

Nov 12, 2022 – 04:19 PM EST

PDB ID	:	6V3A
EMDB ID	:	EMD-21031
Title	:	Cryo-EM structure of the Acinetobacter baumannii Ribosome: 70S with E-site
		tRNA
Authors	:	Morgan, C.E.; Yu, E.W.
Deposited on	:	2019-11-25
Resolution	:	2.82 Å(reported)
Based on initial model	:	5AFI

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev43
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.82 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$		
Clashscore	158937	4297		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		
RNA backbone	4643	859		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	0	51	88%	12%
2	1	44	84%	16%
3	2	64	81%	12% • • •
4	3	38	82%	18%
5	AN1	2918	5% 65% 29%	5%•
6	В	115	61% 32%	7%
7	С	274	82%	17% •

Continued from previous page... Chain Length Quality of chain Mol 6% 8 D 21286% 14% 6% 9 Е 20082% 10% 7% 28% 10 F 178... 63% 35% 15% \mathbf{G} • 11 17777% 21% 22% 12Η 14833% 7% • 59% 6% 13Ι 14290% 10% J 1221491% 9% 6% Κ 15146. 83% 16% • 137 16L 88% 12% . 17Μ 12585% 10% 5% 10% . 18Ν 11684% 14% 7% • Ο 1221980% 16% 5% 20Р 1196% • 92% 7% Q 2110383% 17% 6% 22R 10993% 7% 6% \mathbf{S} 2310674% 11% 15% 11% Т 2410582% 13% 5% 14% U 982579% 20% • 7% V 2685 6% 87% 7% 5% 10% • W 277888% 14% Х 28655% 82% 14% 7% 29Υ 5883% 17% 10% 30 Ζ 61 72% 18% 10% 5% sN115443185% 14% 74% 32 250 \mathbf{b} 90% 10%

Mol	Chain	Length	Quality of chain	
33	с	250	86%	14%
34	d	208	99%	
35	е	165	94%	6%
36	f	127	29%	26%
37	g	156	90%	• 10%
38	h	131	99%	·
39	i	128	98%	••
40	i	103	5%	
41	k	128	38%	• 9%
42	1	124	13%	
43	m	118	97%	·
44	n	101	98%	
45	0	89	99%	
46	p	101	► 82%	18%
47	r Q	85	• •	6%
48	r	75	71%	29%
49	s	91	90%	10%
50	t	88	97%	
51	11	71	30%	
52	v	77	62%	35%
53	w	3	67%	33%

2 Entry composition (i)

There are 57 unique types of molecules in this entry. The entry contains 142113 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 50S ribosomal protein L33.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
1	0	51	Total 427	С 274	N 77	O 73	${ m S} { m 3}$	0	0

• Molecule 2 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
2	1	44	Total 363	C 222	N 85	0 54	${ m S} { m 2}$	0	0

• Molecule 3 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
3	2	63	Total 509	C 319	N 110	O 76	${S \atop 4}$	0	0

• Molecule 4 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
4	3	38	Total 295	C 179	N 64	0 48	$\begin{array}{c} \mathrm{S} \\ \mathrm{4} \end{array}$	0	0

• Molecule 5 is a RNA chain called 23s ribosomal RNA.

Mol	Chain	Residues		-	AltConf	Trace			
5	AN1	2892	Total 62023	C 27689	N 11345	O 20098	Р 2891	0	0

• Molecule 6 is a RNA chain called 5s ribosomal RNA.

Mol	Chain	Residues		At		AltConf	Trace		
6	В	115	Total 2450	C 1095	N 440	O 800	Р 115	0	0

• Molecule 7 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues		At	AltConf	Trace			
7	С	270	Total 2096	C 1291	N 434	O 363	S 8	0	0

• Molecule 8 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		At	AltConf	Trace			
8	D	211	Total 1572	C 972	N 297	O 300	${ m S} { m 3}$	0	0

• Molecule 9 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		At	oms	AltConf	Trace		
9	Е	186	Total 1419	C 893	N 265	0 257	$\frac{S}{4}$	0	0

• Molecule 10 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
10	F	175	Total 1381	C 877	N 247	0 249	S 8	0	0

• Molecule 11 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	G	174	Total 1318	C 832	N 236	0 249	S 1	0	0

• Molecule 12 is a protein called 50S ribosomal protein L9.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
12	Н	60	Total 458	C 287	N 84	O 86	S 1	0	0

• Molecule 13 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
13	Ι	142	Total 1125	C 718	N 200	O 203	$\frac{S}{4}$	0	0

• Molecule 14 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	J	122	Total 946	C 592	N 180	O 169	${f S}{5}$	0	0

• Molecule 15 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	К	146	Total 1089	C 673	N 215	O 200	S 1	0	0

• Molecule 16 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	L	137	Total 1087	C 687	N 210	0 185	${f S}{5}$	0	0

• Molecule 17 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	М	119	Total 942	C 590	N 186	O 163	${ m S} { m 3}$	0	0

• Molecule 18 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
18	Ν	114	Total 857	C 528	N 173	O 155	S 1	0	0

• Molecule 19 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
19	О	117	Total 919	C 578	N 177	O 164	0	0

• Molecule 20 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
20	Р	117	Total 934	C 589	N 197	0 146	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 21 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		At	oms			AltConf	Trace
21	Q	103	Total 807	$\begin{array}{c} \mathrm{C} \\ 506 \end{array}$	N 155	0 143	${ m S} { m 3}$	0	0

• Molecule 22 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	R	109	Total 826	C 514	N 158	O 150	${S \over 4}$	0	0

• Molecule 23 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
23	S	90	Total 702	C 447	N 127	O 128	0	0

• Molecule 24 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
24	Т	100	Total 749	C 465	N 139	0 145	0	0

• Molecule 25 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues		At	oms	AltConf	Trace		
25	U	97	Total 760	C 477	N 143	O 139	S 1	0	0

• Molecule 26 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
26	V	80	Total 598	C 370	N 115	0 111	${ m S} { m 2}$	0	0

• Molecule 27 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		At	oms	AltConf	Trace		
27	W	77	Total 632	C 395	N 130	0 105	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 28 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
28	X	62	Total 498	C 308	N 96	O 93	S 1	0	0

• Molecule 29 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
29	Y	58	Total 463	C 286	N 88	O 85	$\frac{S}{4}$	0	0

• Molecule 30 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	Z	55	Total 456	С 271	N 102	O 82	S 1	0	0

• Molecule 31 is a RNA chain called 16s Ribosomal RNA.

Mol	Chain	Residues		1	Atoms			AltConf	Trace
31	sN1	1528	Total 32782	C 14631	N 5994	O 10630	Р 1527	0	0

• Molecule 32 is a protein called 30S ribosomal protein S2.

Mol	Chain	Residues		At	oms			AltConf	Trace
32	b	225	Total 1769	C 1110	N 328	0 325	S 6	0	0

• Molecule 33 is a protein called 30S ribosomal protein S3.

Mol	Chain	Residues		At		AltConf	Trace		
33	С	215	Total 1690	C 1065	N 318	O 299	S 8	0	0

• Molecule 34 is a protein called 30S ribosomal protein S4.

Mol	Chain	Residues		Ate		AltConf	Trace		
34	d	207	Total 1631	C 1017	N 313	O 299	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 35 is a protein called 30S ribosomal protein S5.

Mol	Chain	Residues		Atoms					Trace
35	е	155	Total 1129	C 700	N 217	O 207	${f S}{5}$	0	0

• Molecule 36 is a protein called 30S ribosomal protein S6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	f	94	Total 793	C 499	N 147	0 143	$\frac{S}{4}$	0	0

• Molecule 37 is a protein called 30S ribosomal protein S7.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	g	141	Total 1111	C 696	N 210	0 199	S 6	0	0

• Molecule 38 is a protein called 30S ribosomal protein S8.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
38	h	130	Total 985	C 615	N 177	0 187	S 6	0	0

• Molecule 39 is a protein called 30S ribosomal protein S9.

Mol	Chain	Residues		At	oms	AltConf	Trace		
39	i	127	Total 995	C 621	N 198	O 175	S 1	0	0

• Molecule 40 is a protein called 30S ribosomal protein S10.

Mol	Chain	Residues		At	oms	AltConf	Trace		
40	j	100	Total 801	C 500	N 150	0 148	${ m S} { m 3}$	0	0

• Molecule 41 is a protein called 30S ribosomal protein S11.

Mol	Chain	Residues		At	oms	AltConf	Trace		
41	k	117	Total 862	C 535	N 167	0 159	S 1	0	0

• Molecule 42 is a protein called 30S ribosomal protein S12.

Mol	Chain	Residues		Atoms					Trace
42	1	122	Total 945	$\begin{array}{c} \mathrm{C} \\ 580 \end{array}$	N 193	O 167	${f S}{5}$	0	0

• Molecule 43 is a protein called 30S ribosomal protein S13.

Mol	Chain	Residues	Atoms					AltConf	Trace
43	m	115	Total 903	C 558	N 184	0 158	${ m S} { m 3}$	0	0

• Molecule 44 is a protein called 30S ribosomal protein S14.

Mol	Chain	Residues	Atoms					AltConf	Trace
44	n	100	Total 792	C 493	N 158	0 137	$\frac{S}{4}$	0	0

• Molecule 45 is a protein called 30S ribosomal protein S15.

Mol	Chain	Residues	Atoms					AltConf	Trace
45	О	88	Total 705	C 434	N 144	0 126	S 1	0	0

• Molecule 46 is a protein called 30S ribosomal protein S16.

Mol	Chain	Residues	Atoms					AltConf	Trace
46	р	83	Total 649	C 406	N 129	0 113	S 1	0	0

• Molecule 47 is a protein called 30S ribosomal protein S17.

Mol	Chain	Residues	Atoms					AltConf	Trace
47	q	80	Total 630	C 396	N 118	0 115	S 1	0	0

• Molecule 48 is a protein called 30S ribosomal protein S18.

Mol	Chain	Residues	Atoms				AltConf	Trace
48	r	53	Total 438	C 282	N 75	O 81	0	0

• Molecule 49 is a protein called 30S ribosomal protein S19.

Mol	Chain	Residues	Atoms					AltConf	Trace
49	s	82	Total 646	C 412	N 125	0 107	${ m S} { m 2}$	0	0

• Molecule 50 is a protein called 30S ribosomal protein S20.

Mol	Chain	Residues	Atoms					AltConf	Trace
50	t	85	Total 658	C 406	N 138	0 112	${S \over 2}$	0	0

• Molecule 51 is a protein called 30S ribosomal protein S21.

Mol	Chain	Residues	Atoms				AltConf	Trace
51	u	21	Total 182	C 115	N 37	O 30	0	0

• Molecule 52 is a RNA chain called tRNA-met.

Mol	Chain	Residues	Atoms					AltConf	Trace	
52	v	77	Total 1636	C 733	N 291	O 535	Р 76	S 1	0	0

• Molecule 53 is a RNA chain called mRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
53	W	3	Total 65	C 29	N 12	O 21	Р 3	0	0

• Molecule 54 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
54	3	1	Total Zn 1 1	0

• Molecule 55 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
55	AN1	49	TotalMg4949	0
55	sN1	44	Total Mg 44 44	0

• Molecule 56 is SODIUM ION (three-letter code: NA) (formula: Na).

Mol	Chain	Residues	Atoms	AltConf
56	AN1	1	Total Na 1 1	0

• Molecule 57 is water.

Mol	Chain	Residues	Atoms	AltConf
57	AN1	319	Total O 319 319	0
57	В	4	Total O 4 4	0
57	С	5	Total O 5 5	0
57	D	3	Total O 3 3	0
57	Е	3	Total O 3 3	0
57	К	3	Total O 3 3	0
57	О	1	Total O 1 1	0
57	Р	3	Total O 3 3	0
57	Q	1	Total O 1 1	0
57	U	1	Total O 1 1	0
57	sN1	163	Total O 163 163	0
57	i	5	Total O 5 5	0
57	j	2	Total O 2 2	0
57	m	1	Total O 1 1	0
57	0	1	Total O 1 1	0
57	р	1	Total O 1 1	0
57	q	2	Total O 2 2	0
57	t	2	Total O 2 2	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 50S ribosomal protein L33

	C112 C113 C113		A126 U127	U146	A14(A148	U157 U158	G159	A167 A168	U169 A170	C171 A172	0176	01178	G185 G185	V1 80	A188	6195	6199	A203	A206	C217	A223	A229	<mark>C232</mark>	U235	0236	<mark>6239</mark>	G255 C256	<mark>G257</mark>						
A258 G259	A262	0270 <mark>C271</mark> A272	G273 C274	U278	A280	U284 A285	G291	U292 U293 11004	0294		1309	A313	G322 U323	A324	G327 G328	G331	A332	U336	A342	C345	<mark>G350</mark> G351	<mark>G352</mark> C353	A354 C355	A356 C357	A358 U359	V364	U365	6366						
A367 C368 C368	6369 A370 G371	u372 A373	G385 U386	<mark>6395</mark>	A403 U404	G410	A411 C412	C413 A414	0415 C416 C417	0418 0418 0419		6424 C425	U426 A427	A428	C434	G437 A438	C455	A456	G462	A465	A469	C474	A478 A479	G480	G4 <mark>93</mark> G494	114 08	64 <u>9</u> 9	•						
A502 U503		C508 C509 11510	G511	C516 G517 C518	A519 U520	G521	C526 A527	4528 (529 (520		A537	C541 C542	U543		U547	U552	G553 A554	A561	U564	U569 A570	U571	A573	G575 C576	G577 11578	C579 A580	G581	U587	A588	1691						
U592 C593	A594 G595 U596		A606 A607	C609 C609	G610 U611	A612	A625 G626	A627	A630 A631	0032 0633 0634	4635 A635 C636	U637 C638	U643	A644	U651	U652 A653	G654 U655	U656 G657	U663	A004 U665	A666 G667	A 668	A674	d / d	A678 G679	U684	<mark>G693</mark>							
U701 G702	G711 U712	A/13 A714 C715	A716 C717	0/18 A719 A720	C721	G724	G727 A728	<mark>U745</mark>	C753 4754	1014	A762 C763	G773	G774	A780 A781	G782 G783	A787	U788	G803 C804	U805	C810	A817	U825	G828 G829	<mark>U830</mark> A831	G832	6843 4844	A845 11846							
A847 C848	A850 A850	G854 G855 G856	G857	C863	G873 C874	0875 A876 A877	6877 6878 6879	6880 6881	U882 C883	A884	C887 C888	G889 A890	U893	A894 C895	C896 A897	A898 A899	C900	0904	A908 A909	C912	A916	C929	U930	A938	A942 G943	A944 C045								
U955	A957 A957 C958	<mark>C961</mark>	A970 G971	A976 A977	A978 C979	A980 A981	(1990) (1991)	C992 A993	A997	A998	C1004	U1009 C1010	G1023	A1024 A1025	A1026 C1027	G1028 A1029	U1030 G1031	U1032	A1036 A1037	<mark>G1 038</mark> G1 039	C1040 A1041	U1042 A1043	G1044		G1048 C1049	U1050	A1051 G1052	G1053	A1054					
G1055 G1056	U1057	G1059 G1060	C1061 U1062	U1063 A1064	G1065	A1067	G1068	A1070 G1071	C1072	C1073 A1074	C1075	C1077	U1078 U1079	U1080	A1081 A1082	A1083	61084 A1085	A1086	G1088	C1089 G1090	U1091	A1092 A1093	U1094	G1096	C1097	01098 C1099	A1100	U1102	A1103	01105	C1106 G1107	A1108 G1109 11110	C1111 G1112 G1112	G1113
U1129 A1130		61140	G1164 111165	A1166 U1167	U1170	U1171	G1173	U1176 A1177	C1178 G1179	U1183	U1193	01194 1100	A1133 A1200 G1201		01226 G1227	G1230			41240 A1248	10H		A1260		C1076	U1277	0/719	A1296	61304						
G1305 G1306 111205	01.307 01.308 C1.309	C1310 A1311 G1312	U1324	G1 <mark>336</mark>	C1340	A1348 A1349	G1355 G1356 G1356		A1360 A1361	A1362 G1363	<mark>G1364</mark> C1365	G1366	A1373 U1374	G1375	A1378	A1381 U1382	A1387	A1388 U1389	A1390	C1393	A1408 A1409	U1410 G1411	C1412 G1413	A1414 U1415	C1423	G1424 C1425	A1426 C1427							
A1428 A1429	61430 61431 C1432	01433 A1434 A1435	A1436 U1437 C1438		C1442	61447 U1448 111440	01449	G1454	01455	G1462 A1463	A1464	G1470	<mark>U1471</mark> A1472	G1473 G1474	C1475	01477 01477 01478		01481	C1482	U1484	G1486	G1487	A1489	A1490	U1492	C1493	G1495	G1496 G1497	G1498	U1499 A1500				
C1501	C1503	A1505 U1506 C1507	01509 01509	G1510	01519 A1520 A1521	C1522 C1522 A1523	A1524 G1525	C1526	61528 61528	U1529 A1530	C1531	U1533	G1534 U1535	A1536 C1537	A1538 G1539	C1540 ♦ G1541	A1542 A1543	G1544 U1545	U1549	G1550	A1564 G1565	G1566 A1567	A1568 A1569	A1570	U1576 A1577	A1578	U1581	U1582	41584 61585	U1586				

• Molecule 11: 50S ribosomal protein L6

• Molecule 16: 50S ribosomal protein L16 Chain L: 88% 12% • Molecule 17: 50S ribosomal protein L17 Chain M: 85% 5% 10% VAL ASN THR SER ALA • Molecule 18: 50S ribosomal protein L18 10% Chain N: 84% 14% MET • Molecule 19: 50S ribosomal protein L19 Chain O: 80% 16% • Molecule 20: 50S ribosomal protein L20 Chain P: 92% 6% • Ψ. • Molecule 21: 50S ribosomal protein L21 Chain Q: 83% 17% • Molecule 22: 50S ribosomal protein L22 Chain R: 93% 7%

************	• • •••• •••••	******
MET ALA ALA ALA ASP ASP N5 N5 N6 N11 L11 L11 L11 L11 L11 L11 C11 C11 C11 C	921 F24 K28 K28 K29 R30 R30 F34 F34 F34 F34 F35 R35 F34 F34 R37 F34 F34 F37 F34 F34 F37 F34 F34 F37 F34 F37 F37 F37 F37 F37 F37 F37 F37 F37 F37	N44 L45 E46 E46 F48 F48 V49 F50 A51 L56 A55 A55 A55 A55 A55 A59 A50 A50 A61 A53 A61 A61 A63 A63 A63
864 K65 K65 K66 K68 V69 V69 F71 T74 K75 K75 K75 A77 K75 S79 S79 S79 S79 S79 K76 K75 K75 K75 K75 K75 K75 K75 K75 K75 K75	E84 485 485 486 489 489 499 494 495 495 495 495 1102 1103 1103 1103	R110 1113 1113 1119 1119 1121 1121 1121 1121
R134 E135 A136 L137 E138 R139 R139 R140 E142 M140 E142 M153 V153 V153 V153 V153 V155 V153 V155 V153 V155	C158 C158 C159 C159 C156 A162 A162 C166 C166 C166 C166 C166 C181 C181 C181	1183 P184 V185 C187 C187 C187 C187 C187 C187 C187 C189 N199 N194 N192 N194 N195 V199 N197 V198 V199
P203 P206 D206 D207 A208 R210 A211 V212 V212 V212 A216 A216 A216 A216 A216 A218 A218 A218 A220 D221 A223	1224 A225 A225 C226 C228 C228 C228 C228 C26 C28 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10	ALA GLU ALA
• Molecule 33: 30S ribosomal prot	ein S3	
Chain c:	86%	14%
MET C2 K79 K80 G2 G2 G2 G2 G2 G2 M216 A1A A1A A1A A1A A1A A1A A1A A	GLU GLN GLN GLN GLU GLU ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	
• Molecule 34: 30S ribosomal prot	ein S4	
12%		
Chain d:	99%	
MET 42 111 624 624 728 728 728 624 643 645 645 647 647 647 647	E52 E52 E50 E90 E163 C168 C168 C168 C168 C168 C189 C189 C194 C194 C194 C194 C195 C195 C195 C195 C195 C195 C195 C195	
• Molecule 35: 30S ribosomal prot	ein S5	
F		
Chain e:	94%	6%
MET ALA ALA ALA CLU GLU GLU GLY GLY GLY		
• Molecule 36: 30S ribosomal prot	ein S6	
29%		
Chain f: 74%	26%	
MI H11 P12 P12 P13 P13 Q14 Q14 Q14 Q15 Q15 Q15 Q15 Q15 Q20 Q20 Q20 Q20 Q20 Q20 Q20 Q20 Q20 Q20	123 K330 A32 A32 C34 C34 C34 C34 C34 C34 C34 C34	E76 R79 N81 N82 N82 N82 H94 H94 H94 GLU GLU GLU GLU GLU LEU LEU LEU ALA
LYS SER SLU GLU GLU GLU CYS GLU GLU GLU GLU GLU GLU GLU GLU GLU GLU		
• Molecule 37: 30S ribosomal prot	ein S7	
15%		
Unain g:	90%	• 10%

MET P2 R3 R5 K5 K55	VT5 E74 K76 K76 K77 K77 K79 K79 K139 C82 C82 K131 K131 K137 K137 K137 K137 K137 K137	
• Molecule 38	8: 30S ribosomal protein S8	
Chain h:	99%	
MET S2 S131		
• Molecule 39	9: 30S ribosomal protein S9	
Chain i:	98%	
MET A2 R1 04 R1 28 R1 28		
• Molecule 40	0: 30S ribosomal protein S10	
Chain j:	97%	
MET SER N3 D81 K89 L90 L90	L92 L102 GLY	
• Molecule 41	1: 30S ribosomal protein S11	
Chain k:	38% 91% • 9%	
MET LVS LVS ASP ASP THR ARG LVS LVS	VAL VAL 112 114 114 114 114 114 114 114 114 114	La1 La2 Bs2 Fs3 Fs3 Fs3 Ns6 As7 As7 As7 As7 C100
A101 V102 C103 Y104 K105 I106 N107 S108	1100 1111 1112 1115	
• Molecule 42	2: 30S ribosomal protein S12	
Chain l:	3% 97% · ·	
MET A2 V16 E17 K18 R36	K43 K44 F45 K45 A48 M49 M73 M73 R86 C11 M73 K123 LYS	
• Molecule 43	3: 30S ribosomal protein S13	
Chain m:	97% •	

MET 116 LYS LYS	
• Molecule 44: 30S ribosomal protein S14	
Chain n: 98%	
MET 127 136 436	
• Molecule 45: 30S ribosomal protein S15	
Chain o: 99%	. .
MET A2 B2	
• Molecule 46: 30S ribosomal protein S16	
Chain p: 82%	18%
MET LEU MET VAL VAL ALA ALA ALA ALA ALA ALA ALA ALA	
\bullet Molecule 47: 30S ribosomal protein S17	
Chain q: 94%	6%
MET SER GLU ALA ALA GLU	
• Molecule 48: 30S ribosomal protein S18	
Chain r: 71%	29%
MET ALA ALA ALA ARG ARG ARG ARG ARG ARG ARG ARG ARG AR	
• Molecule 49: 30S ribosomal protein S19	
Chain s: 90%	10%
MET P2 HB3 CLYS LYS LYS ARG ARG	

 \bullet Molecule 50: 30S ribosomal protein S20

Chain t:		97%	·	
MET ALA N3 A87 A87 ASN				
• Molecule 51:	30S ribosomal protein S	21		
Chain u:	30% 28% •	70%		
MET PRO GLN VAL LYS LYS CLU CFS GLU GLU PRO	VAL ASP VAL ALA ALA ALA ALA ARG ARG ARG CYS SER CYS GLU CYS GLU CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	ALA ASP VALC ARG R35 E36 E36 E36 E36 E39 E39 E39 E41	T42 0043 0043 0043 0043 00443 00443 00445 00445 00445 00445 00445 00445 00445 000	A51 A52 V53 V53 ARG ARG ARG CLN LYS LYS LYS LEU
ALA ARG GLU SER VAL ARG THR THR THR THR TYR				
• Molecule 52:	tRNA-met			
Chain v:	62%		35% •	I
G1 U4 A9 C13 U16 U17	G18 020 021 021 021 021 023 623 63 64 04 64 048 048 048 048 048 048 048 048 048 04	U55 U56 A59 A59 C62 C62 C62 C62 C62 C62 C65 C67 C67 C67 C67	C75 A77	
• Molecule 53:	mRNA			
Chain w:	67%		33%	

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	90845	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	40	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	7.935	Depositor
Minimum map value	-2.795	Depositor
Average map value	0.007	Depositor
Map value standard deviation	0.117	Depositor
Recommended contour level	0.45	Depositor
Map size (Å)	544.768, 544.768, 544.768	wwPDB
Map dimensions	512, 512, 512	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.064, 1.064, 1.064	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: 4OC, 7MG, PSU, OMG, ZN, OMU, UR3, MG, 2MG, 2MA, 4SU, 5MC, MA6, 6MZ, 5MU, 3TD, NA, H2U

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles			
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5		
1	0	0.24	0/434	0.40	0/573		
2	1	0.23	0/367	0.39	0/481		
3	2	0.24	0/515	0.55	1/678~(0.1%)		
4	3	0.23	0/296	0.48	0/389		
5	AN1	0.22	0/69101	0.77	19/107780~(0.0%)		
6	В	0.19	0/2739	0.77	0/4266		
7	С	0.24	0/2136	0.43	0/2869		
8	D	0.24	0/1590	0.45	0/2142		
9	Е	0.24	0/1440	0.40	0/1944		
10	F	0.26	0/1401	0.49	0/1877		
11	G	0.25	0/1337	0.43	0/1807		
12	Н	0.25	0/461	0.51	0/616		
13	Ι	0.25	0/1151	0.41	0/1551		
14	J	0.24	0/956	0.44	0/1286		
15	Κ	0.25	0/1097	0.44	0/1461		
16	L	0.24	0/1104	0.44	0/1475		
17	М	0.24	0/956	0.41	0/1282		
18	N	0.24	0/865	0.46	0/1156		
19	0	0.24	0/931	0.43	0/1249		
20	Р	0.25	0/947	0.34	0/1262		
21	Q	0.23	0/818	0.45	0/1094		
22	R	0.24	0/831	0.40	0/1113		
23	S	0.25	0/708	0.41	0/947		
24	Т	0.24	0/753	0.48	0/1010		
25	U	0.24	0/770	0.41	0/1036		
26	V	0.25	0/606	0.44	0/810		
27	W	0.22	0/642	0.41	0/856		
28	Х	0.24	0/499	0.39	0/662		
29	Y	0.23	0/468	0.41	0/624		
30	Ζ	0.22	0/462	0.41	0/615		
31	sN1	0.19	0/36476	0.75	5/56895~(0.0%)		

Mol Chain		Bond	lengths	E	Bond angles
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5
32	b	0.26	0/1799	0.49	0/2429
33	с	0.23	0/1714	0.42	0/2304
34	d	0.24	0/1653	0.41	0/2213
35	е	0.24	0/1141	0.43	0/1537
36	f	0.24	0/808	0.47	0/1089
37	g	0.23	0/1127	0.40	0/1511
38	h	0.24	0/993	0.41	0/1331
39	i	0.24	0/1006	0.41	0/1346
40	j	0.23	0/811	0.42	0/1096
41	k	0.24	0/878	0.43	0/1189
42	1	0.23	0/958	0.46	0/1284
43	m	0.23	0/913	0.41	0/1226
44	n	0.24	0/803	0.38	0/1071
45	0	0.23	0/715	0.35	0/958
46	р	0.24	0/660	0.41	0/886
47	q	0.22	0/637	0.43	0/858
48	r	0.24	0/445	0.39	0/601
49	S	0.23	0/664	0.40	0/897
50	t	0.24	0/664	0.34	0/885
51	u	0.30	0/184	0.51	0/240
52	V	0.18	0/1739	0.76	0/2709
53	W	0.23	0/72	0.94	0/110
All	All	0.22	0/153241	0.69	$25/\overline{229576~(0.0\%)}$

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
3	2	0	1
12	Н	0	1
51	u	0	1
All	All	0	3

There are no bond length outliers.

All (25) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
5	AN1	1308	U	C2-N1-C1'	7.42	126.61	117.70
31	sN1	415	С	N3-C2-O2	-7.38	116.73	121.90
31	sN1	1095	С	N1-C2-O2	7.08	123.15	118.90

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	2	32	LEU	CA-CB-CG	6.96	131.31	115.30
31	sN1	1095	С	N3-C2-O2	-6.58	117.29	121.90
5	AN1	788	U	C2-N1-C1'	6.53	125.53	117.70
5	AN1	1308	U	N1-C2-O2	6.43	127.30	122.80
5	AN1	2170	С	N1-C2-O2	6.37	122.72	118.90
5	AN1	2116	G	N1-C6-O6	-6.17	116.20	119.90
5	AN1	1603	С	N3-C2-O2	-6.01	117.69	121.90
5	AN1	1308	U	N3-C2-O2	-5.87	118.09	122.20
5	AN1	2473	U	C2-N1-C1'	5.86	124.73	117.70
5	AN1	788	U	N1-C2-O2	5.64	126.75	122.80
5	AN1	715	С	N1-C2-O2	5.56	122.23	118.90
5	AN1	2170	С	N3-C2-O2	-5.55	118.02	121.90
5	AN1	912	С	C2-N1-C1'	5.53	124.89	118.80
5	AN1	715	С	C2-N1-C1'	5.47	124.82	118.80
5	AN1	1889	С	N3-C2-O2	-5.46	118.08	121.90
5	AN1	1603	С	N1-C2-O2	5.45	122.17	118.90
5	AN1	979	С	C2-N1-C1'	5.33	124.66	118.80
31	sN1	1122	U	C2-N1-C1'	5.30	124.07	117.70
5	AN1	368	С	OP2-P-O3'	5.23	116.70	105.20
31	sN1	1155	С	C2-N1-C1'	5.16	124.48	118.80
5	AN1	2803	U	C2-N1-C1'	5.03	123.73	117.70
5	AN1	788	U	N3-C2-O2	-5.02	118.68	122.20

There are no chirality outliers.

All (3) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
3	2	30	HIS	Peptide
12	Н	47	PHE	Peptide
51	u	37	PHE	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	0	427	0	462	3	0
2	1	363	0	401	5	0

		Non TT	TI (magadal)		Clashar	Same Clashag
	Chain	INON-H	H(model)	H(added)	Clasnes	Symm-Clasnes
3	2	509	0	566	9	0
4	J AN1	295	0	327	5	0
5	ANI	62023	0	31193	492	0
6	B	2450	0	1241	34	0
7	C	2096	0	2157	32	0
8	D	1572	0	1610	22	0
9	E	1419	0	1464	17	0
10	F	1381	0	1433	53	0
11	G	1318	0	1373	26	0
12	Н	458	0	480	9	0
13	I	1125	0	1148	12	0
14	J	946	0	1007	6	0
15	K	1089	0	1159	15	0
16	L	1087	0	1162	10	0
17	М	942	0	987	8	0
18	Ν	857	0	899	12	0
19	0	919	0	973	14	0
20	Р	934	0	997	6	0
21	Q	807	0	842	13	0
22	R	826	0	894	6	0
23	S	702	0	756	6	0
24	Т	749	0	797	8	0
25	U	760	0	783	13	0
26	V	598	0	600	3	0
27	W	632	0	667	5	0
28	Х	498	0	537	5	0
29	Y	463	0	488	7	0
30	Z	456	0	448	10	0
31	sN1	32782	0	16506	0	0
32	b	1769	0	1787	0	0
33	с	1690	0	1774	0	0
34	d	1631	0	1691	0	0
35	е	1129	0	1174	0	0
36	f	793	0	788	0	0
37	g	1111	0	1163	0	0
38	h	985	0	1047	0	0
39	i	995	0	1053	0	0
40	i	801	0	832	0	0
41	k	862	0	877	0	0
42	1	945	0	996	0	0
43	m	903	0	962	0	0
44	n	792	0	833	0	0
1	1 -*					

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
45	0	705	0	712	0	0
46	р	649	0	660	0	0
47	q	630	0	678	0	0
48	r	438	0	456	0	0
49	s	646	0	663	0	0
50	t	658	0	710	0	0
51	u	182	0	198	0	0
52	V	1636	0	832	0	0
53	W	65	0	33	0	0
54	3	1	0	0	0	0
55	AN1	49	0	0	0	0
55	sN1	44	0	0	0	0
56	AN1	1	0	0	0	0
57	AN1	319	0	0	1	0
57	В	4	0	0	0	0
57	С	5	0	0	0	0
57	D	3	0	0	0	0
57	Е	3	0	0	0	0
57	K	3	0	0	0	0
57	0	1	0	0	0	0
57	Р	3	0	0	0	0
57	Q	1	0	0	0	0
57	U	1	0	0	0	0
57	i	5	0	0	0	0
57	j	2	0	0	0	0
57	m	1	0	0	0	0
57	0	1	0	0	0	0
57	р	1	0	0	0	0
57	q	2	0	0	0	0
57	sN1	163	0	0	0	0
57	t	2	0	0	0	0
All	All	142113	0	94276	786	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

All (786) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
5:AN1:1462:G:H1	5:AN1:1520:A:N6	1.45	1.15
5:AN1:1463:A:N7	5:AN1:1544:G:O6	1.99	0.96

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
6:B:70:G:H21	6:B:101:A:H62	1.00	0.93
6:B:70:G:N2	6:B:101:A:H62	1.70	0.89
6:B:2:C:O2	6:B:113:G:N2	2.06	0.89
6:B:70:G:H21	6:B:101:A:N6	1.76	0.84
3:2:30:HIS:O	3:2:32:LEU:N	2.12	0.82
5:AN1:1462:G:O6	5:AN1:1543:A:H2	1.61	0.82
5:AN1:1846:G:N2	5:AN1:1888:C:O2	2.14	0.79
5:AN1:1523:A:N6	5:AN1:1541:G:C2	2.50	0.79
15:K:85:SER:OG	15:K:120:ARG:NH1	2.15	0.79
6:B:18:G:N1	6:B:61:C:N3	2.31	0.79
5:AN1:2311:C:HO2'	5:AN1:2312:G:H8	1.30	0.79
5:AN1:1523:A:N6	5:AN1:1541:G:N2	2.30	0.78
5:AN1:2112:G:O6	5:AN1:2166:A:N6	2.16	0.78
5:AN1:843:G:O2'	5:AN1:845:A:N7	2.18	0.77
5:AN1:873:G:N1	5:AN1:900:C:N3	2.29	0.77
5:AN1:873:G:N2	5:AN1:900:C:O2	2.16	0.77
5:AN1:1595:A:H5"	5:AN1:1596:A:H5'	1.65	0.76
5:AN1:1462:G:O6	5:AN1:1543:A:C2	2.39	0.76
5:AN1:1523:A:C6	5:AN1:1541:G:N2	2.54	0.75
5:AN1:52:G:H5"	5:AN1:53:G:H5'	1.70	0.74
6:B:18:G:N2	6:B:61:C:O2	2.16	0.73
5:AN1:879:G:O6	5:AN1:893:U:O2	2.08	0.72
5:AN1:1036:A:H61	5:AN1:1113:G:H1	1.37	0.71
5:AN1:34:G:N2	5:AN1:511:G:O2'	2.23	0.71
5:AN1:2804:A:O2'	5:AN1:2886:G:O6	2.09	0.71
8:D:6:VAL:H	8:D:33:ASN:HD21	1.39	0.71
3:2:24:LYS:NZ	3:2:46:CYS:SG	2.64	0.71
18:N:73:VAL:HA	18:N:76:LEU:HD23	1.72	0.71
11:G:11:VAL:HG13	11:G:15:VAL:HB	1.73	0.71
6:B:2:C:N3	6:B:113:G:N1	2.36	0.70
19:O:20:LEU:HD13	19:O:79:THR:HG22	1.73	0.70
5:AN1:875:U:O2	5:AN1:898:A:N7	2.25	0.69
5:AN1:1528:G:O2'	5:AN1:1536:A:N1	2.24	0.69
7:C:75:PRO:HB2	7:C:115:LYS:HD2	1.74	0.69
5:AN1:829:G:O2'	15:K:40:GLN:NE2	2.25	0.69
5:AN1:711:G:H8	5:AN1:716:A:H62	1.39	0.69
5:AN1:1463:A:C5	5:AN1:1544:G:O6	2.46	0.69
5:AN1:1533:U:N3	5:AN1:1534:G:N3	2.41	0.69
5:AN1:2372:A:N3	18:N:110:ARG:NH1	2.40	0.69
7:C:118:SER:OG	7:C:189:ARG:NH2	2.25	0.69
10:F:99:PHE:HD1	10:F:102:ARG:HH11	1.40	0.69

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
5:AN1:2104:U:O2	5:AN1:2177:G:N2	2.27	0.68
5:AN1:2647:C:O2	5:AN1:2665:G:N2	2.19	0.68
5:AN1:2096:G:H1	5:AN1:2185:U:H3	0.78	0.68
5:AN1:293:U:H3	5:AN1:351:G:H1	1.41	0.68
9:E:20:ARG:NH1	9:E:106:CYS:SG	2.67	0.68
20:P:104:VAL:HG12	21:Q:47:ILE:HD11	1.76	0.68
5:AN1:322:G:N7	9:E:131:LYS:NZ	2.42	0.67
5:AN1:2159:U:OP1	5:AN1:2161:C:N4	2.27	0.67
5:AN1:342:A:O2'	9:E:161:ARG:NH1	2.27	0.67
5:AN1:1862:A:H61	5:AN1:1871:G:H2'	1.59	0.66
2:1:24:THR:HG23	2:1:27:GLY:H	1.61	0.66
5:AN1:364:A:OP2	5:AN1:424:G:O2'	2.13	0.66
10:F:57:MET:HA	10:F:60:ILE:HG12	1.76	0.66
5:AN1:1749:G:N2	5:AN1:1752:G:OP2	2.28	0.65
7:C:230:HIS:HD2	7:C:232:HIS:H	1.43	0.65
25:U:59:VAL:HG12	25:U:63:GLU:HG2	1.78	0.65
5:AN1:2879:A:OP2	30:Z:49:ARG:NH1	2.30	0.65
5:AN1:195:G:H5'	27:W:14:VAL:HG21	1.77	0.65
5:AN1:1041:A:O2'	5:AN1:1108:A:N6	2.30	0.65
7:C:6:CYS:SG	7:C:13:ARG:NH2	2.69	0.65
5:AN1:2130:A:H62	5:AN1:2153:G:H4'	1.62	0.65
5:AN1:2787:A:HO2'	5:AN1:2788:G:H8	1.41	0.65
5:AN1:2111:G:H4'	5:AN1:2113:A:H62	1.62	0.64
9:E:86:ALA:O	9:E:87:ARG:NH1	2.31	0.64
5:AN1:1816:U:O4	7:C:198:GLN:NE2	2.30	0.64
5:AN1:879:G:H2'	5:AN1:880:G:H8	1.62	0.64
5:AN1:1045:A:H61	11:G:3:ARG:HH12	1.43	0.64
7:C:38:LYS:NZ	7:C:39:ARG:O	2.31	0.64
5:AN1:1647:G:O2'	17:M:106:ASP:OD2	2.15	0.64
5:AN1:1413:G:N2	5:AN1:1577:A:OP2	2.29	0.64
5:AN1:474:C:O2	5:AN1:478:A:N6	2.31	0.63
5:AN1:1522:C:N4	5:AN1:1541:G:H22	1.97	0.63
9:E:97:ARG:HD3	9:E:101:ARG:HH21	1.62	0.63
5:AN1:198:A:H3'	5:AN1:199:G:H21	1.64	0.63
5:AN1:846:U:H2'	5:AN1:847:A:H8	1.63	0.63
14:J:66:LYS:HE2	14:J:81:ASP:HA	1.79	0.63
5:AN1:1311:A:H2'	5:AN1:1312:G:H8	1.64	0.63
5:AN1:1463:A:N7	5:AN1:1544:G:C6	2.67	0.62
8:D:20:GLY:HA2	19:O:82:PRO:HD2	1.82	0.62
22:R:10:ALA:HB1	22:R:46:LEU:HD13	1.80	0.62
18:N:59:LEU:HD21	18:N:72:LYS:HD2	1.80	0.62

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
6:B:40:C:OP1	10:F:64:LYS:NZ	2.33	0.62
5:AN1:70:A:H61	5:AN1:98:A:H61	1.47	0.62
5:AN1:410:G:OP2	5:AN1:2402:U:O2'	2.18	0.62
5:AN1:1865:G:O2'	5:AN1:1868:A:N6	2.34	0.61
5:AN1:527:A:H5'	13:I:113:PRO:HG3	1.82	0.61
11:G:33:LEU:HB2	11:G:75:LEU:HD11	1.81	0.61
3:2:30:HIS:O	3:2:32:LEU:HD22	2.00	0.61
11:G:21:GLY:O	11:G:22:ARG:NH2	2.33	0.61
4:3:18:ARG:HE	4:3:21:GLY:HA2	1.66	0.61
5:AN1:673:A:OP1	9:E:57:LYS:NZ	2.34	0.60
24:T:84:GLN:HE22	24:T:86:ILE:HD11	1.65	0.60
6:B:108:C:H2'	6:B:109:G:H8	1.66	0.60
5:AN1:280:A:H2	5:AN1:364:A:H62	1.47	0.60
10:F:103:LEU:O	10:F:107:ALA:HB2	2.01	0.60
15:K:80:ARG:HB2	15:K:83:GLU:HG3	1.83	0.60
5:AN1:93:G:HO2'	5:AN1:111:U:HO2'	1.47	0.60
5:AN1:1775:U:OP2	5:AN1:1780:A:N6	2.29	0.60
5:AN1:168:A:H3'	5:AN1:169:U:H5"	1.83	0.60
5:AN1:1462:G:H1	5:AN1:1520:A:H61	0.69	0.60
5:AN1:2109:U:O4	5:AN1:2163:U:O2'	2.20	0.60
5:AN1:879:G:N2	5:AN1:893:U:O2'	2.31	0.59
10:F:83:TRP:CE3	10:F:84:PRO:HD2	2.38	0.59
10:F:136:ILE:HG13	10:F:138:PHE:HD1	1.67	0.59
29:Y:39:ASP:OD1	29:Y:44:ARG:NH1	2.33	0.59
5:AN1:167:A:N3	5:AN1:2204:C:O2'	2.35	0.59
5:AN1:1870:C:H3'	5:AN1:1871:G:H4'	1.84	0.59
5:AN1:2123:G:N2	5:AN1:2158:G:O6	2.36	0.59
30:Z:43:THR:HG22	30:Z:45:ASP:H	1.66	0.59
6:B:18:G:O6	6:B:61:C:N4	2.35	0.59
7:C:137:ILE:HD12	7:C:166:GLY:HA2	1.85	0.59
5:AN1:1053:G:H21	5:AN1:1101:C:H41	1.51	0.59
5:AN1:2591:G:N2	5:AN1:2594:A:OP2	2.32	0.59
6:B:12:U:OP2	6:B:68:C:O2'	2.21	0.58
11:G:9:VAL:HG21	11:G:73:ASN:HA	1.84	0.58
26:V:11:LYS:O	26:V:14:ARG:NH1	2.33	0.58
5:AN1:2096:G:O6	5:AN1:2185:U:O4	2.21	0.58
5:AN1:2077:C:H2'	5:AN1:2078:A:H8	1.69	0.58
5:AN1:862:G:H2'	5:AN1:863:C:C6	2.39	0.58
5:AN1:579:C:H2'	5:AN1:580:A:C8	2.39	0.58
5:AN1:2151:U:OP2	5:AN1:2153:G:N2	2.36	0.58
5:AN1:2324:A:H2'	5:AN1:2325:A:C8	2.37	0.58

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
5:AN1:2861:U:OP2	5:AN1:2862:G:O2'	2.21	0.58
3:2:31:ILE:O	3:2:33:THR:N	2.36	0.58
5:AN1:877:G:H2'	5:AN1:878:G:C8	2.38	0.58
12:H:47:PHE:O	12:H:51:ARG:HB3	2.03	0.58
18:N:73:VAL:HA	18:N:76:LEU:CD2	2.34	0.58
5:AN1:1535:U:H2'	5:AN1:1536:A:H8	1.69	0.57
5:AN1:2225:U:H2'	5:AN1:2226:G:H8	1.68	0.57
7:C:115:LYS:O	7:C:125:ARG:NH2	2.36	0.57
16:L:43:THR:HG22	16:L:94:VAL:HG12	1.86	0.57
24:T:86:ILE:HG22	24:T:87:ASP:H	1.68	0.57
5:AN1:2570:G:H1'	8:D:151:GLN:HG3	1.86	0.57
5:AN1:2309:C:O4'	10:F:37:ASN:ND2	2.37	0.57
5:AN1:2647:C:N3	5:AN1:2665:G:N1	2.34	0.57
5:AN1:1306:G:OP2	5:AN1:1306:G:N2	2.34	0.57
5:AN1:878:G:H2'	5:AN1:879:G:H8	1.70	0.57
10:F:83:TRP:HE3	10:F:84:PRO:HD2	1.69	0.57
25:U:68:LYS:HG3	25:U:73:VAL:HG12	1.87	0.57
5:AN1:1111:C:H2'	5:AN1:1112:G:C8	2.39	0.57
5:AN1:579:C:H2'	5:AN1:580:A:H8	1.70	0.57
5:AN1:2242:G:H2'	5:AN1:2243:A:H8	1.70	0.56
5:AN1:1361:A:OP1	27:W:2:SER:OG	2.21	0.56
5:AN1:1111:C:H2'	5:AN1:1112:G:H8	1.70	0.56
21:Q:70:ASP:OD2	21:Q:70:ASP:N	2.38	0.56
5:AN1:1535:U:H2'	5:AN1:1536:A:C8	2.41	0.56
5:AN1:148:A:N6	5:AN1:1593:G:O2'	2.24	0.56
5:AN1:2310:A:H4'	10:F:33:LYS:NZ	2.21	0.56
21:Q:51:ALA:HB3	21:Q:52:PRO:HD3	1.87	0.56
25:U:84:HIS:HD2	25:U:86:ALA:H	1.53	0.56
5:AN1:877:G:H2'	5:AN1:878:G:H8	1.71	0.56
5:AN1:1430:G:H2'	5:AN1:1431:G:C8	2.41	0.56
5:AN1:84:U:OP1	28:X:52:ARG:NH2	2.38	0.56
5:AN1:1052:G:H1'	5:AN1:1082:A:H2	1.71	0.56
6:B:64:A:N6	6:B:105:C:H2'	2.21	0.56
16:L:20:LEU:HD23	16:L:99:PRO:HG2	1.87	0.56
5:AN1:520:U:H2'	5:AN1:521:G:H8	1.71	0.56
5:AN1:719:A:H2'	5:AN1:720:A:C8	2.41	0.56
15:K:119:THR:HG22	15:K:120:ARG:HH21	1.69	0.56
5:AN1:2468:G:N2	5:AN1:2469:U:O2'	2.39	0.56
12:H:51:ARG:NH1	12:H:55:GLU:HB3	2.21	0.55
5:AN1:2287:U:H2'	5:AN1:2288:G:C8	2.41	0.55
5:AN1:2310:A:H4'	10:F:33:LYS:HZ1	1.72	0.55

A 4 1	A targe D	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
17:M:28:LEU:HD21	17:M:95:LEU:HD21	1.88	0.55
10:F:33:LYS:HD3	10:F:35:THR:HG23	1.88	0.55
5:AN1:552:U:H2'	5:AN1:553:G:O4'	2.06	0.55
5:AN1:570:A:OP2	21:Q:80:ARG:NH2	2.35	0.55
5:AN1:587:U:H2'	5:AN1:588:A:C8	2.41	0.55
5:AN1:887:C:H3'	5:AN1:888:C:H5"	1.89	0.55
5:AN1:2123:G:H2'	5:AN1:2124:G:C8	2.41	0.55
7:C:183:LYS:HG3	7:C:268:ILE:HD11	1.89	0.55
18:N:51:GLN:O	18:N:80:ARG:NH2	2.36	0.55
5:AN1:1042:U:H4'	5:AN1:1044:G:H1'	1.88	0.55
5:AN1:12:A:H2'	5:AN1:13:A:C8	2.42	0.55
5:AN1:1587:U:H2'	5:AN1:1588:A:H8	1.71	0.55
10:F:138:PHE:HB2	10:F:139:PRO:HD2	1.89	0.55
26:V:66:VAL:HG22	26:V:83:GLU:HB2	1.88	0.55
5:AN1:2743:G:H21	5:AN1:2753:A:H62	1.54	0.54
7:C:140:THR:OG1	7:C:161:SER:OG	2.25	0.54
5:AN1:86:C:H2'	5:AN1:87:G:H8	1.72	0.54
5:AN1:1004:C:OP1	13:I:37:ARG:NH1	2.39	0.54
5:AN1:1750:C:H5	19:O:97:ARG:HH11	1.55	0.54
5:AN1:2130:A:OP2	5:AN1:2152:G:N1	2.41	0.54
25:U:76:VAL:HG12	25:U:97:ARG:HA	1.88	0.54
5:AN1:2212:G:H2'	5:AN1:2213:G:H8	1.71	0.54
10:F:80:ARG:HB2	10:F:83:TRP:HD1	1.72	0.54
15:K:102:VAL:HG23	15:K:103:VAL:HG23	1.88	0.54
28:X:5:ASP:O	28:X:9:LYS:NZ	2.26	0.54
5:AN1:587:U:H2'	5:AN1:588:A:H8	1.73	0.54
5:AN1:876:A:H62	5:AN1:897:A:H2	1.55	0.54
5:AN1:1311:A:H2'	5:AN1:1312:G:C8	2.42	0.54
5:AN1:2311:C:O2'	5:AN1:2312:G:H8	1.91	0.54
5:AN1:2587:C:H2'	5:AN1:2588:G:H8	1.72	0.54
14:J:108:THR:HG22	14:J:110:GLN:H	1.71	0.54
5:AN1:303:C:H5"	5:AN1:336:U:H2'	1.90	0.54
5:AN1:2242:G:H2'	5:AN1:2243:A:C8	2.43	0.54
9:E:170:ASP:OD1	9:E:171:ALA:N	2.40	0.54
5:AN1:184:G:H3'	5:AN1:185:G:H8	1.71	0.54
5:AN1:1310:C:O2'	5:AN1:1387:A:N3	2.38	0.54
5:AN1:2021:C:OP1	8:D:157:ARG:NH2	2.41	0.54
10:F:51:ASP:HA	10:F:54:VAL:HG22	1.89	0.54
5:AN1:353:C:H2'	5:AN1:354:A:H8	1.73	0.54
5:AN1:873:G:O6	5:AN1:900:C:N4	2.31	0.53
18:N:19:ILE:HG21	18:N:26:ARG:HB3	1.90	0.53

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
5:AN1:327:G:H2'	5:AN1:328:G:H8	1.73	0.53
5:AN1:1717:G:N2	5:AN1:1734:G:O2'	2.41	0.53
8:D:127:ARG:HG3	8:D:168:LEU:HD13	1.89	0.53
5:AN1:372:U:H2'	5:AN1:373:A:H8	1.74	0.53
5:AN1:1068:G:N3	5:AN1:1086:A:O2'	2.39	0.53
8:D:180:ILE:HD13	8:D:192:VAL:HG22	1.89	0.53
10:F:15:LYS:O	10:F:19:GLU:HB2	2.08	0.53
5:AN1:1567:A:OP1	7:C:61:HIS:NE2	2.34	0.53
5:AN1:1844:A:H5"	5:AN1:1845:G:OP1	2.09	0.53
5:AN1:2107:U:O2	5:AN1:2111:G:N2	2.41	0.53
5:AN1:1679:G:N2	5:AN1:1759:G:OP2	2.33	0.53
11:G:44:LYS:NZ	11:G:53:ALA:O	2.42	0.53
5:AN1:1483:U:O2	5:AN1:1496:G:N2	2.40	0.53
5:AN1:2111:G:O2'	5:AN1:2113:A:N7	2.37	0.53
3:2:6:THR:HG22	3:2:62:PRO:HD2	1.90	0.52
5:AN1:1932:A:H2	5:AN1:1939:U:H3	1.57	0.52
5:AN1:31:G:N2	22:R:78:GLU:OE2	2.36	0.52
5:AN1:1199:A:H4'	5:AN1:1200:A:H5'	1.91	0.52
5:AN1:1472:A:N6	5:AN1:1510:G:O2'	2.43	0.52
5:AN1:1919:U:H2'	5:AN1:1920:C:C6	2.44	0.52
11:G:107:LEU:HB3	11:G:152:ARG:HD3	1.92	0.52
15:K:82:SER:HB3	15:K:116:GLY:HA3	1.92	0.52
7:C:133:ARG:HB3	7:C:186:VAL:HG22	1.92	0.52
7:C:137:ILE:HD11	7:C:167:ARG:HG2	1.91	0.52
10:F:108:ILE:HA	10:F:114:PHE:HZ	1.74	0.52
10:F:138:PHE:O	10:F:140:GLU:N	2.42	0.52
5:AN1:2301:U:C5	10:F:153:ASP:HB2	2.45	0.52
5:AN1:2830:G:H2'	5:AN1:2875:A:H61	1.75	0.52
30:Z:25:ASN:OD1	30:Z:38:ARG:NH2	2.41	0.52
5:AN1:1108:A:H8	5:AN1:1109:G:H4'	1.74	0.52
6:B:27:A:H2'	6:B:28:C:C6	2.45	0.52
10:F:10:ASP:HA	10:F:13:LYS:HG2	1.92	0.52
10:F:54:VAL:HG12	10:F:87:CYS:SG	2.50	0.52
5:AN1:719:A:H2'	5:AN1:720:A:H8	1.72	0.52
5:AN1:1310:C:H2'	5:AN1:1311:A:H8	1.74	0.52
5:AN1:1430:G:H2'	5:AN1:1431:G:H8	1.75	0.52
29:Y:3:THR:OG1	29:Y:36:GLU:OE2	2.26	0.52
23:S:43:LYS:O	23:S:47:GLU:HG2	2.09	0.51
5:AN1:1522:C:H41	5:AN1:1541:G:H22	1.59	0.51
4:3:10:ILE:HD13	4:3:33:HIS:HD2	1.75	0.51
5:AN1:878:G:H2'	5:AN1:879:G:C8	2.45	0.51

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
5:AN1:1424:G:H2'	5:AN1:1425:G:H8	1.76	0.51
5:AN1:2325:A:H2'	5:AN1:2326:G:C8	2.46	0.51
11:G:63:MET:O	11:G:67:THR:HG23	2.11	0.51
5:AN1:1589:C:H2'	5:AN1:1590:A:H8	1.75	0.51
5:AN1:2753:A:N1	11:G:67:THR:HG21	2.26	0.51
5:AN1:13:A:O2'	13:I:135:GLN:NE2	2.44	0.51
5:AN1:294:U:H3	5:AN1:350:G:H22	1.57	0.51
24:T:93:VAL:HG12	24:T:100:SER:HA	1.92	0.51
5:AN1:2315:U:H2'	5:AN1:2317:G:H1	1.76	0.51
10:F:50:LEU:HD21	10:F:84:PRO:HB2	1.91	0.51
24:T:38:ASN:HB3	24:T:61:ALA:HB3	1.91	0.51
4:3:11:CYS:SG	4:3:13:SER:OG	2.61	0.51
5:AN1:1487:G:H5"	5:AN1:1488:C:H5"	1.93	0.51
5:AN1:2096:G:N2	5:AN1:2185:U:O2	2.33	0.51
10:F:74:ILE:HG22	10:F:76:GLY:H	1.75	0.51
19:O:4:LYS:O	19:O:9:GLN:NE2	2.43	0.51
5:AN1:327:G:H2'	5:AN1:328:G:C8	2.46	0.50
5:AN1:1095:A:H2'	5:AN1:1096:G:H8	1.75	0.50
7:C:78:VAL:O	7:C:113:GLY:N	2.44	0.50
5:AN1:413:C:H2'	5:AN1:414:A:C8	2.47	0.50
5:AN1:1025:A:H2'	5:AN1:1026:A:C8	2.46	0.50
5:AN1:2049:G:H5'	8:D:152:ASN:O	2.12	0.50
6:B:28:C:H2'	6:B:29:C:O4'	2.11	0.50
5:AN1:1767:C:H2'	5:AN1:1768:A:H8	1.76	0.50
5:AN1:2116:G:H5"	5:AN1:2164:G:H22	1.75	0.50
5:AN1:2323:A:H2'	5:AN1:2324:A:C8	2.46	0.50
5:AN1:270:U:O2'	5:AN1:428:A:N3	2.37	0.50
5:AN1:2239:U:H2'	5:AN1:2240:U:C6	2.46	0.50
5:AN1:12:A:H2'	5:AN1:13:A:H8	1.77	0.50
11:G:102:VAL:HG12	11:G:116:ALA:HA	1.93	0.50
5:AN1:70:A:H61	5:AN1:98:A:N6	2.09	0.50
5:AN1:596:U:H2'	5:AN1:597:A:C8	2.46	0.50
5:AN1:1846:G:N1	5:AN1:1888:C:N3	2.44	0.50
21:Q:43:ASN:HB2	21:Q:46:ASN:HB3	1.94	0.50
5:AN1:909:A:H8	5:AN1:2273:G:H21	1.57	0.50
5:AN1:1911:3TD:N1	5:AN1:1938:C:O2	2.42	0.50
7:C:159:GLY:H	7:C:195:VAL:HB	1.76	0.50
29:Y:3:THR:HG22	29:Y:38:GLN:HA	1.94	0.50
5:AN1:1276:G:H2'	5:AN1:1277:U:C6	2.47	0.50
11:G:54:PRO:HB3	11:G:61:ALA:HB1	1.94	0.50
5:AN1:881:G:H2'	5:AN1:882:U:H6	1.77	0.50

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
5:AN1:1356:G:H2'	5:AN1:1357:C:C6	2.47	0.50
5:AN1:2654:C:H5"	11:G:158:LYS:HE3	1.94	0.50
5:AN1:2853:G:N1	5:AN1:2856:A:OP2	2.36	0.50
6:B:100:U:O2'	25:U:79:GLN:NE2	2.45	0.50
8:D:62:THR:O	8:D:66:LYS:HG2	2.12	0.50
11:G:25:GLU:OE2	11:G:32:THR:OG1	2.18	0.50
18:N:69:ALA:O	18:N:73:VAL:HG23	2.12	0.50
5:AN1:2070:U:H2'	5:AN1:2071:U:C6	2.47	0.49
5:AN1:2622:C:H2'	5:AN1:2623:G:C8	2.46	0.49
24:T:46:PRO:HB3	24:T:54:GLY:H	1.76	0.49
5:AN1:308:U:H2'	5:AN1:309:G:O4'	2.13	0.49
5:AN1:1583:C:H3'	5:AN1:1584:A:H8	1.78	0.49
5:AN1:2115:A:HO2'	5:AN1:2166:A:HO2'	1.61	0.49
5:AN1:2577:G:N2	5:AN1:2577:G:OP2	2.43	0.49
23:S:24:ASP:OD2	23:S:25:THR:HG23	2.11	0.49
25:U:94:ASP:OD1	25:U:94:ASP:N	2.44	0.49
5:AN1:663:U:H2'	5:AN1:664:A:H8	1.76	0.49
5:AN1:2119:G:H1'	5:AN1:2172:A:C2	2.48	0.49
5:AN1:2594:A:H5"	7:C:234:GLY:HA3	1.93	0.49
10:F:67:VAL:HG12	10:F:84:PRO:HB3	1.95	0.49
10:F:138:PHE:CZ	10:F:140:GLU:HB2	2.48	0.49
22:R:88:ARG:NH1	22:R:94:ASP:OD2	2.41	0.49
5:AN1:753:C:H2'	5:AN1:754:A:H8	1.78	0.49
5:AN1:2067:A:H2'	5:AN1:2068:C:C6	2.47	0.49
5:AN1:2479:C:N3	16:L:124:LYS:NZ	2.53	0.49
5:AN1:1543:A:O2'	5:AN1:1544:G:H5"	2.13	0.49
10:F:3:ARG:CZ	10:F:105:SER:HB3	2.43	0.49
30:Z:52:GLN:NE2	30:Z:53:LEU:O	2.45	0.49
2:1:12:ARG:HH11	2:1:44:VAL:HG21	1.78	0.49
5:AN1:1886:A:H3'	5:AN1:1887:G:H8	1.78	0.49
10:F:64:LYS:HG3	10:F:65:PRO:HD2	1.95	0.49
9:E:97:ARG:HG2	9:E:101:ARG:HE	1.77	0.49
2:1:29:GLN:NE2	5:AN1:217:C:OP1	2.46	0.49
5:AN1:184:G:H3'	5:AN1:185:G:C8	2.48	0.49
10:F:10:ASP:OD2	10:F:13:LYS:NZ	2.45	0.49
10:F:80:ARG:HB2	10:F:83:TRP:CD1	2.47	0.49
20:P:82:GLY:O	20:P:86:ALA:N	2.46	0.49
5:AN1:499:G:N1	5:AN1:502:A:OP2	2.37	0.49
5:AN1:518:C:H2'	5:AN1:519:A:H8	1.77	0.49
5:AN1:520:U:H2'	5:AN1:521:G:C8	2.48	0.49
5:AN1:1462:G:N1	5:AN1:1520:A:N6	2.25	0.49

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
5:AN1:1798:A:H2'	5:AN1:1799:A:C8	2.48	0.49
5:AN1:1908:A:H2	5:AN1:1913:PSU:HN3	1.61	0.49
5:AN1:1478:G:H2'	5:AN1:1479:U:C6	2.48	0.49
5:AN1:2171:C:H2'	5:AN1:2172:A:N7	2.28	0.49
5:AN1:2852:A:H2'	5:AN1:2853:G:O4'	2.12	0.49
13:I:23:LYS:HD3	13:I:142:ILE:HD13	1.94	0.49
5:AN1:2306:A:H2'	5:AN1:2307:A:H5"	1.94	0.48
7:C:230:HIS:CD2	7:C:232:HIS:H	2.27	0.48
12:H:5:LEU:HB2	12:H:16:GLY:HA2	1.94	0.48
5:AN1:701:U:H2'	5:AN1:702:G:O4'	2.13	0.48
5:AN1:844:A:H61	5:AN1:929:C:H1'	1.77	0.48
6:B:101:A:H5'	25:U:79:GLN:HE22	1.78	0.48
10:F:3:ARG:NH1	10:F:101:ASP:O	2.46	0.48
5:AN1:2125:C:H2'	5:AN1:2155:G:H1	1.78	0.48
19:O:56:ARG:O	19:O:60:SER:OG	2.30	0.48
5:AN1:634:G:H5"	15:K:131:LYS:HE2	1.96	0.48
5:AN1:1591:C:H2'	5:AN1:1592:A:C8	2.48	0.48
5:AN1:1767:C:H2'	5:AN1:1768:A:C8	2.48	0.48
5:AN1:2119:G:N2	5:AN1:2120:G:O6	2.46	0.48
10:F:68:THR:OG1	10:F:88:LYS:HG2	2.13	0.48
5:AN1:1591:C:H2'	5:AN1:1592:A:H8	1.79	0.48
10:F:80:ARG:HD3	10:F:83:TRP:HE1	1.78	0.48
15:K:112:ILE:HB	15:K:129:LEU:HD23	1.94	0.48
5:AN1:1356:G:H2'	5:AN1:1357:C:H6	1.78	0.48
5:AN1:2843:U:H2'	5:AN1:2844:G:O4'	2.13	0.48
5:AN1:1373:A:O2'	5:AN1:1375:G:OP2	2.32	0.48
7:C:135:MET:O	7:C:167:ARG:NH1	2.29	0.48
11:G:121:VAL:HG22	11:G:135:SER:HB2	1.95	0.48
17:M:2:ARG:HD2	17:M:2:ARG:O	2.13	0.48
5:AN1:1261:G:OP2	30:Z:16:ARG:NH1	2.47	0.48
5:AN1:176:U:H2'	5:AN1:177:G:H8	1.78	0.48
5:AN1:2082:U:H2'	5:AN1:2083:G:C8	2.49	0.48
12:H:51:ARG:HH12	12:H:55:GLU:HB3	1.78	0.48
5:AN1:462:G:N2	5:AN1:465:A:OP2	2.29	0.47
5:AN1:606:A:H2'	5:AN1:607:A:C8	2.49	0.47
21:Q:42:VAL:HG12	21:Q:44:GLY:H	1.79	0.47
5:AN1:103:U:H2'	5:AN1:104:C:O4'	2.15	0.47
5:AN1:718:U:O2'	5:AN1:719:A:H8	1.97	0.47
5:AN1:2622:C:H2'	5:AN1:2623:G:H8	1.79	0.47
5:AN1:2637:A:H5"	13:I:78:THR:HG21	1.96	0.47
19:O:94:ASP:OD2	19:O:94:ASP:N	2.47	0.47

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:2:28:LYS:HD3	3:2:32:LEU:HD11	1.95	0.47
5:AN1:578:U:H2'	5:AN1:579:C:C6	2.49	0.47
5:AN1:2060:C:H2'	5:AN1:2061:C:C6	2.50	0.47
5:AN1:2229:U:H2'	5:AN1:2230:G:C8	2.50	0.47
7:C:167:ARG:HA	7:C:172:ALA:HA	1.97	0.47
5:AN1:86:C:H2'	5:AN1:87:G:C8	2.49	0.47
5:AN1:158:U:H2'	5:AN1:159:G:H8	1.78	0.47
5:AN1:970:A:H5'	5:AN1:1183:U:H1'	1.96	0.47
5:AN1:1348:A:H2'	5:AN1:1349:A:C8	2.50	0.47
5:AN1:2119:G:H1	5:AN1:2169:A:N6	2.12	0.47
5:AN1:413:C:H2'	5:AN1:414:A:H8	1.78	0.47
5:AN1:1193:U:H2'	5:AN1:1194:U:C6	2.49	0.47
15:K:37:ILE:HG22	15:K:38:LYS:H	1.80	0.47
2:1:1:MET:N	5:AN1:1617:G:H21	2.13	0.47
5:AN1:31:G:O2'	22:R:78:GLU:O	2.31	0.47
5:AN1:34:G:H22	5:AN1:511:G:C2'	2.27	0.47
5:AN1:665:U:H2'	5:AN1:666:A:O4'	2.14	0.47
5:AN1:955:U:O2'	6:B:86:U:O4	2.29	0.47
5:AN1:2645:C:H2'	5:AN1:2646:U:H6	1.79	0.47
6:B:29:C:H2'	6:B:30:U:C5	2.50	0.47
7:C:53:HIS:HA	7:C:217:ARG:HB2	1.95	0.47
7:C:120:ASN:HD22	7:C:131:PRO:HG2	1.80	0.47
10:F:29:PRO:HB3	10:F:160:ALA:HB2	1.95	0.47
14:J:34:SER:OG	14:J:35:VAL:N	2.48	0.47
15:K:123:THR:HG22	15:K:143:LYS:HB2	1.97	0.47
5:AN1:678:A:H2'	5:AN1:679:G:C8	2.50	0.47
5:AN1:846:U:H2'	5:AN1:847:A:C8	2.48	0.47
5:AN1:879:G:C6	5:AN1:893:U:O2	2.68	0.47
5:AN1:2563:G:H2'	5:AN1:2564:A:C8	2.49	0.47
6:B:26:C:H2'	6:B:27:A:C8	2.49	0.47
9:E:20:ARG:HE	9:E:105:GLN:HG3	1.79	0.47
10:F:71:ARG:HG3	10:F:72:LYS:HG2	1.95	0.47
5:AN1:537:A:N6	5:AN1:553:G:O2'	2.44	0.47
5:AN1:1437:U:H2'	5:AN1:1438:C:C6	2.49	0.47
5:AN1:2172:A:H2'	5:AN1:2173:C:C6	2.50	0.47
9:E:82:LYS:HE2	9:E:82:LYS:HB3	1.78	0.47
5:AN1:498:U:H2'	5:AN1:499:G:O4'	2.15	0.47
5:AN1:1348:A:H2'	5:AN1:1349:A:H8	1.80	0.47
10:F:4:LEU:HB2	10:F:101:ASP:HB3	1.97	0.47
26:V:37:ILE:HG22	26:V:38:VAL:HG23	1.97	0.47
5:AN1:1538:A:O2'	5:AN1:1539:G:OP1	2.26	0.46

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
5:AN1:2066:A:H2'	5:AN1:2067:A:C8	2.51	0.46
6:B:108:C:O2'	6:B:109:G:OP1	2.26	0.46
8:D:30:VAL:O	8:D:188:SER:OG	2.28	0.46
10:F:80:ARG:HD3	10:F:83:TRP:NE1	2.29	0.46
16:L:63:LYS:HD3	16:L:65:PHE:CZ	2.50	0.46
1:0:2:ARG:NE	5:AN1:2281:C:OP2	2.40	0.46
5:AN1:2312:G:H2'	5:AN1:2313:C:C6	2.50	0.46
6:B:68:C:H2'	6:B:69:U:H6	1.80	0.46
7:C:76:ALA:O	7:C:115:LYS:HD3	2.15	0.46
10:F:31:ILE:HD12	10:F:156:ILE:HB	1.98	0.46
10:F:37:ASN:OD1	10:F:38:MET:N	2.48	0.46
10:F:100:LEU:O	10:F:104:ILE:HG12	2.15	0.46
5:AN1:2295:G:H2'	5:AN1:2296:C:C6	2.51	0.46
10:F:108:ILE:HA	10:F:114:PHE:CZ	2.50	0.46
5:AN1:762:A:H5'	7:C:209:GLY:HA2	1.97	0.46
5:AN1:2187:A:O2'	5:AN1:2188:G:H8	1.99	0.46
5:AN1:2533:U:H2'	5:AN1:2534:C:H6	1.80	0.46
8:D:119:LYS:O	8:D:122:GLN:NE2	2.44	0.46
11:G:33:LEU:HD21	11:G:137:ASN:HB2	1.97	0.46
5:AN1:753:C:H2'	5:AN1:754:A:C8	2.50	0.46
5:AN1:1413:G:O2'	5:AN1:1577:A:N6	2.49	0.46
5:AN1:1413:G:H22	5:AN1:1576:U:H3'	1.80	0.46
13:I:17:VAL:HG23	13:I:137:PRO:HB2	1.98	0.46
5:AN1:720:A:H2'	5:AN1:721:C:C6	2.50	0.46
5:AN1:727:G:OP1	7:C:13:ARG:HG2	2.15	0.46
5:AN1:1411:G:H2'	5:AN1:1412:C:C6	2.50	0.46
5:AN1:1911:3TD:OP1	5:AN1:1911:3TD:O3'	2.34	0.46
5:AN1:2736:A:H2'	5:AN1:2737:A:C8	2.50	0.46
11:G:22:ARG:HH11	11:G:39:ALA:HA	1.80	0.46
16:L:76:GLU:HB3	16:L:91:GLU:HG3	1.98	0.46
5:AN1:2066:A:H2'	5:AN1:2067:A:H8	1.81	0.46
7:C:107:PRO:HD2	7:C:110:LEU:HD22	1.97	0.46
5:AN1:961:C:O2'	5:AN1:2269:A:N3	2.38	0.46
5:AN1:1226:U:H2'	5:AN1:1227:G:H8	1.81	0.46
5:AN1:1589:C:H2'	5:AN1:1590:A:C8	2.51	0.46
5:AN1:1844:A:H4'	5:AN1:1845:G:H8	1.81	0.46
5:AN1:1961:C:H5"	5:AN1:1962:A:H2'	1.98	0.46
5:AN1:2021:C:H2'	5:AN1:2022:U:C6	2.50	0.46
5:AN1:2212:G:H2'	5:AN1:2213:G:C8	2.50	0.46
23:S:52:VAL:HG21	23:S:86:LEU:HD23	1.97	0.46
5:AN1:272:A:N1	5:AN1:426:U:O2'	2.42	0.46

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
5:AN1:673:A:H4'	9:E:61:GLN:HE21	1.80	0.46
5:AN1:849:C:H2'	5:AN1:850:A:H8	1.80	0.46
5:AN1:1412:C:H3'	5:AN1:1413:G:H8	1.80	0.46
9:E:52:SER:O	9:E:73:ARG:NE	2.39	0.46
10:F:168:ALA:HA	10:F:171:ARG:HE	1.81	0.46
5:AN1:2543:A:H2'	5:AN1:2544:U:C6	2.50	0.45
5:AN1:2769:U:OP1	8:D:172:ARG:NH1	2.42	0.45
5:AN1:580:A:H2'	5:AN1:581:G:C8	2.51	0.45
5:AN1:831:A:H2'	5:AN1:832:G:C8	2.52	0.45
5:AN1:1052:G:H1'	5:AN1:1082:A:C2	2.51	0.45
5:AN1:1296:A:H2	5:AN1:1624:A:H2	1.65	0.45
5:AN1:596:U:H2'	5:AN1:597:A:H8	1.81	0.45
5:AN1:844:A:N6	5:AN1:929:C:O2'	2.49	0.45
5:AN1:997:A:H2'	5:AN1:998:A:C8	2.50	0.45
5:AN1:1680:G:H2'	5:AN1:1681:U:C6	2.52	0.45
5:AN1:1087:A:H2'	5:AN1:1088:G:C8	2.51	0.45
5:AN1:2104:U:H3	5:AN1:2177:G:H1	1.64	0.45
5:AN1:2568:A:H2'	8:D:152:ASN:HD21	1.81	0.45
5:AN1:2683:U:H2'	5:AN1:2684:G:O4'	2.17	0.45
5:AN1:2787:A:O2'	5:AN1:2788:G:H8	1.97	0.45
5:AN1:2815:C:H2'	5:AN1:2817:A:N7	2.32	0.45
11:G:36:ASN:OD1	11:G:37:LEU:N	2.48	0.45
18:N:76:LEU:O	18:N:79:GLU:HG3	2.16	0.45
5:AN1:358:A:HO2'	5:AN1:359:U:H6	1.64	0.45
5:AN1:494:G:N7	57:AN1:3126:HOH:O	2.36	0.45
5:AN1:805:U:OP2	15:K:43:ARG:NH2	2.50	0.45
5:AN1:2657:G:OP2	5:AN1:2657:G:H8	2.00	0.45
5:AN1:2694:U:H2'	5:AN1:2695:G:C8	2.51	0.45
5:AN1:1792:U:H2'	5:AN1:1793:C:C6	2.51	0.45
7:C:17:GLU:OE1	7:C:204:SER:HB3	2.16	0.45
7:C:107:PRO:HG2	7:C:110:LEU:HD13	1.98	0.45
16:L:58:ILE:O	16:L:59:LYS:HG3	2.16	0.45
24:T:86:ILE:HG22	24:T:87:ASP:N	2.31	0.45
29:Y:2:LYS:HG3	29:Y:3:THR:N	2.32	0.45
5:AN1:2633:U:H2'	5:AN1:2634:G:O4'	2.17	0.45
5:AN1:2639:G:H2'	5:AN1:2640:A:H8	1.81	0.45
6:B:61:C:H2'	6:B:62:U:C6	2.51	0.45
20:P:43:GLY:HA3	21:Q:75:ILE:HD12	1.98	0.45
25:U:52:VAL:O	25:U:56:GLU:HG3	2.17	0.45
5:AN1:2324:A:H2'	5:AN1:2325:A:H8	1.80	0.45
8:D:159:PHE:HB3	13:I:81:PRO:HG3	1.97	0.45

	1.5	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
16:L:137:MET:HB3	25:U:61:PHE:CE1	2.52	0.45
5:AN1:636:G:H2'	5:AN1:637:U:C6	2.52	0.45
5:AN1:2674:A:H2'	5:AN1:2675:A:C8	2.52	0.45
28:X:18:LEU:HB2	28:X:53:ILE:HG21	1.99	0.45
29:Y:7:THR:O	29:Y:55:SER:N	2.45	0.45
5:AN1:293:U:O4	5:AN1:351:G:O6	2.35	0.44
5:AN1:1310:C:H2'	5:AN1:1311:A:C8	2.52	0.44
5:AN1:1500:A:O2'	5:AN1:1502:U:O4'	2.27	0.44
5:AN1:2645:C:H2'	5:AN1:2646:U:C6	2.53	0.44
5:AN1:2744:A:H1'	11:G:67:THR:HG22	1.98	0.44
6:B:54:G:H4'	6:B:55:A:H8	1.81	0.44
11:G:8:PRO:HB2	11:G:49:LYS:HG2	1.98	0.44
14:J:44:LYS:HD3	14:J:44:LYS:HA	1.80	0.44
5:AN1:292:U:H2'	5:AN1:293:U:C6	2.52	0.44
5:AN1:1475:C:H2'	5:AN1:1476:A:C8	2.53	0.44
5:AN1:2727:G:H2'	5:AN1:2728:G:C8	2.52	0.44
5:AN1:2734:A:N1	5:AN1:2762:G:O6	2.50	0.44
6:B:54:G:H4'	6:B:55:A:C8	2.53	0.44
5:AN1:631:A:O2'	5:AN1:2400:U:OP1	2.29	0.44
5:AN1:1103:A:N6	5:AN1:1104:G:O6	2.50	0.44
5:AN1:2225:U:H2'	5:AN1:2226:G:C8	2.51	0.44
6:B:16:A:H1'	6:B:65:G:N2	2.32	0.44
6:B:108:C:HO2'	6:B:109:G:P	2.41	0.44
8:D:184:ASP:HB3	8:D:189:VAL:HG22	1.99	0.44
12:H:5:LEU:HD11	12:H:12:LEU:HD22	2.00	0.44
15:K:31:LYS:HE3	15:K:32:THR:HG23	1.99	0.44
16:L:51:ARG:HG3	16:L:66:ILE:HD11	1.99	0.44
5:AN1:8:A:H61	5:AN1:2898:U:H3	1.64	0.44
5:AN1:2149:A:H2'	5:AN1:2150:G:C8	2.52	0.44
5:AN1:2169:A:H2'	5:AN1:2170:C:C6	2.53	0.44
5:AN1:2373:A:H2'	5:AN1:2374:A:C8	2.52	0.44
5:AN1:2533:U:H2'	5:AN1:2534:C:C6	2.53	0.44
5:AN1:2639:G:H2'	5:AN1:2640:A:C8	2.53	0.44
6:B:64:A:H61	6:B:105:C:H2'	1.82	0.44
19:O:107:SER:OG	19:O:108:GLY:N	2.51	0.44
25:U:22:ARG:O	25:U:26:ARG:HD3	2.16	0.44
5:AN1:889:G:O2'	5:AN1:890:A:N7	2.50	0.44
5:AN1:1078:U:H2'	5:AN1:1079:U:C5	2.52	0.44
5:AN1:1381:A:H2'	5:AN1:1382:U:C6	2.52	0.44
5:AN1:2098:C:H2'	5:AN1:2099:C:O4'	2.16	0.44
21:Q:40:MET:HE3	21:Q:49:ILE:HG12	2.00	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
24:T:5:LYS:HE2	24:T:5:LYS:HB3	1.88	0.44
5:AN1:2287:U:H2'	5:AN1:2288:G:H8	1.81	0.44
7:C:232:HIS:CE1	7:C:244:PRO:HA	2.52	0.44
10:F:137:VAL:HG12	10:F:137:VAL:O	2.18	0.44
30:Z:38:ARG:HB3	30:Z:41:HIS:HB2	2.00	0.44
5:AN1:782:G:H5'	5:AN1:783:G:OP1	2.18	0.44
5:AN1:875:U:H2'	5:AN1:876:A:H8	1.81	0.44
5:AN1:1794:U:OP2	7:C:273:VAL:HG21	2.18	0.44
5:AN1:2127:U:OP1	5:AN1:2130:A:H5'	2.18	0.44
2:1:7:PRO:HB2	5:AN1:1304:G:H4'	1.99	0.44
5:AN1:1176:U:H2'	5:AN1:1177:A:C8	2.53	0.44
5:AN1:1569:A:H2'	5:AN1:1570:A:C8	2.52	0.44
5:AN1:1717:G:H21	5:AN1:1735:A:H62	1.65	0.44
5:AN1:2510:U:H2'	5:AN1:2511:C:C6	2.53	0.44
5:AN1:2795:A:H2'	5:AN1:2797:G:OP2	2.18	0.44
5:AN1:2880:U:H2'	5:AN1:2881:U:C6	2.52	0.44
5:AN1:278:U:H3	5:AN1:366:G:H22	1.65	0.44
8:D:109:ILE:HG22	8:D:209:THR:HG21	2.00	0.44
5:AN1:184:G:OP2	5:AN1:184:G:N2	2.26	0.43
5:AN1:2775:U:H5"	5:AN1:2776:A:H2'	2.00	0.43
8:D:20:GLY:HA3	19:O:83:VAL:HG13	1.98	0.43
1:0:22:ASN:HB3	1:0:25:THR:HB	2.01	0.43
5:AN1:593:C:H2'	5:AN1:594:A:H8	1.84	0.43
5:AN1:844:A:H1'	5:AN1:846:U:C4	2.53	0.43
5:AN1:1854:A:C2	5:AN1:1881:A:H1'	2.53	0.43
6:B:26:C:H2'	6:B:27:A:H8	1.83	0.43
6:B:111:C:H2'	6:B:112:A:H8	1.83	0.43
5:AN1:1909:A:O2'	5:AN1:1959:U:O4	2.25	0.43
5:AN1:1928:A:H2'	5:AN1:1929:G:O4'	2.18	0.43
5:AN1:2048:A:O3'	8:D:152:ASN:HA	2.18	0.43
5:AN1:2262:A:H4'	5:AN1:2263:A:N3	2.33	0.43
5:AN1:2553:G:H2'	5:AN1:2554:C:C6	2.54	0.43
8:D:54:GLY:HA3	8:D:78:ARG:HG2	1.99	0.43
28:X:40:SER:O	28:X:44:GLN:NE2	2.51	0.43
5:AN1:493:G:H21	22:R:57:ASN:HD21	1.66	0.43
5:AN1:630:A:H2'	5:AN1:631:A:C8	2.53	0.43
5:AN1:956:A:H2'	5:AN1:957:A:C8	2.53	0.43
5:AN1:2881:U:C4	30:Z:28:THR:HG21	2.53	0.43
18:N:67:ILE:O	18:N:71:THR:HG23	2.19	0.43
5:AN1:569:U:H3'	21:Q:80:ARG:NH2	2.34	0.43
5:AN1:627:A:N3	5:AN1:637:U:O2'	2.50	0.43

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
18:N:59:LEU:HD11	18:N:72:LYS:HD2	2.00	0.43
5:AN1:85:C:C2	5:AN1:86:C:C5	3.07	0.43
14:J:63:VAL:HG12	14:J:106:LEU:HD11	2.01	0.43
5:AN1:113:C:H2'	5:AN1:114:G:C8	2.54	0.43
5:AN1:880:G:C6	5:AN1:893:U:H1'	2.54	0.43
5:AN1:1436:A:H2'	5:AN1:1437:U:C6	2.54	0.43
5:AN1:1464:A:H2'	5:AN1:1465:A:C8	2.53	0.43
5:AN1:2232:U:H2'	5:AN1:2233:G:O4'	2.19	0.43
5:AN1:637:U:H2'	5:AN1:638:C:H6	1.84	0.43
5:AN1:1719:U:O4	5:AN1:1734:G:N2	2.52	0.43
5:AN1:2142:U:H4'	5:AN1:2143:A:C5	2.54	0.43
5:AN1:2229:U:H2'	5:AN1:2230:G:H8	1.84	0.43
7:C:125:ARG:HG2	7:C:126:PRO:HD2	2.00	0.43
5:AN1:849:C:H2'	5:AN1:850:A:C8	2.54	0.43
5:AN1:1230:G:O2'	5:AN1:1231:G:O4'	2.28	0.43
5:AN1:1427:G:H2'	5:AN1:1428:A:C8	2.54	0.43
5:AN1:1743:A:H2'	5:AN1:1744:C:C6	2.54	0.43
5:AN1:2115:A:N3	5:AN1:2166:A:H1'	2.34	0.43
16:L:112:ASP:OD1	16:L:113:LEU:N	2.52	0.43
3:2:50:HIS:HD2	3:2:52:SER:H	1.66	0.42
5:AN1:575:G:H2'	5:AN1:576:G:C8	2.54	0.42
5:AN1:580:A:H2'	5:AN1:581:G:H8	1.83	0.42
6:B:101:A:H2'	6:B:102:A:O4'	2.19	0.42
7:C:205:LEU:HB3	7:C:210:ALA:HB3	2.01	0.42
1:0:13:THR:HB	1:0:38:LYS:HD3	2.01	0.42
5:AN1:68:A:H2'	5:AN1:69:U:N3	2.33	0.42
5:AN1:667:G:H2'	5:AN1:667:G:N3	2.34	0.42
5:AN1:1108:A:H2'	5:AN1:1109:G:H4'	2.00	0.42
5:AN1:1389:U:H2'	5:AN1:1390:A:O4'	2.19	0.42
11:G:51:GLN:HE21	11:G:52:LEU:H	1.68	0.42
5:AN1:239:G:H8	5:AN1:239:G:OP2	2.02	0.42
5:AN1:342:A:HO2'	9:E:161:ARG:NH1	2.16	0.42
5:AN1:1792:U:H2'	5:AN1:1793:C:H6	1.84	0.42
5:AN1:2158:G:H2'	5:AN1:2159:U:O4'	2.19	0.42
5:AN1:2456:U:C2	5:AN1:2457:A:C8	3.07	0.42
19:O:103:LEU:HD11	19:O:113:ILE:HD11	2.00	0.42
23:S:5:ARG:O	23:S:9:VAL:HG13	2.19	0.42
5:AN1:609:C:H2'	5:AN1:610:G:O4'	2.20	0.42
10:F:175:PHE:HB3	10:F:177:PHE:HD1	1.84	0.42
23:S:3:ASN:HD21	23:S:48:LYS:HE2	1.84	0.42
5:AN1:898:A:H3'	5:AN1:899:A:C8	2.55	0.42

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
5:AN1:976:A:H2'	5:AN1:979:C:N4	2.34	0.42
5:AN1:2115:A:O2'	5:AN1:2166:A:O2'	2.32	0.42
5:AN1:2169:A:H2'	5:AN1:2170:C:C5	2.54	0.42
5:AN1:2479:C:H1'	16:L:52:ARG:HH12	1.84	0.42
6:B:22:G:O2'	6:B:25:C:N4	2.50	0.42
9:E:116:ARG:NH2	9:E:182:PHE:O	2.52	0.42
11:G:106:ASN:ND2	11:G:112:PRO:HB3	2.35	0.42
5:AN1:437:G:H2'	5:AN1:438:A:C8	2.55	0.42
5:AN1:591:U:H2'	5:AN1:592:U:C6	2.54	0.42
5:AN1:990:G:OP2	20:P:51:ARG:NH1	2.52	0.42
5:AN1:1749:G:H5"	19:O:96:ARG:HD3	2.02	0.42
8:D:13:THR:OG1	8:D:14:ARG:N	2.50	0.42
8:D:31:ASP:OD1	8:D:31:ASP:N	2.49	0.42
10:F:168:ALA:O	10:F:171:ARG:HG2	2.19	0.42
11:G:19:GLN:HG3	11:G:21:GLY:H	1.85	0.42
15:K:21:LEU:HA	15:K:29:VAL:HG11	2.01	0.42
17:M:101:GLY:H	30:Z:41:HIS:HD2	1.66	0.42
5:AN1:592:U:H2'	5:AN1:593:C:C6	2.54	0.42
5:AN1:1025:A:H2'	5:AN1:1026:A:H8	1.85	0.42
5:AN1:1083:A:H1'	5:AN1:1100:A:H61	1.84	0.42
5:AN1:1506:U:H2'	5:AN1:1507:G:C8	2.55	0.42
28:X:28:LEU:HD22	28:X:39:LYS:HG2	2.02	0.42
5:AN1:1588:A:H2'	5:AN1:1589:C:H6	1.84	0.42
5:AN1:1862:A:H2	5:AN1:1872:A:C8	2.37	0.42
5:AN1:1879:U:H2'	5:AN1:1880:G:O4'	2.19	0.42
5:AN1:2573:A:H2'	5:AN1:2610:A:N6	2.35	0.42
12:H:57:GLN:NE2	12:H:58:GLU:HG3	2.35	0.42
17:M:65:LEU:O	17:M:69:ARG:HG3	2.20	0.42
19:O:13:ASN:HA	19:O:16:LEU:HG	2.02	0.42
5:AN1:944:A:H2'	5:AN1:945:C:C6	2.55	0.42
5:AN1:1412:C:H3'	5:AN1:1413:G:C8	2.55	0.42
5:AN1:1549:U:H2'	5:AN1:1550:G:O4'	2.19	0.42
5:AN1:1826:U:H2'	5:AN1:1827:G:H8	1.85	0.42
5:AN1:2127:U:O5'	5:AN1:2129:G:H4'	2.19	0.42
5:AN1:2182:U:H2'	5:AN1:2183:G:H8	1.85	0.42
13:I:45:THR:HG22	20:P:64:ARG:HH21	1.84	0.42
3:2:30:HIS:C	3:2:32:LEU:H	2.10	0.41
4:3:13:SER:OG	4:3:27:CYS:SG	2.78	0.41
5:AN1:1470:G:H5"	5:AN1:1510:G:O6	2.20	0.41
5:AN1:2379:G:O2'	5:AN1:2380:U:OP1	2.34	0.41
8:D:160:LYS:HE3	13:I:79:GLU:HB2	2.02	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
19:O:97:ARG:HB2	19:O:100:LEU:HD12	2.02	0.41
5:AN1:71:G:H2'	5:AN1:72:C:C6	2.56	0.41
5:AN1:86:C:C2	5:AN1:87:G:C8	3.08	0.41
5:AN1:1412:C:H2'	5:AN1:1413:G:O4'	2.20	0.41
10:F:12:LEU:HD22	10:F:172:ALA:HB1	2.02	0.41
10:F:99:PHE:CZ	10:F:103:LEU:HD11	2.55	0.41
18:N:78:ALA:O	18:N:82:LYS:HG2	2.20	0.41
25:U:36:GLY:HA3	25:U:97:ARG:HB2	2.02	0.41
5:AN1:2110:A:H3'	5:AN1:2111:G:H8	1.85	0.41
11:G:22:ARG:NH1	11:G:39:ALA:HA	2.36	0.41
15:K:31:LYS:HE2	15:K:31:LYS:HB3	1.84	0.41
20:P:78:ARG:HD3	20:P:78:ARG:HA	1.76	0.41
23:S:16:SER:O	23:S:20:GLN:HG2	2.20	0.41
5:AN1:323:U:O3'	9:E:161:ARG:NH1	2.45	0.41
5:AN1:1230:G:H2'	5:AN1:1231:G:C4	2.55	0.41
5:AN1:1259:G:OP1	30:Z:16:ARG:NH2	2.47	0.41
5:AN1:1860:U:H2'	5:AN1:1861:U:C6	2.56	0.41
6:B:108:C:H2'	6:B:109:G:C8	2.52	0.41
9:E:128:PRO:HB3	9:E:155:ASN:HA	2.03	0.41
17:M:36:THR:OG1	17:M:37:THR:N	2.53	0.41
5:AN1:727:G:O2'	5:AN1:761:G:H4'	2.20	0.41
5:AN1:1424:G:H2'	5:AN1:1425:G:C8	2.56	0.41
5:AN1:1842:G:H2'	5:AN1:1843:A:C8	2.55	0.41
5:AN1:2123:G:H2'	5:AN1:2124:G:H8	1.84	0.41
5:AN1:2130:A:H1'	5:AN1:2155:G:H1'	2.02	0.41
11:G:10:THR:HB	11:G:49:LYS:HD2	2.02	0.41
5:AN1:1164:G:H2'	5:AN1:1165:U:C6	2.56	0.41
5:AN1:1365:C:H2'	5:AN1:1366:G:O4'	2.21	0.41
5:AN1:1437:U:H2'	5:AN1:1438:C:H6	1.85	0.41
5:AN1:2111:G:OP1	5:AN1:2162:U:O2'	2.33	0.41
5:AN1:2127:U:H5'	5:AN1:2128:U:H5"	2.03	0.41
5:AN1:2308:U:H2'	10:F:37:ASN:HD21	1.85	0.41
6:B:111:C:H2'	6:B:112:A:C8	2.56	0.41
10:F:7:ARG:HA	10:F:7:ARG:HD2	1.91	0.41
27:W:33:LEU:HD22	27:W:50:ARG:HG2	2.03	0.41
5:AN1:355:C:O2'	5:AN1:356:A:H2'	2.20	0.41
5:AN1:412:C:H2'	5:AN1:413:C:H6	1.86	0.41
5:AN1:847:A:H2'	5:AN1:848:C:C6	2.56	0.41
5:AN1:1078:U:H2'	5:AN1:1079:U:H5	1.86	0.41
5:AN1:1277:U:H2'	5:AN1:1278:G:O4'	2.21	0.41
5:AN1:1355:G:N7	5:AN1:1356:G:C8	2.89	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
5:AN1:2894:U:O2'	13:I:134:ALA:O	2.37	0.41
12:H:6:LEU:HD22	12:H:51:ARG:NH2	2.35	0.41
12:H:12:LEU:HD11	12:H:21:VAL:HG11	2.03	0.41
17:M:32:GLU:HG2	17:M:115:LEU:HD12	2.02	0.41
21:Q:62:GLU:HG2	21:Q:97:LYS:HB3	2.02	0.41
22:R:85:ILE:HD11	22:R:93:ALA:HB1	2.02	0.41
27:W:64:ILE:O	27:W:68:VAL:HG23	2.20	0.41
5:AN1:1490:A:H2'	5:AN1:1491:A:H8	1.85	0.41
5:AN1:1528:G:N2	5:AN1:1535:U:O4	2.53	0.41
5:AN1:1623:C:H2'	5:AN1:1624:A:O4'	2.21	0.41
10:F:17:GLN:HA	10:F:22:ILE:HD12	2.02	0.41
18:N:82:LYS:NZ	18:N:113:GLY:O	2.39	0.41
4:3:10:ILE:HD13	4:3:33:HIS:CD2	2.54	0.41
5:AN1:720:A:H2'	5:AN1:721:C:H6	1.86	0.41
5:AN1:825:U:O2'	5:AN1:2064:U:N3	2.53	0.41
5:AN1:854:G:H2'	5:AN1:855:G:C8	2.56	0.41
5:AN1:992:C:N4	13:I:1:MET:HA	2.36	0.41
5:AN1:1523:A:N1	5:AN1:1524:A:N6	2.69	0.41
5:AN1:2070:U:H2'	5:AN1:2071:U:H6	1.85	0.41
5:AN1:2120:G:H1	5:AN1:2171:C:H1'	1.86	0.41
5:AN1:2360:C:H2'	5:AN1:2361:G:O4'	2.21	0.41
5:AN1:2381:C:H2'	5:AN1:2382:U:C6	2.56	0.41
5:AN1:2587:C:H2'	5:AN1:2588:G:C8	2.53	0.41
5:AN1:2784:C:H2'	5:AN1:2785:C:C6	2.55	0.41
5:AN1:2841:U:H5"	19:O:55:ASN:O	2.21	0.41
12:H:5:LEU:HD21	12:H:12:LEU:HD22	2.03	0.41
17:M:52:ILE:O	17:M:56:LYS:HG3	2.21	0.41
21:Q:53:VAL:HG23	21:Q:53:VAL:O	4.88	0.41
25:U:8:ALA:HB3	25:U:69:VAL:HG22	2.02	0.41
29:Y:52:TYR:CE2	29:Y:53:MET:HG3	2.56	0.41
5:AN1:11:C:H2'	5:AN1:12:A:C8	2.56	0.41
5:AN1:199:G:O2'	5:AN1:675:A:N1	2.54	0.41
5:AN1:1081:A:O3'	5:AN1:1102:U:O2'	2.32	0.41
5:AN1:1410:U:O2	5:AN1:1585:G:O6	2.38	0.41
5:AN1:2306:A:H2	10:F:77:PHE:HE1	1.69	0.41
15:K:138:GLU:OE2	15:K:144:VAL:HG23	2.21	0.41
27:W:62:LEU:HD12	27:W:66:LYS:HD3	2.03	0.41
5:AN1:67:G:C2	5:AN1:68:A:N6	2.89	0.40
5:AN1:113:C:H2'	5:AN1:114:G:H8	1.85	0.40
5:AN1:1065:G:N2	5:AN1:1092:A:O2'	2.54	0.40
5:AN1:1441:C:H2'	5:AN1:1442:C:H6	1.85	0.40

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
5:AN1:1921:C:H2'	5:AN1:1922:U:C6	2.56	0.40
5:AN1:2119:G:H1	5:AN1:2169:A:H62	1.68	0.40
5:AN1:2845:G:H1'	5:AN1:2862:G:H21	1.86	0.40
11:G:12:PRO:HG2	11:G:15:VAL:HG21	2.03	0.40
24:T:12:VAL:HG22	24:T:20:LYS:O	2.21	0.40
3:2:31:ILE:H	3:2:31:ILE:HG13	1.42	0.40
5:AN1:157:U:H2'	5:AN1:158:U:C6	2.56	0.40
5:AN1:158:U:H2'	5:AN1:159:G:C8	2.55	0.40
5:AN1:418:U:H2'	5:AN1:419:C:C6	2.56	0.40
5:AN1:456:A:H61	5:AN1:469:A:H3'	1.85	0.40
5:AN1:981:A:H2'	5:AN1:981:A:N3	2.37	0.40
5:AN1:1029:A:H2'	5:AN1:1030:U:C6	2.56	0.40
5:AN1:1566:G:H4'	7:C:59:LYS:HB3	2.02	0.40
5:AN1:1568:A:H2'	5:AN1:1569:A:C8	2.57	0.40
5:AN1:2805:A:H2'	5:AN1:2806:A:C8	2.56	0.40
5:AN1:2894:U:H2'	5:AN1:2895:G:C8	2.57	0.40
19:O:103:LEU:HA	19:O:106:LEU:HD12	2.02	0.40
5:AN1:1569:A:H2'	5:AN1:1570:A:H8	1.86	0.40
5:AN1:1586:U:H2'	5:AN1:1587:U:C6	2.56	0.40
5:AN1:1862:A:H2	5:AN1:1872:A:H8	1.68	0.40
5:AN1:2010:A:H2'	5:AN1:2011:A:C8	2.57	0.40
10:F:35:THR:HG22	10:F:90:THR:HA	2.03	0.40
14:J:17:ARG:HB2	14:J:45:GLU:HG3	2.04	0.40
5:AN1:67:G:N1	5:AN1:81:A:C6	2.90	0.40
5:AN1:177:G:H2'	5:AN1:178:U:H6	1.85	0.40
5:AN1:516:C:OP2	30:Z:10:ARG:NH2	2.54	0.40
5:AN1:1166:A:H2'	5:AN1:1167:U:O4'	2.21	0.40
5:AN1:1681:U:H2'	5:AN1:1682:A:C8	2.57	0.40
5:AN1:2306:A:H2	10:F:77:PHE:CE1	2.39	0.40
5:AN1:2837:U:H2'	5:AN1:2838:G:C8	2.56	0.40
5:AN1:2837:U:H2'	5:AN1:2838:G:H8	1.86	0.40
10:F:135:GLN:HB3	10:F:140:GLU:OE1	2.22	0.40
21:Q:37:ASP:OD1	21:Q:37:ASP:N	2.50	0.40
25:U:5:VAL:HG12	25:U:66:GLU:HB3	2.02	0.40
5:AN1:291:G:O2'	5:AN1:292:U:H5"	2.22	0.40
5:AN1:324:A:OP2	9:E:162:ASN:HB2	2.21	0.40
5:AN1:553:G:HO2'	5:AN1:554:A:H8	1.63	0.40
5:AN1:916:A:N3	6:B:78:U:O2'	2.53	0.40
5:AN1:1713:U:H2'	5:AN1:1714:G:C8	2.56	0.40
5:AN1:2149:A:H2'	5:AN1:2150:G:H8	1.86	0.40
5:AN1:2572:G:H5'	5:AN1:2574:G:N7	2.37	0.40

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
8:D:184:ASP:OD1	8:D:187:ARG:NH1	2.53	0.40
10:F:122:PHE:CE2	10:F:128:TYR:HB2	2.57	0.40
11:G:53:ALA:HA	11:G:54:PRO:HD3	1.90	0.40
13:I:2:LYS:NZ	21:Q:13:ARG:H	2.19	0.40
29:Y:44:ARG:HA	29:Y:44:ARG:HD2	1.84	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	0	49/51~(96%)	48 (98%)	1 (2%)	0	100	100
2	1	42/44~(96%)	41 (98%)	1 (2%)	0	100	100
3	2	61/64~(95%)	58~(95%)	1 (2%)	2(3%)	4	12
4	3	36/38~(95%)	33~(92%)	3~(8%)	0	100	100
7	С	268/274~(98%)	260 (97%)	8 (3%)	0	100	100
8	D	209/212~(99%)	204 (98%)	5 (2%)	0	100	100
9	Е	184/200~(92%)	184 (100%)	0	0	100	100
10	F	173/178~(97%)	151 (87%)	21 (12%)	1 (1%)	25	54
11	G	172/177~(97%)	167 (97%)	5(3%)	0	100	100
12	Н	58/148~(39%)	56~(97%)	1 (2%)	1 (2%)	9	27
13	Ι	140/142~(99%)	138 (99%)	2(1%)	0	100	100
14	J	120/122~(98%)	117 (98%)	3 (2%)	0	100	100
15	Κ	144/146~(99%)	140 (97%)	4 (3%)	0	100	100
16	L	135/137~(98%)	133 (98%)	2(2%)	0	100	100
17	М	117/125~(94%)	117 (100%)	0	0	100	100
18	N	112/116~(97%)	111 (99%)	1 (1%)	0	100	100

α \cdot 1	C		
Continued	from	previous	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
19	Ο	115/122~(94%)	112 (97%)	3~(3%)	0	100	100
20	Р	115/119~(97%)	115 (100%)	0	0	100	100
21	Q	101/103~(98%)	94 (93%)	7 (7%)	0	100	100
22	R	107/109~(98%)	107 (100%)	0	0	100	100
23	S	88/106 (83%)	85 (97%)	3(3%)	0	100	100
24	Т	98/105~(93%)	94 (96%)	4 (4%)	0	100	100
25	U	95/98~(97%)	93 (98%)	2(2%)	0	100	100
26	V	78/85~(92%)	78 (100%)	0	0	100	100
27	W	75/78~(96%)	74 (99%)	1 (1%)	0	100	100
28	Х	60/65~(92%)	60 (100%)	0	0	100	100
29	Y	56/58~(97%)	53 (95%)	3~(5%)	0	100	100
30	Z	53/61~(87%)	52 (98%)	1 (2%)	0	100	100
32	b	223/250~(89%)	207 (93%)	16 (7%)	0	100	100
33	с	213/250~(85%)	207 (97%)	6(3%)	0	100	100
34	d	205/208~(99%)	200 (98%)	5 (2%)	0	100	100
35	е	153/165~(93%)	152 (99%)	1 (1%)	0	100	100
36	f	92/127~(72%)	89 (97%)	3(3%)	0	100	100
37	g	139/156~(89%)	138 (99%)	1 (1%)	0	100	100
38	h	128/131 (98%)	124 (97%)	4 (3%)	0	100	100
39	i	125/128 (98%)	123 (98%)	2(2%)	0	100	100
40	j	98/103~(95%)	94 (96%)	4 (4%)	0	100	100
41	k	115/128 (90%)	113 (98%)	2(2%)	0	100	100
42	1	120/124~(97%)	114 (95%)	6~(5%)	0	100	100
43	m	113/118 (96%)	106 (94%)	7~(6%)	0	100	100
44	n	98/101~(97%)	95 (97%)	3(3%)	0	100	100
45	О	86/89~(97%)	84 (98%)	2(2%)	0	100	100
46	р	81/101 (80%)	80 (99%)	1 (1%)	0	100	100
47	q	78/85~(92%)	78 (100%)	0	0	100	100
48	r	51/75~(68%)	51 (100%)	0	0	100	100
49	s	80/91~(88%)	80 (100%)	0	0	100	100
50	t	83/88 (94%)	83 (100%)	0	0	100	100

Continued	from	previous	page
Contentaca	<i>J</i> 10110	proceeduo	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntile	\mathbf{s}
51	u	19/71~(27%)	16 (84%)	3~(16%)	0	100	100	
All	All	5361/5872~(91%)	5209 (97%)	148 (3%)	4 (0%)	54	80	

All (4) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
3	2	31	ILE
3	2	32	LEU
10	F	139	PRO
12	Н	48	GLU

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	0	47/47~(100%)	46~(98%)	1 (2%)	53	82
2	1	36/36~(100%)	36~(100%)	0	100	100
3	2	52/53~(98%)	52 (100%)	0	100	100
4	3	33/33~(100%)	33~(100%)	0	100	100
7	С	216/220~(98%)	215 (100%)	1 (0%)	88	96
8	D	166/167~(99%)	166 (100%)	0	100	100
9	Ε	144/155~(93%)	144 (100%)	0	100	100
10	F	145/147~(99%)	144 (99%)	1 (1%)	84	95
11	G	139/142~(98%)	138~(99%)	1 (1%)	84	95
12	Н	45/112~(40%)	45 (100%)	0	100	100
13	Ι	118/118 (100%)	118 (100%)	0	100	100
14	J	103/103~(100%)	103 (100%)	0	100	100
15	К	108/108~(100%)	106 (98%)	2(2%)	57	84
16	L	113/113~(100%)	112 (99%)	1 (1%)	78	93
17	М	96/101~(95%)	96 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
18	Ν	83/85~(98%)	83 (100%)	0	100	100
19	О	99/102~(97%)	99 (100%)	0	100	100
20	Р	85/86~(99%)	85 (100%)	0	100	100
21	Q	84/84 (100%)	84 (100%)	0	100	100
22	R	88/88 (100%)	88 (100%)	0	100	100
23	S	76/87~(87%)	76 (100%)	0	100	100
24	Т	82/85~(96%)	80 (98%)	2 (2%)	49	80
25	U	79/80~(99%)	79 (100%)	0	100	100
26	V	60/64~(94%)	60 (100%)	0	100	100
27	W	69/70~(99%)	69 (100%)	0	100	100
28	Х	54/56~(96%)	54 (100%)	0	100	100
29	Y	54/54~(100%)	54 (100%)	0	100	100
30	Z	47/50~(94%)	47 (100%)	0	100	100
32	b	185/200~(92%)	184 (100%)	1 (0%)	88	96
33	с	175/198 (88%)	175 (100%)	0	100	100
34	d	170/171~(99%)	169 (99%)	1 (1%)	86	95
35	е	113/120 (94%)	113 (100%)	0	100	100
36	f	86/111 (78%)	86 (100%)	0	100	100
37	g	116/128 (91%)	115 (99%)	1 (1%)	78	93
38	h	108/109~(99%)	108 (100%)	0	100	100
39	i	99/100~(99%)	98 (99%)	1 (1%)	76	92
40	j	89/91~(98%)	89 (100%)	0	100	100
41	k	88/98~(90%)	87 (99%)	1 (1%)	73	91
42	1	104/106~(98%)	102 (98%)	2 (2%)	57	84
43	m	95/98~(97%)	95 (100%)	0	100	100
44	n	81/82~(99%)	80 (99%)	1 (1%)	71	91
45	О	71/72~(99%)	71 (100%)	0	100	100
46	р	63/77~(82%)	63 (100%)	0	100	100
47	q	72/76~(95%)	72 (100%)	0	100	100
48	r	47/66~(71%)	47 (100%)	0	100	100
49	s	70/78~(90%)	70 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
50	t	65/67~(97%)	65~(100%)	0	100 100
51	u	18/62~(29%)	18 (100%)	0	100 100
All	All	4436/4756 (93%)	4419 (100%)	17 (0%)	91 97

All (17) residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
1	0	29	LYS
7	С	272	ARG
10	F	125	ARG
11	G	134	LYS
15	Κ	44	LYS
15	Κ	120	ARG
16	L	59	LYS
24	Т	48	ARG
24	Т	77	LYS
32	b	179	LYS
34	d	189	ASP
37	g	5	ARG
39	i	104	ARG
41	k	55	ARG
42	1	44	LYS
42	1	86	ARG
44	n	27	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (75) such sidechains are listed below:

Mol	Chain	Res	Type
1	0	22	ASN
3	2	50	HIS
7	С	48	HIS
7	С	58	HIS
7	С	60	GLN
7	С	90	HIS
7	С	117	GLN
7	С	120	ASN
7	С	230	HIS
7	С	250	GLN
8	D	33	ASN
8	D	50	GLN

Mol	Chain	Res	Type
8	D	108	GLN
8	D	137	HIS
8	D	153	GLN
9	Е	96	ASN
9	Е	114	GLN
9	Е	165	HIS
10	F	127	ASN
11	G	51	GLN
11	G	106	ASN
13	Ι	40	HIS
13	Ι	135	GLN
15	K	40	GLN
15	K	56	GLN
15	K	125	GLN
19	0	13	ASN
19	0	78	GLN
20	Р	11	HIS
21	Q	87	GLN
22	R	57	ASN
22	R	60	HIS
24	Т	38	ASN
25	U	16	GLN
25	U	79	GLN
25	U	84	HIS
26	V	29	GLN
27	W	6	GLN
29	Y	48	ASN
30	Z	41	HIS
32	b	17	HIS
32	b	80	ASN
32	b	105	ASN
32	b	122	GLN
33	с	6	HIS
33	С	19	ASN
33	с	176	HIS
34	d	42	HIS
34	d	102	ASN
34	d	138	GLN
34	d	154	GLN
35	e	121	ASN
36	f	11	HIS
36	f	17	GLN

7.6.1		- T	
Mol	Chain	Res	Туре
36	f	35	GLN
36	f	94	HIS
37	g	32	GLN
38	h	53	GLN
38	h	86	GLN
39	i	73	GLN
39	i	79	HIS
40	j	35	GLN
40	j	56	HIS
41	k	27	ASN
41	k	28	ASN
41	k	80	ASN
43	m	105	ASN
45	0	20	ASN
45	0	37	ASN
45	0	40	GLN
45	0	42	HIS
46	р	44	ASN
47	q	32	HIS
49	S	52	HIS
50	t	13	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
31	sN1	1524/1544~(98%)	204 (13%)	0
5	AN1	2888/2918~(98%)	494~(17%)	10 (0%)
52	V	76/77~(98%)	27~(35%)	0
53	W	2/3~(66%)	1 (50%)	0
6	В	114/115~(99%)	21 (18%)	1 (0%)
All	All	4604/4657~(98%)	747 (16%)	11 (0%)

All (747) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
5	AN1	21	А
5	AN1	22	G
5	AN1	34	G
5	AN1	41	U
5	AN1	50	G
5	AN1	53	G

Mol	Chain	Res	Type
5	AN1	58	G
5	AN1	59	А
5	AN1	67	G
5	AN1	68	А
5	AN1	69	U
5	AN1	71	G
5	AN1	74	U
5	AN1	78	А
5	AN1	81	А
5	AN1	82	G
5	AN1	86	С
5	AN1	98	А
5	AN1	101	U
5	AN1	102	A
5	AN1	104	С
5	AN1	106	U
5	AN1	107	U
5	AN1	108	U
5	AN1	125	А
5	AN1	127	U
5	AN1	146	U
5	AN1	147	А
5	AN1	169	U
5	AN1	170	А
5	AN1	172	А
5	AN1	188	А
5	AN1	203	А
5	AN1	206	А
5	AN1	223	А
5	AN1	229	А
5	AN1	232	C
5	AN1	235	U
5	AN1	236	U
5	AN1	255	G
5	AN1	257	G
5	AN1	259	G
5	AN1	262	А
5	AN1	272	A
5	AN1	273	G
5	AN1	274	C
5	AN1	279	U
5	AN1	280	А

5 AN1 284 U 5 AN1 291 G 5 AN1 293 U 5 AN1 303 C 5 AN1 303 C 5 AN1 313 A 5 AN1 332 A 5 AN1 356 C 5 AN1 356 A 5 AN1 357 C 5 AN1 359 U 5 AN1 366 G 5 AN1 368 C 5 AN1 368 G 5 AN1 385 G 5 AN1 395 G 5 AN1 395 G 5 AN1 403 A 5	Mol	Chain	Res	Type
5 AN1 285 A 5 AN1 291 G 5 AN1 203 U 5 AN1 303 C 5 AN1 313 A 5 AN1 331 G 5 AN1 332 A 5 AN1 332 A 5 AN1 336 U 5 AN1 356 A 5 AN1 357 C 5 AN1 357 C 5 AN1 357 C 5 AN1 359 U 5 AN1 366 G 5 AN1 368 C 5 AN1 369 G 5 AN1 385 G 5 AN1 385 G 5 AN1 395 G 5 AN1 403 A 5 AN1 416 C 5	5	AN1	284	U
5 AN1 291 G 5 AN1 293 U 5 AN1 303 C 5 AN1 313 A 5 AN1 331 G 5 AN1 332 A 5 AN1 332 A 5 AN1 336 U 5 AN1 356 A 5 AN1 356 A 5 AN1 357 C 5 AN1 359 U 5 AN1 359 U 5 AN1 368 C 5 AN1 369 G 5 AN1 385 G 5 AN1 385 G 5 AN1 385 G 5 AN1 395 G 5 AN1 403 A 5 AN1 403	5	AN1	285	A
5AN1293U5AN1303C5AN1313A5AN1331G5AN1332A5AN1336U5AN1336U5AN1351G5AN1356A5AN1357C5AN1356A5AN1357C5AN1359U5AN1366G5AN1368C5AN1369G5AN1385G5AN1385G5AN1395G5AN1395G5AN1403A5AN1416C5AN1434C5AN1434C5AN1434C5AN1480G5AN1508C5AN1509C5AN1529G5AN1531A5AN1543U5AN1543U5AN1544U5AN1547U5AN1547U5AN1547U	5	AN1	291	G
5 AN1 303 C 5 AN1 313 A 5 AN1 331 G 5 AN1 332 A 5 AN1 332 A 5 AN1 336 U 5 AN1 345 C 5 AN1 356 A 5 AN1 356 A 5 AN1 357 C 5 AN1 359 U 5 AN1 366 G 5 AN1 368 C 5 AN1 368 G 5 AN1 385 G 5 AN1 395 G 5 AN1 395 G 5 AN1 395 G 5 AN1 403 A 5 AN1 410 G 5 AN1 410 G 5 AN1 423 G <td>5</td> <td>AN1</td> <td>293</td> <td>U</td>	5	AN1	293	U
5 AN1 313 A 5 AN1 331 G 5 AN1 332 A 5 AN1 336 U 5 AN1 345 C 5 AN1 351 G 5 AN1 356 A 5 AN1 356 A 5 AN1 356 A 5 AN1 357 C 5 AN1 359 U 5 AN1 366 G 5 AN1 368 C 5 AN1 369 G 5 AN1 385 G 5 AN1 385 G 5 AN1 385 G 5 AN1 395 G 5 AN1 403 A 5 AN1 403 A 5 AN1 410	5	AN1	303	С
5AN1 331 G5AN1 332 A5AN1 336 U5AN1 345 C5AN1 351 G5AN1 356 A5AN1 356 A5AN1 357 C5AN1 357 C5AN1 356 G5AN1 366 G5AN1 368 C5AN1 368 C5AN1 368 G5AN1 371 G5AN1 385 G5AN1 386 U5AN1 395 G5AN1 395 G5AN1 403 A5AN1 410 G5AN1 410 G5AN1 416 C5AN1 423 G5AN1 423 G5AN1 423 G5AN1 455 C5AN1 504 A5AN1 508 C5AN1 509 C5AN1 526 C5AN1 531 A5AN1 543 U5AN1 543 U5AN1 543 U5AN1 547 U5AN1 547 U <t< td=""><td>5</td><td>AN1</td><td>313</td><td>A</td></t<>	5	AN1	313	A
5AN1 332 A5AN1 336 U5AN1 345 C5AN1 351 G5AN1 356 A5AN1 357 C5AN1 357 C5AN1 359 U5AN1 366 G5AN1 366 G5AN1 368 C5AN1 369 G5AN1 371 G5AN1 385 G5AN1 395 G5AN1 395 G5AN1 395 G5AN1 403 A5AN1 403 A5AN1 416 C5AN1 416 C5AN1 423 G5AN1 434 C5AN1 434 C5AN1 504 A5AN1 509 C5AN1 509 C5AN1 530 C5AN1 531 A5AN1 543 U5AN1 544 U5AN1 547 U5AN1 547 U5AN1 554 A	5	AN1	331	G
5AN1 336 U5AN1 345 C5AN1 351 G5AN1 356 A5AN1 357 C5AN1 359 U5AN1 366 G5AN1 368 C5AN1 369 G5AN1 369 G5AN1 371 G5AN1 385 G5AN1 386 U5AN1 395 G5AN1 395 G5AN1 403 A5AN1 410 G5AN1 416 C5AN1 416 C5AN1 423 G5AN1 434 C5AN1 455 C5AN1 508 C5AN1 509 C5AN1 509 C5AN1 509 C5AN1 530 C5AN1 531 A5AN1 531 A5AN1 543 U5AN1 544 U5AN1 547 U5AN1 547 U5AN1 554 A	5	AN1	332	А
5AN1 345 C5AN1 351 G5AN1 357 C5AN1 357 C5AN1 359 U5AN1 366 G5AN1 368 C5AN1 369 G5AN1 369 G5AN1 371 G5AN1 385 G5AN1 386 U5AN1 395 G5AN1 395 G5AN1 403 A5AN1 403 A5AN1 410 G5AN1 416 C5AN1 423 G5AN1 423 G5AN1 434 C5AN1 479 A5AN1 508 C5AN1 508 C5AN1 509 C5AN1 529 G5AN1 529 G5AN1 531 A5AN1 541 C5AN1 543 U5AN1 544 U5AN1 545 C5AN1 545 C5AN1 545 C5AN1 545 C5AN1 545 C5AN1 545 C <t< td=""><td>5</td><td>AN1</td><td>336</td><td>U</td></t<>	5	AN1	336	U
5 AN1 351 G 5 AN1 356 A 5 AN1 357 C 5 AN1 359 U 5 AN1 366 G 5 AN1 366 G 5 AN1 368 C 5 AN1 369 G 5 AN1 369 G 5 AN1 369 G 5 AN1 385 G 5 AN1 385 G 5 AN1 395 G 5 AN1 403 A 5 AN1 403 A 5 AN1 416 C 5 AN1 416 C 5 AN1 423 G 5 AN1 434 C 5 AN1 455 C 5 AN1 508 C 5 AN1 509 C <td>5</td> <td>AN1</td> <td>345</td> <td>С</td>	5	AN1	345	С
5 AN1 356 A 5 AN1 357 C 5 AN1 359 U 5 AN1 366 G 5 AN1 366 G 5 AN1 368 C 5 AN1 369 G 5 AN1 371 G 5 AN1 385 G 5 AN1 385 G 5 AN1 395 G 5 AN1 395 G 5 AN1 403 A 5 AN1 403 A 5 AN1 416 C 5 AN1 416 C 5 AN1 423 G 5 AN1 423 G 5 AN1 423 G 5 AN1 434 C 5 AN1 508 C 5 AN1 509 C <td>5</td> <td>AN1</td> <td>351</td> <td>G</td>	5	AN1	351	G
5AN1 357 C5AN1 359 U5AN1 366 G5AN1 368 C5AN1 369 G5AN1 371 G5AN1 371 G5AN1 385 G5AN1 386 U5AN1 395 G5AN1 395 G5AN1 403 A5AN1 410 G5AN1 416 C5AN1 416 C5AN1 434 C5AN1 455 C5AN1 479 A5AN1 508 C5AN1 509 C5AN1 529 G5AN1 530 C5AN1 531 A5AN1 543 U5AN1 543 U5AN1 544 U5AN1 547 U5AN1 547 U5AN1 547 U5AN1 547 U	5	AN1	356	А
5AN1 359 U 5 AN1 366 G 5 AN1 368 C 5 AN1 369 G 5 AN1 371 G 5 AN1 371 G 5 AN1 385 G 5 AN1 386 U 5 AN1 395 G 5 AN1 395 G 5 AN1 403 A 5 AN1 403 A 5 AN1 410 G 5 AN1 416 C 5 AN1 423 G 5 AN1 434 C 5 AN1 455 C 5 AN1 479 A 5 AN1 508 C 5 AN1 509 C 5 AN1 509 C 5 AN1 529 G 5 AN1 530 C 5 AN1 541 C 5 AN1 543 U 5 AN1 543 U 5 AN1 544 U 5 AN1 547 U 5 AN1 547 U 5 AN1 547 U 5 AN1 547 U	5	AN1	357	С
5AN1 366 G 5 AN1 368 C 5 AN1 369 G 5 AN1 371 G 5 AN1 385 G 5 AN1 386 U 5 AN1 395 G 5 AN1 395 G 5 AN1 403 A 5 AN1 403 A 5 AN1 410 G 5 AN1 416 C 5 AN1 423 G 5 AN1 423 G 5 AN1 434 C 5 AN1 455 C 5 AN1 479 A 5 AN1 504 A 5 AN1 509 C 5 AN1 526 C 5 AN1 530 C 5 AN1 531 A 5 AN1 541 C 5 AN1 543 U 5 AN1 544 U 5 AN1 545 C 5 AN1 545 C 5 AN1 547 U 5 AN1 547 U 5 AN1 547 U	5	AN1	359	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	AN1	366	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	AN1	368	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	AN1	369	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	AN1	371	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	AN1	385	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	AN1	386	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	AN1	395	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	AN1	403	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	AN1	410	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	AN1	416	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	AN1	423	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	AN1	434	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	AN1	455	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	AN1	479	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	AN1	480	G
5 AN1 508 C 5 AN1 509 C 5 AN1 509 C 5 AN1 526 C 5 AN1 529 G 5 AN1 530 C 5 AN1 531 A 5 AN1 541 C 5 AN1 543 U 5 AN1 543 U 5 AN1 544 U 5 AN1 545 C 5 AN1 547 U 5 AN1 554 A	5	AN1	504	А
5 AN1 509 C 5 AN1 526 C 5 AN1 529 G 5 AN1 529 G 5 AN1 530 C 5 AN1 530 C 5 AN1 531 A 5 AN1 541 C 5 AN1 543 U 5 AN1 543 U 5 AN1 544 U 5 AN1 545 C 5 AN1 547 U 5 AN1 554 A	5	AN1	508	С
5 AN1 526 C 5 AN1 529 G 5 AN1 530 C 5 AN1 531 A 5 AN1 531 A 5 AN1 541 C 5 AN1 543 U 5 AN1 543 U 5 AN1 544 U 5 AN1 545 C 5 AN1 547 U 5 AN1 554 A	5	AN1	509	С
5 AN1 529 G 5 AN1 530 C 5 AN1 531 A 5 AN1 531 A 5 AN1 541 C 5 AN1 543 U 5 AN1 543 U 5 AN1 544 U 5 AN1 545 C 5 AN1 547 U 5 AN1 554 A	5	AN1	526	С
5 AN1 530 C 5 AN1 531 A 5 AN1 541 C 5 AN1 541 C 5 AN1 543 U 5 AN1 543 U 5 AN1 544 U 5 AN1 545 C 5 AN1 547 U 5 AN1 554 A	5	AN1	529	G
5 AN1 531 A 5 AN1 541 C 5 AN1 543 U 5 AN1 543 U 5 AN1 544 U 5 AN1 545 C 5 AN1 547 U 5 AN1 554 A	5	AN1	530	С
5 AN1 541 C 5 AN1 543 U 5 AN1 544 U 5 AN1 545 C 5 AN1 547 U 5 AN1 554 A	5	AN1	531	A
5 AN1 543 U 5 AN1 544 U 5 AN1 545 C 5 AN1 547 U 5 AN1 554 A	5	AN1	541	С
5 AN1 544 U 5 AN1 545 C 5 AN1 547 U 5 AN1 554 A	5	AN1	543	U
5 AN1 545 C 5 AN1 547 U 5 AN1 554 A	5	AN1	544	U
5 AN1 547 U 5 AN1 554 A	5	AN1	545	С
5 AN1 554 A	5	AN1	547	U
	5	AN1	554	А

Mol	Chain	Res	Type
5	AN1	561	А
5	AN1	564	U
5	AN1	571	U
5	AN1	573	А
5	AN1	595	G
5	AN1	601	А
5	AN1	612	A
5	AN1	625	A
5	AN1	633	С
5	AN1	635	А
5	AN1	637	U
5	AN1	643	U
5	AN1	644	A
5	AN1	651	U
5	AN1	652	U
5	AN1	654	G
5	AN1	656	U
5	AN1	657	G
5	AN1	666	A
5	AN1	667	G
5	AN1	668	А
5	AN1	684	U
5	AN1	693	G
5	AN1	711	G
5	AN1	713	А
5	AN1	714	A
5	AN1	719	А
5	AN1	724	G
5	AN1	727	G
5	AN1	728	А
5	AN1	745	U
5	AN1	762	A
5	AN1	763	С
5	AN1	773	G
5	AN1	774	G
5	AN1	780	A
5	AN1	782	G
5	AN1	783	G
5	AN1	787	A
5	AN1	803	G
5	AN1	810	C
5	AN1	817	А

Mol	Chain	Res	Type
5	AN1	825	U
5	AN1	828	G
5	AN1	843	G
5	AN1	855	G
5	AN1	857	G
5	AN1	883	С
5	AN1	884	А
5	AN1	888	С
5	AN1	889	G
5	AN1	890	А
5	AN1	894	А
5	AN1	895	С
5	AN1	899	A
5	AN1	904	U
5	AN1	908	А
5	AN1	929	С
5	AN1	930	U
5	AN1	938	А
5	AN1	942	А
5	AN1	943	G
5	AN1	955	U
5	AN1	958	С
5	AN1	971	G
5	AN1	977	А
5	AN1	980	А
5	AN1	993	А
5	AN1	1009	U
5	AN1	1010	С
5	AN1	1023	G
5	AN1	1028	G
5	AN1	1031	G
5	AN1	1032	U
5	AN1	1036	А
5	AN1	1037	А
5	AN1	1039	G
5	AN1	1040	С
5	AN1	1041	A
5	AN1	1043	A
5	AN1	1044	G
5	AN1	1054	A
5	AN1	1057	U
5	AN1	1058	U

Mol	Chain	Res	Type
5	AN1	1059	G
5	AN1	1061	С
5	AN1	1063	U
5	AN1	1067	А
5	AN1	1070	А
5	AN1	1076	С
5	AN1	1078	U
5	AN1	1081	А
5	AN1	1082	А
5	AN1	1085	А
5	AN1	1086	А
5	AN1	1091	U
5	AN1	1101	С
5	AN1	1108	A
5	AN1	1109	G
5	AN1	1110	U
5	AN1	1129	U
5	AN1	1130	А
5	AN1	1131	А
5	AN1	1132	С
5	AN1	1140	А
5	AN1	1149	G
5	AN1	1167	U
5	AN1	1170	U
5	AN1	1171	U
5	AN1	1172	U
5	AN1	1173	G
5	AN1	1179	G
5	AN1	1200	A
5	AN1	1201	G
5	AN1	1242	A
5	AN1	1245	G
5	AN1	1248	A
5	AN1	1251	G
5	AN1	1267	A
5	AN1	1296	A
5	AN1	1324	U
5	AN1	1336	G
5	AN1	1340	С
5	AN1	1360	A
5	AN1	1363	G
5	AN1	1373	A

Mol	Chain	Res	Type
5	AN1	1374	U
5	AN1	1378	А
5	AN1	1390	А
5	AN1	1393	С
5	AN1	1408	А
5	AN1	1411	G
5	AN1	1414	А
5	AN1	1415	U
5	AN1	1423	С
5	AN1	1428	А
5	AN1	1432	С
5	AN1	1433	U
5	AN1	1435	А
5	AN1	1447	G
5	AN1	1448	U
5	AN1	1449	U
5	AN1	1453	U
5	AN1	1455	U
5	AN1	1456	С
5	AN1	1470	G
5	AN1	1473	G
5	AN1	1477	U
5	AN1	1485	А
5	AN1	1501	С
5	AN1	1502	U
5	AN1	1504	U
5	AN1	1505	А
5	AN1	1509	U
5	AN1	1510	G
5	AN1	1520	A
5	AN1	1530	A
5	AN1	1531	С
5	AN1	1533	U
5	AN1	1534	G
5	AN1	1539	G
5	AN1	1540	С
5	AN1	1541	G
5	AN1	1542	A
5	AN1	1543	A
5	AN1	1544	G
5	AN1	1545	U
5	AN1	1564	A

Mol	Chain	Res	Type
5	AN1	1567	А
5	AN1	1582	U
5	AN1	1583	С
5	AN1	1605	G
5	AN1	1606	А
5	AN1	1616	А
5	AN1	1642	С
5	AN1	1645	U
5	AN1	1646	U
5	AN1	1672	G
5	AN1	1673	С
5	AN1	1691	U
5	AN1	1710	U
5	AN1	1712	U
5	AN1	1713	U
5	AN1	1714	G
5	AN1	1717	G
5	AN1	1718	А
5	AN1	1725	U
5	AN1	1726	С
5	AN1	1731	С
5	AN1	1742	G
5	AN1	1746	G
5	AN1	1760	G
5	AN1	1769	А
5	AN1	1776	А
5	AN1	1780	A
5	AN1	1796	С
5	AN1	1797	A
5	AN1	1798	A
5	AN1	1805	A
5	AN1	1807	G
5	AN1	1812	С
5	AN1	1825	A
5	AN1	1831	G
5	AN1	1855	U
5	AN1	1861	U
5	AN1	1864	С
5	AN1	1866	U
5	AN1	1867	A
5	AN1	1871	G
5	AN1	1872	A

Mol	Chain	Res	Type
5	AN1	1875	С
5	AN1	1885	А
5	AN1	1895	А
5	AN1	1899	G
5	AN1	1902	G
5	AN1	1904	C
5	AN1	1905	С
5	AN1	1907	PSU
5	AN1	1909	А
5	AN1	1910	С
5	AN1	1915	А
5	AN1	1916	С
5	AN1	1917	G
5	AN1	1918	G
5	AN1	1925	G
5	AN1	1926	G
5	AN1	1932	А
5	AN1	1933	А
5	AN1	1934	А
5	AN1	1936	U
5	AN1	1950	G
5	AN1	1951	U
5	AN1	1959	U
5	AN1	1960	G
5	AN1	1963	C
5	AN1	1966	А
5	AN1	1967	U
5	AN1	1968	G
5	AN1	1978	U
5	AN1	1987	U
5	AN1	1989	U
5	AN1	1993	С
5	AN1	2018	U
5	AN1	2019	С
5	AN1	2025	G
5	AN1	2027	A
5	AN1	2029	A
5	AN1	2030	U
5	AN1	2039	C
5	AN1	2051	C
5	AN1	2052	G
5	AN1	2056	A

Mol	Chain	Res	Type
5	AN1	2057	G
5	AN1	2058	А
5	AN1	2065	7MG
5	AN1	2089	G
5	AN1	2092	С
5	AN1	2104	U
5	AN1	2106	G
5	AN1	2107	U
5	AN1	2108	G
5	AN1	2111	G
5	AN1	2112	G
5	AN1	2113	A
5	AN1	2114	U
5	AN1	2115	A
5	AN1	2116	G
5	AN1	2120	G
5	AN1	2121	G
5	AN1	2122	A
5	AN1	2123	G
5	AN1	2127	U
5	AN1	2128	U
5	AN1	2129	G
5	AN1	2133	С
5	AN1	2142	U
5	AN1	2143	А
5	AN1	2145	U
5	AN1	2146	U
5	AN1	2148	С
5	AN1	2149	А
5	AN1	2152	G
5	AN1	2153	G
5	AN1	2154	А
5	AN1	2155	G
5	AN1	2157	С
5	AN1	2158	G
5	AN1	2167	A
5	AN1	2168	U
5	AN1	2169	A
5	AN1	$2\overline{171}$	С
5	AN1	2172	A
5	AN1	$2\overline{174}$	С
5	AN1	2178	G

Mol	Chain	Res	Type
5	AN1	2184	U
5	AN1	2185	U
5	AN1	2188	G
5	AN1	2194	А
5	AN1	2200	G
5	AN1	2221	A
5	AN1	2222	С
5	AN1	2234	G
5	AN1	2235	G
5	AN1	2261	U
5	AN1	2275	G
5	AN1	2279	U
5	AN1	2283	А
5	AN1	2284	А
5	AN1	2301	U
5	AN1	2304	G
5	AN1	2305	А
5	AN1	2308	U
5	AN1	2312	G
5	AN1	2314	G
5	AN1	2316	A
5	AN1	2321	А
5	AN1	2323	A
5	AN1	2341	А
5	AN1	2346	С
5	AN1	2355	С
5	AN1	2357	А
5	AN1	2378	G
5	AN1	2379	G
5	AN1	2380	U
5	AN1	2381	С
5	AN1	2399	С
5	AN1	2408	A
5	AN1	2418	С
5	AN1	2425	G
5	AN1	2426	А
5	AN1	2430	A
5	AN1	2431	A
5	AN1	2437	U
5	AN1	2443	G
5	AN1	2444	A
5	AN1	2455	А

Mol	Chain	Res	Type
5	AN1	2468	G
5	AN1	2469	U
5	AN1	2470	U
5	AN1	2473	U
5	AN1	2474	А
5	AN1	2487	U
5	AN1	2494	С
5	AN1	2498	G
5	AN1	2500	PSU
5	AN1	2501	G
5	AN1	2503	С
5	AN1	2514	А
5	AN1	2516	С
5	AN1	2530	A
5	AN1	2543	A
5	AN1	2548	OMU
5	AN1	2550	U
5	AN1	2562	А
5	AN1	2563	G
5	AN1	2568	А
5	AN1	2598	А
5	AN1	2599	G
5	AN1	2605	U
5	AN1	2606	С
5	AN1	2607	С
5	AN1	2609	U
5	AN1	2611	U
5	AN1	2625	U
5	AN1	2635	А
5	AN1	2642	С
5	AN1	2657	G
5	AN1	2661	A
5	AN1	2685	U
5	AN1	2686	А
5	AN1	2710	G
5	AN1	2722	U
5	AN1	2730	A
5	AN1	2740	G
5	AN1	2744	A
5	AN1	2749	A
5	AN1	2753	A
5	AN1	2754	A

Mol	Chain	Res	Type
5	AN1	2761	А
5	AN1	2762	G
5	AN1	2774	А
5	AN1	2776	А
5	AN1	2787	А
5	AN1	2788	G
5	AN1	2793	U
5	AN1	2794	U
5	AN1	2796	U
5	AN1	2797	G
5	AN1	2800	С
5	AN1	2804	А
5	AN1	2816	G
5	AN1	2817	A
5	AN1	2829	U
5	AN1	2831	A
5	AN1	2845	G
5	AN1	2851	U
5	AN1	2853	G
5	AN1	2857	U
5	AN1	2863	А
5	AN1	2868	G
5	AN1	2875	А
5	AN1	2880	U
5	AN1	2897	С
5	AN1	2898	U
6	В	2	С
6	В	10	С
6	В	11	А
6	В	14	G
6	В	15	C
6	В	16	A
6	В	23	A
6	В	31	G
6	В	32	A
6	B	39	C
6	В	40	С
6	В	42	G
6	В	44	A
6	В	50	A
6	В	65	G
6	В	86	U

Mol	Chain	Res	Type
6	В	87	А
6	В	105	С
6	В	106	А
6	В	108	С
6	В	109	G
31	sN1	6	С
31	sN1	11	G
31	sN1	15	U
31	sN1	41	G
31	sN1	49	С
31	sN1	50	U
31	sN1	53	А
31	sN1	56	С
31	sN1	57	A
31	sN1	64	U
31	sN1	86	С
31	sN1	87	U
31	sN1	90	С
31	sN1	91	G
31	sN1	97	A
31	sN1	105	А
31	sN1	107	G
31	sN1	126	А
31	sN1	127	U
31	sN1	140	G
31	sN1	157	А
31	sN1	170	А
31	sN1	184	А
31	sN1	186	G
31	sN1	193	A
31	sN1	204	U
31	sN1	205	U
31	sN1	206	С
31	sN1	212	U
31	sN1	216	G
31	sN1	236	C
31	sN1	243	G
31	sN1	247	G
31	sN1	262	G
31	sN1	263	C
31	sN1	285	G
31	sN1	289	G

Mol	Chain	Res	Type
31	sN1	302	А
31	sN1	324	С
31	sN1	340	А
31	sN1	341	С
31	sN1	348	С
31	sN1	359	А
31	sN1	363	U
31	sN1	368	С
31	sN1	369	А
31	sN1	388	С
31	sN1	393	А
31	sN1	402	G
31	sN1	407	A
31	sN1	408	A
31	sN1	409	G
31	sN1	425	U
31	sN1	434	U
31	sN1	463	U
31	sN1	474	А
31	sN1	475	G
31	sN1	476	U
31	sN1	478	G
31	sN1	479	А
31	sN1	481	G
31	sN1	482	U
31	sN1	493	А
31	sN1	494	U
31	sN1	505	U
31	sN1	506	A
31	sN1	507	A
31	sN1	508	С
31	sN1	515	C
31	sN1	521	G
31	sN1	522	C
31	sN1	524	7MG
31	sN1	527	G
31	sN1	544	A
31	sN1	556	A
31	sN1	561	C
31	sN1	567	G
31	sN1	569	A
31	sN1	570	A

Mol	Chain	Res	Type
31	sN1	572	G
31	sN1	573	С
31	sN1	574	G
31	sN1	615	С
31	sN1	630	G
31	sN1	639	А
31	sN1	650	А
31	sN1	662	А
31	sN1	684	А
31	sN1	685	G
31	sN1	699	A
31	sN1	700	G
31	sN1	714	U
31	sN1	721	G
31	sN1	728	G
31	sN1	744	A
31	sN1	745	U
31	sN1	752	G
31	sN1	774	А
31	sN1	790	U
31	sN1	791	А
31	sN1	812	А
31	sN1	814	С
31	sN1	839	U
31	sN1	840	U
31	sN1	841	G
31	sN1	842	A
31	sN1	843	G
31	sN1	899	G
31	sN1	923	G
31	sN1	931	С
31	sN1	932	A
31	sN1	957	U
31	sN1	958	U
31	sN1	966	A
31	sN1	968	G
31	sN1	972	A
31	sN1	973	G
31	sN1	974	A
31	sN1	989	U
31	sN1	990	G
31	sN1	991	A

Mol	Chain	Res	Type
31	sN1	992	С
31	sN1	993	А
31	sN1	998	A
31	sN1	1001	A
31	sN1	1003	С
31	sN1	1007	С
31	sN1	1008	С
31	sN1	1010	G
31	sN1	1016	G
31	sN1	1023	G
31	sN1	1025	С
31	sN1	1026	U
31	sN1	1028	С
31	sN1	1029	G
31	sN1	1030	G
31	sN1	1041	A
31	sN1	1042	С
31	sN1	1050	G
31	sN1	1051	С
31	sN1	1061	G
31	sN1	1062	U
31	sN1	1069	G
31	sN1	1083	U
31	sN1	1084	G
31	sN1	1086	G
31	sN1	1091	G
31	sN1	1092	U
31	sN1	1095	С
31	sN1	1098	А
31	sN1	1121	С
31	sN1	1123	U
31	sN1	1124	G
31	sN1	1130	A
31	sN1	1136	G
31	sN1	1156	U
31	sN1	1157	G
31	sN1	1161	G
31	sN1	1164	A
31	$sN\overline{1}$	1165	C
31	sN1	1169	С
31	sN1	1180	С
31	sN1	1181	G

Mol	Chain	Res	Type
31	sN1	1182	G
31	sN1	1188	А
31	sN1	1193	А
31	sN1	1194	А
31	sN1	1209	U
31	sN1	1210	А
31	sN1	1217	G
31	sN1	1224	А
31	sN1	1235	А
31	sN1	1247	А
31	sN1	1249	А
31	sN1	1255	G
31	sN1	1257	U
31	sN1	1277	A
31	sN1	1284	А
31	sN1	1295	U
31	sN1	1297	G
31	sN1	1299	С
31	sN1	1302	G
31	sN1	1317	С
31	sN1	1350	G
31	sN1	1360	А
31	sN1	1378	U
31	sN1	1380	С
31	sN1	1394	С
31	sN1	1395	А
31	sN1	1398	G
31	sN1	1402	G
31	sN1	1404	С
31	sN1	1425	А
31	sN1	1448	С
31	sN1	1449	А
31	sN1	1490	A
31	sN1	1491	G
31	sN1	1496	A
31	sN1	1499	A
31	sN1	1503	U
31	sN1	1514	G
31	sN1	1517	С
31	sN1	1526	G
31	sN1	1527	G
52	V	4	U

Mol	Chain	Res	Type
52	V	9	А
52	v	13	С
52	v	16	U
52	V	17	U
52	V	18	G
52	V	19	G
52	V	20	H2U
52	V	21	U
52	V	22	А
52	V	23	G
52	V	36	А
52	v	37	U
52	V	43	G
52	v	47	G
52	v	48	U
52	V	49	С
52	v	51	С
52	V	55	5MU
52	V	59	А
52	V	61	U
52	V	62	С
52	v	64	С
52	V	65	G
52	V	67	С
52	V	74	А
52	V	76	С
53	W	2	U

All (11) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
5	AN1	355	С
5	AN1	356	А
5	AN1	368	С
5	AN1	478	А
5	AN1	782	G
5	AN1	893	U
5	AN1	1171	U
5	AN1	1538	А
5	AN1	2170	С
5	AN1	2379	G
6	В	108	С

5.4 Non-standard residues in protein, DNA, RNA chains (i)

28 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mol Type Chair		Res	Link	Bond lengths			Bond angles		
WIOI	Type	Ullalli	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
5	PSU	AN1	2601	5	18,21,22	1.04	1 (5%)	22,30,33	1.77	4 (18%)
31	MA6	sN1	1516	31	$19,\!26,\!27$	1.02	2 (10%)	18,38,41	3.82	2 (11%)
52	4SU	v	8	52	18,21,22	4.31	8 (44%)	26,30,33	2.21	5 (19%)
5	PSU	AN1	2453	5	18,21,22	1.07	1 (5%)	22,30,33	1.80	6 (27%)
5	OMU	AN1	2548	5	19,22,23	3.05	8 (42%)	26,31,34	1.70	4 (15%)
5	6MZ	AN1	2026	5	18,25,26	1.87	3 (16%)	16,36,39	<mark>3.71</mark>	3 (18%)
31	PSU	sN1	513	31	18,21,22	1.14	1 (5%)	22,30,33	1.54	4 (18%)
5	PSU	AN1	2500	5	18,21,22	1.08	1 (5%)	22,30,33	1.77	4 (18%)
5	3TD	AN1	1911	5	18,22,23	4.21	7 (38%)	22,32,35	1.74	3 (13%)
31	4OC	sN1	1399	31	20,23,24	3.20	8 (40%)	26,32,35	0.93	1 (3%)
5	2MG	AN1	2441	5	18,26,27	2.50	7 (38%)	16,38,41	1.35	3 (18%)
5	PSU	AN1	1913	5	18,21,22	1.09	1 (5%)	22,30,33	1.67	5 (22%)
5	5MU	AN1	1935	5	19,22,23	4.93	7 (36%)	28,32,35	<mark>3.62</mark>	9 (32%)
5	OMG	AN1	2247	5	18,26,27	2.52	8 (44%)	19,38,41	1.50	4 (21%)
31	7MG	sN1	524	31	22,26,27	<mark>3.90</mark>	10 (45%)	29,39,42	2.04	9 (31%)
31	UR3	sN1	1495	31	19,22,23	2.91	6 (31%)	26,32,35	1.29	1 (3%)
5	PSU	AN1	2576	5	18,21,22	1.06	1 (5%)	22,30,33	1.80	6 (27%)
31	MA6	sN1	1515	31	19,26,27	1.03	2 (10%)	18,38,41	3.61	2 (11%)
52	PSU	V	56	52	18,21,22	1.07	1 (5%)	22,30,33	1.60	5 (22%)
5	PSU	AN1	1907	5	18,21,22	1.09	1 (5%)	22,30,33	1.77	4 (18%)
5	PSU	AN1	952	5	18,21,22	1.06	1 (5%)	22,30,33	1.78	4 (18%)
52	H2U	v	20	52	18,21,22	<mark>3.09</mark>	4 (22%)	21,30,33	1.91	<mark>5 (23%)</mark>
5	2MA	AN1	2499	$55,\!5$	17,25,26	2.54	5 (29%)	17,37,40	1.37	2 (11%)
52	5MU	V	55	52	19,22,23	4.99	7 (36%)	28,32,35	3.68	<mark>9 (32%)</mark>
31	2MG	sN1	1204	31	18,26,27	2.52	7 (38%)	16,38,41	1.38	3 (18%)
5	7MG	AN1	2065	5	22,26,27	3.81	10 (45%)	29,39,42	2.02	9 (31%)

Mol Type Chain	Turne	Chain	Dec	Timle	B	ond leng	gths	Bond angles		
	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2	
31	5MC	sN1	964	31	18,22,23	3.61	7 (38%)	26,32,35	1.00	2 (7%)
31	2MG	sN1	963	31	18,26,27	2.52	7 (38%)	16,38,41	1.40	3 (18%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	PSU	AN1	2601	5	-	0/7/25/26	0/2/2/2
31	MA6	sN1	1516	31	-	3/7/29/30	0/3/3/3
52	4SU	V	8	52	-	4/7/25/26	0/2/2/2
5	PSU	AN1	2453	5	-	0/7/25/26	0/2/2/2
5	OMU	AN1	2548	5	-	2/9/27/28	0/2/2/2
5	6MZ	AN1	2026	5	-	2/5/27/28	0/3/3/3
31	PSU	sN1	513	31	-	0/7/25/26	0/2/2/2
5	PSU	AN1	2500	5	-	0/7/25/26	0/2/2/2
5	3TD	AN1	1911	5	-	5/7/25/26	0/2/2/2
31	4OC	sN1	1399	31	-	2/9/29/30	0/2/2/2
5	2MG	AN1	2441	5	-	1/5/27/28	0/3/3/3
5	PSU	AN1	1913	5	-	4/7/25/26	0/2/2/2
5	5MU	AN1	1935	5	-	0/7/25/26	0/2/2/2
5	OMG	AN1	2247	5	-	0/5/27/28	0/3/3/3
31	7MG	sN1	524	31	-	3/7/37/38	0/3/3/3
31	UR3	sN1	1495	31	-	0/7/25/26	0/2/2/2
5	PSU	AN1	2576	5	-	0/7/25/26	0/2/2/2
31	MA6	sN1	1515	31	-	3/7/29/30	0/3/3/3
52	PSU	V	56	52	-	0/7/25/26	0/2/2/2
5	PSU	AN1	1907	5	-	1/7/25/26	0/2/2/2
5	PSU	AN1	952	5	-	0/7/25/26	0/2/2/2
52	H2U	V	20	52	-	3/7/38/39	0/2/2/2
5	2MA	AN1	2499	$55,\!5$	-	2/3/25/26	0/3/3/3
52	5MU	V	55	52	-	6/7/25/26	0/2/2/2
31	2MG	sN1	1204	31	-	0/5/27/28	0/3/3/3
5	7MG	AN1	2065	5	-	3/7/37/38	0/3/3/3
31	5MC	sN1	964	31	-	0/7/25/26	0/2/2/2
31	2MG	sN1	963	31	-	0/5/27/28	0/3/3/3

All (132) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
5	AN1	1911	3TD	C6-C5	12.14	1.49	1.35
52	V	55	5MU	C2-N1	11.44	1.56	1.38
5	AN1	1935	5MU	C2-N1	11.34	1.56	1.38
52	V	55	5MU	C6-N1	11.11	1.57	1.38
5	AN1	1935	5MU	C6-N1	10.89	1.56	1.38
52	V	55	5MU	C4-C5	10.04	1.61	1.44
5	AN1	1935	5MU	C4-C5	9.96	1.61	1.44
31	sN1	524	7MG	C8-N9	9.92	1.51	1.46
52	V	8	4SU	C2-N1	9.81	1.54	1.38
52	V	20	H2U	C2-N1	9.72	1.49	1.35
5	AN1	2065	7MG	C8-N9	9.63	1.51	1.46
5	AN1	1911	3TD	C2-N1	9.54	1.49	1.37
31	sN1	964	5MC	C6-C5	9.21	1.49	1.34
52	V	8	4SU	C4-N3	8.17	1.46	1.37
31	sN1	524	7MG	C5-N7	7.86	1.44	1.35
5	AN1	2065	7MG	C5-N7	7.73	1.44	1.35
52	V	55	5MU	C4-N3	-7.37	1.25	1.38
5	AN1	2499	2MA	C2-N3	7.36	1.46	1.31
5	AN1	1935	5MU	C4-N3	-7.34	1.25	1.38
5	AN1	2548	OMU	C2-N1	7.13	1.49	1.38
31	sN1	1495	UR3	C2-N1	7.01	1.48	1.38
52	V	8	4SU	C2-N3	6.94	1.50	1.38
31	sN1	1399	4OC	C4-N3	6.92	1.44	1.32
31	sN1	1495	UR3	C6-C5	6.84	1.51	1.35
52	V	8	4SU	C5-C4	6.75	1.51	1.42
5	AN1	2548	OMU	C2-N3	6.72	1.49	1.38
5	AN1	1935	$5 \mathrm{MU}$	C6-C5	6.71	1.45	1.34
52	V	55	$5 \mathrm{MU}$	C6-C5	6.66	1.45	1.34
31	sN1	964	$5 \mathrm{MC}$	C4-N3	6.60	1.45	1.34
5	AN1	2026	6MZ	C6-N6	6.59	1.45	1.35
52	V	8	$4\mathrm{SU}$	C6-C5	6.58	1.50	1.35
52	V	20	H2U	C2-N3	6.35	1.49	1.38
31	sN1	1399	4OC	C6-C5	6.31	1.49	1.35
31	sN1	1399	40C	C2-N3	6.26	1.49	1.36
31	sN1	964	$5 \mathrm{MC}$	C2-N3	6.10	1.48	1.36
5	AN1	1911	3TD	C6-N1	6.00	1.46	1.36
31	sN1	524	7MG	C2-N3	5.99	1.47	1.33
5	AN1	2065	7MG	C2-N3	5.86	1.47	1.33
31	sN1	1495	UR3	C2-N3	5.85	1.50	1.39
5	AN1	2548	OMU	C6-C5	5.73	1.48	1.35
31	sN1	524	7MG	C4-N9	5.71	1.44	1.37
31	sN1	524	7MG	C4-N3	5.63	1.47	1.34
5	AN1	2065	7MG	C4-N3	5.54	1.47	1.34

001000	naca jion	t preette de page.					
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
5	AN1	2247	OMG	C2-N3	5.52	1.46	1.33
31	sN1	1204	2MG	C2-N2	5.50	1.45	1.33
31	sN1	963	2MG	C2-N2	5.49	1.45	1.33
5	AN1	2065	$7 \mathrm{MG}$	C4-N9	5.45	1.44	1.37
5	AN1	2441	2MG	C2-N2	5.44	1.45	1.33
5	AN1	2499	2MA	C4-N3	5.25	1.50	1.37
31	sN1	1204	2MG	C4-N3	5.05	1.49	1.37
31	sN1	963	2MG	C4-N3	5.02	1.49	1.37
31	sN1	1399	4OC	C4-N4	4.96	1.46	1.35
5	AN1	2441	2MG	C4-N3	4.94	1.49	1.37
31	sN1	524	7MG	C2-N2	4.93	1.45	1.34
52	V	20	H2U	C4-N3	4.92	1.46	1.37
5	AN1	1911	3TD	C2-N3	4.90	1.49	1.38
5	AN1	2247	OMG	C4-N3	4.85	1.49	1.37
31	sN1	1204	2MG	C2-N1	4.85	1.44	1.36
31	sN1	963	2MG	C2-N1	4.84	1.44	1.36
5	AN1	2065	7MG	C2-N2	4.84	1.45	1.34
5	AN1	2441	2MG	C2-N1	4.75	1.44	1.36
31	sN1	964	5MC	C6-N1	4.63	1.45	1.38
31	sN1	964	5MC	C4-N4	4.38	1.45	1.34
31	sN1	1399	4OC	C2-N1	4.36	1.49	1.40
52	V	8	4SU	C4-S4	-4.35	1.60	1.68
31	sN1	964	5MC	C2-N1	4.30	1.49	1.40
5	AN1	2548	OMU	C4-N3	4.20	1.46	1.38
5	AN1	2247	OMG	C2-N2	4.05	1.43	1.34
31	sN1	1399	4OC	C5-C4	3.91	1.49	1.40
5	AN1	2247	OMG	C6-N1	3.85	1.43	1.37
31	sN1	524	7MG	C2-N1	3.84	1.47	1.37
5	AN1	2065	7MG	C2-N1	3.78	1.47	1.37
31	sN1	513	PSU	C6-C5	3.75	1.39	1.35
31	sN1	963	2MG	C6-N1	3.72	1.43	1.37
5	AN1	1913	PSU	C6-C5	3.65	1.39	1.35
52	V	56	PSU	C6-C5	3.62	1.39	1.35
31	sN1	1204	2MG	C6-N1	3.59	1.43	1.37
5	AN1	2441	2MG	C6-N1	3.58	1.43	1.37
31	sN1	524	7MG	C5-C6	3.56	1.52	1.43
5	AN1	1907	PSU	C6-C5	3.55	1.39	1.35
5	AN1	2500	PSU	C6-C5	3.53	1.39	1.35
5	AN1	2065	7MG	C5-C6	3.45	1.52	1.43
31	sN1	1495	UR3	C6-N1	3.40	1.46	1.38
5	AN1	952	PSU	C6-C5	3.39	1.39	1.35
5	AN1	2453	PSU	C6-C5	3.37	1.39	1.35

Continued from previous page										
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)			
5	AN1	2576	PSU	C6-C5	3.37	1.39	1.35			
31	sN1	1399	4OC	C6-N1	3.36	1.46	1.38			
5	AN1	2601	PSU	C6-C5	3.36	1.39	1.35			
31	sN1	524	7MG	C6-N1	3.27	1.44	1.38			
5	AN1	2065	7MG	C6-N1	3.25	1.44	1.38			
52	V	55	5MU	O4-C4	-3.15	1.17	1.23			
5	AN1	2441	2MG	C5-C6	3.13	1.53	1.47			
31	sN1	1204	2MG	C5-C6	3.13	1.53	1.47			
31	sN1	963	2MG	C5-C6	3.12	1.53	1.47			
5	AN1	2247	OMG	C5-C6	2.97	1.53	1.47			
5	AN1	2499	2MA	C6-N1	2.93	1.44	1.38			
5	AN1	2548	OMU	C6-N1	2.92	1.45	1.38			
5	AN1	2548	OMU	O4-C4	-2.92	1.18	1.24			
52	V	8	4SU	C6-N1	2.87	1.44	1.38			
5	AN1	1935	5MU	O4-C4	-2.87	1.18	1.23			
31	sN1	964	5MC	O2-C2	-2.74	1.18	1.23			
5	AN1	1911	3TD	C4-N3	2.73	1.46	1.40			
5	AN1	2499	2MA	C5-C4	-2.66	1.36	1.43			
31	sN1	1515	MA6	C2-N3	2.65	1.36	1.32			
5	AN1	2026	6MZ	C5-C4	-2.65	1.33	1.40			
5	AN1	2065	7MG	O6-C6	-2.59	1.18	1.23			
31	sN1	1399	4OC	O2-C2	-2.58	1.18	1.23			
31	sN1	1516	MA6	C5-C4	-2.58	1.34	1.40			
52	V	8	4SU	O2-C2	-2.58	1.18	1.23			
5	AN1	2499	2MA	C2-N1	2.57	1.44	1.36			
31	sN1	1516	MA6	C2-N3	2.57	1.36	1.32			
31	sN1	1515	MA6	C5-C4	-2.55	1.34	1.40			
31	sN1	524	7MG	O6-C6	-2.55	1.18	1.23			
5	AN1	2441	2MG	C5-C4	-2.55	1.36	1.43			
5	AN1	2247	OMG	C5-C4	-2.55	1.36	1.43			
31	sN1	963	2MG	C5-C4	-2.51	1.36	1.43			
5	AN1	2247	OMG	O6-C6	-2.50	1.18	1.23			
5	AN1	2247	OMG	C2-N1	2.49	1.43	1.37			
31	sN1	1204	2MG	C5-C4	-2.47	1.36	1.43			
5	AN1	1935	$5 \mathrm{MU}$	O2-C2	-2.46	1.18	1.23			
52	V	20	H2U	O2-C2	-2.44	1.18	1.23			
5	AN1	2548	OMU	C5-C4	2.42	1.49	1.43			
52	V	55	5MU	O2-C2	-2.36	1.18	1.23			
5	AN1	2548	OMU	$O2-\overline{C2}$	-2.35	1.18	1.23			
5	AN1	1911	3TD	O2-C2	-2.32	1.18	1.23			
31	sN1	1495	UR3	C4-N3	$2.3\overline{2}$	1.46	1.40			
31	sN1	1495	UR3	C5-C4	2.30	1.49	1.43			

0 0	contract from proceed by agoin										
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)				
5	AN1	2026	6MZ	C2-N3	2.26	1.35	1.32				
5	AN1	2441	2MG	O6-C6	-2.20	1.18	1.23				
31	sN1	963	2MG	O6-C6	-2.18	1.18	1.23				
31	sN1	1204	2MG	O6-C6	-2.13	1.19	1.23				
5	AN1	1911	3TD	O4-C4	-2.02	1.18	1.23				

All (121) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
31	sN1	1516	MA6	N1-C6-N6	-14.99	101.28	117.06
31	sN1	1515	MA6	N1-C6-N6	-14.13	102.19	117.06
5	AN1	2026	6MZ	C1'-N9-C4	-13.18	103.48	126.64
52	V	55	5MU	C5-C4-N3	12.50	125.98	115.31
5	AN1	1935	5MU	C5-C4-N3	12.14	125.67	115.31
5	AN1	1935	5MU	C5-C6-N1	-10.20	112.84	123.34
52	V	55	5MU	C5-C6-N1	-9.94	113.11	123.34
52	V	8	4SU	C4-N3-C2	-7.60	119.96	127.34
52	V	20	H2U	C4-N3-C2	-6.64	120.28	125.79
31	sN1	1516	MA6	N3-C2-N1	-5.60	119.92	128.68
31	sN1	1515	MA6	N3-C2-N1	-5.45	120.16	128.68
5	AN1	2026	6MZ	N3-C2-N1	-5.28	120.42	128.68
5	AN1	2548	OMU	C4-N3-C2	-5.21	119.70	126.58
5	AN1	1911	3TD	N1-C2-N3	5.13	120.18	116.14
31	sN1	524	7MG	C5-C6-N1	5.06	119.91	110.99
52	V	8	4SU	C5-C4-N3	4.99	119.32	114.69
5	AN1	2065	7MG	C5-C6-N1	4.99	119.78	110.99
52	V	55	5MU	C4-N3-C2	-4.98	120.90	127.35
52	V	55	5MU	O4-C4-C5	-4.93	119.19	124.90
5	AN1	1935	5MU	C4-N3-C2	-4.91	121.00	127.35
5	AN1	1935	5MU	O4-C4-C5	-4.87	119.26	124.90
31	sN1	1495	UR3	C4-N3-C2	-4.79	120.06	124.56
5	AN1	2453	PSU	C4-N3-C2	-4.64	119.65	126.34
5	AN1	2500	PSU	C4-N3-C2	-4.60	119.71	126.34
5	AN1	2601	PSU	C4-N3-C2	-4.60	119.71	126.34
5	AN1	952	PSU	C4-N3-C2	-4.58	119.75	126.34
5	AN1	2453	PSU	N1-C2-N3	4.57	120.31	115.13
5	AN1	2576	PSU	C4-N3-C2	-4.57	119.76	126.34
52	V	55	5MU	N3-C2-N1	4.56	120.94	114.89
5	AN1	2576	PSU	N1-C2-N3	4.55	120.29	115.13
5	AN1	1907	PSU	C4-N3-C2	-4.54	119.80	126.34
5	AN1	952	PSU	N1-C2-N3	4.53	120.26	115.13
31	sN1	524	7MG	C2-N3-C4	4.47	120.27	112.30

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	AN1	2500	PSU	N1-C2-N3	4.47	120.19	115.13
5	AN1	1935	5MU	N3-C2-N1	4.47	120.82	114.89
5	AN1	1907	PSU	N1-C2-N3	4.44	120.16	115.13
5	AN1	2601	PSU	N1-C2-N3	4.43	120.15	115.13
5	AN1	2065	7MG	C2-N3-C4	4.41	120.15	112.30
5	AN1	1911	3TD	C4-N3-C2	-4.33	119.91	124.61
5	AN1	1913	PSU	C4-N3-C2	-4.31	120.13	126.34
5	AN1	1913	PSU	N1-C2-N3	4.25	119.94	115.13
31	sN1	524	7MG	C5-C4-N3	-4.13	120.26	128.13
52	V	56	PSU	N1-C2-N3	4.10	119.77	115.13
52	V	56	PSU	C4-N3-C2	-4.07	120.48	126.34
52	V	8	4SU	N3-C2-N1	4.02	120.22	114.89
5	AN1	2065	7MG	C5-C4-N3	-4.02	120.47	128.13
31	sN1	513	PSU	C4-N3-C2	-3.92	120.69	126.34
31	sN1	513	PSU	N1-C2-N3	3.82	119.46	115.13
5	AN1	2548	OMU	N3-C2-N1	3.82	119.95	114.89
52	V	55	5MU	C5M-C5-C6	-3.75	117.84	122.85
52	V	55	5MU	C5M-C5-C4	3.73	122.87	118.77
5	AN1	1935	5MU	C5M-C5-C6	-3.71	117.89	122.85
5	AN1	2499	2MA	C5-C6-N1	3.52	120.10	114.02
31	sN1	963	2MG	C5-C6-N1	3.50	120.13	113.95
31	sN1	1204	2MG	C5-C6-N1	3.48	120.11	113.95
5	AN1	2247	OMG	C5-C6-N1	3.47	120.09	113.95
5	AN1	2441	2MG	C5-C6-N1	3.43	120.01	113.95
5	AN1	1935	5MU	C5M-C5-C4	3.39	122.50	118.77
5	AN1	2548	OMU	C5-C4-N3	3.35	119.86	114.84
31	sN1	964	5MC	C5-C6-N1	-3.26	119.99	123.34
5	AN1	2065	7MG	C4-C5-N7	3.19	109.96	105.53
31	sN1	524	7MG	C4-C5-N7	3.18	109.94	105.53
5	AN1	2026	6MZ	C2-N1-C6	3.12	119.27	116.59
5	AN1	2247	OMG	C2-N1-C6	-3.10	119.38	125.10
5	AN1	2499	2MA	C8-N7-C5	3.07	108.84	102.99
52	V	20	H2U	N3-C2-N1	3.06	119.89	116.65
31	sN1	524	7MG	C5-C4-N9	3.04	110.30	106.35
5	AN1	2065	7MG	C5-C4-N9	2.99	110.23	106.35
52	V	8	4SU	C5-C4-S4	-2.98	120.63	124.47
5	AN1	2548	OMU	O4-C4-C5	-2.83	120.18	125.16
31	sN1	524	7MG	C2-N1-C6	-2.81	119.98	125.10
31	sN1	524	7MG	O6-C6-C5	-2.78	120.71	127.54
5	AN1	2065	7MG	O6-C6-C5	-2.77	120.73	127.54
52	v	55	5MU	O4-C4-N3	-2.76	114.83	120.12
5	AN1	2065	7MG	C2-N1-C6	-2.74	120.09	125.10

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	AN1	2247	OMG	C8-N7-C5	2.74	108.21	102.99
52	v	20	H2U	C5-C4-N3	2.70	119.69	116.65
52	V	20	H2U	C5-C6-N1	2.67	120.40	111.61
31	sN1	524	7MG	N9-C4-N3	2.66	129.44	125.47
31	sN1	1204	2MG	C8-N7-C5	2.65	108.05	102.99
5	AN1	1907	PSU	O2-C2-N1	-2.64	119.88	122.79
5	AN1	1935	5MU	O4-C4-N3	-2.63	115.07	120.12
5	AN1	2576	PSU	O2-C2-N1	-2.61	119.91	122.79
5	AN1	2500	PSU	O2-C2-N1	-2.61	119.92	122.79
5	AN1	952	PSU	O2-C2-N1	-2.58	119.94	122.79
31	sN1	963	2MG	C8-N7-C5	2.58	107.91	102.99
5	AN1	2441	2MG	C8-N7-C5	2.57	107.89	102.99
5	AN1	2065	7MG	N9-C4-N3	2.56	129.29	125.47
5	AN1	1913	PSU	O2-C2-N1	-2.48	120.06	122.79
5	AN1	2601	PSU	O2-C2-N1	-2.46	120.08	122.79
5	AN1	2453	PSU	O2-C2-N1	-2.46	120.08	122.79
52	V	55	5MU	O2-C2-N1	-2.41	119.59	122.79
31	sN1	1399	4OC	C6-C5-C4	2.37	119.86	116.96
5	AN1	1911	3TD	C6-C5-C4	2.36	119.85	118.22
5	AN1	1935	5MU	O2-C2-N1	-2.34	119.68	122.79
31	sN1	963	2MG	O6-C6-C5	-2.31	119.86	124.37
31	sN1	524	7MG	N9-C8-N7	2.31	106.68	103.38
52	V	8	4SU	C1'-N1-C2	2.31	121.75	117.57
31	sN1	1204	2MG	O6-C6-C5	-2.26	119.95	124.37
5	AN1	1913	PSU	C6-N1-C2	-2.26	120.37	122.68
5	AN1	2065	7MG	N9-C8-N7	2.26	106.60	103.38
5	AN1	2247	OMG	O6-C6-C5	-2.25	119.97	124.37
52	V	56	PSU	O2-C2-N1	-2.25	120.31	122.79
5	AN1	2576	PSU	C6-N1-C2	-2.24	120.39	122.68
5	AN1	2441	2MG	O6-C6-C5	-2.23	120.02	124.37
52	V	56	PSU	C6-N1-C2	-2.21	120.43	122.68
5	AN1	952	PSU	C6-N1-C2	-2.19	120.45	122.68
5	AN1	2453	PSU	C6-N1-C2	-2.17	120.47	122.68
5	AN1	1907	PSU	C6-N1-C2	-2.16	120.47	122.68
31	sN1	513	PSU	O4'-C1'-C2'	2.12	108.14	105.14
5	AN1	2500	PSU	C6-N1-C2	-2.09	120.55	122.68
5	AN1	2601	PSU	C6-N1-C2	-2.07	120.56	122.68
5	AN1	2453	PSU	O4'-C1'-C2'	2.04	108.02	105.14
5	AN1	2453	PSU	C6-C5-C4	2.03	119.62	118.20
52	V	20	H2U	O2-C2-N1	-2.03	120.56	123.11
31	sN1	964	5MC	CM5-C5-C6	-2.03	120.14	122.85

PSU

2576

AN1

5

O4'-C1'-C2'

Continued from previous page...

Continued on next page...

105.14

108.00

2.02

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
31	sN1	513	PSU	C6-N1-C2	-2.02	120.61	122.68
52	V	56	PSU	O4'-C1'-C2'	2.01	107.98	105.14
5	AN1	2576	PSU	C6-C5-C4	2.01	119.60	118.20
5	AN1	1913	PSU	O4'-C1'-C2'	2.00	107.97	105.14

There are no chirality outliers.

All (44) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
31	sN1	1515	MA6	C5-C6-N6-C9
31	sN1	1516	MA6	C5-C6-N6-C10
31	sN1	1516	MA6	N1-C6-N6-C10
5	AN1	1911	3TD	O4'-C4'-C5'-O5'
5	AN1	1913	PSU	O4'-C1'-C5-C4
5	AN1	1913	PSU	O4'-C1'-C5-C6
5	AN1	2499	2MA	O4'-C4'-C5'-O5'
5	AN1	2548	OMU	C3'-C4'-C5'-O5'
5	AN1	2548	OMU	O4'-C4'-C5'-O5'
52	V	8	4SU	O4'-C1'-N1-C2
52	V	8	4SU	O4'-C1'-N1-C6
31	sN1	524	7MG	C3'-C4'-C5'-O5'
5	AN1	1911	3TD	C3'-C4'-C5'-O5'
5	AN1	2026	6MZ	O4'-C4'-C5'-O5'
5	AN1	2026	6MZ	C3'-C4'-C5'-O5'
52	V	20	H2U	O4'-C4'-C5'-O5'
5	AN1	2065	7MG	O4'-C4'-C5'-O5'
5	AN1	2499	2MA	C3'-C4'-C5'-O5'
52	V	55	5MU	C3'-C4'-C5'-O5'
52	V	55	5MU	O4'-C4'-C5'-O5'
31	sN1	1515	MA6	N1-C6-N6-C9
52	V	55	5MU	C2'-C1'-N1-C6
52	V	20	H2U	C3'-C4'-C5'-O5'
31	sN1	524	7MG	O4'-C4'-C5'-O5'
31	sN1	1399	4OC	O4'-C4'-C5'-O5'
5	AN1	2065	7MG	C3'-C4'-C5'-O5'
31	sN1	1515	MA6	C5-C6-N6-C10
52	V	8	4SU	O4'-C4'-C5'-O5'
5	AN1	1907	PSU	C4'-C5'-O5'-P
52	V	8	4SU	C3'-C4'-C5'-O5'
52	v	55	5MU	O4'-C1'-N1-C6
52	V	55	5MU	C2 ['] -C1'-N1-C2
31	sN1	524	7MG	C4'-C5'-O5'-P

Mol	Chain	\mathbf{Res}	Type	Atoms
31	sN1	1516	MA6	C5-C6-N6-C9
5	AN1	1913	PSU	O4'-C4'-C5'-O5'
52	V	55	5MU	O4'-C1'-N1-C2
5	AN1	1911	3TD	C4'-C5'-O5'-P
5	AN1	1911	3TD	O4'-C1'-C5-C4
31	sN1	1399	4OC	C3'-C4'-C5'-O5'
5	AN1	2441	2MG	C3'-C4'-C5'-O5'
5	AN1	1911	3TD	O4'-C1'-C5-C6
52	V	20	H2U	C2'-C1'-N1-C2
5	AN1	2065	7MG	C4'-C5'-O5'-P
5	AN1	1913	PSU	C3'-C4'-C5'-O5'

There are no ring outliers.

2 monomers are involved in 3 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
5	AN1	1911	3TD	2	0
5	AN1	1913	PSU	1	0

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 95 ligands modelled in this entry, 95 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-21031. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

Orthogonal projections (i) 6.1

6.1.1Primary map

The images above show the map projected in three orthogonal directions.

Central slices (i) 6.2

6.2.1Primary map

X Index: 256

Y Index: 256

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 256

Y Index: 270

Z Index: 219

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.45. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1088 $\rm nm^3;$ this corresponds to an approximate mass of 983 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.355 \AA^{-1}

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-21031 and PDB model 6V3A. Per-residue inclusion information can be found in section 3 on page 14.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.45 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.45).

9.4 Atom inclusion (i)

At the recommended contour level, 85% of all backbone atoms, 87% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.45) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	Q-score
All	0.8717	0.5310
0	0.8201	0.5320
1	0.9592	0.6400
2	0.9549	0.6160
3	0.8846	0.5580
AN1	0.9083	0.5450
В	0.9053	0.4910
С	0.8993	0.5900
D	0.8726	0.5680
Ε	0.8692	0.5660
F	0.5717	0.3150
G	0.6857	0.4060
Н	0.3764	0.2810
Ι	0.8653	0.5610
J	0.8999	0.5900
К	0.8797	0.5680
L	0.8897	0.5740
М	0.9692	0.6260
Ν	0.8359	0.5020
О	0.8432	0.5540
Р	0.9226	0.5990
Q	0.8782	0.5650
R	0.8492	0.5590
S	0.8565	0.5430
Т	0.7835	0.4870
U	0.7900	0.5080
V	0.8818	0.5960
W	0.8858	0.5860
Х	0.7377	0.4540
Y	0.8256	0.5280
Z	0.8322	0.5490
b	0.2028	0.3490
с	0.8659	0.5540
d	0.6946	0.4610
е	0.8840	0.5550

Chain	Atom inclusion	Q-score
f	0.4876	0.3840
g	0.6410	0.4680
h	0.9141	0.5900
i	0.9185	0.5950
j	0.8241	0.5440
k	0.5054	0.3910
1	0.6915	0.5210
m	0.8884	0.5580
n	0.8954	0.5770
0	0.8799	0.5490
р	0.9250	0.5870
q	0.8555	0.5650
r	0.7052	0.4950
S	0.9444	0.5980
sN1	0.9039	0.5300
t	0.8995	0.5640
u	0.0914	0.2790
V	0.9444	0.3080
W	0.9538	0.2530

