483 0.4970 E 0.6892 0.4540 F 0.6895 0.4590 G 0.6783 0.4530 H 0.7073 0.4720 I 0.7298 0.4820 J 0.7082 0.4600 K 0.7455 0.4880 L 0.7395 0.4840 M 0.7437 0.4870 N 0.7013 0.4680 O 0.7470 0.5000 P 0.7168 0.4820 Q 0.6910 0.4490 R 0.7539 0.5030 S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	С	0.5970	0.4340
E 0.6892 0.4540 F 0.6895 0.4590 G 0.6783 0.4530 H 0.7073 0.4720 I 0.7298 0.4820 J 0.7082 0.4600 K 0.7455 0.4880 L 0.7395 0.4840 M 0.7437 0.4870 N 0.7013 0.4680 O 0.7470 0.5000 P 0.7168 0.4820 Q 0.6910 0.4490 R 0.7539 0.5030 S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	D	0.7483	0.4970
F 0.6895 0.4590 G 0.6783 0.4530 H 0.7073 0.4720 I 0.7082 0.4600 K 0.7455 0.4880 L 0.7395 0.4840 M 0.7437 0.4870 N 0.7013 0.4680 O 0.7470 0.5000 P 0.7168 0.4820 Q 0.6910 0.4490 R 0.7539 0.5030 S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	Е	0.6892	0.4540
G 0.6783 0.4530 H 0.7073 0.4720 I 0.7298 0.4820 J 0.7082 0.4600 K 0.7455 0.4880 L 0.7395 0.4840 M 0.7437 0.4870 N 0.7013 0.4680 O 0.7470 0.5000 P 0.7168 0.4820 Q 0.6910 0.4420 R 0.7539 0.5030 S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	F	0.6895	0.4590
H 0.7073 0.4720 I 0.7298 0.4820 J 0.7082 0.4600 K 0.7455 0.4880 L 0.7395 0.4840 M 0.7437 0.4870 N 0.7013 0.4680 O 0.7470 0.5000 P 0.7168 0.4820 Q 0.6910 0.4490 R 0.7539 0.5030 S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	G	0.6783	0.4530
I 0.7298 0.4820 J 0.7082 0.4600 K 0.7455 0.4880 L 0.7395 0.4840 M 0.7437 0.4870 N 0.7013 0.4680 O 0.7470 0.5000 P 0.7168 0.4820 Q 0.6910 0.4490 R 0.7539 0.5030 S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	Н	0.7073	0.4720
J 0.7082 0.4600 K 0.7455 0.4880 L 0.7395 0.4840 M 0.7437 0.4870 N 0.7013 0.4680 O 0.7470 0.5000 P 0.7168 0.4820 Q 0.6910 0.4490 R 0.7539 0.5030 S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	Ι	0.7298	0.4820
K 0.7455 0.4880 L 0.7395 0.4840 M 0.7437 0.4870 N 0.7013 0.4680 O 0.7470 0.5000 P 0.7168 0.4820 Q 0.6910 0.4490 R 0.7539 0.5030 S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	J	0.7082	0.4600
L 0.7395 0.4840 M 0.7437 0.4870 N 0.7013 0.4680 O 0.7470 0.5000 P 0.7168 0.4820 Q 0.6910 0.4490 R 0.7539 0.5030 S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	Κ	0.7455	0.4880
M 0.7437 0.4870 N 0.7013 0.4680 O 0.7470 0.5000 P 0.7168 0.4820 Q 0.6910 0.4490 R 0.7539 0.5030 S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	L	0.7395	0.4840
N 0.7013 0.4680 O 0.7470 0.5000 P 0.7168 0.4820 Q 0.6910 0.4490 R 0.7539 0.5030 S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	М	0.7437	0.4870
O 0.7470 0.5000 P 0.7168 0.4820 Q 0.6910 0.4490 R 0.7539 0.5030 S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	Ν	0.7013	0.4680
P 0.7168 0.4820 Q 0.6910 0.4490 R 0.7539 0.5030 S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	О	0.7470	0.5000
Q 0.6910 0.4490 R 0.7539 0.5030 S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	Р	0.7168	0.4820
R 0.7539 0.5030 S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	Q	0.6910	0.4490
S 0.7210 0.4680 T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	R	0.7539	0.5030
T 0.7509 0.4900 U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	S	0.7210	0.4680
U 0.7524 0.5030 V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	Т	0.7509	0.4900
V 0.5933 0.3600 W 0.5102 0.4170 X 0.7301 0.4640	U	0.7524	0.5030
W 0.5102 0.4170 X 0.7301 0.4640	V	0.5933	0.3600
X 0.7301 0.4640	W	0.5102	0.4170
	X	0.7301	0.4640

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
Y	0.6468	0.4090
Z	0.7064	0.4440
a	0.5718	0.3800
b	0.6465	0.3960
С	0.7220	0.4960
d	0.4852	0.4430
е	0.6252	0.3940
f	0.7329	0.4900
g	0.7433	0.4980
h	0.6416	0.4370
i	0.7330	0.4560
j	0.6931	0.4290
k	0.7456	0.4960
1	0.6893	0.4890
m	0.7308	0.5050
n	0.6763	0.4800
0	0.6855	0.4800
р	0.7261	0.5030
q	0.7183	0.4950
r	0.7084	0.4990
S	0.6128	0.4120
t	0.6468	0.4490
u	0.7336	0.4620
V	0.6421	0.3930
W	0.6991	0.4490
X	0.4649	0.3960
У	0.7266	0.5020
Z	0.7100	0.4840

