

Full wwPDB X-ray Structure Validation Report (i)

Jan 2, 2024 – 05:04 pm GMT

PDB ID	:	4UO0
Title	:	Structure of the A_Equine_Richmond_07 H3 haemagglutinin
Authors	:	Vachieri, S.G.; Collins, P.J.; Haire, L.F.; Ogrodowicz, R.W.; Martin, S.R.;
		Walker, P.A.; Xiong, X.; Gamblin, S.J.; Skehel, J.J.
Deposited on	:	2014-05-31
Resolution	:	1.90 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 1.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motric	Whole archive	Similar resolution
IVIETIC	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R_{free}	130704	6207 (1.90-1.90)
Clashscore	141614	6847 (1.90-1.90)
Ramachandran outliers	138981	6760 (1.90-1.90)
Sidechain outliers	138945	6760 (1.90-1.90)
RSRZ outliers	127900	6082 (1.90-1.90)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	329	2% 91%	7% •
1	С	329	% 92%	5% • •
1	Е	329	.% 91%	7% ••
2	В	172	% 92%	8%
2	D	172	88%	9% •

Mol	Chain	Length	Quality of cl	hain
2	F	172	% 	7%•
3	G	2	100%	
3	Н	2	50%	50%
3	J	2	100%	
3	L	2	50%	50%
3	R	2	100%	
3	V	2	100%	
3	W	2	100%	
3	Y	2	100%	
3	a	2	100%	
4	Ι	5	60%	40%
4	Р	5	40%	60%
4	Q	5	20%	80%
4	Х	5	100%	
5	K	4	75%	25%
6	М	3	100%	
6	0	3	33%	67%
6	Т	3	67%	33%
7	Ν	2	100%	
8	S	6	100%	
9	U	3	100%	
9	Z	3	33%	67%
9	b	3	33%	67%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
10	BMA	А	604	-	-	-	Х
12	NAG	С	601	-	-	-	Х
12	NAG	Е	621	-	-	-	Х
3	NAG	G	2	-	-	-	Х
3	NAG	Н	2	-	-	-	Х
3	NAG	L	1	Х	-	-	-
3	NAG	W	2	-	-	-	Х
3	NAG	Y	2	-	-	-	Х
4	MAN	Р	4	-	-	-	Х
4	MAN	Р	5	-	-	-	Х
5	FUC	K	4	Х	-	-	-
7	FUC	Ν	2	X	-	-	-
8	FUC	S	6	X	-	-	-
9	FUC	U	3	Х	-	-	-
9	FUC	Z	3	X	_	-	-
9	FUC	b	3	Х	-	-	-

2 Entry composition (i)

There are 13 unique types of molecules in this entry. The entry contains 14213 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		Atoms				ZeroOcc	AltConf	Trace
1	1 A	325	Total	С	Ν	0	\mathbf{S}	0	0	0
1			2573	1612	454	492	15		0	
1	1 C	320	Total	С	Ν	0	S	0	1	0
1			2496	1560	441	480	15			
1	1 E	325	Total	С	Ν	0	S	0	4	0
			2548	1593	449	491	15			

• Molecule 1 is a protein called HEMAGGLUTININ.

• Molecule 2 is a protein called HEMAGGLUTININ.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
9	2 B	179	Total	С	Ν	0	S	0	6	0
		172	1428	896	242	283	7	0	0	
0	2 D	172	Total	С	Ν	0	S	0	4	0
			1421	890	245	279	7			0
0	2 F	172	Total	С	Ν	0	\mathbf{S}	0	7	0
			1437	903	245	281	8	0		U

• Molecule 3 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
3	G	2	Total C N O 28 16 2 10	0	0	0
3	Н	2	Total C N O 28 16 2 10	0	0	0
3	J	2	Total C N O 28 16 2 10	0	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
3	L	2	Total C N O 28 16 2 10	0	0	0
3	R	2	Total C N O 28 16 2 10	0	0	0
3	V	2	Total C N O 28 16 2 10	0	0	0
3	W	2	Total C N O 28 16 2 10	0	0	0
3	Y	2	Total C N O 28 16 2 10	0	0	0
3	a	2	Total C N O 28 16 2 10	0	0	0

• Molecule 4 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyran ose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
4	T	5	Total	С	Ν	0	0	0	Ο
т	T	0	61	34	2	25	0	0	0
4	D	Б	Total	С	Ν	0	0	0	0
4	1	5	61	34	2	25	0	0	0
4	0	5	Total	С	Ν	0	0	0	0
4 Q	0	61	34	2	25	0	0	U	
4	v	7 5	Total	С	Ν	0	0	0	0
4	Λ	5	61	34	2	25	0		U

• Molecule 5 is an oligosaccharide called beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-b eta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopy ranose.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
5	K	4	Total 49	C 28	N 2	O 19	0	0	0

• Molecule 6 is an oligosaccharide called beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-b eta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
6	М	3	Total C N O 39 22 2 15	0	0	0
6	О	3	Total C N O 39 22 2 15	0	0	0
6	Т	3	Total C N O 39 22 2 15	0	0	0

• Molecule 7 is an oligosaccharide called alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-bet a-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace		
7	Ν	2	Total 24	C 14	N 1	O 9	0	0	0

• Molecule 8 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyran ose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[al pha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
8	S	6	Total C N O 71 40 2 29	0	0	0

• Molecule 9 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[al pha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
9	U	3	Total C N O 38 22 2 14	0	0	0
9	Z	3	Total C N O 38 22 2 14	0	0	0
9	b	3	Total C N O 38 22 2 14	0	0	0

• Molecule 10 is beta-D-mannopyranose (three-letter code: BMA) (formula: $C_6H_{12}O_6$).

Mol	Chain	Residues	Ato	oms		ZeroOcc	AltConf
10	А	1	Total 11	С 6	O 5	0	0

• Molecule 11 is 1,2-ETHANEDIOL (three-letter code: EDO) (formula: $C_2H_6O_2$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
11	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
11	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
11	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
11	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
11	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
11	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
11	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
11	Ε	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
11	Ε	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
11	F	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
11	F	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
11	F	1	$\begin{array}{ccc} \text{Total} & \text{C} & \overline{\text{O}} \\ 4 & 2 & 2 \end{array}$	0	0

• Molecule 12 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf		
12	С	1	Total 14	C 8	N 1	O 5	0	0
12	Е	1	Total 14	C 8	N 1	O 5	0	0

• Molecule 13 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
13	А	314	Total O 314 314	0	0
13	В	191	Total O 191 191	0	0
13	С	283	Total O 283 283	0	0
13	D	174	Total O 174 174	0	0
13	Е	256	Total O 256 256	0	0
13	F	134	Total O 134 134	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: HEMAGGLUTININ

• Molecule 2: HEMAGGLUTININ

Chain F:	92%	7% •	
d1 E11 L52 L52 E67 F63 F63 F63 F63 F63 F63 F17 F119	L167 N169 0172		
• Molecule 3: 2-acetamic opyranose	lo-2-deoxy-beta-D-glucopyranos	se-(1-4)-2-acetamido-2-deoxy-beta	ı-D-gluc
Chain G:	100%		

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain H:	50%	50%
NAG1 NAG2		

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

Chain J:

100%

NAG1 NAG2

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain L:	50%	50%
NAG2 NAG2		

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain R:	100%
NAG1 NAG2	
• Molecule 3	: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-acetamido
opyranose	

Chain V:

100%

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain	W:

100%

100%

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain Y:

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain a:	100%
NAG1 NAG2	

 \bullet Molecule 4: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain I:	60%	40%
NAG1 NAG2 BMA3 MAN4 MAN5		

 \bullet Molecule 4: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose nose

Chain P:	40%	60%
NAG1 NAG2 MAN4 MAN5		

 • Molecule 4: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain Q: 20%

80%

NAG1 NAG2 BMA3 MAN4 MAN5

 \bullet Molecule 4: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose nose

α · v	
Chain X:	100%

NAG1 NAG2 BMA3 MAN4 MAN5

 $\bullet \ {\rm Molecule \ 5: \ beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alp ha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose}$

Chain K:	75%	25%
NAG1 NAG2 BMA3 FUC4		

• Molecule 6: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain M: 100%

NAG1 NAG2 BMA3

• Molecule 6: beta-D-mannopyranose-(1-4)-2-acetamido-2-de
oxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-de
oxy-beta-D-glucopyranose

Chain O:	33%	67%	
NAG1 NAG2 BMA3			
• Molecule etamido-2-	6: beta-D-mannopy deoxy-beta-D-glucop	ranose-(1-4)-2-acetamido-2-deoxy-beta-D-glu oyranose	1copyranose-(1-4)-2-ac

Chain T:	67%	33%

N A C 1	TOWN	NAG2	BMA3

• Molecule 7: alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain N:

100%

NAG1 FUC2

 $\label{eq:mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]} beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-b$

Chain S:

100%

NAG1 NAG2 BMA3 MAN4 MAN5 FUC6

• Molecule 9: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose

Chain U:

100%

NAG1 NAG2 FUC3

 • Molecule 9: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)] 2-acetamido-2-deoxy-beta-D-glucopyranose

Chain Z:	33%	67%
NAG1 NAG2 FUC3		

 • Molecule 9: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)] 2-acetamido-2-deoxy-beta-D-glucopyranose

Chain b:	33%	67%
NAG1 NAG2 FUC3		

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	79.41Å 129.33Å 192.62Å	Deperitor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Bosolution (Å)	107.37 - 1.90	Depositor
Resolution (A)	46.58 - 1.90	EDS
% Data completeness	$97.3\ (107.37-1.90)$	Depositor
(in resolution range)	97.3 (46.58 - 1.90)	EDS
R_{merge}	0.06	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.35 (at 1.90 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.8.0069	Depositor
R R.	0.191 , 0.218	Depositor
II, II, <i>free</i>	0.191 , 0.218	DCC
R_{free} test set	7614 reflections (5.00%)	wwPDB-VP
Wilson B-factor $(Å^2)$	23.9	Xtriage
Anisotropy	0.661	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.32 , 40.8	EDS
L-test for $twinning^2$	$ < L >=0.45, < L^2>=0.28$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.95	EDS
Total number of atoms	14213	wwPDB-VP
Average B, all atoms $(Å^2)$	33.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.78% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: EDO, NAG, MAN, FUC, BMA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond lengths		Bond angles	
		RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.39	0/2651	0.56	0/3598
1	С	0.41	0/2552	0.58	0/3464
1	Е	0.39	0/2614	0.57	0/3551
2	В	0.44	0/1471	0.57	0/1978
2	D	0.42	0/1458	0.59	0/1960
2	F	0.44	0/1483	0.61	0/1994
All	All	0.41	0/12229	0.58	0/16545

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2573	0	2547	16	0
1	С	2496	0	2440	14	0
1	Е	2548	0	2499	16	0
2	В	1428	0	1363	25	0
2	D	1421	0	1360	19	0
2	F	1437	0	1386	19	0
3	G	28	0	25	0	0

4	U	Ο	0
т	U	\mathbf{U}	U

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	Н	28	0	25	1	0
3	J	28	0	25	0	0
3	L	28	0	25	0	0
3	R	28	0	25	0	0
3	V	28	0	25	1	0
3	W	28	0	25	0	0
3	Y	28	0	25	0	0
3	a	28	0	25	0	0
4	Ι	61	0	52	2	0
4	Р	61	0	52	4	0
4	Q	61	0	52	1	0
4	Х	61	0	52	0	0
5	Κ	49	0	43	2	0
6	М	39	0	34	0	0
6	0	39	0	34	0	0
6	Т	39	0	34	1	0
7	Ν	24	0	22	0	0
8	S	71	0	61	0	0
9	U	38	0	34	0	0
9	Ζ	38	0	34	0	0
9	b	38	0	34	0	0
10	А	11	0	10	0	0
11	А	8	0	12	1	0
11	В	8	0	12	0	0
11	С	8	0	12	0	0
11	D	4	0	6	0	0
11	Ε	8	0	12	1	0
11	F	12	0	18	0	0
12	С	14	0	13	0	0
12	Ε	14	0	13	0	0
13	А	314	0	0	4	0
13	В	191	0	0	2	0
13	С	283	0	0	0	0
13	D	174	0	0	2	0
13	Е	256	0	0	1	0
13	F	134	0	0	2	0
All	All	14213	0	12466	93	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

All (93) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

4	U(0C
- - -	\sim	00

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:B:77[A]:ILE:HD12	2:F:77[A]:ILE:CD1	2.03	0.88
2:B:77[A]:ILE:HD12	2:F:77[A]:ILE:HD11	1.58	0.83
2:B:77[A]:ILE:CD1	2:F:77[A]:ILE:CD1	2.57	0.82
1:E:167:THR:OG1	1:E:242:ILE:HD11	1.80	0.81
4:I:3:BMA:H62	4:I:5:MAN:H5	1.68	0.76
1:C:102:ILE:HG12	1:C:232:ILE:HB	1.67	0.74
1:E:156:LYS:HE3	1:E:193:LYS:O	1.88	0.74
2:B:77[A]:ILE:HD11	2:F:77[A]:ILE:HD13	1.73	0.71
1:C:15:LEU:CD2	2:D:119:PHE:HA	2.21	0.71
1:C:304:LYS:HG3	2:D:61:GLU:HG3	1.74	0.69
2:B:77[B]:ILE:HD11	2:D:77[B]:ILE:HD12	1.76	0.68
13:B:2079:HOH:O	2:F:86[B]:ASP:OD2	2.12	0.67
2:B:77[B]:ILE:HD13	2:D:77[B]:ILE:HD11	1.77	0.65
2:B:77[A]:ILE:CD1	2:F:77[A]:ILE:HD11	2.26	0.64
1:A:44:GLN:HG2	1:A:288[B]:ILE:HG23	1.78	0.63
1:E:34:ILE:HD11	1:E:321:ARG:HD2	1.80	0.63
1:A:15:LEU:HD22	2:B:119:PHE:HA	1.83	0.60
2:B:77[A]:ILE:CD1	2:F:77[A]:ILE:HD13	2.29	0.60
1:E:15[B]:LEU:HD13	2:F:119:PHE:HA	1.83	0.60
1:E:156:LYS:HD3	1:E:196:ILE:HD11	1.83	0.60
1:A:44:GLN:HG2	1:A:288[B]:ILE:CG2	2.32	0.59
1:C:304:LYS:CG	2:D:61:GLU:HG3	2.33	0.58
1:C:138:ALA:HB2	1:C:226:GLN:HG2	1.85	0.58
2:B:143:LYS:HD2	5:K:4:FUC:H62	1.86	0.57
3:V:1:NAG:H3	3:V:2:NAG:H61	1.86	0.57
2:B:77[B]:ILE:CD1	2:D:77[B]:ILE:HD12	2.33	0.57
1:C:18:HIS:HD2	13:D:2020:HOH:O	1.87	0.57
2:D:168:ASN:O	2:D:172:GLN:HB3	2.05	0.56
1:C:34:ILE:HD11	1:C:321:ARG:HD2	1.87	0.56
2:B:14:TRP:HE3	2:B:17[B]:MET:HE2	1.72	0.55
1:A:288[B]:ILE:HD11	1:A:297:VAL:HG11	1.88	0.55
2:B:77[B]:ILE:CD1	2:D:77[B]:ILE:CD1	2.85	0.55
1:C:15:LEU:HD22	2:D:119:PHE:HA	1.89	0.54
1:E:15[A]:LEU:HD22	2:F:119:PHE:HA	1.89	0.54
4:P:2:NAG:H62	4:P:3:BMA:H2	1.89	0.54
2:B:77[B]:ILE:HD13	2:D:77[B]:ILE:CD1	2.38	0.53
13:A:2075:HOH:O	3:H:1:NAG:H82	2.09	0.52
2:B:144:CYS:HG	2:B:148:CYS:HG	1.57	0.52
1:A:289[A]:SER:OG	1:A:291:GLU:HG2	2.10	0.52
1:E:310:ARG:NH2	2:F:86[B]:ASP:OD1	2.44	0.51
1:E:290:ASN:HB2	2:F:59:THR:HG21	1.92	0.50
1:A:283:THR:CG2	1:A:288[B]:ILE:HD13	2.41	0.50

Atom 1	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:A:47:SER:HA	1:A:288[A]:ILE:HG22	1.94	0.50	
2:D:30:GLU:OE2	2:D:145:ASP:HB2	2.12	0.49	
1:A:47:SER:HA	1:A:288[B]:ILE:HG13	1.94	0.49	
13:E:2012:HOH:O	2:F:169:ASN:ND2	2.40	0.49	
1:A:102:ILE:HG12	1:A:232:ILE:HB	1.95	0.49	
2:F:52:LEU:HD13	2:F:56[A]:ILE:HD11	1.96	0.48	
1:E:167:THR:HG1	1:E:242:ILE:HD11	1.79	0.48	
1:C:19:ALA:HB2	2:D:13:GLY:HA3	1.95	0.48	
2:B:4:GLY:HA3	2:D:117:LYS:HD2	1.95	0.47	
2:B:17[A]:MET:HE3	2:B:34:GLN:CG	2.44	0.47	
1:C:182:ILE:HD11	1:C:215:PRO:HG3	1.96	0.47	
4:P:2:NAG:H5	4:P:3:BMA:O2	2.14	0.47	
2:B:77[A]:ILE:HD11	2:F:77[A]:ILE:CD1	2.33	0.47	
2:D:158:ASP:HB3	2:D:161:ILE:HD12	1.98	0.46	
1:E:102:ILE:HG12	1:E:232:ILE:HB	1.97	0.46	
2:D:17[A]:MET:HE3	2:D:17[A]:MET:HA	1.97	0.46	
2:D:82:LYS:NZ	13:D:2108:HOH:O	2.43	0.46	
4:I:3:BMA:H62	4:I:5:MAN:C5	2.42	0.46	
2:D:113:ALA:O	2:D:117:LYS:HG3	2.16	0.46	
1:A:54:ASN:HB2	1:A:277:CYS:O	2.16	0.46	
1:A:164:LEU:O	1:A:246:ASN:HA	2.16	0.45	
2:B:17[A]:MET:CE	2:B:34:GLN:HG2	2.45	0.45	
13:A:2228:HOH:O	4:Q:1:NAG:H82	2.17	0.45	
1:C:318:THR:HG21	6:T:1:NAG:H61	1.97	0.45	
1:E:264:LYS:HB3	2:F:63:PHE:CD2	2.52	0.45	
1:C:321:ARG:HH11	1:C:321:ARG:HG3	1.82	0.44	
11:A:1328:EDO:H11	13:A:2207:HOH:O	2.18	0.44	
2:F:169:ASN:HA	2:F:172:GLN:HE21	1.83	0.44	
1:E:222:TRP:CZ2	1:E:225:GLY:HA2	2.52	0.44	
2:B:17[A]:MET:HE2	2:B:34:GLN:HG2	2.00	0.43	
1:E:52:CYS:HB3	1:E:277:CYS:O	2.20	0.42	
2:B:17[A]:MET:CE	2:B:34:GLN:CG	2.97	0.42	
1:E:264:LYS:HE3	2:F:63:PHE:CE2	2.54	0.42	
1:A:50:LYS:HA	1:A:272:VAL:HG13	2.02	0.42	
2:B:143:LYS:HD2	5:K:4:FUC:C6	2.50	0.42	
1:E:146:SER:OG	11:E:1327:EDO:H11	2.20	0.42	
1:C:140:LYS:NZ	1:C:145:ASP:OD1	2.52	0.42	
2:D:163:ARG:HG2	2:D:167:LEU:HD22	2.01	0.41	
4:P:2:NAG:C6	4:P:3:BMA:H2	2.50	0.41	
4:P:3:BMA:H3	4:P:4:MAN:H2	1.65	0.41	
1:A:34:ILE:HD11	1:A:321:ARG:HD3	2.02	0.41	

Atom-1	Atom-2	Interatomic	Clash
	1100111 2	distance $(Å)$	overlap (Å)
13:A:2196:HOH:O	1:C:201:ARG:NE	2.53	0.41
1:E:3[B]:ASN:HA	1:E:4:PRO:HD2	1.86	0.41
2:F:1:GLY:HA3	13:F:2003:HOH:O	2.19	0.41
2:B:1:GLY:HA3	13:B:2003:HOH:O	2.21	0.41
2:B:55:VAL:HG21	2:B:99:LEU:HD11	2.03	0.41
1:A:127:TRP:CZ2	1:A:253:ALA:HB1	2.56	0.40
2:D:51:LYS:HB2	2:D:51:LYS:HE2	1.96	0.40
2:F:11:GLU:HG3	13:F:2007:HOH:O	2.22	0.40
1:A:310:ARG:NH2	2:B:86[B]:ASP:OD1	2.55	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{ntiles}
1	А	331/329~(101%)	323~(98%)	8 (2%)	0	100	100
1	С	319/329~(97%)	309~(97%)	10 (3%)	0	100	100
1	Ε	327/329~(99%)	314 (96%)	10 (3%)	3 (1%)	17	7
2	В	176/172~(102%)	167 (95%)	9(5%)	0	100	100
2	D	174/172~(101%)	166~(95%)	8 (5%)	0	100	100
2	F	177/172~(103%)	169~(96%)	8 (4%)	0	100	100
All	All	1504/1503~(100%)	1448 (96%)	53 (4%)	3 (0%)	51	38

All (3) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	Ε	2	GLN
1	Е	3[A]	ASN
1	Е	3[B]	ASN

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	296/292~(101%)	292~(99%)	4 (1%)	67	65
1	С	283/292~(97%)	280~(99%)	3 (1%)	73	73
1	Е	291/292~(100%)	287~(99%)	4 (1%)	67	65
2	В	151/146~(103%)	151 (100%)	0	100	100
2	D	150/146~(103%)	142~(95%)	8 (5%)	22	13
2	F	153/146~(105%)	149~(97%)	4 (3%)	46	39
All	All	1324/1314~(101%)	1301 (98%)	23~(2%)	62	57

All (23) residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
1	А	18	HIS
1	А	264	LYS
1	А	272	VAL
1	А	326	LYS
1	С	18	HIS
1	С	151	LEU
1	С	321	ARG
2	D	17[A]	MET
2	D	17[B]	MET
2	D	51	LYS
2	D	57	GLU
2	D	60	ASN
2	D	108	ILE
2	D	167	LEU
2	D	172	GLN
1	Е	18	HIS
1	Е	154	LEU
1	Е	242	ILE
1	Е	278	VAL
2	F	56[A]	ILE
2	F	56[B]	ILE
2	F	57	GLU

Continued from previous page...

Mol	Chain	Res	Type
2	F	167	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (5) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	54	ASN
1	А	188	ASN
1	С	18	HIS
1	С	296	ASN
2	F	172	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

68 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Al Type Chain		Dog	Tink	Bo	ond leng	$_{\rm sths}$	B	ond ang	les
WIOI	wor rype chain	Ullalli	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
3	NAG	G	1	1,3	14,14,15	0.54	0	17,19,21	1.48	2 (11%)
3	NAG	G	2	3	14,14,15	0.53	0	17,19,21	1.03	1 (5%)
3	NAG	Н	1	1,3	14,14,15	0.62	0	17,19,21	1.21	1 (5%)
3	NAG	Н	2	3	14,14,15	0.55	0	17,19,21	0.84	0
4	NAG	Ι	1	1,4	14,14,15	0.66	0	17,19,21	1.05	1 (5%)
4	NAG	Ι	2	4	14,14,15	0.59	0	17,19,21	0.94	1 (5%)

	T	Chain	Dag	T :1-	Bo	ond leng	ths	В	ond ang	les
NIOI	Type	Chain	Res	Link	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
4	BMA	Ι	3	4	11,11,12	0.63	0	$15,\!15,\!17$	2.75	5 (33%)
4	MAN	Ι	4	4	11,11,12	0.52	0	$15,\!15,\!17$	0.91	1 (6%)
4	MAN	Ι	5	4	11,11,12	0.60	0	$15,\!15,\!17$	1.40	2 (13%)
3	NAG	J	1	1,3	14,14,15	0.62	0	17,19,21	0.90	1 (5%)
3	NAG	J	2	3	14,14,15	0.67	0	17,19,21	1.66	3 (17%)
5	NAG	K	1	1,5	14,14,15	0.67	0	17,19,21	1.07	2 (11%)
5	NAG	K	2	5	14,14,15	0.59	0	17,19,21	1.25	3 (17%)
5	BMA	K	3	5	11,11,12	0.43	0	15,15,17	1.34	3 (20%)
5	FUC	K	4	5	10,10,11	0.65	0	14,14,16	1.00	1 (7%)
3	NAG	L	1	1,3	14,14,15	0.62	0	17,19,21	1.08	0
3	NAG	L	2	3	14,14,15	0.59	0	17,19,21	1.39	2 (11%)
6	NAG	М	1	6,1	14,14,15	0.46	0	17,19,21	1.10	2 (11%)
6	NAG	М	2	6	14,14,15	0.52	0	17,19,21	1.07	1 (5%)
6	BMA	М	3	6	11,11,12	0.42	0	15,15,17	0.94	1 (6%)
7	NAG	N	1	2,7	14,14,15	0.55	0	17,19,21	1.73	2 (11%)
7	FUC	N	2	7	10,10,11	0.65	0	14,14,16	1.06	2 (14%)
6	NAG	0	1	6,1	14,14,15	0.60	0	17,19,21	0.93	0
6	NAG	0	2	6	14,14,15	0.61	0	17,19,21	1.32	3 (17%)
6	BMA	0	3	6	11,11,12	0.67	0	$15,\!15,\!17$	2.41	4 (26%)
4	NAG	Р	1	1,4	14,14,15	0.62	0	17,19,21	1.72	3 (17%)
4	NAG	Р	2	4	14,14,15	0.75	0	17,19,21	1.20	1 (5%)
4	BMA	Р	3	4	11,11,12	0.50	0	15,15,17	0.98	1 (6%)
4	MAN	Р	4	4	11,11,12	0.81	0	15,15,17	1.68	2 (13%)
4	MAN	Р	5	4	11,11,12	0.52	0	15,15,17	1.59	2 (13%)
4	NAG	Q	1	1,4	14,14,15	0.60	0	17,19,21	0.90	0
4	NAG	Q	2	4	14,14,15	0.52	0	17,19,21	1.42	3 (17%)
4	BMA	Q	3	4	11,11,12	0.38	0	$15,\!15,\!17$	0.84	0
4	MAN	Q	4	4	11,11,12	0.59	0	$15,\!15,\!17$	0.90	1 (6%)
4	MAN	Q	5	4	11,11,12	0.61	0	$15,\!15,\!17$	1.29	2(13%)
3	NAG	R	1	1,3	14,14,15	0.62	0	17,19,21	1.04	0
3	NAG	R	2	3	14,14,15	0.49	0	17,19,21	0.74	0
8	NAG	S		8,1	14,14,15	0.61	0	17,19,21	1.12	2(11%)
8	NAG	S	2	8	14,14,15	0.56	0	17,19,21	0.95	1 (5%)
8	BMA	S	3	8	11,11,12	0.56	0	15,15,17	1.36	3 (20%)
8	MAN	S	4	8	11,11,12	0.53	0	15, 15, 17	1.02	1 (6%)
8	MAN	S	5	8	11,11,12	0.59	0	$15,\!15,\!17$	2.35	3 (20%)

Mal	Tuno	Chain	Dog	Link	Bond lengths		Bond angles			
IVIOI	туре	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
8	FUC	S	6	8	10,10,11	0.76	0	$14,\!14,\!16$	2.78	5 (35%)
6	NAG	Т	1	6,1	14,14,15	0.64	0	$17,\!19,\!21$	1.42	3 (17%)
6	NAG	Т	2	6	14,14,15	0.61	0	17,19,21	0.99	1 (5%)
6	BMA	Т	3	6	11,11,12	0.38	0	$15,\!15,\!17$	1.01	2 (13%)
9	NAG	U	1	2,9	14,14,15	0.55	0	17,19,21	1.30	3 (17%)
9	NAG	U	2	9	14,14,15	0.53	0	17,19,21	1.05	1 (5%)
9	FUC	U	3	9	10,10,11	0.78	0	14,14,16	1.41	2 (14%)
3	NAG	V	1	1,3	14,14,15	0.73	0	17,19,21	2.47	6 (35%)
3	NAG	V	2	3	14,14,15	0.46	0	17,19,21	1.96	2 (11%)
3	NAG	W	1	1,3	14,14,15	0.66	0	17,19,21	1.67	3 (17%)
3	NAG	W	2	3	14,14,15	0.53	0	17,19,21	0.91	1 (5%)
4	NAG	Х	1	1,4	14,14,15	0.63	0	17,19,21	0.94	1 (5%)
4	NAG	Х	2	4	14,14,15	0.65	0	17,19,21	0.91	1 (5%)
4	BMA	Х	3	4	11,11,12	0.37	0	$15,\!15,\!17$	1.22	1 (6%)
4	MAN	Х	4	4	11,11,12	0.60	0	$15,\!15,\!17$	0.95	1 (6%)
4	MAN	Х	5	4	11,11,12	0.62	0	$15,\!15,\!17$	1.16	1 (6%)
3	NAG	Y	1	1,3	14,14,15	0.62	0	17,19,21	1.80	4 (23%)
3	NAG	Y	2	3	14,14,15	0.62	0	17,19,21	2.15	4 (23%)
9	NAG	Z	1	1,9	14,14,15	0.51	0	17,19,21	1.14	1 (5%)
9	NAG	Z	2	9	14,14,15	0.64	0	17,19,21	0.93	0
9	FUC	Z	3	9	10,10,11	0.81	0	14,14,16	1.73	3 (21%)
3	NAG	a	1	1,3	14,14,15	0.64	0	17,19,21	1.35	3 (17%)
3	NAG	a	2	3	14,14,15	0.54	0	17,19,21	0.93	1 (5%)
9	NAG	b	1	2,9	14,14,15	0.56	0	17,19,21	1.61	3 (17%)
9	NAG	b	2	9	14,14,15	0.42	0	17,19,21	1.04	1 (5%)
9	FUC	b	3	9	10,10,11	0.73	0	14,14,16	0.80	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	NAG	G	1	1,3	-	3/6/23/26	0/1/1/1
3	NAG	G	2	3	-	4/6/23/26	0/1/1/1
3	NAG	Н	1	1,3	-	0/6/23/26	0/1/1/1
3	NAG	Н	2	3	-	0/6/23/26	0/1/1/1

4	U	Ο	0

Continuea from previous page										
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings			
4	NAG	Ι	1	1,4	-	0/6/23/26	0/1/1/1			
4	NAG	Ι	2	4	-	0/6/23/26	0/1/1/1			
4	BMA	Ι	3	4	-	2/2/19/22	0/1/1/1			
4	MAN	Ι	4	4	-	2/2/19/22	0/1/1/1			
4	MAN	Ι	5	4	-	2/2/19/22	0/1/1/1			
3	NAG	J	1	1,3	-	4/6/23/26	0/1/1/1			
3	NAG	J	2	3	-	1/6/23/26	0/1/1/1			
5	NAG	K	1	1,5	-	2/6/23/26	0/1/1/1			
5	NAG	K	2	5	-	1/6/23/26	0/1/1/1			
5	BMA	K	3	5	-	2/2/19/22	0/1/1/1			
5	FUC	K	4	5	1/1/4/5	-	0/1/1/1			
3	NAG	L	1	1,3	1/1/5/7	3/6/23/26	0/1/1/1			
3	NAG	L	2	3	-	2/6/23/26	0/1/1/1			
6	NAG	М	1	6,1	-	2/6/23/26	0/1/1/1			
6	NAG	М	2	6	-	2/6/23/26	0/1/1/1			
6	BMA	М	3	6	-	2/2/19/22	0/1/1/1			
7	NAG	Ν	1	2,7	-	2/6/23/26	0/1/1/1			
7	FUC	N	2	7	1/1/4/5	-	0/1/1/1			
6	NAG	0	1	6,1	-	1/6/23/26	0/1/1/1			
6	NAG	0	2	6	-	2/6/23/26	0/1/1/1			
6	BMA	0	3	6	-	2/2/19/22	0/1/1/1			
4	NAG	Р	1	1,4	-	2/6/23/26	0/1/1/1			
4	NAG	Р	2	4	-	0/6/23/26	0/1/1/1			
4	BMA	Р	3	4	-	2/2/19/22	0/1/1/1			
4	MAN	Р	4	4	-	2/2/19/22	0/1/1/1			
4	MAN	Р	5	4	-	2/2/19/22	0/1/1/1			
4	NAG	Q	1	1,4	-	0/6/23/26	0/1/1/1			
4	NAG	Q	2	4	-	0/6/23/26	0/1/1/1			
4	BMA	Q	3	4	-	0/2/19/22	0/1/1/1			
4	MAN	Q	4	4	-	0/2/19/22	1/1/1/1			
4	MAN	Q	5	4	-	2/2/19/22	0/1/1/1			
3	NAG	R	1	1,3	-	2/6/23/26	0/1/1/1			
3	NAG	R	2	3	-	0/6/23/26	0/1/1/1			
8	NAG	S	1	8,1	-	2/6/23/26	0/1/1/1			
8	NAG	S	2	8	-	0/6/23/26	0/1/1/1			
8	BMA	S	3	8	-	2/2/19/22	0/1/1/1			
8	MAN	S	4	8	-	0/2/19/22	0/1/1/1			

d fr Cntin

4	U	O0	

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
8	MAN	S	5	8	-	1/2/19/22	0/1/1/1
8	FUC	S	6	8	1/1/4/5	-	0/1/1/1
6	NAG	Т	1	6,1	-	2/6/23/26	0/1/1/1
6	NAG	Т	2	6	-	0/6/23/26	0/1/1/1
6	BMA	Т	3	6	-	2/2/19/22	0/1/1/1
9	NAG	U	1	2,9	-	2/6/23/26	0/1/1/1
9	NAG	U	2	9	-	0/6/23/26	0/1/1/1
9	FUC	U	3	9	1/1/4/5	_	0/1/1/1
3	NAG	V	1	1,3	-	2/6/23/26	0/1/1/1
3	NAG	V	2	3	-	2/6/23/26	0/1/1/1
3	NAG	W	1	1,3	-	0/6/23/26	0/1/1/1
3	NAG	W	2	3	-	0/6/23/26	0/1/1/1
4	NAG	Х	1	1,4	-	0/6/23/26	0/1/1/1
4	NAG	Х	2	4	-	0/6/23/26	0/1/1/1
4	BMA	Х	3	4	-	0/2/19/22	0/1/1/1
4	MAN	Х	4	4	-	2/2/19/22	0/1/1/1
4	MAN	Х	5	4	-	2/2/19/22	0/1/1/1
3	NAG	Y	1	1,3	-	4/6/23/26	0/1/1/1
3	NAG	Y	2	3	-	6/6/23/26	0/1/1/1
9	NAG	Z	1	1,9	-	2/6/23/26	0/1/1/1
9	NAG	Z	2	9	-	0/6/23/26	0/1/1/1
9	FUC	Ζ	3	9	1/1/4/5	-	0/1/1/1
3	NAG	a	1	1,3	-	0/6/23/26	0/1/1/1
3	NAG	a	2	3	-	2/6/23/26	0/1/1/1
9	NAG	b	1	2,9	-	2/6/23/26	0/1/1/1
9	NAG	b	2	9	-	2/6/23/26	0/1/1/1
9	FUC	b	3	9	1/1/4/5	-	0/1/1/1

There are no bond length outliers.

All (123) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
8	S	6	FUC	C1-C2-C3	-8.04	99.78	109.67
3	V	2	NAG	C1-O5-C5	7.02	121.71	112.19
3	Y	2	NAG	C2-N2-C7	6.60	132.30	122.90
3	V	1	NAG	C1-O5-C5	6.38	120.84	112.19
4	Ι	3	BMA	C1-C2-C3	6.32	117.43	109.67
8	S	5	MAN	C1-O5-C5	5.54	119.69	112.19
6	0	3	BMA	C1-C2-C3	5.21	116.07	109.67

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	N	1	NAG	C1-O5-C5	5.17	119.19	112.19
3	V	1	NAG	C4-C3-C2	5.10	118.49	111.02
6	0	3	BMA	C1-O5-C5	5.06	119.05	112.19
4	Р	4	MAN	C1-C2-C3	4.96	115.77	109.67
4	Р	5	MAN	C1-O5-C5	4.89	118.82	112.19
4	Р	1	NAG	C1-O5-C5	4.84	118.74	112.19
3	W	1	NAG	C4-C3-C2	4.83	118.10	111.02
4	Ι	3	BMA	C1-O5-C5	4.80	118.69	112.19
8	S	5	MAN	C1-C2-C3	4.80	115.56	109.67
6	0	3	BMA	O5-C1-C2	4.71	118.04	110.77
8	S	5	MAN	O5-C1-C2	4.69	118.01	110.77
9	b	1	NAG	O5-C5-C6	4.25	113.86	107.20
9	Ζ	1	NAG	C1-O5-C5	4.07	117.71	112.19
3	Y	1	NAG	C4-C3-C2	4.05	116.95	111.02
4	Ι	5	MAN	C1-O5-C5	3.96	117.56	112.19
4	Ι	3	BMA	C2-C3-C4	3.95	117.72	110.89
3	J	2	NAG	C2-N2-C7	3.94	128.51	122.90
3	L	2	NAG	C2-N2-C7	3.93	128.51	122.90
9	Z	3	FUC	C1-C2-C3	3.76	114.29	109.67
4	Р	2	NAG	O4-C4-C5	3.75	118.62	109.30
3	a	1	NAG	C4-C3-C2	3.74	116.50	111.02
4	Ι	3	BMA	C3-C4-C5	3.61	116.68	110.24
3	J	2	NAG	C4-C3-C2	3.57	116.26	111.02
3	Y	2	NAG	C8-C7-N2	3.50	122.03	116.10
9	Ζ	3	FUC	C3-C4-C5	3.48	115.19	109.77
3	G	1	NAG	C2-N2-C7	3.43	127.79	122.90
8	S	3	BMA	C1-O5-C5	3.42	116.82	112.19
4	Ι	3	BMA	O5-C5-C6	-3.41	101.86	107.20
3	Н	1	NAG	C4-C3-C2	3.40	116.00	111.02
6	Т	1	NAG	C1-O5-C5	3.34	116.71	112.19
3	Y	1	NAG	C2-N2-C7	3.28	127.58	122.90
8	S	6	FUC	C1-O5-C5	-3.27	105.37	112.78
8	S	6	FUC	O5-C1-C2	-3.26	105.74	110.77
3	W	1	NAG	C3-C4-C5	3.21	115.97	110.24
9	Z	3	FUC	C2-C3-C4	3.18	116.39	110.89
4	Q	2	NAG	C1-O5-C5	3.12	116.42	112.19
4	Q	5	MAN	C3-C4-C5	3.08	115.74	110.24
3	G	1	NAG	C1-C2-N2	3.05	115.70	110.49
7	Ν	1	NAG	C1-C2-N2	3.05	115.70	110.49
6	М	1	NAG	C1-O5-C5	3.05	116.32	112.19
3	V	1	NAG	O5-C5-C6	3.00	111.91	107.20
6	0	2	NAG	O5-C5-C6	2.90	111.76	107.20

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
4	Р	4	MAN	C2-C3-C4	2.89	115.90	110.89
9	U	3	FUC	C3-C4-C5	2.88	114.26	109.77
9	b	1	NAG	C4-C3-C2	2.84	115.17	111.02
4	Х	2	NAG	C1-O5-C5	2.83	116.03	112.19
3	J	2	NAG	C3-C4-C5	2.80	115.23	110.24
5	Κ	3	BMA	C2-C3-C4	2.77	115.68	110.89
4	Ι	2	NAG	C1-O5-C5	2.76	115.94	112.19
4	Р	1	NAG	C4-C3-C2	2.73	115.03	111.02
8	S	4	MAN	C1-O5-C5	2.73	115.89	112.19
5	Κ	2	NAG	C2-N2-C7	-2.68	119.08	122.90
8	S	2	NAG	C1-O5-C5	2.67	115.81	112.19
8	S	1	NAG	C2-N2-C7	-2.62	119.17	122.90
4	Ι	5	MAN	C1-C2-C3	2.58	112.84	109.67
5	K	3	BMA	C1-C2-C3	2.55	112.81	109.67
6	М	2	NAG	C4-C3-C2	2.53	114.72	111.02
4	Х	3	BMA	C1-C2-C3	2.49	112.72	109.67
3	V	1	NAG	C2-N2-C7	2.48	126.43	122.90
3	V	2	NAG	O5-C5-C6	2.46	111.06	107.20
9	U	1	NAG	C1-O5-C5	2.41	115.46	112.19
3	Y	1	NAG	C8-C7-N2	2.41	120.17	116.10
3	V	1	NAG	C3-C4-C5	2.40	114.51	110.24
3	Y	1	NAG	O3-C3-C2	-2.39	104.52	109.47
4	Р	5	MAN	C1-C2-C3	2.39	112.60	109.67
6	0	2	NAG	C4-C3-C2	2.38	114.50	111.02
6	Т	3	BMA	O5-C5-C6	2.37	110.92	107.20
9	U	1	NAG	C2-N2-C7	2.37	126.27	122.90
4	Р	1	NAG	C3-C4-C5	2.36	114.45	110.24
5	Κ	2	NAG	C1-O5-C5	2.34	115.37	112.19
4	Ι	1	NAG	C1-O5-C5	2.34	115.36	112.19
4	Q	5	MAN	C2-C3-C4	2.33	114.93	110.89
3	Y	2	NAG	O7-C7-C8	-2.33	117.73	122.06
6	М	3	BMA	C3-C4-C5	2.32	114.38	110.24
4	Х	1	NAG	C2-N2-C7	-2.31	119.61	122.90
4	Х	4	MAN	C1-C2-C3	2.30	112.49	109.67
3	Y	2	NAG	C1-C2-N2	2.29	114.40	110.49
4	Q	2	NAG	C1-C2-N2	2.29	114.40	110.49
4	Q	4	MAN	C1-O5-C5	2.28	115.28	112.19
8	S	3	BMA	C1-C2-C3	2.27	112.46	109.67
6	Т	2	NAG	C1-O5-C5	2.27	115.26	112.19
3	W	1	NAG	C1-C2-N2	-2.24	106.66	110.49
3	a	1	NAG	C1-O5-C5	2.24	115.23	112.19
9	U	2	NAG	C1-O5-C5	2.23	115.22	112.19

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	V	1	NAG	O5-C1-C2	2.23	114.81	111.29
9	b	2	NAG	C1-O5-C5	2.23	115.21	112.19
4	Х	5	MAN	C2-C3-C4	2.22	114.74	110.89
8	S	6	FUC	O2-C2-C3	2.22	114.58	110.14
4	Q	2	NAG	C6-C5-C4	-2.20	107.84	113.00
4	Р	3	BMA	O5-C5-C6	2.19	110.64	107.20
8	S	3	BMA	C3-C4-C5	2.18	114.13	110.24
3	a	2	NAG	C4-C3-C2	2.17	114.20	111.02
9	b	1	NAG	O6-C6-C5	2.17	118.75	111.29
6	0	2	NAG	O5-C1-C2	2.14	114.67	111.29
3	L	2	NAG	C1-C2-N2	2.14	114.14	110.49
9	U	1	NAG	O6-C6-C5	2.13	118.58	111.29
3	W	2	NAG	O5-C5-C6	2.12	110.53	107.20
5	Κ	2	NAG	O5-C1-C2	-2.11	107.96	111.29
6	Т	1	NAG	O6-C6-C5	-2.10	104.07	111.29
3	J	1	NAG	C8-C7-N2	2.10	119.66	116.10
5	Κ	1	NAG	C6-C5-C4	2.10	117.91	113.00
6	Т	3	BMA	C1-C2-C3	2.08	112.22	109.67
9	U	3	FUC	O5-C1-C2	-2.07	107.57	110.77
5	Κ	3	BMA	C3-C4-C5	2.07	113.93	110.24
6	0	3	BMA	O5-C5-C6	2.07	110.44	107.20
5	Κ	4	FUC	C1-C2-C3	-2.05	107.14	109.67
8	S	1	NAG	O5-C1-C2	-2.05	108.05	111.29
4	Ι	4	MAN	C1-C2-C3	-2.05	107.15	109.67
6	М	1	NAG	C4-C3-C2	2.04	114.01	111.02
7	N	2	FUC	O5-C1-C2	-2.02	107.66	110.77
8	S	6	FUC	O2-C2-C1	2.02	113.28	109.15
5	Κ	1	NAG	O6-C6-C5	2.01	118.20	111.29
3	a	1	NAG	O4-C4-C3	-2.01	105.70	110.35
3	G	2	NAG	C2-N2-C7	2.01	125.76	122.90
6	Т	1	NAG	O5-C5-C6	-2.01	104.06	107.20
7	Ν	2	FUC	C3-C4-C5	2.00	112.89	109.77

All (7) chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
3	L	1	NAG	C1
5	Κ	4	FUC	C1
7	Ν	2	FUC	C1
8	S	6	FUC	C1
9	U	3	FUC	C1
9	Ζ	3	FUC	C1

Continued from previous page...

Mol	Chain	Res	Type	Atom
9	b	3	FUC	C1

All (90) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
6	Т	3	BMA	O5-C5-C6-O6
4	Х	5	MAN	O5-C5-C6-O6
8	S	1	NAG	C4-C5-C6-O6
6	0	3	BMA	O5-C5-C6-O6
9	b	1	NAG	O5-C5-C6-O6
6	М	3	BMA	C4-C5-C6-O6
7	Ν	1	NAG	C4-C5-C6-O6
4	Р	4	MAN	O5-C5-C6-O6
4	Q	5	MAN	C4-C5-C6-O6
4	Р	5	MAN	O5-C5-C6-O6
4	Р	5	MAN	C4-C5-C6-O6
6	М	1	NAG	C4-C5-C6-O6
4	Q	5	MAN	O5-C5-C6-O6
6	М	3	BMA	O5-C5-C6-O6
9	b	2	NAG	O5-C5-C6-O6
3	V	2	NAG	C4-C5-C6-O6
3	Y	2	NAG	C4-C5-C6-O6
4	Р	4	MAN	C4-C5-C6-O6
5	K	3	BMA	C4-C5-C6-O6
4	Х	4	MAN	O5-C5-C6-O6
6	Т	3	BMA	C4-C5-C6-O6
3	Y	2	NAG	O5-C5-C6-O6
4	Ι	3	BMA	O5-C5-C6-O6
4	Р	1	NAG	O5-C5-C6-O6
6	М	1	NAG	O5-C5-C6-O6
3	G	2	NAG	C4-C5-C6-O6
6	М	2	NAG	O5-C5-C6-O6
6	0	2	NAG	O5-C5-C6-O6
6	Т	1	NAG	O5-C5-C6-O6
8	S	3	BMA	O5-C5-C6-O6
4	Ι	4	MAN	C4-C5-C6-O6
6	0	3	BMA	C4-C5-C6-O6
4	Ι	5	MAN	C4-C5-C6-O6
9	b	1	NAG	C4-C5-C6-O6
5	K	3	BMA	O5-C5-C6-O6
4	Р	1	NAG	C4-C5-C6-O6
6	Т	1	NAG	C4-C5-C6-O6

Mol	Chain	Res	Type	Atoms
4	Х	5	MAN	C4-C5-C6-O6
6	0	2	NAG	C4-C5-C6-O6
9	b	2	NAG	C4-C5-C6-O6
3	G	2	NAG	C8-C7-N2-C2
3	G	2	NAG	O7-C7-N2-C2
3	J	1	NAG	C8-C7-N2-C2
3	J	1	NAG	O7-C7-N2-C2
3	R	1	NAG	C8-C7-N2-C2
3	R	1	NAG	O7-C7-N2-C2
3	Y	1	NAG	C8-C7-N2-C2
3	Y	1	NAG	O7-C7-N2-C2
3	Y	2	NAG	C8-C7-N2-C2
3	Y	2	NAG	O7-C7-N2-C2
8	S	3	BMA	C4-C5-C6-O6
3	G	2	NAG	O5-C5-C6-O6
7	N	1	NAG	O5-C5-C6-O6
8	S	1	NAG	O5-C5-C6-O6
4	Ι	3	BMA	C4-C5-C6-O6
4	Р	3	BMA	C4-C5-C6-O6
3	V	2	NAG	O5-C5-C6-O6
4	Ι	4	MAN	O5-C5-C6-O6
6	М	2	NAG	C4-C5-C6-O6
3	L	1	NAG	O5-C5-C6-O6
3	V	1	NAG	O5-C5-C6-O6
9	U	1	NAG	C4-C5-C6-O6
4	Ι	5	MAN	O5-C5-C6-O6
4	Р	3	BMA	O5-C5-C6-O6
9	U	1	NAG	O5-C5-C6-O6
5	K	1	NAG	O5-C5-C6-O6
4	Х	4	MAN	C4-C5-C6-O6
3	G	1	NAG	C1-C2-N2-C7
3	L	1	NAG	C4-C5-C6-O6
3	Y	1	NAG	C4-C5-C6-O6
5	K	1	NAG	C4-C5-C6-O6
3	J	2	NAG	C3-C2-N2-C7
3	G	1	NAG	C4-C5-C6-O6
5	K	2	NAG	C4-C5-C6-O6
3	J	1	NAG	O5-C5-C6-O6
3	a	2	NAG	C4-C5-C6-O6
9	Z	1	NAG	C4-C5-C6-O6
3	V	1	NAG	C3-C2-N2-C7
3	a	2	NAG	O5-C5-C6-O6

Mol	Chain	Res	Type	Atoms
3	G	1	NAG	O5-C5-C6-O6
3	L	2	NAG	C1-C2-N2-C7
3	Y	1	NAG	O5-C5-C6-O6
3	J	1	NAG	C4-C5-C6-O6
8	S	5	MAN	C4-C5-C6-O6
3	L	2	NAG	C3-C2-N2-C7
3	Y	2	NAG	C3-C2-N2-C7
9	Ζ	1	NAG	O5-C5-C6-O6
3	L	1	NAG	C1-C2-N2-C7
3	Y	2	NAG	C1-C2-N2-C7
6	0	1	NAG	C4-C5-C6-O6

Continued from previous page...

All (1) ring outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	Q	4	MAN	C1-C2-C3-C4-C5-O5

11 monomers are involved in 12 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	Н	1	NAG	1	0
3	V	2	NAG	1	0
4	Ι	5	MAN	2	0
6	Т	1	NAG	1	0
4	Ι	3	BMA	2	0
5	Κ	4	FUC	2	0
3	V	1	NAG	1	0
4	Р	4	MAN	1	0
4	Q	1	NAG	1	0
4	Р	3	BMA	4	0
4	Р	2	NAG	3	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

15 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type C	Type	Chain	nin Dog	Tink	Bo	ond leng	$_{\rm sths}$	Bond angles		
	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
11	EDO	А	1327	-	3, 3, 3	0.35	0	2,2,2	0.62	0
11	EDO	С	1327	-	3,3,3	0.48	0	2,2,2	0.37	0
11	EDO	Е	1326	-	3,3,3	0.45	0	2,2,2	0.41	0

Mal	Tuno	Chain	Res	les Link	Bo	ond leng	$_{\rm sths}$	Bond angles		
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
11	EDO	A	1328	-	3,3,3	0.47	0	2,2,2	0.37	0
10	BMA	А	604	-	11,11,12	0.38	0	15,15,17	0.72	0
11	EDO	С	1328	-	3,3,3	0.47	0	2,2,2	0.45	0
11	EDO	D	1173	-	3,3,3	0.46	0	2,2,2	0.37	0
11	EDO	F	1175	-	3,3,3	0.46	0	2,2,2	0.38	0
11	EDO	В	1174	-	3,3,3	0.46	0	2,2,2	0.36	0
11	EDO	В	1173	-	3,3,3	0.38	0	2,2,2	0.50	0
11	EDO	F	1173	-	3,3,3	0.46	0	2,2,2	0.41	0
11	EDO	F	1174	-	3,3,3	0.51	0	2,2,2	0.15	0
12	NAG	С	601	1	14,14,15	0.54	0	17,19,21	1.01	1 (5%)
11	EDO	Е	1327	-	3,3,3	0.47	0	2,2,2	0.38	0
12	NAG	E	621	1	14,14,15	0.65	0	17,19,21	1.11	1 (5%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	\mathbf{Res}	Link	Chirals	Torsions	Rings
11	EDO	А	1327	-	-	1/1/1/1	-
11	EDO	С	1327	-	-	0/1/1/1	-
11	EDO	Е	1326	-	-	1/1/1/1	-
11	EDO	А	1328	-	-	1/1/1/1	-
10	BMA	А	604	-	-	2/2/19/22	0/1/1/1
11	EDO	С	1328	-	-	0/1/1/1	-
11	EDO	D	1173	-	-	1/1/1/1	-
11	EDO	F	1175	-	-	1/1/1/1	-
11	EDO	В	1174	-	-	0/1/1/1	-
11	EDO	В	1173	-	-	0/1/1/1	-
11	EDO	F	1173	-	-	1/1/1/1	-
11	EDO	F	1174	-	-	1/1/1/1	-
12	NAG	С	601	1	-	4/6/23/26	0/1/1/1
11	EDO	Е	1327	-	-	1/1/1/1	-
12	NAG	Е	621	1	-	2/6/23/26	0/1/1/1

There are no bond length outliers.

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
12	Е	621	NAG	C4-C3-C2	3.60	116.29	111.02
12	С	601	NAG	C1-O5-C5	2.03	114.94	112.19

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
12	С	601	NAG	O5-C5-C6-O6
12	Е	621	NAG	C4-C5-C6-O6
12	С	601	NAG	C8-C7-N2-C2
12	С	601	NAG	O7-C7-N2-C2
12	Е	621	NAG	O5-C5-C6-O6
11	F	1175	EDO	O1-C1-C2-O2
12	С	601	NAG	C4-C5-C6-O6
11	А	1328	EDO	O1-C1-C2-O2
11	D	1173	EDO	O1-C1-C2-O2
10	А	604	BMA	C4-C5-C6-O6
11	F	1174	EDO	O1-C1-C2-O2
10	А	604	BMA	O5-C5-C6-O6
11	А	1327	EDO	O1-C1-C2-O2
11	Е	1326	EDO	O1-C1-C2-O2
11	Е	1327	EDO	O1-C1-C2-O2
11	F	1173	EDO	O1-C1-C2-O2

All (16) torsion outliers are listed below:

There are no ring outliers.

2 monomers are involved in 2 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
11	А	1328	EDO	1	0
11	Е	1327	EDO	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	325/329~(98%)	-0.04	6 (1%) 68 71	19, 29, 48, 64	0
1	С	320/329~(97%)	-0.03	2 (0%) 89 90	17, 29, 48, 71	0
1	Ε	325/329~(98%)	-0.07	3 (0%) 84 85	18, 30, 47, 66	0
2	В	172/172~(100%)	0.03	2 (1%) 79 81	15, 26, 42, 59	0
2	D	172/172~(100%)	0.10	4 (2%) 60 63	15, 27, 44, 63	0
2	F	172/172~(100%)	0.17	2 (1%) 79 81	16, 24, 41, 61	0
All	All	1486/1503~(98%)	0.00	19 (1%) 77 79	15, 28, 47, 71	0

All (19) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	С	81	TYR	4.7
1	А	276	ILE	4.2
1	А	142	GLY	3.7
1	А	278	VAL	3.3
2	D	58	ARG	3.2
1	А	81	TYR	3.2
1	А	143	SER	3.2
2	F	77[A]	ILE	2.8
2	D	172	GLN	2.7
1	Е	276	ILE	2.7
2	В	77[A]	ILE	2.5
2	D	38[A]	LEU	2.5
1	А	277	CYS	2.4
2	D	63	PHE	2.4
2	В	172	GLN	2.3
1	Е	2	GLN	2.2
2	F	59	THR	2.2
1	С	79	PHE	2.2
1	Е	81	TYR	2.1

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
4	MAN	Р	5	11/12	0.50	0.56	94,100,104,107	0
3	NAG	L	1	14/15	0.55	0.34	66,72,76,82	0
3	NAG	W	2	14/15	0.56	0.40	85,89,96,97	0
6	BMA	0	3	11/12	0.56	0.30	90,95,101,101	0
3	NAG	J	2	14/15	0.58	0.36	71,79,82,84	0
3	NAG	V	2	14/15	0.59	0.39	95,99,101,101	0
6	BMA	М	3	11/12	0.59	0.28	84,87,91,93	0
3	NAG	Y	2	14/15	0.59	0.47	81,84,87,90	0
3	NAG	G	2	14/15	0.63	0.49	94,100,105,105	0
3	NAG	Н	2	14/15	0.65	0.50	84,88,94,95	0
4	MAN	Ι	4	11/12	0.66	0.22	79,86,93,95	0
4	MAN	Р	4	11/12	0.68	0.47	84,87,90,90	0
3	NAG	R	2	14/15	0.69	0.31	72,77,80,80	0
9	NAG	U	2	14/15	0.69	0.35	74,80,85,85	0
9	NAG	b	2	14/15	0.69	0.34	82,87,91,93	0
9	NAG	Ζ	2	14/15	0.71	0.19	70,72,77,78	0
4	MAN	Q	5	11/12	0.71	0.27	79,80,84,85	0
3	NAG	W	1	14/15	0.73	0.30	61,69,74,80	0
6	NAG	0	2	14/15	0.73	0.35	82,85,89,89	0
3	NAG	J	1	14/15	0.74	0.20	$51,\!62,\!66,\!71$	0
3	NAG	L	2	14/15	0.74	0.39	83,89,93,94	0
9	FUC	Ζ	3	10/11	0.74	0.28	$71,\!76,\!79,\!79$	0
3	NAG	R	1	14/15	0.74	0.24	$52,\!61,\!65,\!68$	0
6	NAG	М	2	14/15	0.75	0.26	$70,\!75,\!80,\!84$	0
4	MAN	Q	4	11/12	0.75	0.27	70,75,81,83	0
4	BMA	Ι	3	11/12	0.76	0.12	64,71,78,78	0
4	BMA	Р	3	11/12	0.77	0.34	84,86,91,97	0
5	BMA	K	3	11/12	0.77	0.36	80,86,89,92	0
9	FUC	U	3	10/11	0.78	0.26	62,68,71,72	0
6	NAG	0	1	14/15	0.78	0.30	65,69,74,78	0
9	NAG	b	1	14/15	0.79	0.21	54,62,68,76	0
8	MAN	S	5	11/12	0.79	0.40	72,74,81,85	0

Continued on next page...

4	U	Ó	0
-	\sim	\sim	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors($Å^2$)	Q<0.9
4	MAN	Х	4	11/12	0.80	0.25	78,81,84,87	0
3	NAG	V	1	14/15	0.80	0.35	76,82,88,90	0
9	FUC	b	3	10/11	0.80	0.38	74,78,80,82	0
4	BMA	Q	3	11/12	0.81	0.15	62,69,74,74	0
4	MAN	Х	5	11/12	0.81	0.20	77,80,84,85	0
5	NAG	K	2	14/15	0.82	0.26	58,63,71,75	0
4	NAG	Р	2	14/15	0.83	0.24	$65,\!69,\!73,\!79$	0
6	BMA	Т	3	11/12	0.84	0.14	51,54,57,60	0
8	BMA	S	3	11/12	0.84	0.19	49,51,62,68	0
6	NAG	М	1	14/15	0.84	0.20	48,57,61,65	0
3	NAG	Y	1	14/15	0.84	0.23	52,60,68,72	0
5	FUC	K	4	10/11	0.84	0.30	59,64,68,68	0
9	NAG	U	1	14/15	0.85	0.20	56,64,69,69	0
7	NAG	N	1	14/15	0.85	0.23	54,61,65,68	0
3	NAG	a	2	14/15	0.85	0.28	61,67,69,69	0
3	NAG	Н	1	14/15	0.85	0.20	62,67,74,79	0
4	MAN	Ι	5	11/12	0.86	0.20	82,85,90,91	0
7	FUC	N	2	10/11	0.86	0.35	72,76,79,81	0
9	NAG	Ζ	1	14/15	0.87	0.18	$56,\!60,\!68,\!72$	0
4	BMA	Х	3	11/12	0.87	0.12	61,67,73,75	0
3	NAG	G	1	14/15	0.87	0.24	71,75,81,89	0
5	NAG	K	1	14/15	0.88	0.15	43,45,55,58	0
8	FUC	S	6	10/11	0.89	0.16	49,52,54,56	0
8	MAN	S	4	11/12	0.90	0.12	44,49,53,54	0
4	NAG	Р	1	14/15	0.90	0.24	51,57,60,62	0
6	NAG	Т	2	14/15	0.90	0.12	38,42,44,48	0
3	NAG	a	1	14/15	0.90	0.13	41,48,52,54	0
4	NAG	Ι	2	14/15	0.91	0.11	43,48,54,59	0
8	NAG	S	2	14/15	0.91	0.11	39,45,48,49	0
4	NAG	Х	2	14/15	0.91	0.12	41,47,53,57	0
4	NAG	Q	1	14/15	0.92	0.12	38,41,42,43	0
6	NAG	Т	1	14/15	0.92	0.13	28,32,35,36	0
4	NAG	Q	2	14/15	0.93	0.11	43,48,52,57	0
8	NAG	S	1	14/15	0.93	0.09	30,35,41,45	0
4	NAG	Ι	1	14/15	0.93	0.10	37,40,42,43	0
4	NAG	Х	1	14/15	0.93	0.12	39,42,44,44	0

Continued from previous page...

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
10	BMA	А	604	11/12	0.60	0.52	126,134,137,137	0
12	NAG	С	601	14/15	0.61	0.44	90,93,98,100	0
11	EDO	С	1327	4/4	0.62	0.19	$65,\!65,\!67,\!67$	0
12	NAG	Е	621	14/15	0.71	0.51	68,76,80,81	0
11	EDO	А	1328	4/4	0.77	0.28	61,63,64,65	0
11	EDO	С	1328	4/4	0.81	0.25	35,38,42,43	0
11	EDO	Е	1327	4/4	0.82	0.14	48,50,52,53	0
11	EDO	F	1173	4/4	0.85	0.19	58,59,60,61	0
11	EDO	E	1326	4/4	0.86	0.18	54,55,57,61	0
11	EDO	F	1174	4/4	0.86	0.16	$53,\!53,\!55,\!56$	0

Continued on next page...

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
11	EDO	F	1175	4/4	0.88	0.12	48,51,52,52	0
11	EDO	А	1327	4/4	0.88	0.14	37,37,39,40	0
11	EDO	D	1173	4/4	0.88	0.29	51,52,52,53	0
11	EDO	В	1173	4/4	0.90	0.22	40,40,42,45	0
11	EDO	В	1174	4/4	0.93	0.16	44,45,45,45	0

Continued from previous page...

6.5 Other polymers (i)

There are no such residues in this entry.

