

wwPDB EM Validation Summary Report (i)

Feb 22, 2024 – 09:25 PM EST

PDB ID	:	4V6M
EMDB ID	:	EMD-1858
Title	:	Structure of the ribosome-SecYE complex in the membrane environment
Authors	:	Frauenfeld, J.; Gumbart, J.; van der Sluis, E.O.; Funes, S.; Gartmann, M.;
		Beatrix, B.; Mielke, T.; Berninghausen, O.; Becker, T.; Schulten, K.; Beck-
		mann, R.
Deposited on	:	2011-02-08
Resolution	:	7.10 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev70
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 7.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain					
1	AA	1542	• 77%	20% •				
2	AX	11	27% 9% 45%	45%				
3	AV	77	75%	25%				
4	AZ	98	45% 76%	23% •				
5	A0	200	65% 96%	•				
5	A1	200	41% 95%	•				
6	AB	240	94%	5% •				

Mol	Chain	Length	Quality of chain	
7	AC	232	• 90%	9% •
8	AD	205	91%	9%
9	AE	166	94%	5%•
10	AF	135	93%	7%
11	AG	178	• 97%	•
12	AH	129	• 95%	5%
13	AI	129	90%	9% •
14	AJ	103	88%	12%
15	AK	128	7%	6%
16	AL	123	96%	
17	AM	117	0.2%	794
18	AN	100	9270	1.20/
10		00	88%	12%
19	AU	00	97%	
20	AP	82	95%	••
21	AQ	83	87%	13%
22	AR	74	92%	8%
23	AS	91	96%	•
24	AT	86	97%	·
25	AU	70	<u>6%</u> 94%	6%
26	B7	120	• 82%	18%
27	B8	2904	• 80%	18% •
28	ВА	435	40%	16% ·
29	BB	116	89%	10% •
30	B5	234	95%	5%
31	B6	272	93%	6% •

Continued from previous page...

Mol	Chain	Length	Quality of chain	
32	BD	209	90%	10%
33	BE	201	94%	6%
34	BF	178	90%	9% •
35	BG	176	93%	7% •
36	BH	149	88%	11% •
37	BI	141	96%	
38	BJ	142	95%	5%
39	BK	123	91%	9%
40	BL	144	97%	
41	BM	136	92%	7% •
42	BN	127	89%	11%
43	ВО	117	97%	
44	BP	114	91%	9%
45	BQ	117	94%	6%
46	BR	103	94%	5%•
47	BS	110	92%	7% •
48	BT	100	89%	9% •
49	BU	103	• 95%	
50	BV	94	98%	•
51	BW	84	94%	6%
52	BX	77	91%	9%
53	BY	63	95%	5%
54	BZ	58	93%	7%
55	B0	56	96%	•
56	B1	54	94%	6%

Continued from previous page...

Continued from previous page...

Mol	Chain	Length	Quality of chain	
57	B2	46	87%	11% •
58	B3	64	94%	6%
59	Β4	38	<u>5%</u> 92%	8%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
60	PEV	A0	308	Х	-	-	-
60	PEV	A0	314	Х	-	-	-
60	PEV	A0	323	Х	-	-	-
60	PEV	A1	301	X	-	-	-
60	PEV	A1	305	Х	-	-	-
60	PEV	A1	313	X	-	-	-
60	PEV	A1	317	X	-	-	-
60	PEV	AZ	204	Х	-	-	-
60	PEV	B8	3001	Х	-	-	-
60	PEV	BA	502	Х	-	-	-
60	PEV	BA	508	X	-	-	-
60	PEV	BA	526	X	-	-	-
60	PEV	BA	530	Х	_	-	-
60	PEV	BA	533	-	-	Х	-
60	PEV	BA	535	Х	-	-	-
60	PEV	BA	537	X	-	-	-
60	PEV	BA	538	X	-	-	-
60	PEV	BB	202	Х	_	-	-
60	PEV	BB	206	X	-	-	-
61	PGV	A0	304	Х	-	-	-
61	PGV	A0	305	X	-	-	-
61	PGV	A0	306	Х	-	-	-
61	PGV	A0	317	Х	_	-	-
61	PGV	A0	318	Х	-	-	-
61	PGV	A0	325	Х	_	-	-
61	PGV	A0	327	X	-	-	-
61	PGV	A0	328	X	_	-	-
61	PGV	A0	331	Х	_	-	_
61	PGV	A0	332	X	_	-	_
61	PGV	A1	303	Х	-	-	_
61	PGV	A1	311	X	-	-	-
61	PGV	A1	315	X	-	-	-

Mol	Type	Chain	$\frac{10 \text{ page.}}{\text{Res}}$	 Chirality	Geometry	Clashes	Electron density
61	PGV	A1	318	X	-	-	
61	PGV	AZ	205	X	_	-	_
61	PGV	AZ	207	X	_	-	-
61	PGV	B8	3005	Х	_	-	-
61	PGV	BA	501	Х	-	-	-
61	PGV	BA	505	Х	-	-	-
61	PGV	BA	512	Х	-	-	-
61	PGV	BA	515	Х	-	-	-
61	PGV	BA	516	Х	-	-	-
61	PGV	BA	522	Х	-	-	-
61	PGV	BA	536	Х	-	-	-
61	PGV	BA	540	X	-	-	-
61	PGV	BB	203	X	-	-	-
61	PGV	BB	204	Х	-	-	-
61	PGV	BB	205	X	-	-	-
61	PGV	BB	207	Х	-	-	-
61	PGV	BB	208	X	-	-	-
61	PGV	BB	213	X	-	-	-
61	PGV	BB	217	X	-	-	-

Continued from previous page...

2 Entry composition (i)

There are 61 unique types of molecules in this entry. The entry contains 163040 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 16S RIBOSOMAL RNA.

Mol	Chain	Residues		I	AltConf	Trace			
1	AA	1542	Total 33080	C 14754	N 6064	O 10720	Р 1542	0	0

• Molecule 2 is a RNA chain called mRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	AX	11	Total 231	C 103	N 39	0 78	Р 11	0	0

• Molecule 3 is a RNA chain called FtsQ nascent chain.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	AV	77	Total 1649	C 733	N 297	0 542	Р 77	0	0

• Molecule 4 is a protein called Cell division protein FtsQ.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	AZ	98	Total 779	C 496	N 142	0 138	${ m S} { m 3}$	0	0

There are 16 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
AZ	104	GLN	-	expression tag	UNP Q8X9Y5
AZ	105	HIS	-	expression tag	UNP Q8X9Y5
AZ	106	ALA	-	expression tag	UNP Q8X9Y5
AZ	107	ARG	-	expression tag	UNP Q8X9Y5
AZ	108	LEU	-	expression tag	UNP Q8X9Y5
AZ	109	ASP	-	expression tag	UNP Q8X9Y5
AZ	110	LYS	-	expression tag	UNP Q8X9Y5
AZ	111	PRO	-	expression tag	UNP Q8X9Y5
AZ	112	GLY	-	expression tag	UNP Q8X9Y5

Contentia	ica ji oni pi c	erous page			
Chain	Residue	Modelled	Actual	Comment	Reference
AZ	113	ALA	-	expression tag	UNP Q8X9Y5
AZ	114	ARG	-	expression tag	UNP Q8X9Y5
AZ	115	HIS	-	expression tag	UNP Q8X9Y5
AZ	116	PRO	-	expression tag	UNP Q8X9Y5
AZ	117	CYS	-	expression tag	UNP Q8X9Y5
AZ	118	TRP	-	expression tag	UNP Q8X9Y5
AZ	119	PRO	-	expression tag	UNP Q8X9Y5

Continued from previous page...

• Molecule 5 is a protein called Apolipoprotein A-I.

Mol	Chain	Residues		At	AltConf	Trace			
5	A0	200	Total 1640	C 1028	N 290	0 319	${f S}\ 3$	0	0
5	A1	200	Total 1640	C 1028	N 290	O 319	${ m S} { m 3}$	0	0

• Molecule 6 is a protein called 30S ribosomal protein S2.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	AB	240	Total 1872	C 1180	N 332	O 352	S 8	0	0

• Molecule 7 is a protein called 30S ribosomal protein S3.

Mol	Chain	Residues		At	AltConf	Trace			
7	AC	232	Total 1822	C 1149	N 346	O 323	$\frac{S}{4}$	0	0

• Molecule 8 is a protein called 30S ribosomal protein S4.

Mol	Chain	Residues		At	AltConf	Trace			
8	AD	205	Total 1643	C 1026	N 315	0 298	S 4	0	0

• Molecule 9 is a protein called 30S ribosomal protein S5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
9	AE	166	Total 1225	C 761	N 232	O 226	S 6	0	0

• Molecule 10 is a protein called 30S ribosomal protein S6.

Mol	Chain	Residues	Atoms					AltConf	Trace
10	AF	135	Total 1101	C 677	N 198	O 219	${ m S} 7$	0	0

• Molecule 11 is a protein called 30S ribosomal protein S7.

Mol	Chain	Residues		At	AltConf	Trace			
11	AG	178	Total 1400	C 874	N 269	O 253	$\frac{S}{4}$	0	0

• Molecule 12 is a protein called 30S ribosomal protein S8.

Mol	Chain	Residues		At	AltConf	Trace			
12	AH	129	Total 979	C 616	N 173	0 184	S 6	0	0

• Molecule 13 is a protein called 30S ribosomal protein S9.

Mol	Chain	Residues		At	AltConf	Trace			
13	AI	129	Total 1036	C 642	N 208	0 183	${ m S} { m 3}$	0	0

• Molecule 14 is a protein called 30S ribosomal protein S10.

Mol	Chain	Residues		At	AltConf	Trace			
14	AJ	103	Total 825	C 514	N 158	0 151	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 15 is a protein called 30S ribosomal protein S11.

Mol	Chain	Residues		At	oms			AltConf	Trace
15	AK	128	Total 965	C 595	N 196	0 171	${ m S} { m 3}$	0	0

• Molecule 16 is a protein called 30S ribosomal protein S12.

Mol	Chain	Residues		At	oms			AltConf	Trace
16	AL	123	Total 955	C 590	N 196	0 165	$\frac{S}{4}$	0	0

• Molecule 17 is a protein called 30S ribosomal protein S13.

Mol	Chain	Residues		At	oms			AltConf	Trace
17	AM	117	Total 910	C 564	N 183	O 160	${ m S} { m 3}$	0	0

• Molecule 18 is a protein called 30S ribosomal protein S14.

Mol	Chain	Residues		At	oms		Atoms					
18	AN	100	Total 805	C 499	N 164	0 139	${ m S} { m 3}$	0	0			

• Molecule 19 is a protein called 30S ribosomal protein S15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	AO	88	Total 716	C 440	N 146	0 129	S 1	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
AO	79	ARG	GLN	conflict	UNP P0ADZ4

• Molecule 20 is a protein called 30S ribosomal protein S16.

Mol	Chain	Residues		At	AltConf	Trace			
20	AP	82	Total 649	C 406	N 128	0 114	S 1	0	0

• Molecule 21 is a protein called 30S ribosomal protein S17.

Mol	Chain	Residues		At	AltConf	Trace			
21	AQ	83	Total 672	C 425	N 124	0 120	$\frac{S}{3}$	0	0

• Molecule 22 is a protein called 30S ribosomal protein S18.

Mol	Chain	Residues		At	oms			AltConf	Trace
22	AR	74	Total 626	C 395	N 123	O 107	S 1	0	0

• Molecule 23 is a protein called 30S ribosomal protein S19.

Mol	Chain	Residues		At	oms			AltConf	Trace
23	AS	91	Total 727	C 464	N 139	0 122	${ m S} { m 2}$	0	0

• Molecule 24 is a protein called 30S ribosomal protein S20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
24	AT	86	Total 670	C 414	N 138	0 115	${ m S} { m 3}$	0	0

• Molecule 25 is a protein called 30S ribosomal protein S21.

Mol	Chain	Residues		Ate	\mathbf{oms}		AltConf	Trace	
25	AU	70	Total 590	C 366	N 125	O 98	S 1	0	0

• Molecule 26 is a RNA chain called 5S RIBOSOMAL RNA.

Mol	Chain	Residues		A	AltConf	Trace			
26	Β7	120	Total 2570	C 1144	N 468	0 838	Р 120	0	0

• Molecule 27 is a RNA chain called 23S RIBOSOMAL RNA.

Mol	Chain	Residues			Atoms			AltConf	Trace
27	B8	2904	Total 62341	C 27810	N 11469	O 20158	Р 2904	0	0

• Molecule 28 is a protein called Preprotein translocase secY subunit.

Mol	Chain	Residues		At		AltConf	Trace		
28	BA	435	Total 3362	C 2221	N 553	0 571	S 17	0	0

• Molecule 29 is a protein called Preprotein translocase secE subunit.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
29	BB	116	Total 889	C 587	N 154	0 145	${ m S} { m 3}$	0	0

• Molecule 30 is a protein called 50S ribosomal protein L1.

Mol	Chain	Residues		At	oms			AltConf	Trace
30	B5	234	Total 1733	C 1081	N 315	O 330	${ m S} 7$	0	0

• Molecule 31 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues		Ate		AltConf	Trace		
31	B6	272	Total 2092	C 1294	N 425	O 366	${ m S} 7$	0	0

• Molecule 32 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		At	oms		AltConf	Trace	
32	BD	209	Total 1565	C 979	N 288	0 294	S 4	0	0

• Molecule 33 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		At	oms			AltConf	Trace
33	BE	201	Total 1552	C 974	N 283	O 290	${ m S}{ m 5}$	0	0

• Molecule 34 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		At	oms			AltConf	Trace
34	BF	178	Total 1420	C 905	N 251	O 258	S 6	0	0

• Molecule 35 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	BG	176	Total 1323	C 832	N 243	0 246	${ m S} { m 2}$	0	0

• Molecule 36 is a protein called 50S ribosomal protein L9.

Mol	Chain	Residues		At	oms			AltConf	Trace
36	BH	149	Total 1111	C 699	N 197	0 214	S 1	0	0

• Molecule 37 is a protein called 50S ribosomal protein L11.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	BI	141	Total 1032	C 651	N 179	O 196	S 6	0	0

• Molecule 38 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
38	BJ	142	Total 1129	C 714	N 212	0 199	S 4	0	0

• Molecule 39 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	AltConf	Trace			
39	BK	123	Total 947	C 593	N 181	0 167	S 6	0	0

• Molecule 40 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
40	BL	144	Total 1053	C 654	N 207	O 190	${S \over 2}$	0	0

• Molecule 41 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	AltConf	Trace			
41	BM	136	Total 1074	C 686	N 205	0 177	S 6	0	0

• Molecule 42 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	AltConf	Trace			
42	BN	127	Total 1008	C 621	N 204	O 178	${ m S}{ m 5}$	0	0

• Molecule 43 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
43	BO	117	Total 900	C 557	N 179	0 163	S 1	0	0

• Molecule 44 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
44	BP	114	Total 917	C 574	N 179	O 163	S 1	0	0

• Molecule 45 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
45	BQ	117	Total 947	C 604	N 192	0 151	0	0

• Molecule 46 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
46	BR	103	Total 816	C 516	N 153	0 145	${ m S} { m 2}$	0	0

• Molecule 47 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		At	AltConf	Trace			
47	BS	110	Total 857	C 532	N 166	0 156	${ m S} { m 3}$	0	0

• Molecule 48 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		At	oms	AltConf	Trace		
48	BT	100	Total 787	C 496	N 146	0 143	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 49 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
49	BU	103	Total 789	C 498	N 148	0 143	0	0

• Molecule 50 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues		At	oms	AltConf	Trace		
50	BV	94	Total 753	C 479	N 137	0 134	${ m S} { m 3}$	0	0

• Molecule 51 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
51	BW	84	Total 634	C 391	N 129	0 113	S 1	0	0

• Molecule 52 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		At	oms	AltConf	Trace		
52	BX	77	Total 625	C 388	N 129	O 106	${ m S} { m 2}$	0	0

• Molecule 53 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
53	BY	63	Total 509	C 313	N 99	O 95	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 54 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues	Atoms					AltConf	Trace
54	P7	59	Total	С	Ν	Ο	\mathbf{S}	0	0
04	DZ	- 10	449	281	87	79	2	0	0

• Molecule 55 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
55	B0	56	Total 444	C 269	N 94	O 80	S 1	0	0

• Molecule 56 is a protein called 50S ribosomal protein L33.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
56	B1	54	Total 441	C 284	N 81	O 76	0	0

• Molecule 57 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
57	B2	46	Total 377	C 228	N 90	O 57	${S \over 2}$	0	0

• Molecule 58 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
58	B3	64	Total 504	C 323	N 105	0 74	${ m S} { m 2}$	0	0

• Molecule 59 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues	Atoms					AltConf	Trace
59	B4	38	Total 302	C 185	N 65	0 48	S 4	0	0

• Molecule 60 is (1S)-2-{[(2-AMINOETHOXY)(HYDROXY)PHOSPHORYL]OXY}-1-[(PALMITOYLOXY)METHYL]ETHYL STEARATE (three-letter code: PEV) (formula: C₃₉H₇₈NO₈P).

Mol	Chain	Residues		Ato	oms			AltConf
60	AZ	1	Total	C 20	N 1	0	P 1	0
			49 Total	$\frac{-39}{C}$	N	0	P	
60	AZ	1	49	39	1	8	1	0
60	17	1	Total	С	Ν	Ο	Р	0
00	AL	1	49	39	1	8	1	0
60	17	1	Total	С	Ν	0	Р	0
00	ΠL	1	49	39	1	8	1	0
60	ΔZ	1	Total	С	Ν	0	Р	Ο
00	AΔ	1	49	39	1	8	1	0
60	4.0	1	Total	С	Ν	Ο	Р	0
00	ЛО	1	49	39	1	8	1	0
60	4.0	1	Total	С	N	0	Р	0
00	ЛО	1	49	39	1	8	1	U

Continued from previous page...

Mol	Chain	Residues		Ato	oms			AltConf
60	10	1	Total	С	Ν	0	Р	0
00	AU	1	49	39	1	8	1	0
<u> </u>	10	1	Total	С	Ν	0	Р	0
60	AU	1	49	39	1	8	1	0
<u> </u>	10	1	Total	С	Ν	Ο	Р	0
60	AU	1	49	39	1	8	1	0
<u> </u>	10	1	Total	С	Ν	0	Р	0
00	AU	1	49	39	1	8	1	0
<u> </u>	10	1	Total	С	Ν	0	Р	0
60	AU	1	49	39	1	8	1	0
co	10	1	Total	С	Ν	Ο	Р	0
00	AU	1	49	39	1	8	1	0
60	10	1	Total	С	Ν	0	Р	0
00	AU	1	49	39	1	8	1	0
<u> </u>	10	1	Total	С	Ν	0	Р	0
60	AU	1	49	39	1	8	1	0
<u> </u>	10	1	Total	С	Ν	0	Р	0
60	AU	1	49	39	1	8	1	0
60	10	1	Total	С	Ν	Ο	Р	0
60	AU	1	49	39	1	8	1	0
<u> </u>	10	1	Total	С	Ν	Ο	Р	0
60	A0	1	49	39	1	8	1	0
<u> </u>	10	1	Total	С	Ν	0	Р	0
60	AU	1	49	39	1	8	1	0
<u> </u>	10	1	Total	С	Ν	0	Р	0
00	AU	1	49	39	1	8	1	0
60	10	1	Total	С	Ν	0	Р	0
00	AU	1	49	39	1	8	1	0
60	10	1	Total	С	Ν	0	Р	0
00	AU	1	49	39	1	8	1	0
60	10	1	Total	С	Ν	0	Р	0
00	AU	1	49	39	1	8	1	0
60	10	1	Total	С	Ν	0	Р	0
00	AU	1	49	39	1	8	1	0
60	10	1	Total	С	Ν	0	Р	0
00	AU	1	49	39	1	8	1	0
60	10	1	Total	С	Ν	0	Р	0
	AU		49	39	1	8	1	U
60	10	1	Total	С	Ν	0	Р	0
00	AU	1	49	39	1	8	1	U
60	Λ 1	1	Total	С	Ν	0	Р	0
00	AI	1	49	39	1	8	1	U

Continued from previous page...

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf
60	Λ 1	1	Total	С	Ν	0	Р	0
60	AI	1	49	39	1	8	1	0
<u> </u>	A 1	1	Total	С	Ν	Ο	Р	0
60	AI	1	49	39	1	8	1	0
60	A 1	1	Total	С	Ν	0	Р	0
60	AI	1	49	39	1	8	1	0
60	A 1	1	Total	С	Ν	0	Р	0
60	AI	1	49	39	1	8	1	0
<u> </u>	A 1	1	Total	С	Ν	0	Р	0
60	AI	1	49	39	1	8	1	0
	A 1	1	Total	С	Ν	0	Р	0
60	AI	1	49	39	1	8	1	0
<u> </u>	A 1	1	Total	С	Ν	0	Р	0
60	AI	1	49	39	1	8	1	0
	A 1	1	Total	С	Ν	0	Р	0
60	AI	1	49	39	1	8	1	0
60	A 1	1	Total	С	Ν	0	Р	0
60	AI	1	49	39	1	8	1	0
	4.1		Total	С	Ν	0	Р	0
60	Al	1	49	39	1	8	1	0
	4.1		Total	С	Ν	0	Р	0
60	Al	1	49	39	1	8	1	0
	4.1		Total	С	Ν	0	Р	0
60	Al	1	49	39	1	8	1	0
	A 1	1	Total	С	Ν	0	Р	0
60	AI	1	49	39	1	8	1	0
	A 1	1	Total	С	Ν	0	Р	0
60	AI	1	49	39	1	8	1	0
<u> </u>	A 1	1	Total	С	Ν	0	Р	0
00	AI	1	49	39	1	8	1	0
60	A 1	1	Total	С	Ν	0	Р	0
60	AI	1	49	39	1	8	1	0
60	Λ 1	1	Total	С	Ν	0	Р	0
60	AI	1	49	39	1	8	1	0
60	Λ 1	1	Total	С	Ν	0	Р	0
00	AI	1	49	39	1	8	1	U
60	Λ 1	1	Total	С	Ν	Ο	Р	0
00	AI	T	49	39	1	8	1	U
60	Λ 1	1	Total	С	Ν	0	Р	0
00	AI	1	49	39	1	8	1	U
60	Λ 1	1	Total	С	Ν	0	Р	0
00	AI	1	49	39	1	8	1	U

Continued from previous page...

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf
60	Λ 1	1	Total	С	Ν	0	Р	0
00	AI	1	49	39	1	8	1	0
<u> </u>	A 1	1	Total	С	Ν	0	Р	0
60	AI	1	49	39	1	8	1	0
<u> </u>	A 1	1	Total	С	Ν	0	Р	0
60	AI	1	49	39	1	8	1	0
60	Do	1	Total	С	Ν	0	Р	0
00	D8	1	49	39	1	8	1	0
60	Do	1	Total	С	Ν	0	Р	0
00	D8	1	49	39	1	8	1	0
60	Do	1	Total	С	Ν	Ο	Р	0
00	Dð	1	49	39	1	8	1	0
60	Do	1	Total	С	Ν	0	Р	0
00	D8	1	49	39	1	8	1	0
<u> </u>	Do	1	Total	С	Ν	0	Р	0
60	B8	1	49	39	1	8	1	0
<u> </u>	Do	1	Total	С	Ν	0	Р	0
60	B8	1	49	39	1	8	1	0
	DA	1	Total	С	Ν	Ο	Р	0
60	BA	1	49	39	1	8	1	0
		1	Total	С	Ν	Ο	Р	0
60	BA	1	49	39	1	8	1	0
<u> </u>	DA	1	Total	С	Ν	0	Р	0
00	BA	1	49	39	1	8	1	0
60	DA	1	Total	С	Ν	0	Р	0
00	DA	1	49	39	1	8	1	0
60	D۸	1	Total	С	Ν	0	Р	0
00	DA	1	49	39	1	8	1	0
60	D۸	1	Total	С	Ν	Ο	Р	0
00	DA	1	49	39	1	8	1	0
60	ΡΛ	1	Total	С	Ν	0	Р	0
00	DA	1	49	39	1	8	1	0
60	D۸	1	Total	С	Ν	Ο	Р	0
00	DA	1	49	39	1	8	1	0
60	D۸	1	Total	С	Ν	Ο	Р	0
00	DA	1	49	39	1	8	1	0
60	D۸	1	Total	С	Ν	Ο	Р	0
	DA	1	49	39	1	8	1	U
60	D۸	1	Total	С	Ν	0	Р	0
00	DA		49	39	1	8	1	U
60	D۸	1	Total	С	Ν	0	Р	Ο
00	DA	1	49	39	1	8	1	U

Continued from previous page...

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf
60	DA	1	Total	С	Ν	0	Р	0
60	BA	1	49	39	1	8	1	0
<u> </u>	DA	1	Total	С	Ν	Ο	Р	0
60	BA	1	49	39	1	8	1	0
<u> </u>	DA	1	Total	С	Ν	0	Р	0
60	BA	1	49	39	1	8	1	0
<u> </u>	DA	1	Total	С	Ν	0	Р	0
60	BA	1	49	39	1	8	1	0
60	DA	1	Total	С	Ν	0	Р	0
60	BA	1	49	39	1	8	1	0
60	D۸	1	Total	С	Ν	0	Р	0
00	DA	1	49	39	1	8	1	0
60	D۸	1	Total	С	Ν	Ο	Р	0
00	DA	1	49	39	1	8	1	0
60	D۸	1	Total	С	Ν	0	Р	0
00	DA	1	49	39	1	8	1	0
60	D۸	1	Total	С	Ν	Ο	Р	0
00	DA	1	49	39	1	8	1	0
60	D۸	1	Total	С	Ν	Ο	Р	0
00	DA	1	49	39	1	8	1	0
60	ΡΛ	1	Total	С	Ν	Ο	Р	0
00	DA	1	49	39	1	8	1	0
60	ΡΛ	1	Total	С	Ν	0	Р	0
00	DA	1	49	39	1	8	1	0
60	BΔ	1	Total	С	Ν	Ο	Р	0
00	DA	1	49	39	1	8	1	0
60	BΔ	1	Total	С	Ν	Ο	Р	0
00	DA	I	49	39	1	8	1	0
60	ΒA	1	Total	\mathbf{C}	Ν	Ο	Р	0
00	DA	1	49	39	1	8	1	0
60	ΒA	1	Total	\mathbf{C}	Ν	Ο	Р	0
00	DA	1	49	39	1	8	1	0
60	BA	1	Total	С	Ν	Ο	Р	0
00	DIT	1	49	39	1	8	1	0
60	BA	1	Total	С	Ν	0	Р	0
		*	49	39	1	8	1	
60	BA	1	Total	С	Ν	0	Р	0
		<u> </u>	49	39	1	8	1	
60	BA	1	Total	С	Ν	0	Р	0
		Ŧ	49	39	1	8	1	U
60	BB	1	Total	С	Ν	0	Р	0
		Ŧ	49	39	1	8	1	0

Mol	Chain	Residues		Ato	oms			AltConf
60	BB	1	Total	С	Ν	0	Р	0
00	DD	L	49	39	1	8	1	0
60	BB	1	Total	С	Ν	0	Р	0
00	DD	T	49	39	1	8	1	0
60	BB	1	Total	С	Ν	Ο	Р	0
00	DD	T	49	39	1	8	1	0
60	BB	1	Total	С	Ν	Ο	Р	0
00	DD	T	49	39	1	8	1	0
60	BB	1	Total	\mathbf{C}	Ν	Ο	Р	0
00		I	49	39	1	8	1	0
60	BB	1	Total	\mathbf{C}	Ν	Ο	Р	0
		1	49	39	1	8	1	0
60	BB	1	Total	С	Ν	Ο	Р	0
		1	49	39	1	8	1	0
60	BB	1	Total	С	Ν	Ο	Р	0
		Ŧ	49	39	1	8	1	Ŭ
60	BB	1	Total	С	Ν	Ο	Р	0
		*	49	39	1	8	1	0
60	BB	1	Total	\mathbf{C}	Ν	0	Р	0
		1	49	39	1	8	1	U

Continued from previous page...

• Molecule 61 is (1R)-2-{[{[(2S)-2,3-DIHYDROXYPROPYL]OXY}(HYDROXY)PHOSPH ORYL]OXY}-1-[(PALMITOYLOXY)METHYL]ETHYL (11E)-OCTADEC-11-ENOATE (three-letter code: PGV) (formula: C₄₀H₇₇O₁₀P).

Mol	Chain	Residues	I	Aton	ns		AltConf
61	17	1	Total	С	Ο	Р	0
01	AL	L	51	40	10	1	0
61	17	1	Total	С	Ο	Р	0
01	AL	L	51	40	10	1	0
61	10	1	Total	С	Ο	Р	0
01	AU	L	51	40	10	1	0
61	10	1	Total	С	0	Р	0
01	AU	L	51	40	10	1	0
61	10	1	Total	С	Ο	Р	0
01	AU	T	51	40	10	1	0
61	10	1	Total	С	Ο	Р	0
01	AU	L	51	40	10	1	0
61	10	1	Total	С	Ο	Р	0
01	AU	L	51	40	10	1	0
61	10	1	Total	С	Ο	Р	0
01	AU	T	51	40	10	1	0
61	4.0	1	Total	С	Ο	Р	0
01	AU	T	51	40	10	1	0
61	40	1	Total	С	Ο	Р	0
01	AU	T	51	40	10	1	0
61	40	1	Total	С	Ο	Р	0
01	AU	T	51	40	10	1	0
61	4.0	1	Total	С	Ο	Р	0
01	110	I	51	40	10	1	0
61	A 1	1	Total	С	Ο	Р	0
		T	51	40	10	1	0
61	A 1	1	Total	С	Ο	Р	0
		1	51	40	10	1	0
61	A 1	1	Total	С	Ο	Р	0
		1	51	40	10	1	0
61	A 1	1	Total	С	Ο	Р	0
		-	51	40	10	1	
61	B8	1	Total	С	Ο	Р	0
	20	-	51	40	10	1	
61	BA	1	Total	С	Ο	Р	0
		-	51	40	10	1	
61	BA	1	'Total	C	O	Р	0
		-	51	40	10	1	
61	BA	1	Total	C	0	Р	0
		-	51	40	10	1	
61	BA	1	Total	С	0	Р	0
		-	51	40	10	1	
61	BA	1	Total	C	0	Р	0
		-	51	40	10	1	

Mol	Chain	Residues	A	Aton	ns		AltConf
61	ΡΛ	1	Total	С	Ο	Р	0
01	DA	1	51	40	10	1	0
61	ΒΛ	1	Total	С	Ο	Р	0
01	DA	1	51	40	10	1	0
61	ΒΛ	1	Total	С	Ο	Р	0
01	DA	1	51	40	10	1	0
61	BB	1	Total	С	Ο	Р	0
01	DD	1	51	40	10	1	0
61	BB	1	Total	С	Ο	Р	0
01	DD	1	51	40	10	1	0
61	BB	1	Total	С	Ο	Р	0
01	DD	1	51	40	10	1	0
61	BB	1	Total	С	Ο	Р	0
01	DD	1	51	40	10	1	0
61	BB	1	Total	С	Ο	Р	0
01	DD	1	51	40	10	1	0
61	BB	1	Total	\mathbf{C}	Ο	Р	0
		I	51	40	10	1	0
61	BB	1	Total	\mathbf{C}	Ο	Р	0
	עע		51	40	10	1	

Continued from previous page...

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 16S RIBOSOMAL RNA

• Molecule 3: FtsQ nascent chain

 \bullet Molecule 6: 30S ribosomal protein S2

• Molecule 13: 30S ribosomal protein S9

Chain AI:	90%	9% •
A1 Y6 R17 R17 R44 F44 K69 K69 K69	0109 110 110 110 110 110 110 110 110	
• Molecule 14: 30S ribos	omal protein S10	
Chain AJ:	88%	12%
M1 H16 L17 L17 L17 R31 R31 R34 R34 R34 R34 N58 K59 K59	E103	
• Molecule 15: 30S ribos	omal protein S11	
Chain AK:	94%	6%
A1 K2 K2 K3 A3 A3 A3 A3 K1 K10 V11 V11 K13 K13 K13 K13	K79 P88 A101 V128	
• Molecule 16: 30S ribos	omal protein S12	
Chain AL:	96%	•
A1 H13 P41 P41 N45 K50 K50 K50 K109 R109 R109		
• Molecule 17: 30S ribos	omal protein S13	
Chain AM:	92%	7%
A1 R2 13 116 87 869 87 811 811 811 811 811	X116 71 17	
• Molecule 18: 30S ribos	omal protein S14	
Chain AN:	88%	12%
A1 A21 A28 A28 A28 A3 A33 A43 A43 B53 B53 B53 B53 B53 R64	Q85 G67 G67 R68 R68 N100	
• Molecule 19: 30S ribos	omal protein S15	

Chain AO:	97%	••
R 16 16 173 173 1897 1897		
• Molecule 20: 30S ribosomal prot	ein S16	
Chain AP:	95%	
H1 A27 B47 B47 A81 A81 A81 A81		
• Molecule 21: 30S ribosomal prot	ein S17	
Chain AQ:	87%	13%
T1 R5 V11 V11 V11 V11 V12 R15 K15 K18 K18 K18 K18 K18 K18 K18 K18 K18 K18		
• Molecule 22: 30S ribosomal prot	ein S18	
Chain AR:	92%	8%
A1 R2 F4 R5 R6 R6 R1 R6 R1 22 426 A26 A26 A26 A26 A26		
• Molecule 23: 30S ribosomal prot	ein S19	
Chain AS:	96%	
P1 P8 P8 P8 P8 P8 P8 P8 P8 P8 P8		
• Molecule 24: 30S ribosomal prot	ein S20	
Chain AT:	97%	
A1 133 233 2440 440 467 868 868 868 868 868 868		
• Molecule 25: 30S ribosomal prot	ein S21	
Chain AU:	94%	6%
P1 V2 V2 F18 R33 R33 R33 R34 R34 R34 R34 R34 F16 V70		

• Molecule 26: §	5S RIBOSOMAL RI	NА	
Chain B7:		82%	18%
U 62 63 64 65 69 69 610 611	613 U14 616 616 616 618 621 719 621 622 623 623 623 623	C22 C22 A29 C31 C33 C33 C33 C33 C33 C33 C33 C33 C33	A45 A46 A46 C49 C49 A50 G54 A53 C55 C55 C55 C55 C55 C55 C55 C55 C55 C
661 662 663 664 664 667 667 669 669 771 771	A73 174 675 675 675 775 773 773 773 773 773 773 773 773 7	000 000 000 000 000 000 000 000 000 00	6105 6106 6106 6107 6107 7100 7110 6111 6111
• Molecule 27: 2	23S RIBOSOMAL R	RNA	
Chain B8:		80%	18% •
G1 G2 G2 G2 G3 G3 G3 G3 G10 C11	A13 A14 A14 G15 G15 G16 A19 C20 G20 G26 G26 G26 G26	424 228 128 129 129 129 129 129 129 129 129 129 129	645 646 646 648 651 853 853 853 855 855 855 855 855 855 855
C61 U62 A63 A64 U65 U65 C66 C69 C69 C69 C69 C70 A71	473 474 675 675 676 677 677 677 677 677 681 082 082 883 685 685	U8 08 489 489 490 491 492 493 493 495 495 4101 4101 4103 4103 4103	C105 C105 C106 G107 G107 G108 C108 C108 C108 C108 C115 C115 C115 C115 C115 C115 C115 C11
G121 G122 G122 G123 A125 C128 C128 C128 A131 A132 A133	U133 G134 G134 G135 G135 U135 U135 U138 U138 C143 A142 C143 C144 C144 C145 C145 C145	U144 144 144 155 155 155 155 155 155 155	A165 A166 A166 G166 G166 G168 A177 A177 A177 G176 G177 G177 G177 G177
A181 A182 C183 C184 G184 G185 G187 G187 G187 A190 A191 C192 C192	U193 G194 G194 A195 C198 C198 C198 C198 U200 C201 U202 C201 C201 C203 C205 G205 C205	A20 (A20 (C208 C210 C211 C211 A213 A215 A215 A215 A219 A216 A219 A216 A219 A219 A216 A219 A221 A221 A222 A221 V223	C225 A226 A226 C228 C228 G230 G230 G230 G236 G235 C238 C238 C238 C238 C238 C239 C230 C230 C230 C230 C230 C230 C230 C230
241 242 244 244 245 245 245 249 251 2550 2551 2551 2551	253 2554 2255 2255 2255 2255 2255 2255 2	2265 269 271 271 271 275 275 275 275 275 275 275 275 275 275	2285 2286 2291 2294 2295 2295 2295 2295 2295 2295 2295
G301 C302 C302 C303 C305 C305 C305 C305 G307 A310 A311 A311 A311	G313 G314 G315 G315 G315 G315 G317 G315 G317 G315 G317 G315 G316 G325 G325 G325 G325 G325	1922() 1922() 1922() 1923() 1933() 19	A345 A346 A346 A346 A347 A347 A347 A347 A347 A347 A355 C355 C355 C355 C355 C355 C355 C355
C361 A362 A365 C363 C364 C365 C366 C366 C366 C366 C366 C366 C366	U373 A374 A374 G376 G377 G377 G381 A382 G381 A382 C385 C385 C385 C386 C386 C386 C386 C386 C386 C386	40389 6388 6389 6389 1392 1392 1395 1395 1395 1395 1395 1400 1403 1403 1403 1403 1403	U405 6406 6407 6408 6410 6411 6411 6413 6413 6413 6413 6414 7415 7414 7415 7416 7417 7419 7419
C421 A422 A423 G424 G425 C426 C426 C426 A428 A430 U431 U431	C433 C433 C435 C435 C435 C435 C435 C435	0444 0444 0445 0455 0455 0455 0455 0455	6465 6466 6467 6467 6467 6468 6468 6468 6474 6477 6475 6475 6475 6475 8447 8447
6481 A482 A483 C484 C485 C485 C485 G487 G489 G491 A491	G493 G495 G495 G495 A497 U499 G498 G498 G498 G499 A501 A501 A503 A503 A503 A503 A503 A503 A503 A503	A607 A607 C5109 C510 C510 C511 A513 A513 A513 A513 A513 C516 C516 C516 C516 C516 C516 C517 C512 C522 C523 C524	US25 4526 4526 4528 4528 4529 6531 0531 0531 6533 4538 4538 4538 4538 6537 4538 6537
A541 A541 C642 G543 G544 U546 A547 A547 G549 G551 G551 U555	0553 0555 0555 0555 0555 0555 0555 0555	U 005/ U 0568 0570 0570 0571 0571 0573 0574 4575 4575 6579 0579 0579 0579 0579 0579 0579 0579 0	CC885 A586 A586 A586 U5837 A589 A590 C595 C595 C595 C595 C595 C595 C595 C
501 502 506 506 506 507 507 507 508 508 508 508 508 5111 111	113 114 1116 1116 1116 1119 1119 1119 1119	227 229 259 253 253 253 253 253 253 253 253 253 253	445 446 446 550 551 553 553 555 555 555 555 555 555 555
A A A A A A A A A A A A A A A A A A A	A 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2000 2000 2000 2000 2000 2000 2000 200	
A661 6662 6663 6663 6663 0665 4666 A666 A668 A668 A668 A668 A668 A668	6673 6674 6674 6674 A675 A675 6677 6679 6681 0682 0681 0682 0682 0682 0682 0682 0682	0680 0680 4689 4689 4689 4689 4689 4689 4689 4689	A705 6707 6707 6707 6711 0713 6713 6713 6713 6713 6713 6713 6713 6
A721 A722 C723 C723 G725 G725 G725 G726 G728 G728 G728 C723 C731	6733 4734 4734 4735 6735 6735 6735 6737 6736 6735 6736 6735 740 744 1746 0745 0745 0745	0.44 0.44 749 7750 8751 8755 8755 8755 8755 8755 6755 6755 6755	C765 U766 U766 U766 U769 C772 C772 C772 C772 C772 C772 C773 C775 C775 C775 C775 C776 C776 C776 C777 C777
A781 A782 A782 G784 G784 G785 C785 C785 A788 A788 A789 C791 A792	A 793 A 794 A 794 C 795 G 797 G 797 G 797 G 797 G 797 G 797 G 797 G 797 G 797 G 801 A 800 G 805 G 805 G 805 G 805	UB00 UB01 UB11 UB11 UB11 CB12 CB15 CB15 CB15 CB15 CB15 CB15 CB15 CB15	4825 1826 1826 1828 1828 4823 4833 4833 4833 4833 4833 6834 6835 6835 6835 6835 6835 6835 6835 6836 6836

G841	U842	0843 1844	A845	U846	U847	4849 A849	U850	C851	U852	C854	G855	G856	G857	1858 1859	U860	A861	G862	A863	C865	<u>A866</u>	C867	U868	1870 1870	U871	U872	C873 C874	G875	C876	A877 A878	G879	G880	1881 (882	G 883	U884 0005	4886 A886	U887	C888	6889	G891	A892	C893	U894 U895	A896	C897	0898	A900
C901	C902	C903	4905 A905	906N	G907	4909	A910	A911	C912	G914	C915	G916	A917	A918 11919	A920	C921	C922	6923 6924	4925 A925	G926	<u>A927</u>	A928	0830	U931	U932	A933	C935	<u>A936</u>	C937 G938	G939	G940	A941 6942	A943	C944	C946 C946	A947	C948	0250	C951	G952	G953	G954 11955	G956	C957	0958 AGEO	A960
C961	G962	0963	C965	<u>6966</u>	1967 7968	0369 0369	026N	G971	A972 A973	G974	A975	G976	G977	6978 4979	A980	A981	C982	A983 A004	C985	C986	C987	A988	4990 4990	C991	C992	6993 7004	C995	A996	6997 C998	0000 0000	A1000	61002	G1003	U1004 01005	C1006	C1007	A1008	A1009	G1011 G1011	U1012	C1013	A1014	G1016	G1017	U1018	A1020
A1021	G1022	01023 61024	G1025	<mark>G1026</mark>	A1027	A1029	<mark>C1030</mark>	G1031	A1032	G1034	U1035	G1036	G1037	G1038 A1039	A1040	G1041	G1042	C1043	C1045	A1046	G1047	A1048	C1049 A1050	G1051	C1052	C1053 A1054	G1055	G1056	A1057 U1058	G1059	U1060	01061 G1062	G1063	C1064	U1066	A1067	G1068	A1059	G1071	C1072	A1073	G1074 C1075	C1076	A1077	01078	0801A
U1081	U1082	01083 A1084	A1085	A1086	G1087	A1060 A1089	A1090	G1091	C1092	U1094	A1095	A1096	U1097	A1098 61099	C1100	U1101	C1102	A1103	U1105	G1106	G1107	U1108	G1109 G1110	A1111	G1112	01113 C1114	G1115 G1115	G1116	C1117 C1118	U1119	G1120	G1121 G1122	C1123	G1124	A1126	A1127	G1128	A1129 11130	G1131	U1132	A1133	A1134 C1135	G1136	G1137	G1138 C1130	C1140
U1141	A1142	A1143 A11AA	C1145	C1146	A1147	01140 G1149	C1150	A1151	C1152	G1154	A1155	A1156	G1157	C1 158	G1160 G1160	C1161	G1162	G1163	0110 5 A1165	G1166	C1167	G1168	A1169 C1170	G1171	C1172	U1173	A1175	U1176	G1177 C1178	G1179	U1 180	01181 G1182	U1183	U1184	G1186 G1186	G1187	U1188	A1189	G1191	G1192	G1193	A1194 G1195	C1196	G1197	U1198	C1200
U1201	G1202	01203	A1205	G1206	C1207	U1209	G1210	C1211	G1212 A1213	A1214	G1215	G1216	U1217	61218 11219	G1220	C1221	U1222	G1223	61225	A1226	G1227	G1228	61229 A1230	U1231	G1232	C1233	G1235	G1236	A1237 G1238	G1239	U1240	A1241 11242	C1243	A1244	41246 A1246	A1247	G1248	01249 C1950	C1251	G1252	A1253	A1254 111255	G1256	C1257	01258	A1260
C1261	A1262	01263 11264	A1265	G1266	U1267	A1269	C1270	G1271	A1272	A1274	A1275	A1276	G1277	C1278 61279	G1280	<mark>G1281</mark>	U1282	G1283	A1285	A1286	A1287	G1288	C1289	C1291	G1292	C1293	C1295	G1296	C1297 C1298	G1299	G1300	A1302 A1302	G1303	A1304	C1306	A1307	A1308	61309 61310	G1311	U1312	U1313	C1314 C1315	U1316	G1317	01318	C1320
A1321	A1322	C1323	U1325	U1326	A1327	01329 U1329	<mark>C1330</mark>	G1331	G1332 C1332	G1334	C1335	A1336	G1337	G1338 C1339	U1340	G1341	A1342	61343 111 244	C1345	G1346	A1347	C1348	C1350 C1350	C1351	U1352	A1353 A1354	G1355	G1356	C1357 G1358	A1359	G1360	G1362 C1362	C1363	G1364	A1365 A1366	A1367	G1368	G1369 C1370	G1371	U1372	A1373	G1374 111375	C1376	G1377	A1378	01010 01380
G1381	G1382	A1383	A1385	C1386	A1387	G1389	<mark>U1390</mark>	U1391	A1392 A1303	U1394	A1395	U1396	U1397	C1398 C1398	U1400	G1401	U1402	A1403	U1405	U1406	G1407	G1408	01409 G1410	U1411	U1412	A1413	U1415	G1416	C1417 G1418	A1419	A1420	G1422	G1423	G1424	G1428 G1426	A1427	C1428	61429 C1430	A1431	G1432	A1433	A1434 G1435	G1436	C1437	U1438 A1A20	01440
G1441	U1442	01443 C1444	G1445	C1446	C1447	G1449 G1449	<mark>G1450</mark>	C1451	G1452 A1452	C1454	G1455	G1456	U1457	01458 G1459	U1460	C1461	C1462	C1463	G1465	U1466	U1467	U1468	A1470	G1471	C1472	G1473 11177	G1475	U1476	A1477 G1478	G1479	C1480	01481 G1482	G1483	U1484	01465 U1486	U1487	C1488	C1489 A1490	G1491	G1492	C1493	A1494 A1495	A1496	U1497	C1498	G1500
G1501	A1502	A1503	A1505	U1506	C1507	A1509	G1510	G1511	C1512 11512	G1514	A1515	G1516	G1517	C1518 C1519	U1520	G1521	A1522	01523 61524	A1525	C1526	G1527	A1528	G1530	C1531	A1532	C1533 111 534	A1535	C1536	G1537 G1538	U1539	G1540	C1541 11542	G1543	A1544	G1546	C1547	A1548	A1549	A1551	A1552	A1553	01554 C1555	C1556	C1557	C1558 111 550	01560 G1560
C1561	U1562	01563	C1565	A1566	G1567	A1569	A1570	A1571	A1572	C1574	C1575	U1576	C1577	015/8 41579	A1580	<mark>G1581</mark>	C1582	A1583	C1585	A1586	G1587	G1588	01589 A1590	A1591	C1592	A1593 111 504	C1595	A1596	A1597 A1598	U1599	C1600	011601 111602	A1603	C1604	C1606	C1607	A1608	A1609 A1610	C1611	C1612	G1613	A1614 C1615	A1616	C1617	A1618	G1620
U1621	G1622	61623 111624	C1625	A1626	G1627	01629 U1629	A1630	G1631	A1632	A1634	A1635	U1636	A1637	C1638 C1639	A1640	A1641	G1642	G1643	G1645	C1646	U1647	U1648	G1650 A1650	G1651	A1652	G1653 A1654	A1655	C1656	01657 C1658	G1659	G1660	01661 11662	G1663	A1664	G1666	G1667	A1668	A1669	U1671	A1672	G1673	G1674 C1675	A1676	A1677	A1678 A1670	01680
G1681	G1682	01683 61684	C1685	<mark>C1686</mark>	G1687 111 600	01000 A1689	A1690	C1691	U1692	C1694	G1695	G1696	G1697	A1698 C1699	A1700	A1701	G1702	G1703	A1705	C1706	G1707	C1708	01710 G1710	A1711	U1712	A1713	G1715	U1716	A1717 G1718	G1719	U1720	61721 A1722	G1723	G1724	C1726	C1727	C1728	01/29 C1730	G1731	C1732	G1733	G1734 A1735	U1736	G1737	G1738 11720	61740
C1741	U1742	61743 A1744	A1745	A1746	01747	01/40 A1749	G1750	U1751	C1752	A1754	A1755	G1756	A1757	01758 41759	C1760	C1761	A1762	G1763	U1765	G1766	G1767	C1768	01 770 G1 770	C1771	A1772	A1773	U1775	G1776	01777 01778	U1779	A1780	U1/81 U1/782	A1783	A1784	A1786	A1787	C1788	A1/89	A1791	G1792	C1793	A1794 C1795	U1796	G1797	01798 71700	C1800
A1801	A1802	A1803	A1805	C1806	G1807	A1000 A1809	A1810	G1811	U1812	G1814	A1815	C1816	G1817	01818	U1820	A1821	C1822	G1823	01825	G1826	U1827	G1828	A 1829 C1830	G1831	C1832	C1833 111834	G1835	C1836	C1837 C1838	G1839	G1840	01841 G1842	C1843	C1844	G1846	A1847	A1848	G1849	U1851	U1852	A1853	A1854 111855	01856 U1856	G1857	A1858 111050	G1860

G1861	G1862	G1863 111864	0100 1 U1865	A1866	G1867 C1868	G1869	C1870	A10/1 A1872	G1873	C1874	61875 A1076	A 10/0	G1878	C1879	U1880	01881	U1883	G1884	A1885	U1886	C1887	010000 01880	A1890	G1891	C1892	C1893	C1894 C1895	G1896	G1897	U1898	A1899	A1901	C1902	61903 61004	C1905	G1906	G1907	C1909	G1910	U1911	A1912	A1913 C1914	U1915	A1916	U1917 A1918	A1919	C1920
G1921	G1922	U1923 C1924	C1925 C1925	U1926	A1927 A1928	G1929	G1930	01931 A1932	G1933	C1934	61935 A1026	A1937	A1938	U1939	U1940	C1941	01943 01943	U1944	G1945	U1946	C1947	01940 61949	G1950	U1951	A1952	A1953	G1954 111955	01956	C1957	C1958	41959 A1960	C1961	C1962	01963 61964	C1965	A1966	C1967	01969	A1970	U1971	G1972	G1973 C1974	G1975	U1976	A1977 A1978	U1979	G1980
A1981	U1982	G1983 C1984	C1985	C1986	A198/ G1988	G1989	C1990	01991 G1992	U1993	C1994	01995 71006	1997 1997	A1998	C1999	C2000	C2001	A2003	G2004	A2005	C2006	U2007	00000	G2010	U2011	G2012	A2013	A2014 A2015	U2016	U2017	G2018	A2019 A2020	C2021	U2022	C2023	C2025	U2026	G2027	02029 G2029	A2030	A2031	G2032	A2033 U2034	G2035	C2036	A2037 C2038	U2039	G2040
U2041	A2042	C2043	C2045	G2046	C2047 G2048	G2049	C2050	A2051 A2052	G2053	A2054	C2055	G2057	A2058	A2059	A2060	02061 02062	C2063	C2064	C2065	C2066	G2067	02060	A2070	A2071	C2072	C2073	U2074 112075	U2076	A2077	C2078	02079 42080	U2081	A2082	G2083	U2085	U2086	G2087	A2000 C2089	A2090	C2091	U2092	62093 A2094	A2095	C2096	A2097 112098	U2099	G2100
A2101	G2102	C2103 C2104	U2105	U2106	62107 A2108	U2109	G2110 ID111	02112 G2112	U2113	A2114	62115 60116	42115 A2117	U2118	A2119	G2120	62121 112122	G2123	G2124	G2125	A2126	G2127	12120 C0129	U2130	U2131	U2132	G2133	A2134 A2135	G2136	U2137	G2138	02139 G2140	G2141	A2142	C2143 C2144	C2145	C2146	A2147	uz 140 U2 149	C2150	U2151	G2152	02153 A2154	U2155	G2156	G2157 42158	G2159	C2160
C2161	G2162	A2163 C2164	C2165	U2166	02167 G2168	A2169	A2170	N2171 U2172	A2173	C2174	C2175	AZ176 C2177	C2178	C2179	U2180	U2181 112182	A2183	A2184	U2185	G2186	U2187	02100	G2190	A2191	U2192	G2193	U2194 112195	C2196	U2197	A2198	A2199 C2200	G2201	U2202	02203	42205 A2205	C2206	C2207	02209 (3209	U2210	A2211	A2212	02213 C2214	C2215	G2216	G2217 C2218	U2219	U2220
G2221	C2222	G2223 G2223	A2225	C2226	62228 G2228	U2229	G2230	02232 C2232	U2233	G2234	62235 110026	02230 G2237	G2238	G2239	U2240	A2241	U2243	U2244	U2245	G2246	A2247	02240	G2250	G2251	G2252	G2253	C2254 C2255	G2256	U2257	C2258	022560	C2261	U2262	C2263	U2265	A2266	A2267	62269	A2270	G2271	U2272	A2213 A2274	C2275	G2276	G2277	G2279	G2280
A2281	G2282	C2283	C2285	G2286	A228/ A2288	G2289	G2290	U2292	G2293	G2294	C2295	02290 A2297	A2298	U2299	C2300	C2301	G2303	G2304	U2305	C2306	G2307	42300	C2310	A2311	U2312	C2313	A2314 G2315	G2316	A2317	G2318	62319 112320	U2321	A2322	62323 117374	G2325	C2326	A2327	N2329	G2330	G2331	C2332	A2333 U2334	A2335	A2336	G2337	C2339	A2340
G2341	C2342	U2343 112344	G2345	A2346	02347 02348	G2349	C2350	42351 A2352	G2353	C2354	62355 110252	02350	A2358	C2359	G2360	62361 72362	G2363	C2364	G2365	A2366	G2367	02200 47369	G2370	G2371	U2372	G2373	C2374 C2375	A2376	A2377	A2378	G2379 C2380	A2381	G2382	62383 112384	C2385	A2386	U2387	A2300 G2389	U2390	G2391	A2392	02394 C2394	C2395	G2396	G2397 112398	G2399	G2400
U2401	U2402	C2403	G2405	A2406	A 2407 U 2408	G2409	G2410	A2411 A2412	G2413	G2414	62415 COA16	C2410 C2417	A2418	U2419	C2420	62421	U2423	C2424	A2425	A2426	C2427	02420	A2430	U2431	A2432	A2433	A2434 A2435	G2436	G2437	U2438	A2439 C2440	U2441	C2442	C2443	G2445	G2446	G2447	A 2440 U 2449	A2450	A2451	C2452	A 2453 G 2454	G2455	C2456	U2457 C2458	A2459	U2460
A2461	C2462	C2463 C2464	C2465	C2466	C2467 A2468	A2469	G2470	A 24 / 1 G 24 7 2	U2473	U2474	0.2475 AAA76	A 24 / 0 112477	A2478	U2479	C2480	62481 A 2482	C2483	G2484	G2485	C2486	G2487	02400 1124.89	G2490	U2491	U2492	U2493	G2494 G2495	C2496	A2497	C2498	02499	C2501	G2502	A2503	G2505	U2506	C2507	G2509	C2510	U2511	C2512	A2513 U2514	C2515	A2516	C2517 A7518	U2519	C2520
C2521	U2522	G2523 C2524	G2525	G2526	U2528	G2529	A2530	62532 G2532	U2533	A2534	62535 00536	112537	C2538	C2539	C2540	A2541 A7547	G2543	G2544	G2545	U2546	A2547	07540	G2550	C2551	U2552	G2553	U2554 112555	C2556	G2557	C2558	C2559 A2560	U2561	U2562	U2563 A7564	A2565	A2566	G2567	02269 G2569	G2570	U2571	A2572	G2574	C2575	G2576	A2577 C2578	C2579	U2580
G2581	G2582	G2583 117584	U2585	U2586	A2587 G2588	A2589	A2590	G2592	U2593	C2594	G2595	0,2590	A2598	G2599	A2600	0.2601 A 2602	G2603	U2604	U2605	C2606	G2607	012600	C2610	C2611	C2612	U2613	A2614 112615	C2616	U2617	G2618	C2619 C2620	G2621	U2622	62623 C2624	G2625	C2626	G2627	U2629	G2630	G2631	A2632	62633 A2634	A2635	C2636	U2637 C2638	A2639	G2640
G2641	G2642	G2643 C2644	G2645	C2646	02647 G2648	C2649	U2650	C2652	U2653	A2654	62655 117652	02020 42657	C2658	G2659	A2660	62661 A 7667	G2663	G2664	A2665	C2666	C2667	02000 120669	A2670	G2671	U2672	G2673	62674 A 2675	C2676	G2677	C2678	A2679 112680	C2681	A2682	C2683	G2685	G2686	U2687	U2689	U2690	C2691	G2692	G2694	U2695	U2696	G2697 117698	C2699	A2700
U2701	G2702	C2703 C2704	A2705	A2706	02708 G2708	G2709	C2710	C2712	U2713	G2714	C2/15	C2/10 C2717	G2718	G2719	U2720	A2/21	C2723	U2724	A2725	A2726	A2727	07120	C2730	G2731	G2732	A2733	A2735	A2736	G2737	A2738	02739 A2740	A2741	G2742	02/43 C2744	C2745	U2746	G2747	A2140 A2749	A2750	G2751	C2752	A2753 U2754	C2755	U2756	A2757 A7758	G2759	C2760
A2761	C2762	G2763 47764	A2765	A2766	U2768	U2769	G2770	C2772	C2773	C2774	62775 10776	A2110	A2778	U2779	G2780	A2/81	U2783	U2784	C2785	U2786	C2787	02700	U2790	G2791	A2792	C2793	C2794 C2795	U2796	U2797	U2798	A2800	G2801	G2802	62803 112804	C2805	C2806	U2807	42809 A2809	A2810	G2811	G2812	A2813 A2814	C2815	G2816	U2817 112818	G2819	A2820
A2821	G2822	A2823 C2824	G2825	A2826	G2828	A2829	C2830	U2832	U2833	G2834	A2835	0.2030 A.28.37	G2838	G2839	C2840	C2841	G2843	G2844	U2845	G2846	U2847	07040	A2850	A2851	G2852	C2853	G2854 C2855	A2856	G2857	C2858	42860 42860	U2861	G2862	C2863	U2865	U2866	G2867	<u>в 2000</u> G2869	C2870	U2871	A2872	A2873 C2874	C2875	G2876	G2877 112878	A2879	C2880

U2881 A2883 U22883 U22886 A2885 A2885 A2886 A2896 G2896 G2894 G2894 G2894 U22897 U22897 U22896 U22890 U22890 U22890 U22890 U22890 U22890 U22890 U22890 U22890 U22800 U22890

• Molecule 28: Preprotein translocase secY subunit

- Molecule 31: 50S ribosomal protein L2 Chain B6: 93% 6% • • Molecule 32: 50S ribosomal protein L3 Chain BD: 90% 10% • Molecule 33: 50S ribosomal protein L4 Chain BE: 94% 6% • Molecule 34: 50S ribosomal protein L5 Chain BF: 90% 9% • Molecule 35: 50S ribosomal protein L6 Chain BG: 93% 7% • • Molecule 36: 50S ribosomal protein L9 17% Chain BH: 88% 11% • 2/1 2/1
- Molecule 37: 50S ribosomal protein L11

Chain BI:	96%	• •
A1 L10 A35 A35 A35 A35 A35 A35 A35 A35		
• Molecule 38: 50S riboso	mal protein L13	
Chain BJ:	95%	5%
M1 A20 A20 A20 H40 K68 K68 K111 E129	1 1 1 1 1 1 1	
• Molecule 39: 50S riboso	omal protein L14	
Chain BK:	91%	9%
M V35 C36 C36 C36 C36 C36 C36 C36 C31 C31 C31 C31 C31 C31 C31 C31 C31 C31	L123	
• Molecule 40: 50S riboso	omal protein L15	
Chain BL:	97%	
M1 649 653 897 8113 81126 81126 81126		
• Molecule 41: 50S riboso	omal protein L16	
Chain BM:	92%	7% •
M1 443 856 856 856 856 856 871 872 173 173 173 872 173 173 173 173	A136 M136	
• Molecule 42: 50S riboso	omal protein L17	
Chain BN:	89%	11%
M1 R4 B8 C110 C110 C110 B8 R63 R63 R63 R63 R63	R71 D72 P70 D72 F80 A91 A122 A122 A123 A123 A124 A123	
• Molecule 43: 50S riboso	omal protein L18	
Chain BO:	97%	
M1 K3 K3 K16 M16 M113 F117		

• Molecule 44: 50S	s ribosomal protein L19	
Chain BP:	91%	9%
81 V25 R36 R50 L54 L54 C68	H76 B81 B87 R87 R87 R199 A106 A106 A106 A106 A113 A114	
• Molecule 45: 50S	5 ribosomal protein L20	
Chain BQ:	94%	6%
A1 A9 A26 A26 V33 K63	M71 681 0101 A117	
• Molecule 46: 508	S ribosomal protein L21	
Chain BR:	94%	5% •
M1 V2 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3	1101 5102 A103	
• Molecule 47: 50S	S ribosomal protein L22	
Chain BS:	92%	7% •
M1 812 812 812 812 812 812 813 853 853	A64 D77 E78 A89 R110	
• Molecule 48: 50\$	S ribosomal protein L23	
Chain BT:	89%	9% •
M1 V10 L11 T29 K36 K36 L61	K66 R 99 R 99	
• Molecule 49: 50S	S ribosomal protein L24	
Chain BU:	95%	•••
A1 V12 S29 V48 P49 P49 F49 A75	Key Key	
• Molecule 50: 50S	S ribosomal protein L25	
Chain BV:	98%	•

• Molecule 51: 50S ribosomal protein L27

Chain BW:	94%	6%
A1 K23 G27 G27 G27 G2 C5 F3 F73 E84		
• Molecule 52: 50S ribe	osomal protein L28	
Chain BX:	91%	9%
81 R2 V6 N15 R26 R26 R26 R26 R26 R26 R26 R26 R26 R26	◆ ◆ <i>X</i> xx 191	
• Molecule 53: 50S ribe	osomal protein L29	
Chain BY:	95%	5%
M1 K2 N27 L37 A63		
• Molecule 54: 50S ribe	osomal protein L30	
Chain BZ:	93%	7%
A1 48 19 810 855 858 858		
• Molecule 55: 50S ribe	osomal protein L32	
Chain B0:	96%	·
A1 K81 A44 K56		
• Molecule 56: 50S ribe	osomal protein L33	
Chain B1:	94%	6%
A1 17 133 145 H45 K64		
• Molecule 57: 50S rib	osomal protein L34	
Chain B2:	87%	11% •
	PROTEIN DATA BANK	

• Molecule 58: 50S ribosomal protein L35

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	85664	Depositor
Resolution determination method	Not provided	
CTF correction method	DEFOCUS GROUP VOLUMES	Depositor
Microscope	FEI POLARA 300	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	22	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	4500	Depositor
Magnification	38000	Depositor
Image detector	KODAK SO-163 FILM	Depositor
Maximum map value	6.823	Depositor
Minimum map value	-3.534	Depositor
Average map value	0.051	Depositor
Map value standard deviation	0.456	Depositor
Recommended contour level	0.5	Depositor
Map size (Å)	396, 396, 396	wwPDB
Map dimensions	320, 320, 320	wwPDB
Map angles $(^{\circ})$	90, 90, 90	wwPDB
Pixel spacing (Å)	1.2375, 1.2375, 1.2375	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: PGV, PEV

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	B	ond lengths	Bond angles	
NIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	AA	1.60	46/37039~(0.1%)	2.50	4339/57778~(7.5%)
2	AX	1.56	0/256	2.32	28/394~(7.1%)
3	AV	1.61	1/1842~(0.1%)	2.43	211/2870~(7.4%)
4	AZ	0.98	0/795	1.16	0/1082
5	A0	0.96	1/1667~(0.1%)	0.95	3/2240~(0.1%)
5	A1	0.97	1/1667~(0.1%)	0.95	0/2240
6	AB	0.92	0/1904	0.98	1/2565~(0.0%)
7	AC	1.00	0/1852	1.06	1/2490~(0.0%)
8	AD	1.04	0/1665	0.99	0/2227
9	AE	0.97	0/1239	1.03	0/1664
10	AF	0.99	0/1121	1.06	0/1509
11	AG	1.03	0/1422	1.01	2/1908~(0.1%)
12	AH	0.96	0/989	1.01	0/1326
13	AI	1.12	0/1048	1.01	0/1394
14	AJ	1.03	0/835	1.03	0/1127
15	AK	1.05	0/982	1.05	0/1323
16	AL	1.07	0/969	1.01	0/1300
17	AM	1.05	0/919	0.99	1/1226~(0.1%)
18	AN	1.07	0/817	1.05	1/1088~(0.1%)
19	AO	1.06	0/724	0.92	0/966
20	AP	1.07	0/659	1.03	0/884
21	AQ	0.99	0/681	1.05	0/913
22	AR	1.14	0/637	1.05	2/851~(0.2%)
23	AS	0.96	0/744	0.96	0/995
24	AT	0.96	0/676	0.94	0/895
25	AU	1.18	0/598	0.99	0/792
26	B7	1.59	2/2873~(0.1%)	2.49	325/4478~(7.3%)
27	B8	1.60	$100\overline{/69822}\ (0.1\%)$	2.50	$817\overline{1/108926}$ (7.5%)
28	BA	1.68	7/3439~(0.2%)	1.14	15/4662~(0.3%)
29	BB	0.98	1/902~(0.1%)	1.05	1/1228~(0.1%)
30	B5	0.92	0/1748	0.97	0/2355
31	B6	1.04	$0/2\overline{131}$	1.03	1/2863~(0.0%)

Mal	Chain	B	Bond lengths	Bond angles	
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
32	BD	0.97	0/1586	1.08	4/2134~(0.2%)
33	BE	0.95	0/1571	1.01	2/2113~(0.1%)
34	BF	1.01	0/1444	1.06	1/1937~(0.1%)
35	BG	0.96	0/1343	1.06	4/1816~(0.2%)
36	BH	0.93	0/1122	1.05	0/1515
37	BI	0.86	0/1046	1.00	1/1410~(0.1%)
38	BJ	0.97	0/1152	1.01	0/1551
39	BK	1.03	0/956	1.03	0/1279
40	BL	1.04	0/1062	0.98	1/1413~(0.1%)
41	BM	1.03	0/1093	1.06	2/1460~(0.1%)
42	BN	1.10	0/1021	1.03	1/1364~(0.1%)
43	BO	1.07	0/910	0.98	0/1219
44	BP	1.06	0/929	1.03	0/1242
45	BQ	1.09	0/960	1.00	2/1278~(0.2%)
46	BR	1.01	0/829	1.07	1/1107~(0.1%)
47	BS	0.99	0/864	1.04	1/1156~(0.1%)
48	BT	0.98	0/794	1.09	1/1060~(0.1%)
49	BU	0.96	0/797	1.04	0/1062
50	BV	0.96	0/766	1.02	0/1025
51	BW	1.04	0/642	1.05	0/848
52	BX	1.09	0/635	1.04	0/848
53	BY	1.00	0/510	0.90	0/677
54	ΒZ	0.99	0/453	0.99	0/605
55	B0	1.05	0/450	0.97	0/599
56	B1	0.93	0/448	1.01	0/594
57	B2	1.25	0/380	1.06	0/498
58	B3	0.98	0/513	0.98	0/676
59	B4	1.20	$2\overline{/303}~(0.7\%)$	1.03	0/397
All	All	1.44	$16\overline{1/1692}\overline{41}~(0.1\%)$	2.16	$13\overline{123}/251\overline{442}$ (5.2%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	AA	0	72
3	AV	0	2
5	A1	0	1
7	AC	0	1
12	AH	0	1
13	AI	0	1

Mol	Chain	#Chirality outliers	#Planarity outliers
26	B7	0	2
27	B8	0	100
28	BA	0	5
34	BF	0	1
36	BH	0	1
49	BU	0	1
57	B2	0	1
All	All	0	189

The worst 5 of 161 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
28	BA	416	PHE	CG-CD2	41.52	2.01	1.38
28	BA	416	PHE	CG-CD1	39.62	1.98	1.38
28	BA	416	PHE	CE2-CZ	30.78	1.95	1.37
28	BA	416	PHE	CE1-CZ	30.54	1.95	1.37
28	BA	416	PHE	CD2-CE2	27.89	1.95	1.39

The worst 5 of 13123 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	AA	85	U	P-O3'-C3'	19.51	143.11	119.70
27	B8	670	A	P-O3'-C3'	17.35	140.52	119.70
27	B8	2076	U	P-O3'-C3'	15.69	138.53	119.70
27	B8	6	A	N1-C6-N6	14.72	127.43	118.60
1	AA	1252	А	N1-C6-N6	14.43	127.26	118.60

There are no chirality outliers.

5 of 189 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	AA	102	G	Sidechain
1	AA	115	G	Sidechain
1	AA	13	U	Sidechain
1	AA	69	G	Sidechain
1	AA	95	С	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	AA	33080	0	16649	21	0
2	AX	231	0	120	0	0
3	AV	1649	0	834	1	0
4	AZ	779	0	798	4	0
5	A0	1640	0	1641	0	0
5	A1	1640	0	1641	0	0
6	AB	1872	0	1885	3	0
7	AC	1822	0	1913	2	0
8	AD	1643	0	1710	1	0
9	AE	1225	0	1273	1	0
10	AF	1101	0	1050	1	0
11	AG	1400	0	1449	0	0
12	AH	979	0	1034	1	0
13	AI	1036	0	1084	0	0
14	AJ	825	0	865	2	0
15	AK	965	0	997	0	0
16	AL	955	0	1019	2	0
17	AM	910	0	981	0	0
18	AN	805	0	847	1	0
19	AO	716	0	742	0	0
20	AP	649	0	666	2	0
21	AQ	672	0	716	1	0
22	AR	626	0	651	0	0
23	AS	727	0	769	0	0
24	AT	670	0	722	2	0
25	AU	590	0	631	1	0
26	B7	2570	0	1301	0	0
27	B8	62341	0	31354	41	0
28	BA	3362	0	3511	38	0
29	BB	889	0	982	1	0
30	B5	1733	0	1824	1	0
31	B6	2092	0	2170	2	0
32	BD	1565	0	1616	1	0
33	BE	1552	0	1619	1	0
34	BF	1420	0	1460	1	0
35	BG	1323	0	1374	0	0
36	BH	1111	0	1148	2	0
37	BI	1032	0	1088	0	0
38	BJ	1129	0	1162	0	0
39	BK	947	0	1023	0	0
40	BL	1053	0	1129	1	0

atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
41	BM	1074	0	1157	1	0
42	BN	1008	0	1045	1	0
43	BO	900	0	935	0	0
44	BP	917	0	965	0	0
45	BQ	947	0	1022	0	0
46	BR	816	0	839	1	0
47	BS	857	0	922	0	0
48	BT	787	0	846	0	0
49	BU	789	0	847	0	0
50	BV	753	0	780	0	0
51	BW	634	0	656	0	0
52	BX	625	0	655	0	0
53	BY	509	0	543	0	0
54	BZ	449	0	491	0	0
55	B0	444	0	461	0	0
56	B1	441	0	485	2	0
57	B2	377	0	418	1	0
58	B3	504	0	574	1	0
59	B4	302	0	343	0	0
60	A0	1078	0	1694	1	0
60	A1	1225	0	1925	4	0
60	AZ	245	0	385	0	0
60	B8	294	0	462	2	0
60	BA	1568	0	2464	34	0
60	BB	539	0	847	0	0
61	A0	510	0	760	0	0
61	A1	204	0	304	2	0
61	AZ	102	0	152	0	0
61	B8	51	0	76	0	0
61	BA	408	0	608	1	0
61	BB	357	0	532	0	0
All	All	163040	0	119641	141	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 0.

The worst 5 of 141 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
28:BA:416:PHE:CD1	28:BA:416:PHE:CE1	1.92	1.58
28:BA:416:PHE:CD2	28:BA:416:PHE:CE2	1.95	1.54

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
28:BA:416:PHE:CE2	28:BA:416:PHE:CZ	1.95	1.53
28:BA:416:PHE:CE1	28:BA:416:PHE:CZ	1.95	1.51
28:BA:416:PHE:CD1	28:BA:416:PHE:CG	1.98	1.49

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Per	centiles
4	AZ	96/98~(98%)	74 (77%)	13 (14%)	9 (9%)	0	10
5	A0	198/200~(99%)	174 (88%)	20 (10%)	4 (2%)	7	38
5	A1	198/200~(99%)	169 (85%)	23 (12%)	6 (3%)	4	28
6	AB	238/240~(99%)	190 (80%)	42 (18%)	6 (2%)	5	32
7	AC	230/232~(99%)	184 (80%)	31 (14%)	15 (6%)	1	16
8	AD	203/205~(99%)	163 (80%)	28 (14%)	12 (6%)	1	17
9	AE	164/166~(99%)	137 (84%)	21 (13%)	6 (4%)	3	24
10	AF	133/135~(98%)	109 (82%)	22 (16%)	2 (2%)	10	46
11	AG	176/178~(99%)	142 (81%)	29 (16%)	5 (3%)	5	30
12	AH	127/129~(98%)	102 (80%)	23~(18%)	2 (2%)	9	44
13	AI	127/129~(98%)	108 (85%)	11 (9%)	8 (6%)	1	17
14	AJ	101/103~(98%)	85 (84%)	9 (9%)	7 (7%)	1	15
15	AK	126/128~(98%)	106 (84%)	15 (12%)	5 (4%)	3	23
16	AL	121/123~(98%)	108 (89%)	12 (10%)	1 (1%)	19	60
17	AM	$11\overline{5/117}~(98\%)$	96 (84%)	13 (11%)	6 (5%)	2	19
18	AN	98/100~(98%)	81 (83%)	9(9%)	8 (8%)	1	12
19	AO	$8\overline{6}/88~(98\%)$	79 (92%)	5 (6%)	2 (2%)	6	34

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Per	ce	ntiles
20	AP	80/82~(98%)	73 (91%)	5~(6%)	2(2%)	5		32
21	AQ	81/83~(98%)	67 (83%)	8 (10%)	6 (7%)	1		13
22	AR	72/74~(97%)	59 (82%)	9~(12%)	4 (6%)	2		18
23	AS	89/91~(98%)	73 (82%)	12 (14%)	4 (4%)	2		22
24	AT	84/86~(98%)	76 (90%)	7 (8%)	1 (1%)	1	3	50
25	AU	68/70~(97%)	64 (94%)	4~(6%)	0	10)	100
28	BA	433/435~(100%)	313 (72%)	66~(15%)	54 (12%)	()	5
29	BB	114/116~(98%)	96 (84%)	12 (10%)	6 (5%)	2		19
30	B5	232/234~(99%)	211 (91%)	15~(6%)	6 (3%)	5		31
31	B6	270/272~(99%)	227 (84%)	31~(12%)	12 (4%)	2		22
32	BD	207/209~(99%)	172 (83%)	24 (12%)	11 (5%)	2		19
33	BE	199/201~(99%)	169 (85%)	20 (10%)	10 (5%)	2		20
34	BF	176/178~(99%)	137 (78%)	27~(15%)	12 (7%)	1		15
35	BG	174/176~(99%)	137 (79%)	28~(16%)	9~(5%)	2		19
36	BH	147/149~(99%)	108 (74%)	31 (21%)	8 (5%)	2		19
37	BI	139/141~(99%)	125 (90%)	11 (8%)	3(2%)	6		35
38	BJ	140/142~(99%)	117 (84%)	19 (14%)	4 (3%)	4		29
39	BK	121/123~(98%)	99~(82%)	16~(13%)	6~(5%)	2	2	20
40	BL	142/144~(99%)	129 (91%)	10 (7%)	3~(2%)	7		36
41	BM	134/136~(98%)	107 (80%)	17~(13%)	10 (8%)	1		13
42	BN	125/127~(98%)	104 (83%)	12 (10%)	9~(7%)	1		14
43	BO	115/117~(98%)	97 (84%)	15~(13%)	3(3%)	5		31
44	BP	112/114~(98%)	94 (84%)	11 (10%)	7~(6%)	1		17
45	BQ	115/117~(98%)	94 (82%)	15~(13%)	6~(5%)	2	2	19
46	BR	101/103~(98%)	83 (82%)	13~(13%)	5 (5%)	2		20
47	BS	108/110~(98%)	81 (75%)	18~(17%)	9~(8%)	1		12
48	BT	98/100~(98%)	71 (72%)	20 (20%)	7~(7%)	1		14
49	BU	101/103~(98%)	84 (83%)	14 (14%)	3 (3%)	4		28
50	BV	92/94~(98%)	82 (89%)	9 (10%)	1 (1%)	14	4	52
51	BW	82/84~(98%)	59(72%)	19(23%)	4 (5%)	2		20
52	BX	75/77~(97%)	57 (76%)	12 (16%)	6 (8%)	1		12

Mol	Chain	Analysed	Favoured	Allowed	Outliers	P	erce	entiles
53	BY	61/63~(97%)	48 (79%)	11 (18%)	2(3%)		4	26
54	BZ	56/58~(97%)	49 (88%)	4 (7%)	3~(5%)		2	19
55	B0	54/56~(96%)	47 (87%)	6 (11%)	1 (2%)		8	38
56	B1	52/54~(96%)	46 (88%)	5 (10%)	1 (2%)		8	38
57	B2	44/46~(96%)	31 (70%)	10 (23%)	3~(7%)		1	15
58	B3	62/64~(97%)	52 (84%)	9 (14%)	1 (2%)		9	44
59	B4	36/38~(95%)	32 (89%)	3 (8%)	1 (3%)		5	30
All	All	7128/7238 (98%)	5877 (82%)	904 (13%)	347 (5%)		4	20

5 of 347 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
4	AZ	48	TRP
4	AZ	61	VAL
4	AZ	81	LEU
5	A1	177	ARG
7	AC	206	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
4	AZ	85/85~(100%)	72~(85%)	13~(15%)	2 14
5	A0	176/176~(100%)	174~(99%)	2(1%)	73 84
5	A1	176/176~(100%)	173~(98%)	3~(2%)	60 78
6	AB	198/198~(100%)	194~(98%)	4 (2%)	55 74
7	AC	189/189~(100%)	183~(97%)	6 (3%)	39 61
8	AD	172/172~(100%)	166~(96%)	6 (4%)	36 59
9	AE	125/125~(100%)	122~(98%)	3~(2%)	49 69
10	AF	116/116~(100%)	111 (96%)	5(4%)	29 53
11	AG	146/146~(100%)	146 (100%)	0	100 100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
12	AH	104/104~(100%)	101~(97%)	3~(3%)	42	64
13	AI	106/106~(100%)	101~(95%)	5 (5%)	26	51
14	AJ	90/90~(100%)	88~(98%)	2 (2%)	52	71
15	AK	98/98~(100%)	95~(97%)	3~(3%)	40	62
16	AL	103/103~(100%)	102~(99%)	1 (1%)	76	86
17	AM	95/95~(100%)	92~(97%)	3(3%)	39	61
18	AN	83/83~(100%)	81 (98%)	2(2%)	49	69
19	AO	76/76~(100%)	74 (97%)	2(3%)	46	66
20	AP	65/65~(100%)	65 (100%)	0	100	100
21	AQ	77/77~(100%)	74 (96%)	3 (4%)	32	56
22	AR	64/64~(100%)	63~(98%)	1 (2%)	62	79
23	AS	78/78~(100%)	78 (100%)	0	100	100
24	AT	65/65~(100%)	65~(100%)	0	100	100
25	AU	60/60~(100%)	58~(97%)	2(3%)	38	61
28	BA	353/353~(100%)	326~(92%)	27 (8%)	13	37
29	BB	92/92~(100%)	88 (96%)	4 (4%)	29	53
30	B5	181/181 (100%)	178~(98%)	3(2%)	60	78
31	B6	217/217~(100%)	212~(98%)	5(2%)	50	70
32	BD	164/164~(100%)	158 (96%)	6 (4%)	34	58
33	BE	165/165~(100%)	164~(99%)	1 (1%)	86	92
34	BF	149/149~(100%)	145~(97%)	4 (3%)	44	65
35	BG	137/137~(100%)	134 (98%)	3 (2%)	52	71
36	BH	114/114 (100%)	108~(95%)	6 (5%)	22	47
37	BI	109/109~(100%)	106~(97%)	3 (3%)	43	65
38	BJ	116/116 (100%)	113~(97%)	3(3%)	46	66
39	BK	104/104~(100%)	99~(95%)	5 (5%)	25	50
40	BL	103/103~(100%)	102 (99%)	1 (1%)	76	86
41	BM	$\overline{109/109}\ (100\%)$	109 (100%)	0	100	100
42	BN	103/103~(100%)	100 (97%)	3 (3%)	42	64
43	BO	87/87~(100%)	87 (100%)	0	100	100
44	BP	99/99~(100%)	96~(97%)	3 (3%)	41	63

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
45	BQ	89/89~(100%)	89 (100%)	0	100	100
46	BR	84/84~(100%)	84 (100%)	0	100	100
47	BS	93/93~(100%)	93~(100%)	0	100	100
48	BT	84/84~(100%)	79~(94%)	5 (6%)	19	44
49	BU	84/84~(100%)	82~(98%)	2 (2%)	49	69
50	BV	78/78~(100%)	77~(99%)	1 (1%)	69	81
51	BW	62/62~(100%)	61~(98%)	1 (2%)	62	79
52	BX	67/67~(100%)	66~(98%)	1 (2%)	65	80
53	BY	55/55~(100%)	54 (98%)	1 (2%)	59	77
54	BZ	48/48~(100%)	47 (98%)	1 (2%)	53	72
55	B0	47/47~(100%)	46 (98%)	1 (2%)	53	72
56	B1	48/48~(100%)	47 (98%)	1 (2%)	53	72
57	B2	38/38~(100%)	37~(97%)	1 (3%)	46	66
58	B3	51/51~(100%)	50~(98%)	1 (2%)	55	74
59	B4	34/34~(100%)	34~(100%)	0	100	100
All	All	5911/5911 (100%)	5749 (97%)	162 (3%)	48	65

 $5~{\rm of}~162$ residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
34	BF	80	GLN
44	BP	43	GLU
35	BG	34	ARG
37	BI	95	ASP
48	BT	96	VAL

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 44 such sidechains are listed below:

Mol	Chain	Res	Type
36	BH	20	ASN
42	BN	16	HIS
36	BH	128	HIS
38	BJ	132	HIS
45	BQ	13	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	AA	1541/1542~(99%)	273~(17%)	23 (1%)
2	AX	10/11~(90%)	5~(50%)	0
26	B7	119/120~(99%)	19~(15%)	2(1%)
27	B8	2903/2904~(99%)	442 (15%)	47 (1%)
3	AV	76/77~(98%)	14 (18%)	1 (1%)
All	All	4649/4654 (99%)	753~(16%)	73 (1%)

5 of 753 RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	AA	2	А
1	AA	5	U
1	AA	7	А
1	AA	9	G
1	AA	15	G

5 of 73 RNA pucker outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
27	B8	2159	G
27	B8	2797	U
27	B8	2172	U
27	B8	2425	А
26	B7	14	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

133 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and

the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	gths	В	ond ang	les
	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
60	PEV	A0	309	-	48,48,48	0.79	1 (2%)	$51,\!53,\!53$	0.70	2 (3%)
60	PEV	BA	518	-	48,48,48	0.77	1 (2%)	$51,\!53,\!53$	0.67	2 (3%)
61	PGV	BA	516	-	50,50,50	1.06	2 (4%)	$53,\!56,\!56$	0.70	2 (3%)
60	PEV	A1	313	-	48,48,48	0.77	1 (2%)	$51,\!53,\!53$	0.73	2 (3%)
60	PEV	BB	216	-	48,48,48	0.78	1 (2%)	$51,\!53,\!53$	0.77	2 (3%)
60	PEV	A0	322	-	48,48,48	0.79	1 (2%)	$51,\!53,\!53$	0.74	2 (3%)
61	PGV	BA	515	-	50,50,50	1.05	2 (4%)	$53,\!56,\!56$	0.73	2 (3%)
60	PEV	BA	511	-	48,48,48	0.75	1 (2%)	$51,\!53,\!53$	0.70	2 (3%)
60	PEV	A0	303	-	48,48,48	0.80	1 (2%)	$51,\!53,\!53$	0.69	2 (3%)
60	PEV	A1	301	-	48,48,48	0.78	2 (4%)	51,53,53	0.71	2 (3%)
60	PEV	A1	308	-	48,48,48	0.79	1 (2%)	51,53,53	0.65	2 (3%)
60	PEV	BB	210	-	48,48,48	0.77	1 (2%)	$51,\!53,\!53$	0.72	2 (3%)
60	PEV	BA	520	-	48,48,48	0.78	1 (2%)	$51,\!53,\!53$	0.64	2 (3%)
60	PEV	BB	218	-	48,48,48	0.77	1 (2%)	$51,\!53,\!53$	0.70	2 (3%)
60	PEV	BA	503	-	48,48,48	0.79	1 (2%)	$51,\!53,\!53$	0.74	2 (3%)
61	PGV	BA	501	-	50,50,50	1.05	2 (4%)	$53,\!56,\!56$	0.81	2 (3%)
60	PEV	A0	321	-	48,48,48	0.79	1 (2%)	$51,\!53,\!53$	0.81	3 (5%)
60	PEV	A0	329	-	48,48,48	0.78	1 (2%)	51,53,53	0.72	2 (3%)
60	PEV	BA	533	-	48,48,48	2.69	1 (2%)	51,53,53	1.32	2 (3%)
60	PEV	BA	507	-	48,48,48	0.78	1 (2%)	$51,\!53,\!53$	0.69	2 (3%)
60	PEV	AZ	203	-	48,48,48	0.77	1 (2%)	$51,\!53,\!53$	0.63	2 (3%)
60	PEV	BA	502	-	48,48,48	0.77	1 (2%)	$51,\!53,\!53$	0.70	2 (3%)
60	PEV	A1	306	-	48,48,48	0.79	1 (2%)	$51,\!53,\!53$	0.63	2 (3%)
60	PEV	BB	214	-	48,48,48	0.78	1 (2%)	$51,\!53,\!53$	0.71	2 (3%)
61	PGV	AZ	207	-	50,50,50	1.05	2 (4%)	53,56,56	0.76	2 (3%)
60	PEV	AZ	206	-	48,48,48	0.78	1 (2%)	$51,\!53,\!53$	0.61	2 (3%)
60	PEV	BA	510	-	48,48,48	0.77	1 (2%)	51,53,53	0.69	2 (3%)
61	PGV	A0	304	-	50,50,50	1.06	2 (4%)	53,56,56	0.81	2 (3%)
60	PEV	BA	517	-	48,48,48	0.78	1 (2%)	51,53,53	0.69	2 (3%)
60	PEV	BA	531	-	48,48,48	0.77	1 (2%)	$51,\!53,\!53$	0.66	2 (3%)

Mal	Trune	Chain	Dec	Tinle	Bond lengths		Bond angles			
	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
60	PEV	A0	330	-	48,48,48	0.78	1 (2%)	51,53,53	0.65	2(3%)
60	PEV	BA	528	-	48,48,48	0.78	1 (2%)	51,53,53	0.73	2 (3%)
60	PEV	A0	316	-	48,48,48	0.80	1 (2%)	51,53,53	0.84	2 (3%)
60	PEV	A0	308	-	48,48,48	0.78	1 (2%)	51,53,53	0.75	2(3%)
60	PEV	BA	524	-	48,48,48	0.80	1 (2%)	51,53,53	0.70	2(3%)
60	PEV	BA	538	-	48,48,48	0.75	1 (2%)	51,53,53	0.65	2(3%)
60	PEV	A1	326	-	48,48,48	0.76	1 (2%)	51,53,53	0.68	2(3%)
61	PGV	BB	205	-	50,50,50	1.05	2 (4%)	53,56,56	0.80	2(3%)
60	PEV	BB	202	-	48,48,48	0.78	1 (2%)	51,53,53	0.71	2(3%)
60	PEV	BA	529	-	48,48,48	0.80	1 (2%)	51,53,53	0.70	2(3%)
60	PEV	BA	523	-	48,48,48	0.78	1 (2%)	51,53,53	0.74	2(3%)
60	PEV	AZ	202	-	48,48,48	0.77	1 (2%)	51,53,53	0.72	2 (3%)
60	PEV	A1	310	-	48,48,48	0.77	1 (2%)	51,53,53	0.72	2(3%)
61	PGV	BB	203	-	50,50,50	1.06	2 (4%)	53,56,56	0.76	2(3%)
60	PEV	A0	323	-	48,48,48	0.77	1 (2%)	51,53,53	0.71	2 (3%)
60	PEV	A0	326	-	48,48,48	0.76	1 (2%)	51,53,53	0.71	2(3%)
60	PEV	BA	527	-	48,48,48	0.79	1 (2%)	51,53,53	0.76	2 (3%)
60	PEV	B8	3004	-	48,48,48	0.78	1 (2%)	51,53,53	0.70	2 (3%)
60	PEV	A0	320	-	48,48,48	0.80	1 (2%)	51,53,53	0.65	2 (3%)
61	PGV	A0	318	-	50,50,50	1.06	2 (4%)	53,56,56	0.74	2 (3%)
60	PEV	BA	530	-	48,48,48	0.77	1 (2%)	51,53,53	0.67	2(3%)
61	PGV	A0	328	-	50,50,50	1.05	2 (4%)	53,56,56	0.76	2(3%)
61	PGV	A1	318	-	50,50,50	1.06	2 (4%)	53,56,56	0.79	2 (3%)
60	PEV	A0	312	-	48,48,48	0.79	1 (2%)	51,53,53	0.61	2 (3%)
60	PEV	BA	504	-	48,48,48	0.79	1 (2%)	51,53,53	0.80	2(3%)
60	PEV	BA	513	-	48,48,48	0.77	1 (2%)	51,53,53	0.68	2(3%)
61	PGV	BA	512	-	50,50,50	1.04	2 (4%)	53,56,56	0.75	2 (3%)
61	PGV	BB	213	-	50,50,50	1.06	2 (4%)	53,56,56	0.81	2 (3%)
60	PEV	BA	535	-	48,48,48	0.78	1 (2%)	51,53,53	0.67	2(3%)
61	PGV	BA	536	-	50,50,50	1.05	2 (4%)	53,56,56	0.73	2 (3%)
60	PEV	BA	539	-	48,48,48	0.78	1 (2%)	51,53,53	0.79	2(3%)
60	PEV	A1	312	-	48,48,48	0.78	1 (2%)	51,53,53	0.68	2 (3%)
60	PEV	A1	314	-	48,48,48	0.78	1 (2%)	51,53,53	0.69	2 (3%)
61	PGV	BB	217	-	50,50,50	1.05	2 (4%)	53,56,56	0.76	2 (3%)
60	PEV	A1	327	-	48,48,48	0.76	1 (2%)	51,53,53	0.69	2 (3%)

Mol	Tuno	Chain	Dog	Link	Bond lengths		B	Bond angles		
	туре	Chan	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
60	PEV	A1	322	-	48,48,48	0.76	1 (2%)	$51,\!53,\!53$	0.69	2 (3%)
60	PEV	BA	509	-	48,48,48	0.79	1 (2%)	$51,\!53,\!53$	0.75	2 (3%)
60	PEV	BB	209	-	48,48,48	0.76	1 (2%)	$51,\!53,\!53$	0.69	2 (3%)
61	PGV	BB	208	-	50,50,50	1.06	2 (4%)	53,56,56	0.74	2 (3%)
61	PGV	A0	305	-	50,50,50	1.04	2 (4%)	53,56,56	0.73	2(3%)
61	PGV	B8	3005	-	50,50,50	1.05	2 (4%)	53,56,56	0.72	2(3%)
60	PEV	B8	3007	-	48,48,48	0.77	1 (2%)	51,53,53	0.64	2(3%)
60	PEV	A0	313	-	48,48,48	0.80	1 (2%)	51,53,53	0.74	2(3%)
60	PEV	A1	321	-	48,48,48	0.78	1 (2%)	51,53,53	0.67	2(3%)
60	PEV	A0	302	-	48,48,48	0.77	1 (2%)	51,53,53	0.71	2(3%)
60	PEV	A1	329	-	48,48,48	0.78	1 (2%)	51,53,53	0.72	2 (3%)
60	PEV	A1	305	-	48,48,48	0.78	1 (2%)	51,53,53	0.68	2 (3%)
60	PEV	A0	310	-	48,48,48	0.79	1 (2%)	51,53,53	0.82	2(3%)
60	PEV	BB	206	-	48,48,48	0.78	1 (2%)	51,53,53	0.70	2 (3%)
60	PEV	B8	3003	-	48,48,48	0.79	1 (2%)	51,53,53	0.71	2 (3%)
60	PEV	A0	324	-	48,48,48	0.79	1 (2%)	51,53,53	0.71	2 (3%)
61	PGV	AZ	205	-	50,50,50	1.05	2 (4%)	53,56,56	0.76	2 (3%)
60	PEV	B8	3001	-	48,48,48	0.79	1 (2%)	51,53,53	0.71	2 (3%)
60	PEV	BB	212	-	48,48,48	0.78	1 (2%)	51,53,53	0.66	2 (3%)
60	PEV	BB	211	-	48,48,48	0.77	1 (2%)	51,53,53	0.73	2 (3%)
60	PEV	A1	324	-	48,48,48	0.78	1 (2%)	51,53,53	0.64	2(3%)
60	PEV	A0	314	-	48,48,48	0.80	1 (2%)	51,53,53	0.69	2 (3%)
61	PGV	A0	317	-	50,50,50	1.05	2 (4%)	53,56,56	0.84	2(3%)
61	PGV	A1	311	-	50,50,50	1.06	2 (4%)	53,56,56	0.80	2 (3%)
60	PEV	A1	325	-	48,48,48	0.78	1 (2%)	51,53,53	0.66	2 (3%)
60	PEV	BA	534	-	48,48,48	0.82	1 (2%)	51,53,53	0.75	2 (3%)
60	PEV	A1	323	-	48,48,48	0.76	1 (2%)	51,53,53	0.66	2 (3%)
61	PGV	A0	327	-	50,50,50	1.06	2 (4%)	53,56,56	0.71	2 (3%)
60	PEV	BB	215	-	48,48,48	0.76	1 (2%)	51,53,53	0.69	2(3%)
60	PEV	A1	328	-	48,48,48	0.76	1 (2%)	51,53,53	0.68	2 (3%)
60	PEV	BA	514	-	48,48,48	0.80	1 (2%)	51,53,53	0.75	2 (3%)
60	PEV	BA	519	-	48,48,48	0.78	1 (2%)	51,53,53	0.74	2 (3%)
60	PEV	A0	307	-	48,48,48	0.77	1 (2%)	51,53,53	0.65	2 (3%)
60	PEV	A1	319	-	48,48,48	0.77	1 (2%)	51,53,53	0.65	1 (1%)
60	PEV	A0	315	-	48,48,48	0.76	1 (2%)	51,53,53	0.64	2 (3%)

Mol	Tuno	Chain	Dog	Link	Bond lengths		В	Bond angles		
	туре	Chan	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
61	PGV	BA	540	-	$50,\!50,\!50$	1.04	2 (4%)	$53,\!56,\!56$	0.77	2 (3%)
61	PGV	A0	306	-	50,50,50	1.05	2 (4%)	$53,\!56,\!56$	0.75	2(3%)
60	PEV	A0	311	-	48,48,48	0.78	1 (2%)	$51,\!53,\!53$	0.67	2 (3%)
60	PEV	A1	317	-	48,48,48	0.79	2 (4%)	$51,\!53,\!53$	0.69	2 (3%)
60	PEV	A1	320	-	48,48,48	0.79	1 (2%)	51,53,53	0.71	2(3%)
60	PEV	A1	307	-	48,48,48	0.78	1 (2%)	$51,\!53,\!53$	0.70	2(3%)
60	PEV	A1	304	-	48,48,48	0.77	1 (2%)	$51,\!53,\!53$	0.63	2(3%)
60	PEV	BA	506	-	48,48,48	0.75	1 (2%)	$51,\!53,\!53$	0.70	2 (3%)
60	PEV	BA	526	-	48,48,48	0.77	1 (2%)	$51,\!53,\!53$	0.69	2 (3%)
60	PEV	BB	201	-	48,48,48	0.79	1 (2%)	51,53,53	0.70	2 (3%)
61	PGV	A0	325	-	50,50,50	1.05	2 (4%)	53,56,56	0.86	2 (3%)
61	PGV	BA	522	-	50,50,50	1.06	2 (4%)	53,56,56	0.71	2 (3%)
61	PGV	A1	315	-	50,50,50	1.07	2 (4%)	53,56,56	0.79	2 (3%)
60	PEV	AZ	204	-	48,48,48	0.78	1 (2%)	51,53,53	0.67	2(3%)
60	PEV	A1	302	-	48,48,48	0.79	1 (2%)	51,53,53	0.71	2 (3%)
60	PEV	B8	3002	-	48,48,48	0.77	1 (2%)	51,53,53	0.66	2 (3%)
61	PGV	BB	204	-	50,50,50	1.06	2 (4%)	$53,\!56,\!56$	0.81	2 (3%)
60	PEV	A1	309	-	48,48,48	0.78	1 (2%)	51,53,53	0.74	2 (3%)
60	PEV	BA	508	-	48,48,48	0.78	1 (2%)	51,53,53	0.68	2 (3%)
60	PEV	AZ	201	-	48,48,48	0.75	1 (2%)	51,53,53	0.70	2 (3%)
60	PEV	BA	525	-	48,48,48	0.79	1 (2%)	51,53,53	0.74	2(3%)
60	PEV	BA	521	-	48,48,48	0.78	1 (2%)	$51,\!53,\!53$	0.67	2 (3%)
61	PGV	A1	303	-	50,50,50	1.05	2 (4%)	$53,\!56,\!56$	0.75	2 (3%)
60	PEV	BA	532	-	48,48,48	0.76	1 (2%)	51,53,53	0.74	2 (3%)
60	PEV	A0	319	-	48,48,48	0.79	1 (2%)	$51,\!53,\!53$	0.75	2 (3%)
60	PEV	B8	3006	-	48,48,48	0.78	1 (2%)	51,53,53	0.67	2 (3%)
61	PGV	BB	207	-	50,50,50	1.06	2 (4%)	53,56,56	0.77	2 (3%)
60	PEV	A1	316	-	48,48,48	0.78	1 (2%)	51,53,53	0.74	2 (3%)
61	PGV	A0	332	-	50,50,50	1.06	2 (4%)	53,56,56	0.76	2 (3%)
61	PGV	A0	331	-	50,50,50	1.04	2 (4%)	53,56,56	0.77	2 (3%)
60	PEV	BA	537	-	48,48,48	0.80	2 (4%)	51,53,53	0.74	2 (3%)
60	PEV	A0	301	-	48,48,48	0.78	1 (2%)	51,53,53	0.68	2 (3%)
61	PGV	BA	505	_	50,50,50	1.05	2 (4%)	53,56,56	0.77	2 (3%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
61	PGV	BA	516	-	2/2/5/7	7/55/55/55	-
60	PEV	A0	309	-	-	6/52/52/52	-
60	PEV	BA	518	-	-	9/52/52/52	-
60	PEV	A1	313	-	1/1/4/4	8/52/52/52	-
60	PEV	BB	216	-	-	5/52/52/52	-
60	PEV	A0	322	-	-	6/52/52/52	-
61	PGV	BA	515	-	2/2/5/7	6/55/55/55	-
60	PEV	BA	511	-	-	5/52/52/52	-
60	PEV	A0	303	-	-	7/52/52/52	-
60	PEV	A1	301	-	1/1/4/4	13/52/52/52	-
60	PEV	A1	308	-	-	12/52/52/52	-
60	PEV	BB	210	-	-	13/52/52/52	-
60	PEV	BA	520	-	-	5/52/52/52	-
60	PEV	BB	218	-	-	9/52/52/52	-
60	PEV	BA	503	-	-	11/52/52/52	-
61	PGV	BA	501	-	1/1/5/7	7/55/55/55	-
60	PEV	A0	321	-	-	11/52/52/52	-
60	PEV	A0	329	-	-	4/52/52/52	-
60	PEV	BA	533	-	-	10/52/52/52	-
60	PEV	BA	507	-	-	4/52/52/52	-
60	PEV	AZ	203	-	-	8/52/52/52	-
60	PEV	BA	502	-	1/1/4/4	8/52/52/52	-
60	PEV	A1	306	-	-	6/52/52/52	-
60	PEV	BB	214	-	-	8/52/52/52	-
61	PGV	AZ	207	-	2/2/5/7	8/55/55/55	-
60	PEV	AZ	206	-	-	4/52/52/52	-
60	PEV	BA	510	-	-	8/52/52/52	-
61	PGV	A0	304	-	2/2/5/7	5/55/55/55	-
60	PEV	BA	517	-	-	5/52/52/52	-
60	PEV	BA	531	-	-	3/52/52/52	-
60	PEV	A0	330	-	-	10/52/52/52	-
60	PEV	BA	528	-	-	9/52/52/52	-

centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
60	PEV	A0	316	-	-	10/52/52/52	-
60	PEV	A0	308	-	1/1/4/4	5/52/52/52	-
60	PEV	BA	538	-	1/1/4/4	9/52/52/52	-
60	PEV	BA	524	-	_	12/52/52/52	-
61	PGV	BB	205	-	2/2/5/7	6/55/55/55	-
60	PEV	A1	326	-	-	4/52/52/52	-
60	PEV	BB	202	-	1/1/4/4	3/52/52/52	-
60	PEV	BA	529	-	-	4/52/52/52	-
60	PEV	BA	523	-	-	7/52/52/52	-
60	PEV	AZ	202	-	-	8/52/52/52	-
60	PEV	A1	310	-	-	8/52/52/52	-
61	PGV	BB	203	-	2/2/5/7	8/55/55/55	-
60	PEV	A0	323	-	1/1/4/4	7/52/52/52	-
60	PEV	A0	326	-	-	9/52/52/52	-
61	PGV	A0	318	-	2/2/5/7	9/55/55/55	-
60	PEV	B8	3004	-	-	9/52/52/52	-
60	PEV	A0	320	-	-	5/52/52/52	-
60	PEV	BA	527	-	-	8/52/52/52	-
60	PEV	BA	530	-	1/1/4/4	11/52/52/52	-
61	PGV	A0	328	-	2/2/5/7	10/55/55/55	-
61	PGV	A1	318	-	2/2/5/7	11/55/55/55	-
60	PEV	A0	312	-	-	7/52/52/52	-
61	PGV	BA	512	-	1/1/5/7	10/55/55/55	-
60	PEV	BA	504	-	-	5/52/52/52	-
60	PEV	BA	513	-	-	7/52/52/52	-
61	PGV	BB	213	-	1/1/5/7	9/55/55/55	-
60	PEV	BA	535	-	1/1/4/4	7/52/52/52	-
61	PGV	BA	536	-	2/2/5/7	7/55/55/55	-
60	PEV	BA	539	-	-	4/52/52/52	-
60	PEV	A1	312	-	-	5/52/52/52	-
60	PEV	A1	314	-	-	6/52/52/52	-
61	PGV	BB	217	-	2/2/5/7	7/55/55/55	-
60	PEV	A1	327	-	-	7/52/52/52	-
60	PEV	A1	322	-	_	4/52/52/52	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
60	PEV	BA	509	-	-	13/52/52/52	-
61	PGV	BB	208	-	2/2/5/7	8/55/55/55	-
60	PEV	BB	209	-	-	8/52/52/52	-
61	PGV	A0	305	-	1/1/5/7	10/55/55/55	-
61	PGV	B8	3005	-	2/2/5/7	8/55/55/55	-
60	PEV	B8	3007	-	-	3/52/52/52	-
60	PEV	A0	313	-	-	5/52/52/52	-
60	PEV	A1	321	-	-	7/52/52/52	-
60	PEV	A0	302	-	-	8/52/52/52	-
60	PEV	A1	329	-	-	5/52/52/52	-
60	PEV	A1	305	-	1/1/4/4	6/52/52/52	-
60	PEV	A0	310	-	-	5/52/52/52	-
60	PEV	BB	206	-	1/1/4/4	9/52/52/52	-
60	PEV	B8	3003	-	-	15/52/52/52	-
60	PEV	A0	324	-	-	7/52/52/52	-
61	PGV	AZ	205	-	2/2/5/7	15/55/55/55	-
60	PEV	B8	3001	-	1/1/4/4	3/52/52/52	-
60	PEV	BB	212	-	-	6/52/52/52	-
60	PEV	BB	211	-	-	8/52/52/52	-
60	PEV	A1	324	-	-	5/52/52/52	-
60	PEV	A0	314	-	1/1/4/4	8/52/52/52	-
61	PGV	A0	317	-	2/2/5/7	8/55/55/55	-
61	PGV	A1	311	-	2/2/5/7	8/55/55/55	-
60	PEV	A1	325	-	-	12/52/52/52	-
60	PEV	BA	534	-	-	5/52/52/52	-
60	PEV	A1	323	-	-	4/52/52/52	-
61	PGV	A0	327	-	2/2/5/7	6/55/55/55	-
60	PEV	BB	215	-	-	6/52/52/52	-
60	PEV	A1	328	-	-	12/52/52/52	-
60	PEV	BA	514	-	-	8/52/52/52	-
60	PEV	BA	519	-	-	11/52/52/52	-
60	PEV	A0	307	-	-	9/52/52/52	-
60	PEV	A1	319	-	-	4/52/52/52	-
61	PGV	BA	540	-	2/2/5/7	6/55/55/55	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
60	PEV	A0	315	-	-	9/52/52/52	-
61	PGV	A0	306	-	2/2/5/7	7/55/55/55	-
60	PEV	A0	311	-	-	7/52/52/52	-
60	PEV	A1	317	-	1/1/4/4	9/52/52/52	-
60	PEV	A1	320	-	-	9/52/52/52	-
60	PEV	A1	307	-	-	4/52/52/52	-
60	PEV	A1	304	-	-	5/52/52/52	-
60	PEV	BA	506	-	-	5/52/52/52	-
60	PEV	BA	526	-	1/1/4/4	5/52/52/52	-
60	PEV	BB	201	-	-	11/52/52/52	-
61	PGV	A0	325	-	2/2/5/7	8/55/55/55	-
61	PGV	BA	522	-	2/2/5/7	2/55/55/55	-
61	PGV	A1	315	-	2/2/5/7	13/55/55/55	-
60	PEV	AZ	204	-	1/1/4/4	8/52/52/52	-
60	PEV	A1	302	-	-	10/52/52/52	-
60	PEV	B8	3002	-	-	4/52/52/52	-
61	PGV	BB	204	-	2/2/5/7	10/55/55/55	-
60	PEV	A1	309	-	-	6/52/52/52	-
60	PEV	BA	508	-	1/1/4/4	5/52/52/52	-
60	PEV	AZ	201	-	-	5/52/52/52	-
60	PEV	BA	525	-	-	11/52/52/52	-
60	PEV	BA	521	-	-	8/52/52/52	-
61	PGV	A1	303	-	2/2/5/7	5/55/55/55	-
60	PEV	BA	532	-	-	12/52/52/52	-
60	PEV	A0	319	-	_	8/52/52/52	-
60	PEV	B8	3006	-	-	7/52/52/52	-
61	PGV	BB	207	-	2/2/5/7	4/55/55/55	-
60	PEV	A1	316	-	-	3/52/52/52	-
61	PGV	A0	332	-	2/2/5/7	7/55/55/55	-
61	PGV	A0	331	-	2/2/5/7	4/55/55/55	-
60	PEV	BA	537	-	1/1/4/4	9/52/52/52	-
60	PEV	A0	301	-	-	11/52/52/52	-
61	PGV	BA	505	-	2/2/5/7	7/55/55/55	-

The worst 5 of 168 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
60	BA	533	PEV	C39-C40	17.92	2.52	1.51
61	BA	516	PGV	C9-C10	-4.44	1.34	1.52
61	BB	213	PGV	C9-C10	-4.42	1.34	1.52
61	BA	522	PGV	C9-C10	-4.38	1.34	1.52
61	A1	315	PGV	C9-C10	-4.38	1.34	1.52

The worst 5 of 266 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
60	BA	533	PEV	C39-C40-C41	6.06	145.17	114.42
60	BA	533	PEV	C38-C39-C40	5.54	142.55	114.42
60	A0	316	PEV	C38-C39-C40	3.57	132.56	114.42
61	A0	325	PGV	C8-C9-C10	3.34	128.33	113.79
61	BB	205	PGV	C8-C9-C10	3.26	127.98	113.79

5 of 78 chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
60	AZ	204	PEV	C2
60	A0	308	PEV	C2
60	A0	314	PEV	C2
60	A0	323	PEV	C2
60	A1	301	PEV	C2

5 of 987 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
60	AZ	203	PEV	C4-O4P-P-O2P
60	A0	301	PEV	C4-O4P-P-O2P
60	A0	301	PEV	O11-C11-O3-C3
60	A0	301	PEV	C12-C11-O3-C3
60	A0	303	PEV	C1-O3P-P-O1P

There are no ring outliers.

17 monomers are involved in 41 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
60	A1	301	PEV	1	0
60	BA	520	PEV	1	0
60	BA	503	PEV	1	0
60	BA	533	PEV	29	0
60	BA	531	PEV	1	0

Mol	Chain	Res		Clashes	Symm-Clashes
10101	Cham	ICCD	Lype	Clashes	Symmetablieb
60	BA	513	PEV	1	0
61	BA	512	PGV	1	0
60	B8	3001	PEV	1	0
60	A1	323	PEV	1	0
60	BA	514	PEV	1	0
60	A1	319	PEV	1	0
60	A0	315	PEV	1	0
60	BA	526	PEV	1	0
61	A1	315	PGV	1	0
60	A1	302	PEV	1	0
60	B8	3002	PEV	2	0
61	A1	303	PGV	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-1858. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 160

Y Index: 160

Z Index: 160

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 166

Y Index: 167

Z Index: 146

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.5. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 3504 nm^3 ; this corresponds to an approximate mass of 3166 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.141 $\rm \AA^{-1}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-1858 and PDB model 4V6M. Per-residue inclusion information can be found in section 3 on page 24.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.5 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.5).

9.4 Atom inclusion (i)

At the recommended contour level, 94% of all backbone atoms, 90% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.5) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.9010	0.1450
A0	0.3260	0.0170
A1	0.5620	0.0090
AA	0.9850	0.1740
AB	0.7510	0.1210
AC	0.8280	0.1200
AD	0.8390	0.1240
AE	0.7780	0.1190
AF	0.7180	0.1060
AG	0.9090	0.1350
AH	0.8540	0.1350
AI	0.8730	0.0980
AJ	0.8950	0.0950
AK	0.8480	0.1140
AL	0.9250	0.1180
AM	0.8860	0.1220
AN	0.8670	0.1230
AO	0.9170	0.1390
AP	0.8850	0.1220
AQ	0.8990	0.1230
AR	0.8000	0.1240
AS	0.8900	0.1060
AT	0.8290	0.1370
AU	0.8360	0.1220
AV	0.9590	0.1410
AX	0.7920	0.1000
AZ	0.5150	0.0640
B0	0.8550	0.1190
B1	0.9420	0.1170
B2	0.9270	0.0860
B3	0.8960	0.1220
B4	0.9140	0.1000
B5	0.6780	0.0570
B6	0.9290	0.1300
B7	0.9880	0.1840

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
B8	0.9840	0.1750
BA	0.4620	0.0370
BB	0.4380	0.0650
BD	0.8970	0.1180
BE	0.8830	0.1230
BF	0.8970	0.1180
BG	0.9330	0.1550
BH	0.7440	0.1150
BI	0.9710	0.0670
BJ	0.8960	0.1410
BK	0.8970	0.1400
BL	0.9100	0.1230
BM	0.9460	0.1330
BN	0.8440	0.1070
BO	0.8990	0.1260
BP	0.8680	0.1360
BQ	0.8390	0.1050
BR	0.8820	0.1390
BS	0.8110	0.1050
BT	0.7850	0.1180
BU	0.8800	0.1290
BV	0.9350	0.1430
BW	0.9010	0.0760
BX	0.8490	0.1040
BY	0.8550	0.1100
BZ	0.8790	0.1540

