

wwPDB EM Validation Summary Report (i)

Nov 23, 2022 – 05:34 PM JST

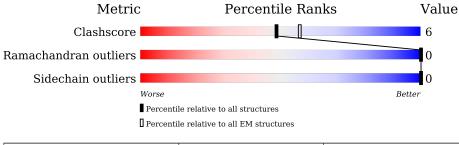
PDB ID	:	7VBM
EMDB ID	:	EMD-31882
Title	:	The mouse nucleosome structure containing H3mm18 aided by PL2-6 scFv
Authors	:	Hirai, S.; Takizawa, Y.; Kujirai, T.; Kurumizaka, H.
Deposited on	:	2021-08-31
Resolution	:	3.40 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:


:	0.0.1. dev 43
:	4.02b-467
:	20191225.v01 (using entries in the PDB archive December 25th 2019)
:	1.9.9
:	Engh & Huber (2001)
:	Parkinson et al. (1996)
:	2.31.3
	::

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of	chain
1	А	139	51% •	48%
1	Е	139	53%	45%
2	В	106	73%	5% 23%
2	F	106	68%	5% 27%
3	С	133	56%	13% 31%
3	G	133	67%	• 30%
4	D	129	64%	7% 29%
4	Н	129	67%	· 29%

Continued on next page...

Continued from previous page...

Mol	Chain	Length	Quality of chain					
5	Ι	145	50% 37% 13%					
6	J	145	·	48%	13%			

2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 10475 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	Λ	79	Total	С	Ν	0	S	0	0
	A	72	565	363	96	102	4	0	0
1	F	77	Total	С	Ν	0	S	0	0
	Ľ	11	603	386	102	111	4	0	0

• Molecule 1 is a protein called Histone H3mm18.

• Molecule 2 is a protein called Histone H4.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	В	82	Total 657				S 1	0	0
2	F	77	Total 614		N 119	O 105	S 1	0	0

There are 6 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
В	-3	GLY	-	expression tag	UNP P62806
В	-2	SER	-	expression tag	UNP P62806
В	-1	HIS	-	expression tag	UNP P62806
F	-3	GLY	-	expression tag	UNP P62806
F	-2	SER	-	expression tag	UNP P62806
F	-1	HIS	-	expression tag	UNP P62806

• Molecule 3 is a protein called Histone H2A type 1-B.

Mol	Chain	Residues	Atoms				AltConf	Trace
3	С	92	Total	С	Ν	Ο	0	0
5	U	92	712	445	141	126	0	0
2	С	93	Total	С	Ν	Ο	0	0
5	G	90	719	449	143	127	0	0

There are 6 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
С	-3	GLY	-	expression tag	UNP C0HKE1
С	-2	SER	-	expression tag	UNP C0HKE1
С	-1	HIS	-	expression tag	UNP C0HKE1
G	-3	GLY	-	expression tag	UNP C0HKE1
G	-2	SER	-	expression tag	UNP C0HKE1
G	-1	HIS	-	expression tag	UNP C0HKE1

• Molecule 4 is a protein called Histone H2B type 3-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	Л	92	Total	С	Ν	0	\mathbf{S}	0	0
4	D		721	453	129	137	2	0	0
4	Ц	92	Total	С	Ν	Ο	S	0	0
4	11	92	721	453	129	137	2	0	0

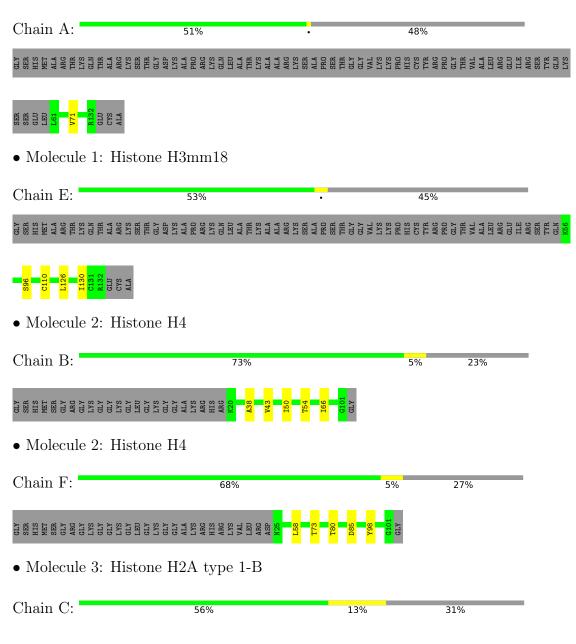
There are 6 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
D	-3	GLY	-	expression tag	UNP Q9D2U9
D	-2	SER	-	expression tag	UNP Q9D2U9
D	-1	HIS	-	expression tag	UNP Q9D2U9
Н	-3	GLY	-	expression tag	UNP Q9D2U9
Н	-2	SER	-	expression tag	UNP Q9D2U9
Η	-1	HIS	-	expression tag	UNP Q9D2U9

• Molecule 5 is a DNA chain called DNA (126-MER).

Mol	Chain	Residues	Atoms				AltConf	Trace	
5	Ι	126	Total 2566	С 1217	N 466	O 757	Р 126	0	0

• Molecule 6 is a DNA chain called DNA (126-MER).


Mol	Chain	Residues	Atoms				AltConf	Trace	
6	J	126	Total 2597	C 1228	N 491	O 753	Р 125	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Histone H3mm18

GLY SER HIS MET SER SER GLY GLY GLY GLY GLY GLY ALA	ANA LIVS LIVS LIVS RI 7 S18 C22 C22 L33 L33 R42	L51 V64 162 162 162 162 176 176 179	R81 H82 L85 D90 D90 L93 V107	LEU PRO ASN ILE GLN VAL LEU
LEU PRO LYS LYS THR GLU SER HIS HIS HIS LYS GLY LYS				
• Molecule 3: Histo	ne H2A type 1-B			
Chain G:	67%		30%	_
GLY SER HIS MET SER GLY GLY GLY GLY CLY ALA	AINA AIA LIYS K15 R16 R16 R17 R17 R17 C16 G10 G10 G10 G10 G10 G10	LEU LEU PRO ASN TLE ALA ALA LEU LEU LEU LYS LYS THY	GLU SER HIS HIS LYS ALA LYS GLY LYS CLY	
• Molecule 4: Histor	ne H2B type 3-A			
Chain D:	64%	7%	29%	_
GLY HIS MET PRO PRO PRO FRO SER ARG ALA ALA PRO	L L L L L L L L L L L V S E R L L V S S E R L L V S L L V S L L V S L L V S L L V S L L V S L L V S L L V S L V S L L V S L V S L L V S L	GLY LYS LYS LYS ARG GLY R33 Y42 Y42 Y42 Y42	D68 F70 N84 T 88	V98 L106 S124 LYS
• Molecule 4: Histo	ne H2B type 3-A			
Chain H:	67%	•	29%	_
SER HIS MET PRO PRO PRO PRO SER ARG ALA ALA ALA PRO	LYS CLYS GLY LYS LYS ALA ALA ALA ALA ALA CLYS CLYS	GLY LYS LYS ARG GLY ARG GLY D68 D68 CT7 CT7 CT7 CT7 CT7 CT7 CT7 CT7 CT7 CT7	190 193 124 LYS	
• Molecule 5: DNA	(126-MER)			
Chain I:	50%	37%	13%	,
DA DT DT DA DA DA DA DA DA C- 63 C- 64 C-	C-58 C-57 C-57 C-55 C-55 C-55 C-55 C-55 C-55	G-37 7-38 6-34 6-34 7-32 7-32 7-28 7-28 7-28 7-28 7-28	7 - 11 - 12 - 12 - 12 - 12 - 12 - 12 - 12	6-7 6-3 05 05 05 05 05
A16 A17 C255 C256 C256 C256 C27 C28 C28 C28 C36 C36 C36 C36 C37 C37 C37 C37 C36 C36 C36 C36 C36 C36 C36 C36 C36 C28 C36 C28 C28 C28 C28 C28 C28 C28 C28 C28 C28	A46 A46 A50 A50 A51 A61 D1 D1 D1 D1 D1	D D D D D D D D D D D D D D D D D D D		
• Molecule 6: DNA	(126-MER)			
Chain J:	39%	48%	13%	6
DA DG DG DG DG DG DA DA DA DA C C C C C C C C C C C C C C	C-58 1-57 1-57 6-51 1-48 1-48 0-48 0-48 0-42	T-39 G-26 G-38 G-38 G-38 G-38 F-32 F-32 C-27 C-25 C-25 C-25	T-24 T-23 G-22 G-20 G-20 G-19 G-19 G-19 T-17 T-17 T-17 A-15	A-13 G-7 G-6 C3 G4 T5
77 77 68 715 715 715 720 721 725	T31 G32 C33 A36 A36 A47 C49 C49 C49 C49 C49 C49 C49 C49 C49 C49	052 C53 C53 C55 C55 C56 C6 C6 C6 C6 C6 C6 C6 C6 C6 C6 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7	2 4 9 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	224465	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE CORRECTION	Depositor
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	58.1	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	31.733	Depositor
Minimum map value	-18.142	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	1.000	Depositor
Recommended contour level	2.75	Depositor
Map size (Å)	211.99998, 211.99998, 211.99998	wwPDB
Map dimensions	200, 200, 200	wwPDB
Map angles ($^{\circ}$)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.06, 1.06, 1.06	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond	angles
	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.42	0/573	0.63	0/773
1	Е	0.46	0/611	0.67	0/823
2	В	0.38	0/664	0.67	0/889
2	F	0.40	0/621	0.67	0/832
3	С	0.38	0/720	0.61	0/970
3	G	0.29	0/727	0.54	0/978
4	D	0.34	0/732	0.54	0/985
4	Н	0.37	0/732	0.56	0/985
5	Ι	0.57	0/2874	0.93	0/4429
6	J	0.55	0/2917	0.91	0/4505
All	All	0.48	0/11171	0.80	0/16169

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	565	0	583	1	0
1	Е	603	0	623	3	0
2	В	657	0	706	3	0
2	F	614	0	656	4	0
3	С	712	0	749	14	0
3	G	719	0	758	3	0

Continued on next page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
4	D	721	0	740	10	0
4	Н	721	0	740	3	0
5	Ι	2566	0	1413	36	0
6	J	2597	0	1413	53	0
All	All	10475	0	8381	115	0

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

The worst 5 of 115 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
5:I:55:DT:H2"	5:I:56:DC:C5	2.26	0.71
6:J:-39:DT:H2"	6:J:-38:DA:C8	2.35	0.62
6:J:49:DC:H2"	6:J:50:DG:C8	2.36	0.60
6:J:5:DT:H2"	6:J:6:DA:C8	2.38	0.59
5:I:-47:DT:H2"	5:I:-46:DC:C5	2.37	0.59

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	70/139~(50%)	69~(99%)	1 (1%)	0	100	100
1	Ε	75/139~(54%)	71~(95%)	4(5%)	0	100	100
2	В	80/106~(76%)	78~(98%)	2(2%)	0	100	100
2	F	75/106~(71%)	74 (99%)	1 (1%)	0	100	100
3	С	90/133~(68%)	89 (99%)	1 (1%)	0	100	100
3	G	91/133~(68%)	91 (100%)	0	0	100	100

Continued on next page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percer	ntiles
4	D	90/129~(70%)	89~(99%)	1 (1%)	0	100	100
4	Н	90/129~(70%)	87 (97%)	3 (3%)	0	100	100
All	All	661/1014~(65%)	648 (98%)	13 (2%)	0	100	100

Continued from previous page...

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	60/113~(53%)	60~(100%)	0	100	100
1	Ε	65/113~(58%)	65~(100%)	0	100	100
2	В	68/81~(84%)	68 (100%)	0	100	100
2	F	63/81~(78%)	63 (100%)	0	100	100
3	С	72/102~(71%)	72 (100%)	0	100	100
3	G	72/102~(71%)	72 (100%)	0	100	100
4	D	80/110 (73%)	80 (100%)	0	100	100
4	Н	80/110 (73%)	80 (100%)	0	100	100
All	All	560/812~(69%)	560 (100%)	0	100	100

There are no protein residues with a non-rotameric sidechain to report.

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. There are no such side chains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

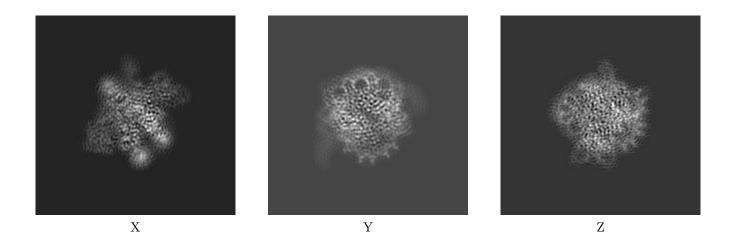
There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

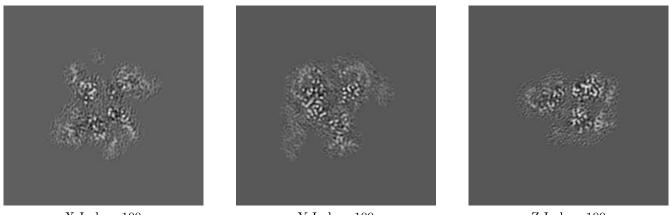
There are no chain breaks in this entry.


6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-31882. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

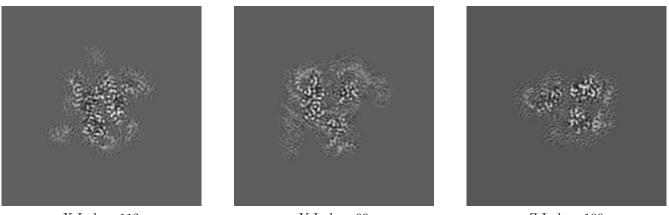

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 100

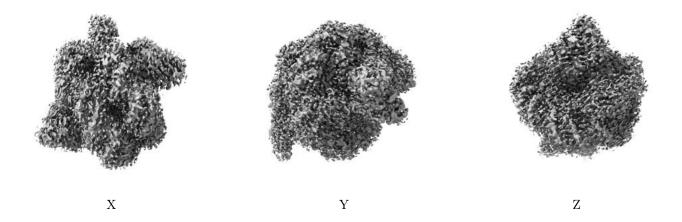

Y Index: 100

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 112


Y Index: 99

Z Index: 100

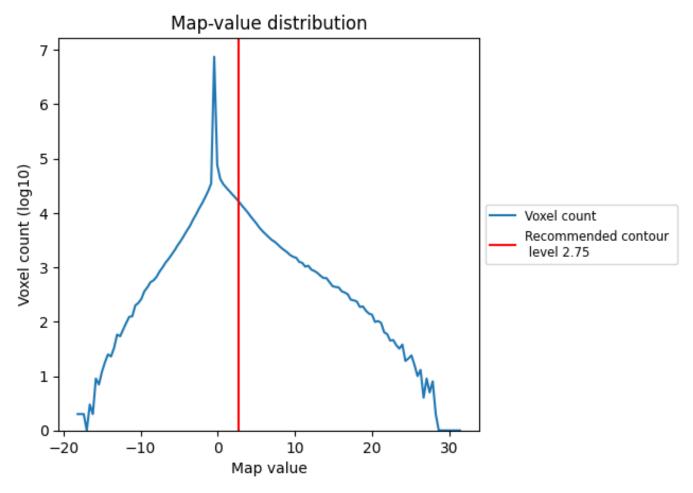
The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

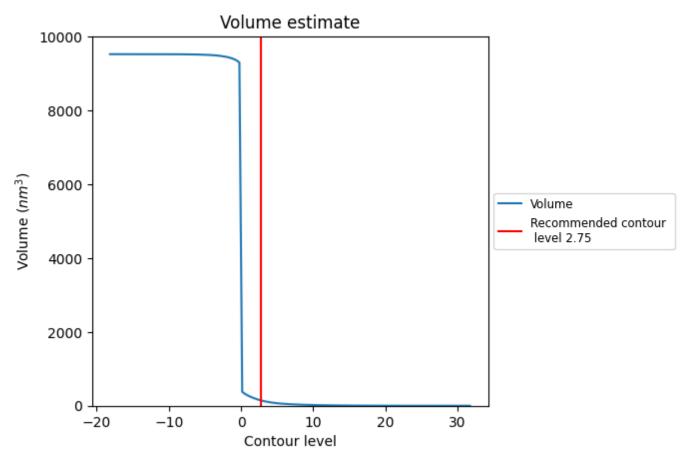
The images above show the 3D surface view of the map at the recommended contour level 2.75. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)


This section was not generated. No masks/segmentation were deposited.

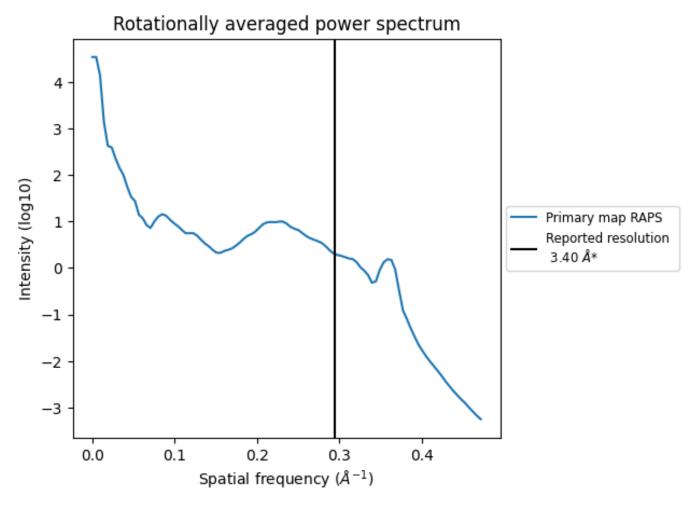
7 Map analysis (i)

This section contains the results of statistical analysis of the map.


7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

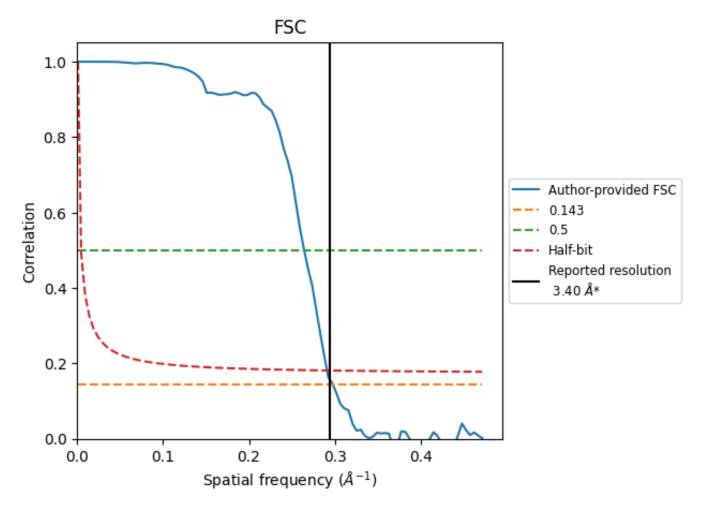
7.2 Volume estimate (i)



The volume at the recommended contour level is 147 nm^3 ; this corresponds to an approximate mass of 133 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)


*Reported resolution corresponds to spatial frequency of 0.294 $\mathrm{\AA^{-1}}$

8 Fourier-Shell correlation (i)

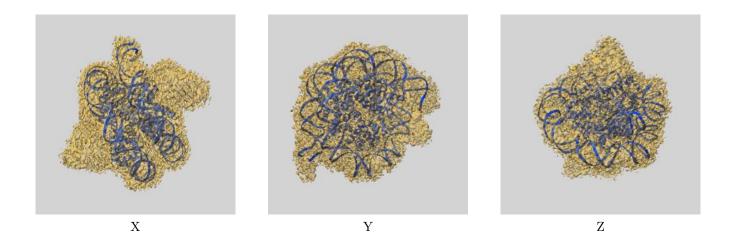
Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.294 $\rm \AA^{-1}$

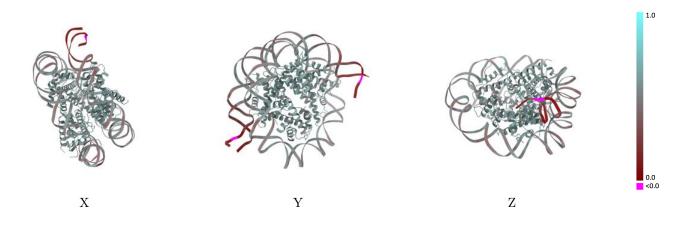
8.2 Resolution estimates (i)

Resolution estimate (Å)	Estim	Estimation criterion (FSC cut-off)				
Resolution estimate (A)	0.143	0.5	Half-bit			
Reported by author	3.40	-	-			
Author-provided FSC curve	3.36	3.78	3.44			
Unmasked-calculated*	-	-	-			

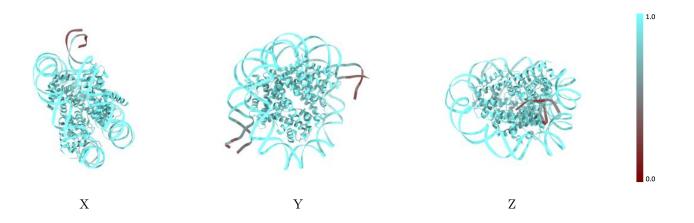

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-31882 and PDB model 7VBM. Per-residue inclusion information can be found in section 3 on page 6.

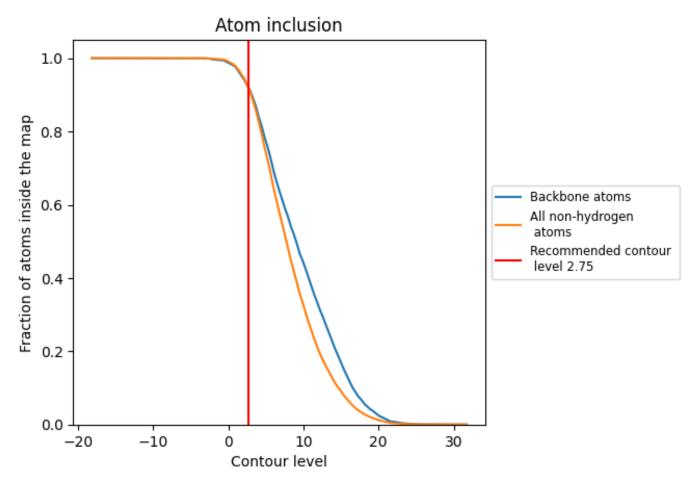

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 2.75 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.


9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (2.75).

9.4 Atom inclusion (i)

At the recommended contour level, 92% of all backbone atoms, 92% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (2.75) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score	1.0
All	0.9175	0.5060	1.0
А	0.9333	0.5630	
В	0.9509	0.5760	
С	0.9505	0.5790	
D	0.9489	0.5780	
E	0.9207	0.5600	
F	0.9441	0.5840	
G	0.9611	0.5830	
H	0.9347	0.5700	0.0
I	0.8971	0.4390	0.0
J	0.8860	0.4310	

