

Full wwPDB X-ray Structure Validation Report (i)

Feb 17, 2024 – 11:36 PM EST

PDB ID	:	3UKL
Title	:	Crystal structure of UDP-galactopyranose mutase from Aspergillus fumigatus
		in complex with UDP
Authors	:	Van Straaten, K.E.; Sanders, D.A.R.
Deposited on	:	2011-11-09
Resolution	:	2.63 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.63 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution
	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R_{free}	130704	1426 (2.66-2.62)
Clashscore	141614	1472(2.66-2.62)
Ramachandran outliers	138981	1446 (2.66-2.62)
Sidechain outliers	138945	1446 (2.66-2.62)
RSRZ outliers	127900	1408 (2.66-2.62)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
_			2%		
1	А	510	77%	22%	•
	_		.% ■		
1	В	510	79%	19%	·
			2%		
1	С	510	78%	20%	•
			2%		
1	D	510	77%	21%	•
			2%		
1	Ε	510	78%	20%	•

Mol	Chain	Length	Quality of chain		
1	F	510	75%	23%	•
1	G	510	.% 75%	23%	•
1	Н	510	78%	21%	

3UKL

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 33747 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	510	Total	С	Ν	0	S	0	0	0
	A	510	4004	2540	687	756	21	0	0	0
1	В	510	Total	С	Ν	Ο	S	0	1	0
1	D	510	4015	2549	688	757	21	0	I	0
1	С	510	Total	С	Ν	0	S	0	1	0
1		510	4015	2546	691	757	21	0	I	0
1	Л	510	Total	С	Ν	0	S	0	0	0
1	D	510	4004	2540	687	756	21	0	0	0
1	F	510	Total	С	Ν	Ο	S	0	1	0
1	Ľ	510	4015	2549	688	757	21	0		
1	F	510	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	I.	510	4004	2540	687	756	21	0	0	0
1	C	510	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	G	510	4004	2540	687	756	21	0	0	0
1	1 H	510	Total	С	Ν	0	S	0	1	0
		510	4015	2546	691	757	21	0		0

• Molecule 1 is a protein called UDP-galactopyranose mutase.

There are 8 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	511	LEU	-	expression tag	UNP Q4W1X2
В	511	LEU	-	expression tag	UNP Q4W1X2
С	511	LEU	-	expression tag	UNP Q4W1X2
D	511	LEU	-	expression tag	UNP Q4W1X2
Е	511	LEU	-	expression tag	UNP Q4W1X2
F	511	LEU	-	expression tag	UNP Q4W1X2
G	511	LEU	-	expression tag	UNP Q4W1X2
Н	511	LEU	-	expression tag	UNP Q4W1X2

• Molecule 2 is URIDINE-5'-DIPHOSPHATE (three-letter code: UDP) (formula: $C_9H_{14}N_2O_{12}P_2$).

Mol	Chain	Residues	Atom	s	ZeroOcc	AltConf									
0	Δ	1	Total C N	O P	0	0									
	A	L	25 9 2	12 2	0	0									
9	В	1	Total C N	O P	0	0									
	D	L	25 9 2	12 2	0	0									
9	С	С	1	Total C N	O P	0	0								
	U	L	25 9 2	12 2	0	0									
0	р	Л	Л	Л	Л	Л	П	Л	Л	Л	1	Total C N	O P	0	0
	D	1	25 9 2	12 2	0	0									
9	F	E 1	Total C N	O P	0	0									
	Ľ		25 9 2	12 2	0	0									
9	Б	Б	Б	Б	F	1	Total C N	O P	0	0					
	T,	L	25 9 2	12 2	0	0									
9	С	1	Total C N	O P	0	0									
	G		25 9 2	12 2	0	U									
9	2 H	1	Total C N	O P	0	0									
2		H		25 9 2	12 2	0	U								

- Molecule 3 is FLAVIN-ADENINE DINUCLEOTIDE (three-letter code: FAD) (formula: $\rm C_{27}H_{33}N_9O_{15}P_2).$

Mol	Chain	Residues		Ato	oms			ZeroOcc	AltConf	
2	Λ	1	Total	С	Ν	Ο	Р	0	0	
0	A	1	53	27	9	15	2	0	0	
3	D	1	Total	С	Ν	Ο	Р	0	0	
0	D	1	53	27	9	15	2	0	0	
2	С	1	Total	С	Ν	Ο	Р	0	0	
0	U	1	53	27	9	15	2	0	0	
2	Л	D 1	Total	С	Ν	Ο	Р	0	0	
0	D		53	27	9	15	2		0	
3	F	1	Total	С	Ν	Ο	Р	0	0	
0	Ľ		53	27	9	15	2	0	0	
3	F	1	Total	С	Ν	Ο	Р	0	Ο	
0	Г	I	53	27	9	15	2	0	0	
3	C	1	Total	С	N	0	Р	0	0	
a G	G	I	53	27	9	15	2	0	0	
3	н	1	Total	С	Ν	Ο	Р	0	0	
з н	11	1	53	27	9	15	2	U	0	

• Molecule 4 is CHLORIDE ION (three-letter code: CL) (formula: Cl).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	2	Total Cl 2 2	0	0
4	В	1	Total Cl 1 1	0	0
4	С	1	Total Cl 1 1	0	0
4	Е	1	Total Cl 1 1	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	F	2	Total Cl 2 2	0	0
4	Н	1	Total Cl 1 1	0	0

• Molecule 5 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	148	Total O 148 148	0	0
5	В	151	Total O 151 151	0	0
5	С	155	Total O 155 155	0	0
5	D	140	Total O 140 140	0	0
5	Е	125	Total O 125 125	0	0
5	F	122	Total O 122 122	0	0
5	G	100	Total O 100 100	0	0
5	Н	98	Total O 98 98	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: UDP-galactopyranose mutase

 \bullet Molecule 1: UDP-galactopyranose mutase

Chain C:

MAT Ease C176 Ha 1400 7313 1179 1179 1179 7430 8332 1179 1179 118 7443 8332 1179 1179 118 5507 8332 1192 1192 118 5507 9338 1192 1192 118 5507 1336 1192 1192 118 7400 1336 1204 96 137 651 1336 1204 96 137 7338 1206 1274 166 136 7338 1276 1274 166 111 651 1274 126 111 111 7361 1274 1276 111 111 7361 1274 126 111 111 1387 1274 128 111 111 1387 1274 128 111 111 1387

• Molecule 1: UDP-galactopyranose mutase

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1	Depositor
Cell constants	71.44Å 129.20Å 172.82Å	Depositor
a, b, c, α , β , γ	90.07° 84.22° 82.24°	Depositor
$\mathbf{Posolution} \left(\overset{\circ}{\mathbf{A}} \right)$	48.00 - 2.63	Depositor
Resolution (A)	48.03 - 2.63	EDS
% Data completeness	91.3 (48.00-2.63)	Depositor
(in resolution range)	91.3 (48.03-2.63)	EDS
R_{merge}	0.07	Depositor
R_{sym}	0.07	Depositor
$< I/\sigma(I) > 1$	$2.36 (at 2.61 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.7.1_743	Depositor
P. P.	0.185 , 0.231	Depositor
n, n_{free}	0.181 , 0.228	DCC
R_{free} test set	8265 reflections $(5.00%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	38.8	Xtriage
Anisotropy	0.130	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.32 , 41.9	EDS
L-test for $twinning^2$	$ < L >=0.48, < L^2>=0.31$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.94	EDS
Total number of atoms	33747	wwPDB-VP
Average B, all atoms $(Å^2)$	46.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.36% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: UDP, CL, FAD

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond lengths		Bond angles	
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.25	0/4103	0.43	0/5576
1	В	0.26	0/4115	0.44	0/5592
1	С	0.26	0/4114	0.44	0/5590
1	D	0.25	0/4103	0.43	0/5576
1	Е	0.26	0/4115	0.43	0/5592
1	F	0.26	0/4103	0.43	0/5576
1	G	0.25	0/4103	0.43	0/5576
1	Н	0.26	0/4114	0.43	0/5590
All	All	0.26	0/32870	0.43	0/44668

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	Е	0	1

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	Ε	303	ARG	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	4004	0	3925	86	0
1	В	4015	0	3933	83	0
1	С	4015	0	3937	84	0
1	D	4004	0	3925	89	0
1	Е	4015	0	3933	95	0
1	F	4004	0	3925	92	0
1	G	4004	0	3925	97	0
1	Н	4015	0	3937	79	0
2	А	25	0	11	1	0
2	В	25	0	11	0	0
2	С	25	0	11	2	0
2	D	25	0	11	1	0
2	Ε	25	0	11	1	0
2	F	25	0	11	1	0
2	G	25	0	11	1	0
2	Н	25	0	11	1	0
3	А	53	0	30	1	0
3	В	53	0	30	1	0
3	С	53	0	30	1	0
3	D	53	0	30	1	0
3	Е	53	0	30	1	0
3	F	53	0	30	0	0
3	G	53	0	30	1	0
3	Н	53	0	30	2	0
4	А	2	0	0	0	0
4	В	1	0	0	0	0
4	С	1	0	0	0	0
4	Е	1	0	0	0	0
4	F	2	0	0	0	0
4	Н	1	0	0	0	0
5	А	148	0	0	3	0
5	В	151	0	0	5	0
5	С	155	0	0	5	0
5	D	140	0	0	6	0
5	Е	125	0	0	5	0
5	F	122	0	0	3	0
5	G	100	0	0	6	0

Continued from previous page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
5	Н	98	0	0	7	0
All	All	33747	0	31768	693	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 11.

All (693) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:F:296:HIS:HD2	1:F:412:HIS:HE1	1.15	0.91
1:C:332:SER:HA	1:C:339:GLN:NE2	1.91	0.85
1:E:296:HIS:HD2	1:E:412:HIS:HE1	1.23	0.85
1:H:174:MET:SD	5:H:577:HOH:O	2.35	0.84
1:C:86:TRP:CG	1:C:211[A]:ARG:NH2	2.47	0.82
1:C:296:HIS:HD2	1:C:412:HIS:HE1	1.25	0.82
1:A:296:HIS:HD2	1:A:412:HIS:HE1	1.27	0.81
1:B:296:HIS:HD2	1:B:412:HIS:HE1	1.30	0.80
1:F:98:GLN:NE2	1:F:114:PRO:HG2	1.96	0.79
1:D:178:TRP:HB2	1:D:454:GLU:HG3	1.64	0.78
1:B:511:LEU:HD12	1:B:511:LEU:H	1.48	0.77
1:D:98:GLN:NE2	1:D:114:PRO:HG2	2.00	0.75
1:H:332:SER:HA	1:H:339:GLN:NE2	2.01	0.75
1:F:296:HIS:HD2	1:F:412:HIS:CE1	2.03	0.75
1:A:380:LYS:NZ	5:A:522:HOH:O	2.21	0.73
1:B:332:SER:HA	1:B:339:GLN:NE2	2.04	0.72
1:D:332:SER:HA	1:D:339:GLN:NE2	2.05	0.72
1:G:178:TRP:HB2	1:G:454:GLU:HG3	1.71	0.72
1:G:98:GLN:NE2	1:G:114:PRO:HG2	2.05	0.72
1:G:175:GLN:HG2	1:G:176:CYS:N	2.05	0.72
1:A:178:TRP:HB2	1:A:454:GLU:HG3	1.69	0.71
1:F:296:HIS:HE1	1:F:376:GLU:OE2	1.73	0.71
1:F:178:TRP:HB2	1:F:454:GLU:HG3	1.72	0.71
1:C:356:ARG:NH1	5:C:610:HOH:O	2.20	0.71
1:E:98:GLN:NE2	1:E:114:PRO:HG2	2.06	0.71
1:E:296:HIS:CD2	1:E:412:HIS:HE1	2.08	0.71
1:G:346:LEU:HD13	1:G:408:VAL:HG11	1.72	0.71
1:E:296:HIS:HD2	1:E:412:HIS:CE1	2.08	0.71
1:A:282:GLU:OE2	1:A:436:LYS:NZ	2.23	0.70
1:F:455:VAL:HG13	1:F:455:VAL:O	1.91	0.70
1:G:332:SER:HA	1:G:339:GLN:NE2	2.06	0.70
1:E:380:LYS:NZ	5:E:885:HOH:O	2.23	0.70

3UKL

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:303:ARG:NH2	1:A:346:LEU:O	2.23	0.70
1:B:178:TRP:HB2	1:B:454:GLU:HG3	1.73	0.70
1:F:296:HIS:CD2	1:F:412:HIS:HE1	2.04	0.70
1:B:98:GLN:NE2	1:B:114:PRO:HG2	2.06	0.69
1:D:175:GLN:HG2	1:D:176:CYS:N	2.07	0.69
1:E:178:TRP:HB2	1:E:454:GLU:HG3	1.73	0.69
1:E:346:LEU:HD13	1:E:408:VAL:HG11	1.75	0.69
1:A:332:SER:HA	1:A:339:GLN:NE2	2.07	0.69
1:C:178:TRP:HB2	1:C:454:GLU:HG3	1.74	0.69
1:B:175:GLN:HG2	1:B:176:CYS:N	2.07	0.69
1:B:455:VAL:HG13	1:B:455:VAL:O	1.93	0.69
1:E:175:GLN:HE21	1:E:178:TRP:HD1	1.39	0.69
1:A:338:ASN:HB2	1:A:339:GLN:NE2	2.08	0.68
1:F:112:MET:HE1	1:F:200:THR:HG22	1.75	0.68
1:F:175:GLN:HG2	1:F:176:CYS:N	2.09	0.68
1:F:332:SER:HA	1:F:339:GLN:NE2	2.07	0.68
1:C:86:TRP:CD2	1:C:211[A]:ARG:NH2	2.62	0.68
1:H:178:TRP:HB2	1:H:454:GLU:HG3	1.76	0.68
1:B:380:LYS:NZ	5:B:883:HOH:O	2.27	0.67
1:C:296:HIS:HD2	1:C:412:HIS:CE1	2.11	0.67
1:H:25:ARG:NH2	1:H:499:ASP:OD2	2.26	0.67
1:C:455:VAL:O	1:C:455:VAL:HG13	1.94	0.67
1:C:296:HIS:HE1	1:C:376:GLU:OE2	1.78	0.67
1:H:332:SER:HA	1:H:339:GLN:HE21	1.59	0.67
1:B:296:HIS:CD2	1:B:412:HIS:HE1	2.13	0.67
1:D:178:TRP:HA	1:D:454:GLU:HG2	1.77	0.67
1:D:112:MET:HE1	1:D:200:THR:HG22	1.77	0.67
1:H:455:VAL:O	1:H:455:VAL:HG13	1.95	0.67
1:E:282:GLU:OE2	1:E:436:LYS:NZ	2.29	0.66
1:F:332:SER:HB3	1:F:369:SER:H	1.60	0.66
1:G:455:VAL:HG13	1:G:455:VAL:O	1.94	0.66
1:A:63:HIS:N	5:A:967:HOH:O	2.20	0.66
1:H:91:ARG:HD3	1:H:207:ASN:HB2	1.77	0.66
1:E:303:ARG:NH1	1:E:406:GLU:OE2	2.27	0.66
1:G:69:TYR:CG	1:G:463:MET:HG3	2.30	0.66
1:A:296:HIS:HD2	1:A:412:HIS:CE1	2.11	0.66
1:A:98:GLN:NE2	1:A:114:PRO:HG2	2.11	0.66
1:C:86:TRP:CB	1:C:211[A]:ARG:HH22	2.08	0.66
1:E:332:SER:HA	1:E:339:GLN:NE2	2.10	0.66
1:G:380:LYS:NZ	5:G:887:HOH:O	2.28	0.66
1:H:98:GLN:NE2	1:H:114:PRO:HG2	2.11	0.65

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:25:ARG:NH2	1:B:499:ASP:OD2	2.27	0.65
1:E:455:VAL:HG13	1:E:455:VAL:O	1.96	0.65
1:A:296:HIS:CD2	1:A:412:HIS:HE1	2.12	0.65
1:E:338:ASN:HB2	1:E:339:GLN:NE2	2.12	0.65
1:G:303:ARG:NH2	1:G:346:LEU:O	2.30	0.65
1:H:372:LEU:HD21	1:H:395:LEU:HD21	1.79	0.65
1:C:98:GLN:NE2	1:C:114:PRO:HG2	2.12	0.65
1:A:178:TRP:HA	1:A:454:GLU:HG2	1.78	0.65
1:E:175:GLN:HG2	1:E:176:CYS:N	2.12	0.65
1:B:356:ARG:HG2	1:B:357:PRO:HD2	1.79	0.64
1:A:134:VAL:HG22	1:D:134:VAL:HG22	1.77	0.64
1:B:296:HIS:HD2	1:B:412:HIS:CE1	2.13	0.64
1:G:296:HIS:HD2	1:G:412:HIS:HE1	1.45	0.64
1:G:338:ASN:HB2	1:G:339:GLN:HE21	1.62	0.64
1:C:175:GLN:HG2	1:C:176:CYS:N	2.12	0.64
1:H:303:ARG:NH2	1:H:346:LEU:O	2.28	0.64
1:B:178:TRP:HA	1:B:454:GLU:HG2	1.80	0.64
1:F:338:ASN:HB2	1:F:339:GLN:NE2	2.13	0.64
1:D:380:LYS:NZ	5:D:884:HOH:O	2.30	0.63
1:G:309:ARG:NH1	1:G:400:MET:O	2.31	0.63
1:C:178:TRP:HA	1:C:454:GLU:HG2	1.80	0.63
1:E:303:ARG:NH2	1:E:346:LEU:O	2.30	0.63
1:H:178:TRP:HA	1:H:454:GLU:HG2	1.80	0.63
1:A:118:GLN:NE2	1:A:195:VAL:HG13	2.14	0.63
1:B:274:LEU:HD22	5:B:520:HOH:O	1.99	0.63
1:D:455:VAL:HG21	1:D:480:THR:HG23	1.81	0.63
1:B:309:ARG:NH1	1:B:400:MET:O	2.32	0.63
1:G:178:TRP:HA	1:G:454:GLU:HG2	1.80	0.63
1:C:282:GLU:OE2	1:C:436:LYS:NZ	2.32	0.63
1:C:303:ARG:NH2	1:C:346:LEU:O	2.29	0.63
1:C:296:HIS:CD2	1:C:412:HIS:HE1	2.12	0.62
1:D:372:LEU:HD21	1:D:395:LEU:HD21	1.81	0.62
1:E:309:ARG:HG2	1:E:310:ILE:HD12	1.81	0.62
1:A:175:GLN:HG2	1:A:176:CYS:N	2.13	0.62
1:H:309:ARG:HG2	1:H:310:ILE:HD12	1.81	0.62
1:B:122:ILE:HD12	1:B:192:THR:HG22	1.81	0.62
1:D:455:VAL:CG2	1:D:480:THR:HG23	2.29	0.62
1:G:296:HIS:CD2	1:G:412:HIS:HE1	2.18	0.62
1:H:32:PRO:HD2	5:H:516:HOH:O	2.00	0.62
1:H:60:VAL:HG13	1:H:415:PHE:CE2	2.34	0.62
1:A:338:ASN:HB2	1:A:339:GLN:HE21	1.64	0.62

Atom_1	Atom_2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:372:LEU:HD21	1:A:395:LEU:HD21	1.82	0.62
1:D:384:GLN:HG3	5:D:880:HOH:O	1.99	0.62
1:A:296:HIS:HE1	1:A:376:GLU:OE2	1.81	0.62
1:B:66[B]:PHE:CD2	1:B:66[B]:PHE:N	2.67	0.62
1:C:63:HIS:N	5:C:964:HOH:O	2.32	0.62
1:A:359:SER:OG	1:A:361:GLU:HG2	2.00	0.61
1:F:178:TRP:HA	1:F:454:GLU:HG2	1.81	0.61
1:G:346:LEU:HD13	1:G:408:VAL:CG1	2.29	0.61
1:D:338:ASN:HB2	1:D:339:GLN:NE2	2.15	0.61
1:C:69:TYR:CG	1:C:463:MET:HG3	2.36	0.61
1:D:91:ARG:HG3	1:D:315:TRP:CH2	2.36	0.61
1:A:69:TYR:CG	1:A:463:MET:HG3	2.35	0.61
1:D:122:ILE:HD12	1:D:192:THR:HG22	1.82	0.61
1:H:122:ILE:HD12	1:H:192:THR:HG22	1.83	0.61
1:C:122:ILE:HD12	1:C:192:THR:HG22	1.81	0.61
1:D:60:VAL:HG13	1:D:415:PHE:CE2	2.36	0.61
1:B:296:HIS:HE1	1:B:376:GLU:OE2	1.84	0.60
1:B:338:ASN:HB2	1:B:339:GLN:NE2	2.16	0.60
1:F:309:ARG:NH1	1:F:400:MET:O	2.34	0.60
1:D:338:ASN:HB2	1:D:339:GLN:HE21	1.65	0.60
1:E:232:GLU:HG2	1:G:232:GLU:HG3	1.83	0.60
1:A:455:VAL:O	1:A:455:VAL:HG13	2.01	0.60
1:E:510:GLN:HE22	1:G:506:LYS:HG2	1.67	0.60
1:C:332:SER:HA	1:C:339:GLN:HE21	1.64	0.60
1:A:112:MET:HE1	1:A:200:THR:HG22	1.83	0.60
1:D:91:ARG:HD3	1:D:207:ASN:CB	2.32	0.60
1:E:63:HIS:N	5:E:966:HOH:O	2.33	0.60
1:D:359:SER:OG	1:D:361:GLU:HG2	2.02	0.60
1:D:37:VAL:HG12	1:D:235:ARG:HB3	1.83	0.59
1:D:455:VAL:HG13	1:D:455:VAL:O	2.01	0.59
1:G:242:VAL:HG13	1:G:252:VAL:HG13	1.84	0.59
1:F:284:VAL:HG12	1:F:288:LYS:HE2	1.84	0.59
1:C:91:ARG:HG3	1:C:315:TRP:CH2	2.37	0.59
1:E:25:ARG:NH2	1:E:499:ASP:OD2	2.31	0.59
1:E:296:HIS:HE1	1:E:376:GLU:OE2	1.86	0.59
1:H:175:GLN:HG2	1:H:176:CYS:N	2.18	0.59
1:F:346:LEU:HD13	1:F:408:VAL:HG11	1.85	0.59
1:B:348:THR:N	5:B:545:HOH:O	2.36	0.58
1:F:37:VAL:HG12	1:F:235:ARG:HB3	1.83	0.58
1:A:122:ILE:HD12	1:A:192:THR:HG22	1.85	0.58
1:D:69:TYR:CG	1:D:463:MET:HG3	2.37	0.58

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
1:H:118:GLN:NE2	1:H:195:VAL:HG13	2.18	0.58
1:D:118:GLN:NE2	1:D:195:VAL:HG13	2.18	0.58
1:E:178:TRP:HA	1:E:454:GLU:HG2	1.85	0.58
1:G:175:GLN:HG2	1:G:177:ALA:H	1.68	0.58
1:H:91:ARG:HD3	1:H:207:ASN:CB	2.33	0.58
1:D:303:ARG:NH2	1:D:346:LEU:O	2.32	0.58
1:D:431:THR:O	1:D:435:PRO:HG2	2.03	0.58
1:E:183:VAL:HG22	2:E:800:UDP:H1'	1.86	0.58
1:F:338:ASN:HB2	1:F:339:GLN:HE21	1.67	0.58
1:G:309:ARG:HG2	1:G:310:ILE:HD12	1.86	0.58
1:H:69:TYR:CG	1:H:463:MET:HG3	2.39	0.58
1:H:91:ARG:HG3	1:H:315:TRP:CH2	2.39	0.58
1:C:372:LEU:HD21	1:C:395:LEU:HD21	1.85	0.58
1:G:338:ASN:HB2	1:G:339:GLN:NE2	2.17	0.58
1:B:112:MET:HE1	1:B:200:THR:HG22	1.86	0.57
1:B:142:PHE:O	1:B:146:ILE:HG13	2.03	0.57
1:B:278:MET:HE1	1:B:442:ILE:HD13	1.86	0.57
1:F:367:TYR:HE1	1:F:408:VAL:HG21	1.67	0.57
1:H:359:SER:OG	1:H:361:GLU:HG2	2.05	0.57
1:B:112:MET:CE	1:B:200:THR:HG22	2.34	0.57
1:G:112:MET:HE1	1:G:200:THR:HG22	1.85	0.57
1:H:112:MET:CE	1:H:200:THR:HG22	2.34	0.57
1:F:69:TYR:CG	1:F:463:MET:HG3	2.39	0.57
1:H:162:TYR:HH	1:H:317:TYR:HD1	1.52	0.57
1:D:130:LEU:HD23	1:F:130:LEU:HD23	1.87	0.57
1:E:332:SER:HB3	1:E:369:SER:H	1.70	0.57
1:C:384:GLN:HG3	5:C:879:HOH:O	2.05	0.56
1:D:183:VAL:HG22	2:D:800:UDP:H1'	1.87	0.56
1:D:109:ASN:HA	5:D:1045:HOH:O	2.03	0.56
1:A:91:ARG:HH11	1:A:207:ASN:HB2	1.69	0.56
1:C:88:THR:HG23	1:C:211[A]:ARG:HG2	1.85	0.56
1:C:507:SER:O	1:C:511:LEU:HD13	2.05	0.56
1:F:376:GLU:HB2	1:F:382:VAL:CG1	2.35	0.56
1:H:175:GLN:HG2	1:H:177:ALA:H	1.71	0.56
1:A:60:VAL:HG12	1:A:60:VAL:O	2.05	0.56
1:B:142:PHE:CE1	1:B:179:LEU:HD23	2.40	0.56
1:C:175:GLN:HG2	1:C:177:ALA:H	1.70	0.56
1:A:18:THR:OG1	1:A:461:SER:HB3	2.06	0.56
1:B:175:GLN:HG2	1:B:177:ALA:H	1.70	0.56
1:E:455:VAL:CG2	1:E:480:THR:HG23	2.36	0.56
1:A:244:LYS:HB2	1:A:253:THR:HB	1.88	0.56

Atom-1	Atom-2	Interatomic	Clash
	Atom-2	distance (Å)	overlap (Å)
1:C:18:THR:OG1	1:C:461:SER:HB3	2.05	0.56
1:D:508:LYS:HA	1:D:511:LEU:HD12	1.87	0.56
1:G:25:ARG:NH2	1:G:499:ASP:OD2	2.34	0.56
1:F:359:SER:OG	1:F:361:GLU:HG2	2.05	0.56
1:A:346:LEU:HD13	1:A:408:VAL:HG11	1.88	0.55
1:G:122:ILE:HD12	1:G:192:THR:HG22	1.88	0.55
1:A:455:VAL:CG2	1:A:480:THR:HG23	2.37	0.55
1:B:109:ASN:HA	5:B:602:HOH:O	2.06	0.55
1:E:359:SER:OG	1:E:361:GLU:HG2	2.05	0.55
1:C:86:TRP:HB2	1:C:211[A]:ARG:HH12	1.71	0.55
1:E:367:TYR:HE1	1:E:408:VAL:HG21	1.72	0.55
1:F:112:MET:CE	1:F:200:THR:HG22	2.36	0.55
1:A:254:LEU:HD12	1:A:258:THR:HB	1.88	0.55
1:D:91:ARG:HD3	1:D:207:ASN:HB2	1.87	0.55
1:A:274:LEU:HG	1:A:278:MET:HE3	1.88	0.55
1:A:507:SER:O	1:A:511:LEU:HD13	2.05	0.55
1:E:338:ASN:HB2	1:E:339:GLN:HE21	1.71	0.55
1:F:183:VAL:HG22	2:F:800:UDP:H1'	1.88	0.55
1:B:278:MET:HE1	1:B:442:ILE:CD1	2.37	0.55
1:A:112:MET:CE	1:A:200:THR:HG22	2.36	0.55
1:F:303:ARG:NH2	1:F:346:LEU:O	2.35	0.55
1:F:309:ARG:HG2	1:F:310:ILE:HD12	1.89	0.54
1:C:37:VAL:HG12	1:C:235:ARG:HB3	1.89	0.54
1:D:69:TYR:CD1	1:D:463:MET:HG3	2.42	0.54
1:G:372:LEU:HD21	1:G:395:LEU:HD21	1.89	0.54
1:A:91:ARG:NH1	1:A:207:ASN:HB2	2.21	0.54
1:F:348:THR:N	5:F:520:HOH:O	2.39	0.54
1:F:110:ILE:HG23	1:F:113:LEU:HD12	1.90	0.54
1:F:434:LEU:HB2	1:F:435:PRO:HD3	1.89	0.54
1:C:91:ARG:HD3	1:C:207:ASN:HB2	1.90	0.54
1:E:162:TYR:HH	1:E:317:TYR:HD1	1.56	0.54
1:F:310:ILE:HG12	1:F:368:TRP:CZ3	2.43	0.54
1:B:332:SER:HA	1:B:339:GLN:HE21	1.70	0.54
1:F:332:SER:HB3	1:F:369:SER:N	2.21	0.54
1:H:434:LEU:HB2	1:H:435:PRO:HD3	1.88	0.54
1:A:175:GLN:HG2	1:A:177:ALA:H	1.72	0.53
1:D:434:LEU:HB2	1:D:435:PRO:HD3	1.90	0.53
1:F:91:ARG:HD3	1:F:207:ASN:HB2	1.90	0.53
1:C:110:ILE:HG23	1:C:113:LEU:HD12	1.89	0.53
1:D:112:MET:CE	1:D:200:THR:HG22	2.37	0.53
1:F:249:ASN:O	1:F:251:THR:HG23	2.09	0.53

3UKL

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:G:26:LEU:HG	1:G:469:VAL:HG21	1.90	0.53
1:C:309:ARG:HG2	1:C:310:ILE:HD12	1.89	0.53
1:G:69:TYR:CD1	1:G:463:MET:HG3	2.43	0.53
1:A:91:ARG:HG3	1:A:315:TRP:CH2	2.44	0.53
1:G:146:ILE:HD13	1:G:159:MET:HB3	1.91	0.53
1:A:91:ARG:HD3	1:A:207:ASN:HB2	1.91	0.53
1:A:162:TYR:HB2	1:A:319:PRO:HB3	1.90	0.53
1:E:456:GLY:HA2	5:E:908:HOH:O	2.09	0.53
1:E:508:LYS:O	1:E:511:LEU:HD12	2.09	0.53
1:C:112:MET:CE	1:C:200:THR:HG22	2.39	0.53
1:C:86:TRP:CB	1:C:211[A]:ARG:HH12	2.22	0.53
1:E:112:MET:CE	1:E:200:THR:HG22	2.39	0.53
1:F:91:ARG:HG3	1:F:315:TRP:CH2	2.44	0.53
1:G:274:LEU:O	1:G:278:MET:HG3	2.08	0.53
1:B:69:TYR:CG	1:B:463:MET:HG3	2.44	0.52
1:C:69:TYR:CD1	1:C:463:MET:HG3	2.44	0.52
1:C:118:GLN:NE2	1:C:195:VAL:HG13	2.24	0.52
1:C:455:VAL:O	1:C:455:VAL:CG1	2.57	0.52
1:E:376:GLU:HB2	1:E:382:VAL:CG1	2.39	0.52
1:F:98:GLN:HE22	1:F:114:PRO:HG2	1.72	0.52
1:B:118:GLN:NE2	1:B:195:VAL:HG13	2.24	0.52
1:B:376:GLU:HB2	1:B:382:VAL:CG1	2.40	0.52
1:E:110:ILE:HG23	1:E:113:LEU:HD12	1.92	0.52
1:G:494:GLU:HG2	1:H:477:VAL:HA	1.91	0.52
1:B:455:VAL:O	1:B:455:VAL:CG1	2.58	0.52
1:E:510:GLN:OE1	1:G:510:GLN:NE2	2.43	0.52
1:F:332:SER:HA	1:F:339:GLN:HE21	1.73	0.52
1:G:91:ARG:HD3	1:G:207:ASN:HB2	1.92	0.52
1:C:60:VAL:HG13	1:C:415:PHE:CE2	2.45	0.52
1:E:309:ARG:NH1	1:E:400:MET:O	2.43	0.52
1:B:18:THR:OG1	1:B:461:SER:HB3	2.10	0.52
1:E:346:LEU:HD13	1:E:408:VAL:CG1	2.40	0.52
1:G:296:HIS:HE1	1:G:376:GLU:OE2	1.93	0.52
1:C:274:LEU:HG	1:C:278:MET:HE3	1.92	0.51
1:D:175:GLN:HG2	1:D:177:ALA:H	1.75	0.51
1:B:434:LEU:HB2	1:B:435:PRO:HD3	1.93	0.51
1:C:26:LEU:HD13	1:C:34:TRP:HB2	1.93	0.51
1:C:162:TYR:HB2	1:C:319:PRO:HB3	1.92	0.51
1:E:66[A]:PHE:CE2	1:E:206:PRO:HB3	2.44	0.51
1:E:175:GLN:HG2	1:E:177:ALA:H	1.74	0.51
1:F:118:GLN:NE2	1:F:195:VAL:HG13	2.26	0.51

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:H:56:PHE:CE1	1:H:339:GLN:HB3	2.45	0.51
1:C:359:SER:OG	1:C:361:GLU:HG2	2.10	0.51
1:E:69:TYR:CG	1:E:463:MET:HG3	2.45	0.51
1:G:274:LEU:HG	1:G:278:MET:HE3	1.93	0.51
1:A:434:LEU:HB2	1:A:435:PRO:HD3	1.93	0.51
1:C:434:LEU:HB2	1:C:435:PRO:HD3	1.92	0.51
1:F:282:GLU:OE2	1:F:436:LYS:NZ	2.39	0.51
1:B:359:SER:OG	1:B:361:GLU:HG2	2.11	0.51
1:E:332:SER:HB3	1:E:369:SER:N	2.26	0.51
1:H:338:ASN:HB2	1:H:339:GLN:NE2	2.25	0.51
1:E:112:MET:HE1	1:E:200:THR:HG22	1.91	0.51
1:E:175:GLN:NE2	1:E:178:TRP:HD1	2.06	0.51
1:E:372:LEU:HD21	1:E:395:LEU:HD21	1.91	0.51
1:F:372:LEU:HD21	1:F:395:LEU:HD21	1.91	0.51
1:C:393:GLN:HG2	5:C:551:HOH:O	2.10	0.51
1:E:168:ALA:HB1	1:E:377:SER:OG	2.11	0.51
1:C:91:ARG:HD3	1:C:207:ASN:CB	2.40	0.51
1:C:338:ASN:HB2	1:C:339:GLN:NE2	2.25	0.51
1:G:310:ILE:HG12	1:G:368:TRP:CZ3	2.46	0.51
1:H:332:SER:HB3	1:H:369:SER:H	1.75	0.51
1:E:175:GLN:HE22	1:E:178:TRP:HB3	1.76	0.50
1:H:332:SER:HB3	1:H:369:SER:N	2.25	0.50
1:G:504:PHE:CD2	1:H:32:PRO:HG3	2.45	0.50
1:G:107:GLN:HB2	1:G:186:PRO:HG3	1.92	0.50
1:G:180:GLY:N	5:G:526:HOH:O	2.25	0.50
1:D:162:TYR:HB2	1:D:319:PRO:HB3	1.93	0.50
1:E:60:VAL:HG12	1:E:60:VAL:O	2.11	0.50
1:F:455:VAL:CG2	1:F:480:THR:HG23	2.42	0.50
1:G:359:SER:OG	1:G:361:GLU:HG2	2.11	0.50
1:H:447:ARG:NH1	5:H:874:HOH:O	2.33	0.50
1:D:110:ILE:HG23	1:D:113:LEU:HD12	1.92	0.50
1:F:455:VAL:O	1:F:455:VAL:CG1	2.58	0.50
1:H:146:ILE:HD13	1:H:159:MET:HB3	1.92	0.50
1:D:63:HIS:N	5:D:965:HOH:O	2.44	0.50
1:B:134:VAL:HG22	1:F:134:VAL:HG22	1.94	0.50
1:B:338:ASN:HB2	1:B:339:GLN:HE21	1.76	0.50
1:B:372:LEU:HD21	1:B:395:LEU:HD21	1.92	0.49
1:D:146:ILE:HD13	1:D:159:MET:HB3	1.93	0.49
1:E:107:GLN:HE21	1:E:184:ALA:HB3	1.76	0.49
1:A:196:ILE:HD11	1:B:122:ILE:HG13	1.94	0.49
1:E:91:ARG:HD3	1:E:207:ASN:HB2	1.93	0.49

A + a 1	At ama 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:F:142:PHE:O	1:F:146:ILE:HG13	2.12	0.49
1:F:162:TYR:HH	1:F:317:TYR:HD1	1.59	0.49
1:G:112:MET:CE	1:G:200:THR:HG22	2.42	0.49
1:B:168:ALA:HB1	1:B:377:SER:OG	2.12	0.49
1:D:91:ARG:HH11	1:D:207:ASN:HB2	1.78	0.49
1:G:69:TYR:CD2	1:G:463:MET:HG3	2.47	0.49
1:G:118:GLN:NE2	1:G:195:VAL:HG13	2.27	0.49
1:A:455:VAL:HG22	1:A:480:THR:HG23	1.93	0.49
1:C:70:LYS:NZ	5:C:578:HOH:O	2.44	0.49
1:E:455:VAL:HG21	1:E:480:THR:HG23	1.95	0.49
1:A:60:VAL:HG13	1:A:415:PHE:CE2	2.47	0.49
1:A:91:ARG:HD3	1:A:207:ASN:CB	2.43	0.49
1:C:82:LYS:HB2	1:C:85:ASP:OD1	2.13	0.49
1:H:455:VAL:O	1:H:455:VAL:CG1	2.61	0.49
1:B:146:ILE:HD13	1:B:159:MET:HB3	1.94	0.49
1:H:91:ARG:HH11	1:H:207:ASN:HB2	1.78	0.49
1:E:160:ARG:N	1:E:161:PRO:HD2	2.28	0.49
1:F:146:ILE:HD13	1:F:159:MET:HB3	1.94	0.49
1:H:160:ARG:N	1:H:161:PRO:HD2	2.28	0.49
1:D:346:LEU:HD13	1:D:408:VAL:HG11	1.94	0.49
1:B:87:TYR:CE2	1:B:336:PRO:HD2	2.48	0.48
1:D:18:THR:OG1	1:D:461:SER:HB3	2.13	0.48
1:D:66:PHE:CE2	1:D:206:PRO:HB3	2.49	0.48
1:D:282:GLU:OE2	1:D:436:LYS:NZ	2.42	0.48
1:F:14:GLY:O	1:F:19:GLY:HA3	2.13	0.48
1:F:313:LYS:HB3	1:F:316:LEU:HD21	1.95	0.48
1:B:25:ARG:HD2	1:B:466:VAL:HG13	1.95	0.48
1:C:455:VAL:CG2	1:C:480:THR:HG23	2.43	0.48
1:D:60:VAL:HG12	1:D:60:VAL:O	2.13	0.48
1:H:66:PHE:CE2	1:H:206:PRO:HB3	2.47	0.48
1:A:249:ASN:O	1:A:251:THR:HG23	2.12	0.48
1:B:336:PRO:HD3	1:C:356:ARG:NH1	2.28	0.48
1:C:91:ARG:HH11	1:C:207:ASN:HB2	1.77	0.48
1:E:142:PHE:O	1:E:146:ILE:HG13	2.13	0.48
1:G:455:VAL:O	1:G:455:VAL:CG1	2.59	0.48
1:D:91:ARG:HD3	1:D:207:ASN:HB3	1.94	0.48
1:E:91:ARG:HD3	1:E:207:ASN:CB	2.43	0.48
1:G:447:ARG:NH1	5:G:611:HOH:O	2.31	0.48
1:G:122:ILE:O	1:G:126:ILE:HG13	2.14	0.48
1:C:165:LYS:NZ	1:C:318:PHE:O	2.38	0.48
1:F:56:PHE:CE1	1:F:339:GLN:HB3	2.47	0.48

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
1:A:309:ARG:HG2	1:A:310:1LE:HD12	1.95	0.48
1:D:66:PHE:CD2	1:D:206:PRO:HB3	2.49	0.48
1:D:303:ARG:NH1	1:D:348:THR:OG1	2.46	0.48
1:G:296:HIS:HD2	1:G:412:HIS:CE1	2.28	0.48
1:A:183:VAL:HG22	2:A:800:UDP:H1'	1.94	0.48
1:F:346:LEU:HD12	1:F:367:TYR:CZ	2.49	0.48
1:H:66:PHE:CD2	1:H:206:PRO:HB3	2.48	0.48
1:A:69:TYR:CD1	1:A:463:MET:HG3	2.49	0.48
1:E:91:ARG:HG3	1:E:315:TRP:CH2	2.48	0.48
1:F:25:ARG:NH2	1:F:499:ASP:OD2	2.36	0.48
1:B:178:TRP:HB2	1:B:454:GLU:CG	2.43	0.47
1:E:284:VAL:O	1:E:288:LYS:HG3	2.14	0.47
1:B:504:PHE:CD2	1:D:32:PRO:HB3	2.49	0.47
1:E:477:VAL:HG22	1:E:479:LEU:HG	1.95	0.47
1:F:114:PRO:O	1:F:118:GLN:HG3	2.14	0.47
1:G:149:MET:O	1:G:186:PRO:HD2	2.15	0.47
1:D:98:GLN:HE21	1:D:114:PRO:HG2	1.79	0.47
1:E:175:GLN:NE2	1:E:178:TRP:CD1	2.82	0.47
1:E:244:LYS:HG2	5:E:590:HOH:O	2.14	0.47
1:F:160:ARG:N	1:F:161:PRO:HD2	2.30	0.47
1:G:332:SER:HB3	1:G:369:SER:H	1.80	0.47
1:C:26:LEU:HD13	1:C:34:TRP:CB	2.45	0.47
1:C:112:MET:HE1	1:C:200:THR:HG22	1.95	0.47
1:H:60:VAL:HG12	1:H:60:VAL:O	2.14	0.47
1:A:59:ASP:OD2	1:A:218:THR:HG23	2.15	0.47
1:C:59:ASP:OD2	1:C:218:THR:HG23	2.14	0.47
1:A:130:LEU:HD23	1:B:130:LEU:HD23	1.97	0.47
1:B:303:ARG:NH2	1:B:346:LEU:O	2.44	0.47
1:D:63:HIS:CE1	3:D:601:FAD:C9A	2.98	0.47
1:D:160:ARG:N	1:D:161:PRO:HD2	2.30	0.47
1:F:384:GLN:O	1:F:387:ILE:HG22	2.13	0.47
1:G:60:VAL:HG13	1:G:415:PHE:CE2	2.49	0.47
1:E:310:ILE:HG12	1:E:368:TRP:CZ3	2.50	0.47
1:F:163:ASN:HA	1:F:166:VAL:HG12	1.97	0.47
1:G:447:ARG:NH2	5:G:537:HOH:O	2.47	0.47
1:A:332:SER:HB3	1:A:369:SER:N	2.30	0.47
1:B:455:VAL:CG2	1:B:480:THR:HG23	2.45	0.47
1:C:183:VAL:HG22	2:C:800:UDP:H1'	1.97	0.47
1:E:87:TYR:CE2	1:E:336:PRO:HD2	2.50	0.47
1:A:110:ILE:HG23	1:A:113:LEU:HD12	1.97	0.47
1:F:60:VAL:HG13	1:F:415:PHE:CE2	2.50	0.47

Atom-1	Atom-2	Interatomic	Clash
	Atom-2	distance (Å)	overlap (Å)
1:F:280:ASP:O	1:F:284:VAL:HG23	2.15	0.47
1:G:46:LEU:HB2	3:G:607:FAD:O4'	2.15	0.47
1:G:453:TYR:C	1:G:455:VAL:H	2.19	0.47
1:D:309:ARG:NH1	1:D:400:MET:O	2.48	0.46
1:E:325:PHE:HA	1:E:374:VAL:HG22	1.97	0.46
1:H:25:ARG:HH11	1:H:470:ASP:CG	2.18	0.46
1:B:96:ARG:HB2	1:B:101:TRP:CZ3	2.50	0.46
1:C:160:ARG:N	1:C:161:PRO:HD2	2.30	0.46
1:E:26:LEU:HG	1:E:469:VAL:HG21	1.97	0.46
1:F:212:PHE:CG	1:F:213:PRO:HD2	2.50	0.46
1:A:332:SER:HA	1:A:339:GLN:HE21	1.79	0.46
1:E:66[B]:PHE:CD2	1:E:66[B]:PHE:N	2.82	0.46
1:H:18:THR:OG1	1:H:461:SER:HB3	2.16	0.46
1:B:293:SER:OG	1:B:419:TYR:HB2	2.15	0.46
1:F:60:VAL:HG12	1:F:60:VAL:O	2.14	0.46
1:F:69:TYR:CD1	1:F:463:MET:HG3	2.51	0.46
1:G:110:ILE:HG23	1:G:113:LEU:HD12	1.97	0.46
1:A:367:TYR:HE1	1:A:408:VAL:HG21	1.80	0.46
1:E:91:ARG:HH11	1:E:207:ASN:HB2	1.79	0.46
1:E:184:ALA:HB2	1:E:204:TRP:CD2	2.50	0.46
1:F:367:TYR:CE1	1:F:408:VAL:HG21	2.49	0.46
1:G:282:GLU:OE2	1:G:436:LYS:NZ	2.45	0.46
1:H:37:VAL:HG12	1:H:235:ARG:HB3	1.97	0.46
1:H:367:TYR:HE1	1:H:408:VAL:HG21	1.79	0.46
1:H:182:ARG:HG2	5:H:864:HOH:O	2.16	0.46
1:B:25:ARG:HH11	1:B:470:ASP:CG	2.18	0.46
1:B:290:LEU:HD13	1:B:451:TRP:CD2	2.51	0.46
1:E:91:ARG:NH1	1:E:207:ASN:HB2	2.30	0.46
1:H:92:ILE:HG22	1:H:94:TYR:HE2	1.81	0.46
1:A:346:LEU:HD13	1:A:408:VAL:CG1	2.46	0.46
1:B:25:ARG:NH1	1:B:470:ASP:OD1	2.47	0.46
1:B:66[A]:PHE:CE2	1:B:206:PRO:HB3	2.51	0.46
1:C:60:VAL:HG12	1:C:60:VAL:O	2.16	0.46
1:C:242:VAL:HG13	1:C:252:VAL:HG13	1.97	0.46
1:D:98:GLN:HE22	1:D:114:PRO:HG2	1.78	0.46
1:F:91:ARG:HH11	1:F:207:ASN:HB2	1.81	0.46
1:H:112:MET:HE3	1:H:200:THR:HG22	1.96	0.46
1:A:274:LEU:CG	1:A:278:MET:HE3	2.46	0.46
1:D:274:LEU:HG	1:D:278:MET:HE3	1.96	0.46
1:G:431:THR:O	1:G:435:PRO:HG2	2.16	0.46
1:A:162:TYR:HH	1:A:317:TYR:HD1	1.65	0.45

Atom-1	Atom-2	Interatomic	Clash
		distance (\AA)	overlap (Å)
1:D:184:ALA:HB2	1:D:204:TRP:CD2	2.51	0.45
1:E:56:PHE:CE1	1:E:339:GLN:HB3	2.51	0.45
1:F:184:ALA:HB2	1:F:204:TRP:CD2	2.51	0.45
1:G:456:GLY:HA2	5:G:516:HOH:O	2.16	0.45
1:D:278:MET:HE1	1:D:442:ILE:HD13	1.98	0.45
1:F:175:GLN:HG2	1:F:177:ALA:H	1.81	0.45
1:G:495:ARG:O	1:G:496:ARG:HD2	2.16	0.45
1:A:298:ILE:HB	1:A:372:LEU:HB2	1.97	0.45
3:B:604:FAD:H9	3:B:604:FAD:H1'1	1.44	0.45
1:G:37:VAL:HG12	1:G:235:ARG:HB3	1.97	0.45
1:G:168:ALA:HB1	1:G:377:SER:OG	2.16	0.45
1:A:284:VAL:HG12	1:A:288:LYS:HE3	1.99	0.45
1:E:431:THR:O	1:E:435:PRO:HG2	2.17	0.45
1:E:17:PRO:O	1:E:462:PHE:HA	2.16	0.45
1:F:87:TYR:CE2	1:F:336:PRO:HD2	2.51	0.45
1:G:280:ASP:O	1:G:284:VAL:HG23	2.16	0.45
1:H:63:HIS:CE1	3:H:605:FAD:C9A	2.99	0.45
1:B:69:TYR:CD1	1:B:463:MET:HG3	2.51	0.45
1:B:298:ILE:HB	1:B:372:LEU:HB2	1.97	0.45
1:C:298:ILE:HB	1:C:372:LEU:HB2	1.98	0.45
1:E:142:PHE:CE1	1:E:179:LEU:HD23	2.52	0.45
1:G:160:ARG:N	1:G:161:PRO:HD2	2.32	0.45
1:C:280:ASP:O	1:C:284:VAL:HG23	2.17	0.45
1:H:79:ALA:HB1	1:H:224:ALA:CB	2.47	0.45
1:B:63:HIS:HB2	1:B:218:THR:HG21	1.99	0.45
1:B:110:ILE:HG23	1:B:113:LEU:HD12	1.98	0.45
1:B:511:LEU:HD12	1:B:511:LEU:N	2.24	0.45
1:E:37:VAL:HG12	1:E:235:ARG:HB3	1.99	0.45
1:A:213:PRO:HG2	1:A:218:THR:HA	1.99	0.45
1:G:101:TRP:CH2	1:G:316:LEU:HD13	2.52	0.45
1:H:456:GLY:O	3:H:605:FAD:O3'	2.35	0.45
1:A:146:ILE:HD13	1:A:159:MET:HB3	1.99	0.45
1:B:59:ASP:OD2	1:B:218:THR:HG23	2.16	0.45
1:C:86:TRP:CB	1:C:211[A]:ARG:NH2	2.76	0.45
1:D:25:ARG:O	1:D:25:ARG:HG3	2.16	0.45
1:D:91:ARG:NH1	1:D:207:ASN:HB2	2.32	0.45
1:D:95:VAL:HG22	1:D:317:TYR:HB2	1.98	0.45
1:F:17:PRO:O	1:F:462:PHE:HA	2.17	0.45
1:H:112:MET:HE1	1:H:200:THR:HG22	1.99	0.45
1:A:332:SER:HB3	1:A:369:SER:H	1.81	0.44
1:C:303:ARG:NH1	1:C:348:THR:OG1	2.50	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:D:298:ILE:HB	1:D:372:LEU:HB2	1.99	0.44
1:E:178:TRP:HB2	1:E:454:GLU:CG	2.45	0.44
1:F:456:GLY:HA2	5:F:518:HOH:O	2.17	0.44
1:H:183:VAL:HG22	2:H:800:UDP:H1'	1.99	0.44
1:H:274:LEU:O	1:H:278:MET:HG3	2.17	0.44
1:A:432:GLN:HG2	5:A:571:HOH:O	2.16	0.44
1:E:274:LEU:HG	1:E:278:MET:HE3	1.99	0.44
1:D:483:TYR:N	1:D:484:PRO:HD3	2.33	0.44
1:G:66:PHE:CE2	1:G:206:PRO:HB3	2.52	0.44
1:G:142:PHE:O	1:G:146:ILE:HG13	2.16	0.44
1:A:66:PHE:CD2	1:A:206:PRO:HB3	2.52	0.44
1:B:45:GLY:O	1:B:48:SER:OG	2.35	0.44
1:B:274:LEU:HD21	1:B:278:MET:HE3	2.00	0.44
1:D:444:SER:O	1:D:445:ARG:HD3	2.18	0.44
1:A:25:ARG:NH2	1:A:499:ASP:OD2	2.42	0.44
1:C:211[A]:ARG:HB3	1:C:211[A]:ARG:CZ	2.47	0.44
1:D:345:LYS:HA	1:D:363:LYS:O	2.17	0.44
1:E:92:ILE:HG22	1:E:94:TYR:HE2	1.83	0.44
1:H:69:TYR:CD2	1:H:463:MET:HG3	2.52	0.44
1:H:184:ALA:HB2	1:H:204:TRP:CD2	2.53	0.44
1:A:160:ARG:N	1:A:161:PRO:HD2	2.32	0.44
1:D:163:ASN:HA	1:D:166:VAL:HG12	2.00	0.44
1:F:18:THR:OG1	1:F:461:SER:HB3	2.17	0.44
1:F:168:ALA:HB1	1:F:377:SER:OG	2.18	0.44
1:G:66:PHE:CD2	1:G:206:PRO:HB3	2.53	0.44
1:C:376:GLU:HB2	1:C:382:VAL:CG1	2.48	0.44
1:E:60:VAL:HG13	1:E:415:PHE:CE2	2.53	0.44
1:G:91:ARG:HG3	1:G:315:TRP:CH2	2.52	0.44
1:A:384:GLN:O	1:A:387:ILE:HG22	2.18	0.44
1:D:82:LYS:HB2	1:D:85:ASP:OD1	2.18	0.44
1:F:274:LEU:HG	1:F:278:MET:HE3	2.00	0.44
1:F:299:GLY:HA3	1:F:411:TYR:HB3	2.00	0.44
1:G:311:GLY:HA3	5:G:984:HOH:O	2.17	0.44
1:G:453:TYR:C	1:G:455:VAL:N	2.71	0.44
1:D:122:ILE:HD11	1:D:195:VAL:HG21	1.99	0.44
1:H:109:ASN:HA	5:H:1046:HOH:O	2.17	0.44
1:H:294:SER:HB2	1:H:376:GLU:HB3	2.00	0.44
1:H:338:ASN:HB2	1:H:339:GLN:HE21	1.82	0.44
1:A:213:PRO:HG3	1:A:221:ILE:HD11	1.99	0.43
1:A:303:ARG:NH1	1:A:348:THR:OG1	2.50	0.43
1:D:299:GLY:HA3	1:D:411:TYR:HB3	1.99	0.43

Atom 1		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:E:332:SER:CB	1:E:369:SER:H	2.30	0.43
1:H:290:LEU:HD13	1:H:451:TRP:CD2	2.53	0.43
1:A:72:PHE:CD1	1:A:459:ASP:HA	2.53	0.43
1:C:346:LEU:HD13	1:C:408:VAL:HG11	2.01	0.43
1:D:25:ARG:HH11	1:D:470:ASP:CG	2.22	0.43
1:E:25:ARG:HD2	1:E:466:VAL:HG13	2.01	0.43
1:E:122:ILE:O	1:E:126:ILE:HG13	2.17	0.43
1:G:184:ALA:HB2	1:G:204:TRP:CD2	2.54	0.43
1:A:37:VAL:HG12	1:A:235:ARG:HB3	2.01	0.43
1:B:367:TYR:HE1	1:B:408:VAL:HG21	1.82	0.43
1:C:453:TYR:C	1:C:455:VAL:H	2.21	0.43
1:H:31:GLY:N	5:H:516:HOH:O	2.34	0.43
1:H:303:ARG:NH1	1:H:348:THR:OG1	2.51	0.43
1:A:3:HIS:HA	1:A:4:PRO:HD3	1.88	0.43
3:A:602:FAD:H1'1	3:A:602:FAD:H9	1.41	0.43
1:D:346:LEU:HD13	1:D:408:VAL:CG1	2.48	0.43
1:B:14:GLY:O	1:B:19:GLY:HA3	2.17	0.43
1:F:388:LEU:O	1:F:392:ILE:HG13	2.19	0.43
1:G:332:SER:HA	1:G:339:GLN:HE21	1.81	0.43
1:B:346:LEU:HD13	1:B:408:VAL:HG11	2.00	0.43
1:E:303:ARG:NH1	1:E:348:THR:OG1	2.51	0.43
1:H:91:ARG:NH1	1:H:207:ASN:HB2	2.33	0.43
1:A:178:TRP:CA	1:A:454:GLU:HG2	2.47	0.43
1:H:162:TYR:HB2	1:H:319:PRO:HB3	1.99	0.43
1:C:3:HIS:HA	1:C:4:PRO:HD3	1.85	0.43
1:H:150:MET:HG2	1:H:186:PRO:HG3	2.00	0.43
1:B:184:ALA:HB2	1:B:204:TRP:CD2	2.54	0.43
1:D:249:ASN:O	1:D:251:THR:HG23	2.19	0.43
1:F:91:ARG:HD3	1:F:207:ASN:CB	2.48	0.43
1:G:142:PHE:HB3	1:G:171:THR:O	2.19	0.43
1:H:455:VAL:CG2	1:H:480:THR:HG23	2.48	0.43
1:E:510:GLN:O	1:E:511:LEU:C	2.57	0.43
1:F:69:TYR:CD2	1:F:463:MET:HG3	2.54	0.43
1:F:274:LEU:O	1:F:278:MET:HG3	2.18	0.43
1:H:293:SER:OG	1:H:419:TYR:HB2	2.19	0.43
1:A:69:TYR:CD2	1:A:463:MET:HG3	2.53	0.42
1:A:345:LYS:HA	1:A:363:LYS:O	2.19	0.42
1:G:98:GLN:HE22	1:G:114:PRO:HG2	1.83	0.42
1:G:213:PRO:HG3	1:G:218:THR:HA	2.00	0.42
1:G:432:GLN:O	1:G:435:PRO:HD2	2.18	0.42
1:H:104:TYR:O	1:H:202:GLY:HA2	2.18	0.42

A + 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:98:GLN:HE21	1:B:114:PRO:HG2	1.83	0.42
1:B:160:ARG:N	1:B:161:PRO:HD2	2.34	0.42
1:D:56:PHE:CE1	1:D:339:GLN:HB3	2.54	0.42
1:D:96:ARG:HB2	1:D:101:TRP:CZ3	2.55	0.42
1:D:274:LEU:HD22	5:D:1014:HOH:O	2.18	0.42
1:G:165:LYS:NZ	1:G:318:PHE:O	2.50	0.42
1:C:309:ARG:NH1	1:C:400:MET:O	2.52	0.42
1:E:62:GLY:HA2	5:E:966:HOH:O	2.19	0.42
1:E:232:GLU:HG3	1:G:232:GLU:HG2	2.00	0.42
1:E:432:GLN:O	1:E:435:PRO:HD2	2.19	0.42
1:A:178:TRP:HB2	1:A:454:GLU:CG	2.43	0.42
1:A:293:SER:OG	1:A:419:TYR:HB2	2.18	0.42
1:C:455:VAL:HG22	1:C:480:THR:HG23	2.01	0.42
1:E:175:GLN:O	1:E:178:TRP:CD1	2.73	0.42
1:F:82:LYS:HB2	1:F:85:ASP:OD1	2.19	0.42
1:H:462:PHE:O	1:H:466:VAL:HG23	2.19	0.42
1:B:91:ARG:HD3	1:B:207:ASN:HB2	2.01	0.42
1:G:384:GLN:O	1:G:387:ILE:HG22	2.20	0.42
1:B:178:TRP:CA	1:B:454:GLU:HG2	2.47	0.42
1:C:184:ALA:HB2	1:C:204:TRP:CD2	2.55	0.42
1:F:286:LEU:HB3	1:F:433:ILE:HG12	2.02	0.42
1:F:347:PRO:C	5:F:520:HOH:O	2.58	0.42
1:H:175:GLN:O	1:H:178:TRP:CD1	2.72	0.42
1:B:347:PRO:C	5:B:545:HOH:O	2.58	0.42
1:D:26:LEU:HD13	1:D:34:TRP:HB2	2.02	0.42
1:D:72:PHE:CD1	1:D:459:ASP:HA	2.54	0.42
1:D:150:MET:HG2	1:D:186:PRO:HG3	2.00	0.42
1:E:69:TYR:CD1	1:E:463:MET:HG3	2.54	0.42
3:E:606:FAD:H1'1	3:E:606:FAD:H9	1.65	0.42
1:G:278:MET:HE1	1:G:442:ILE:HD12	2.01	0.42
1:H:274:LEU:HG	1:H:278:MET:HE3	2.02	0.42
1:C:431:THR:O	1:C:435:PRO:HG2	2.20	0.42
1:E:66[A]:PHE:CD2	1:E:206:PRO:HB3	2.55	0.42
1:D:286:LEU:HD12	1:D:286:LEU:HA	1.88	0.42
1:D:508:LYS:HD2	5:D:541:HOH:O	2.19	0.42
1:E:232:GLU:CG	1:G:232:GLU:HG3	2.49	0.42
1:F:91:ARG:NH1	1:F:207:ASN:HB2	2.35	0.42
1:F:376:GLU:HB2	1:F:382:VAL:HG11	2.02	0.42
1:A:125:MET:HE2	1:A:125:MET:HB3	2.00	0.41
1:A:272:ASP:OD1	1:A:272:ASP:N	2.53	0.41
1:A:383:ASN:OD1	1:A:385:GLU:HG2	2.19	0.41

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:2:THR:HG23	1:B:2:THR:O	2.20	0.41
1:C:98:GLN:HE21	1:C:114:PRO:HG2	1.85	0.41
1:C:249:ASN:O	1:C:251:THR:HG23	2.20	0.41
1:E:146:ILE:HD13	1:E:159:MET:HB3	2.01	0.41
1:F:284:VAL:O	1:F:288:LYS:HG3	2.19	0.41
1:G:242:VAL:HG13	1:G:252:VAL:CG1	2.50	0.41
1:A:66:PHE:CE2	1:A:206:PRO:HB3	2.56	0.41
1:D:178:TRP:CB	1:D:454:GLU:HG3	2.43	0.41
1:D:286:LEU:HB3	1:D:433:ILE:HG12	2.01	0.41
1:F:245:VAL:O	1:F:278:MET:HA	2.20	0.41
1:G:183:VAL:HG22	2:G:800:UDP:H1'	2.02	0.41
1:G:212:PHE:CG	1:G:213:PRO:HD2	2.55	0.41
1:H:213:PRO:HG3	1:H:218:THR:HA	2.03	0.41
1:H:325:PHE:HA	1:H:374:VAL:HG22	2.03	0.41
1:A:115:LYS:HA	1:A:118:GLN:OE1	2.19	0.41
1:B:245:VAL:HG22	1:B:252:VAL:HG22	2.01	0.41
1:F:244:LYS:HB2	1:F:253:THR:HB	2.02	0.41
1:F:284:VAL:CG1	1:F:288:LYS:HE2	2.50	0.41
1:G:245:VAL:O	1:G:278:MET:HA	2.21	0.41
1:G:332:SER:CB	1:G:369:SER:H	2.33	0.41
1:F:213:PRO:HG3	1:F:218:THR:HA	2.01	0.41
1:G:434:LEU:HB2	1:G:435:PRO:HD3	2.01	0.41
1:H:115:LYS:HA	1:H:118:GLN:OE1	2.20	0.41
1:C:453:TYR:C	1:C:455:VAL:N	2.73	0.41
1:D:455:VAL:HG22	1:D:480:THR:HG23	2.03	0.41
1:E:425:GLU:N	1:E:425:GLU:OE2	2.51	0.41
1:F:55:GLY:O	1:F:340:PRO:HD3	2.20	0.41
1:G:14:GLY:O	1:G:19:GLY:HA3	2.19	0.41
1:H:249:ASN:O	1:H:251:THR:HG23	2.20	0.41
1:C:286:LEU:HD12	1:C:286:LEU:HA	1.92	0.41
1:G:98:GLN:HE21	1:G:114:PRO:HG2	1.83	0.41
1:H:25:ARG:NH1	1:H:470:ASP:OD1	2.47	0.41
1:B:453:TYR:C	1:B:455:VAL:H	2.23	0.41
1:C:293:SER:OG	1:C:419:TYR:HB2	2.20	0.41
1:D:3:HIS:HA	1:D:4:PRO:HD3	1.85	0.41
1:D:122:ILE:O	1:D:126:ILE:HG13	2.20	0.41
1:E:21:GLY:HA2	1:E:462:PHE:CE1	2.56	0.41
1:E:66[B]:PHE:CE2	1:E:207:ASN:OD1	2.74	0.41
1:F:3:HIS:HA	1:F:4:PRO:HD3	1.88	0.41
1:G:162:TYR:HH	1:G:317:TYR:HD1	1.68	0.41
1:G:507:SER:O	1:G:511:LEU:HD13	2.20	0.41

Atom-1	Atom-1 Atom-2		Clash
		distance (A)	overlap (A)
1:B:162:TYR:HH	1:B:317:TYR:HD1	1.65	0.41
1:D:25:ARG:NH2	1:D:499:ASP:OD2	2.42	0.41
1:D:376:GLU:HB2	1:D:382:VAL:CG1	2.51	0.41
1:F:66:PHE:CD2	1:F:206:PRO:HB3	2.56	0.41
1:G:286:LEU:HD12	1:G:286:LEU:HA	1.84	0.41
1:G:392:ILE:HD13	1:G:407:ILE:CD1	2.51	0.41
1:H:111:SER:HB3	1:H:195:VAL:HA	2.03	0.41
1:H:380:LYS:NZ	5:H:888:HOH:O	2.54	0.41
1:A:138:LYS:HA	1:A:139:PRO:HD3	1.95	0.41
1:A:168:ALA:HB1	1:A:377:SER:OG	2.21	0.41
1:A:274:LEU:O	1:A:278:MET:HG3	2.21	0.41
1:B:280:ASP:O	1:B:284:VAL:HG23	2.21	0.41
1:C:96:ARG:HB2	1:C:101:TRP:CZ3	2.55	0.41
1:C:327:ARG:NH1	2:C:800:UDP:O3B	2.53	0.41
1:C:384:GLN:O	1:C:387:ILE:HG22	2.21	0.41
1:C:477:VAL:HA	1:E:494:GLU:HG2	2.03	0.41
1:G:367:TYR:HE1	1:G:408:VAL:HG21	1.85	0.41
1:H:122:ILE:O	1:H:126:ILE:HG13	2.21	0.41
1:H:286:LEU:HD12	1:H:286:LEU:HA	1.83	0.41
1:A:79:ALA:HB1	1:A:224:ALA:CB	2.51	0.41
1:A:372:LEU:CD1	1:A:391:CYS:HB3	2.51	0.41
1:B:64:VAL:HG13	1:B:210:PHE:CG	2.55	0.41
1:C:63:HIS:CE1	3:C:600:FAD:C9A	3.04	0.41
1:C:483:TYR:N	1:C:484:PRO:HD3	2.36	0.41
1:D:278:MET:HE1	1:D:442:ILE:CD1	2.51	0.41
1:F:332:SER:CB	1:F:369:SER:H	2.30	0.41
1:B:70:LYS:HB2	1:B:493:THR:HA	2.01	0.40
1:F:76:LEU:HD22	1:F:221:ILE:CG2	2.51	0.40
1:D:191:VAL:O	1:D:195:VAL:HG23	2.21	0.40
1:D:372:LEU:CD1	1:D:391:CYS:HB3	2.50	0.40
1:G:272:ASP:OD1	1:G:273:PHE:N	2.54	0.40
1:B:455:VAL:HG22	1:B:480:THR:HG23	2.02	0.40
1:E:284:VAL:HG12	1:E:288:LYS:HE3	2.01	0.40
1:G:114:PRO:O	1:G:118:GLN:HG3	2.21	0.40
1:G:432:GLN:C	1:G:435:PRO:HD2	2.41	0.40
1:H:298:ILE:HG13	1:H:391:CYS:SG	2.61	0.40
1:B:21:GLY:HA2	1:B:462:PHE:CE1	2.57	0.40
1:B:60:VAL:HG12	1:B:60:VAL:O	2.22	0.40
1:D:14:GLY:O	1:D:19:GLY:HA3	2.21	0.40
1:F:104:TYR:O	1:F:202:GLY:HA2	2.21	0.40
1:G:18:THR:OG1	1:G:461:SER:HB3	2.20	0.40

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:G:287:THR:HG22	1:G:433:ILE:HD13	2.02	0.40
1:C:95:VAL:HG22	1:C:317:TYR:HB2	2.04	0.40
1:E:242:VAL:HG13	1:E:252:VAL:HG13	2.03	0.40
1:E:434:LEU:HB2	1:E:435:PRO:HD3	2.03	0.40
1:F:91:ARG:HG3	1:F:315:TRP:CZ2	2.56	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	508/510~(100%)	491 (97%)	17 (3%)	0	100	100
1	В	509/510~(100%)	491 (96%)	18 (4%)	0	100	100
1	С	509/510~(100%)	490 (96%)	19 (4%)	0	100	100
1	D	508/510~(100%)	488 (96%)	20 (4%)	0	100	100
1	Е	509/510~(100%)	494 (97%)	15 (3%)	0	100	100
1	F	508/510~(100%)	490 (96%)	17 (3%)	1 (0%)	47	64
1	G	508/510~(100%)	487~(96%)	21 (4%)	0	100	100
1	Н	509/510~(100%)	489 (96%)	19 (4%)	1 (0%)	47	64
All	All	4068/4080 (100%)	3920 (96%)	146 (4%)	2(0%)	100	100

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	F	208	ALA
1	Н	208	ALA

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	432/432~(100%)	415~(96%)	17 (4%)	32	48
1	В	433/432~(100%)	416 (96%)	17 (4%)	32	48
1	\mathbf{C}	433/432~(100%)	413~(95%)	20~(5%)	27	41
1	D	432/432~(100%)	413 (96%)	19 (4%)	28	44
1	Ε	433/432~(100%)	414 (96%)	19 (4%)	28	44
1	\mathbf{F}	432/432~(100%)	412~(95%)	20~(5%)	27	41
1	G	432/432~(100%)	415~(96%)	17~(4%)	32	48
1	Н	433/432~(100%)	414 (96%)	19 (4%)	28	44
All	All	3460/3456~(100%)	3312 (96%)	148 (4%)	29	45

All (148) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	134	VAL
1	А	149	MET
1	А	175	GLN
1	А	176	CYS
1	А	179	LEU
1	А	209	THR
1	А	231	LYS
1	А	286	LEU
1	А	302	VAL
1	А	308	GLU
1	А	309	ARG
1	А	339	GLN
1	А	358	GLN
1	А	454	GLU
1	А	455	VAL
1	А	477	VAL
1	A	510	GLN
1	В	48	SER
1	В	149	MET

Mol	Chain	Res	Type
1	В	175	GLN
1	В	176	CYS
1	В	179	LEU
1	В	209	THR
1	В	249	ASN
1	В	286	LEU
1	В	302	VAL
1	В	309	ARG
1	В	339	GLN
1	В	382	VAL
1	В	455	VAL
1	В	470	ASP
1	В	477	VAL
1	В	510	GLN
1	В	511	LEU
1	C	25	ARG
1	С	90	GLN
1	С	134	VAL
1	С	149	MET
1	С	175	GLN
1	С	176	CYS
1	С	179	LEU
1	С	209	THR
1	С	211[A]	ARG
1	С	211[B]	ARG
1	С	279	ASN
1	С	286	LEU
1	С	302	VAL
1	С	309	ARG
1	С	339	GLN
1	C	358	GLN
1	C	382	VAL
1	C	455	VAL
1	C	477	VAL
1	C	510	GLN
1	D	25	ARG
1	D	90	GLN
1	D	134	VAL
1	D	149	MET
1	D	175	GLN
1	D	176	CYS
1	D	179	LEU

Mol	Chain	Res	Type
1	D	209	THR
1	D	279	ASN
1	D	286	LEU
1	D	288	LYS
1	D	302	VAL
1	D	309	ARG
1	D	339	GLN
1	D	358	GLN
1	D	382	VAL
1	D	455	VAL
1	D	470	ASP
1	D	477	VAL
1	Е	3	HIS
1	Е	25	ARG
1	Е	90	GLN
1	Е	134	VAL
1	Е	149	MET
1	Е	175	GLN
1	Е	176	CYS
1	Е	179	LEU
1	Е	209	THR
1	Е	286	LEU
1	Е	302	VAL
1	Е	309	ARG
1	Е	339	GLN
1	Е	356	ARG
1	Е	358	GLN
1	Ε	382	VAL
1	Ε	477	VAL
1	Е	510	GLN
1	Е	511	LEU
1	F	25	ARG
1	F	90	GLN
1	F	149	MET
1	F	175	GLN
1	F	176	CYS
1	F	179	LEU
1	F	209	THR
1	F	231	LYS
1	F	279	ASN
1	F	286	LEU
1	F	302	VAL

Mol	Chain	Res	Type
1	F	309	ARG
1	F	339	GLN
1	F	356	ARG
1	F	358	GLN
1	F	382	VAL
1	F	455	VAL
1	F	470	ASP
1	F	477	VAL
1	F	510	GLN
1	G	90	GLN
1	G	123	ASP
1	G	149	MET
1	G	175	GLN
1	G	176	CYS
1	G	179	LEU
1	G	209	THR
1	G	286	LEU
1	G	302	VAL
1	G	309	ARG
1	G	339	GLN
1	G	358	GLN
1	G	382	VAL
1	G	393	GLN
1	G	455	VAL
1	G	477	VAL
1	G	510	GLN
1	Н	48	SER
1	Н	90	GLN
1	Н	149	MET
1	Н	175	GLN
1	Н	176	CYS
1	Н	179	LEU
1	Н	209	THR
1	H	244	LYS
1	Н	286	LEU
1	Н	302	VAL
1	Н	308	GLU
1	Н	309	ARG
1	Н	339	GLN
1	Н	358	GLN
1	Н	382	VAL
1	Н	450	SER

Continued from previous page...

Mol	Chain	Res	Type
1	Н	455	VAL
1	Н	477	VAL
1	Н	510	GLN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (32) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	98	GLN
1	А	296	HIS
1	А	339	GLN
1	А	412	HIS
1	В	98	GLN
1	В	296	HIS
1	В	339	GLN
1	В	412	HIS
1	С	98	GLN
1	С	296	HIS
1	С	339	GLN
1	С	412	HIS
1	С	458	GLN
1	D	98	GLN
1	D	339	GLN
1	D	458	GLN
1	Е	98	GLN
1	Е	175	GLN
1	Е	296	HIS
1	Е	339	GLN
1	Е	412	HIS
1	F	98	GLN
1	F	296	HIS
1	F	339	GLN
1	F	412	HIS
1	G	98	GLN
1	G	296	HIS
1	G	339	GLN
1	G	412	HIS
1	Н	98	GLN
1	Н	339	GLN
1	Н	458	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 24 ligands modelled in this entry, 8 are monoatomic - leaving 16 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Bos	Link	В	ond leng	gths	B	ond ang	gles
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
3	FAD	Н	605	-	$53,\!58,\!58$	2.72	15 (28%)	68,89,89	1.80	17 (25%)
2	UDP	D	800	-	24,26,26	0.93	1 (4%)	37,40,40	1.49	6 (16%)
3	FAD	F	603	-	$53,\!58,\!58$	2.71	16 (30%)	68,89,89	1.71	17 (25%)
2	UDP	Н	800	-	24,26,26	0.93	1 (4%)	37,40,40	1.53	6 (16%)
2	UDP	А	800	-	24,26,26	0.93	0	37,40,40	1.57	6 (16%)
2	UDP	Е	800	-	24,26,26	0.94	1 (4%)	37,40,40	1.53	6 (16%)
3	FAD	D	601	-	$53,\!58,\!58$	2.73	17 (32%)	68,89,89	1.71	18 (26%)
3	FAD	G	607	-	$53,\!58,\!58$	2.74	17 (32%)	68,89,89	1.69	17 (25%)
2	UDP	С	800	-	24,26,26	0.91	0	37,40,40	1.54	6 (16%)
2	UDP	В	800	-	24,26,26	0.93	0	37,40,40	1.45	5 (13%)
2	UDP	G	800	-	24,26,26	0.93	0	37,40,40	1.47	5 (13%)
2	UDP	F	800	-	24,26,26	0.93	0	37,40,40	1.48	5 (13%)
3	FAD	С	600	-	53, 58, 58	2.73	17 (32%)	68,89,89	1.65	17 (25%)
3	FAD	В	604	-	$53,\!58,\!58$	2.70	16 (30%)	68,89,89	1.70	17 (25%)

Mol Typ	Turne	pe Chain	ain Res	les Link	В	Bond lengths			Bond angles		
	туре				Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
3	FAD	А	602	-	$53,\!58,\!58$	2.74	16 (30%)	68,89,89	1.72	20 (29%)	
3	FAD	Е	606	-	53,58,58	2.71	15 (28%)	68,89,89	1.67	15 (22%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	FAD	Н	605	-	-	10/30/50/50	0/6/6/6
2	UDP	D	800	-	-	6/16/32/32	0/2/2/2
3	FAD	F	603	-	-	11/30/50/50	0/6/6/6
2	UDP	Н	800	-	-	4/16/32/32	0/2/2/2
2	UDP	А	800	-	-	4/16/32/32	0/2/2/2
2	UDP	Е	800	-	-	7/16/32/32	0/2/2/2
3	FAD	D	601	-	-	13/30/50/50	0/6/6/6
3	FAD	G	607	-	-	12/30/50/50	0/6/6/6
2	UDP	С	800	-	-	4/16/32/32	0/2/2/2
2	UDP	В	800	-	-	5/16/32/32	0/2/2/2
2	UDP	G	800	-	-	5/16/32/32	0/2/2/2
2	UDP	F	800	-	-	5/16/32/32	0/2/2/2
3	FAD	С	600	-	-	7/30/50/50	0/6/6/6
3	FAD	В	604	-	-	11/30/50/50	0/6/6/6
3	FAD	А	602	-	-	9/30/50/50	0/6/6/6
3	FAD	Е	606	-	-	7/30/50/50	0/6/6/6

All (132) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
3	D	601	FAD	O4-C4	10.57	1.43	1.23
3	А	602	FAD	O4-C4	10.50	1.43	1.23
3	G	607	FAD	O4-C4	10.47	1.43	1.23
3	F	603	FAD	O4-C4	10.46	1.43	1.23
3	Н	605	FAD	O4-C4	10.42	1.43	1.23
3	Е	606	FAD	O4-C4	10.40	1.43	1.23
3	С	600	FAD	O4-C4	10.39	1.43	1.23
3	В	604	FAD	O4-C4	10.38	1.43	1.23
3	G	607	FAD	O2'-C2'	-8.36	1.25	1.43

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	D	601	FAD	O2'-C2'	-8.24	1.25	1.43
3	С	600	FAD	O2'-C2'	-8.22	1.26	1.43
3	Ε	606	FAD	O2'-C2'	-8.18	1.26	1.43
3	В	604	FAD	O2'-C2'	-8.11	1.26	1.43
3	F	603	FAD	O2'-C2'	-8.10	1.26	1.43
3	Н	605	FAD	O2'-C2'	-8.08	1.26	1.43
3	А	602	FAD	O2'-C2'	-8.05	1.26	1.43
3	G	607	FAD	O2-C2	7.76	1.38	1.24
3	F	603	FAD	O2-C2	7.76	1.38	1.24
3	В	604	FAD	O2-C2	7.72	1.38	1.24
3	Н	605	FAD	O2-C2	7.67	1.38	1.24
3	D	601	FAD	O2-C2	7.66	1.38	1.24
3	С	600	FAD	O2-C2	7.65	1.38	1.24
3	Е	606	FAD	O2-C2	7.65	1.38	1.24
3	А	602	FAD	O2-C2	7.54	1.38	1.24
3	Н	605	FAD	C2B-C3B	-4.79	1.40	1.53
3	В	604	FAD	C2B-C3B	-4.75	1.40	1.53
3	С	600	FAD	C1'-C2'	-4.74	1.46	1.52
3	А	602	FAD	C2B-C3B	-4.72	1.40	1.53
3	G	607	FAD	C2B-C3B	-4.64	1.40	1.53
3	Е	606	FAD	C2B-C3B	-4.60	1.40	1.53
3	С	600	FAD	C2B-C3B	-4.59	1.40	1.53
3	G	607	FAD	C1'-C2'	-4.58	1.46	1.52
3	Е	606	FAD	C1'-C2'	-4.57	1.46	1.52
3	F	603	FAD	C1'-C2'	-4.56	1.46	1.52
3	Н	605	FAD	C1'-C2'	-4.55	1.46	1.52
3	F	603	FAD	C2B-C3B	-4.54	1.40	1.53
3	D	601	FAD	C2B-C3B	-4.49	1.41	1.53
3	D	601	FAD	C1'-C2'	-4.40	1.46	1.52
3	В	604	FAD	C1'-C2'	-4.36	1.46	1.52
3	А	602	FAD	C1'-C2'	-4.25	1.46	1.52
3	А	602	FAD	C5'-C4'	-3.92	1.46	1.51
3	А	602	FAD	C9A-N10	-3.91	1.34	1.41
3	Н	605	FAD	C5'-C4'	-3.87	1.46	1.51
3	D	601	FAD	C5'-C4'	-3.69	1.46	1.51
3	С	600	FAD	C5'-C4'	-3.61	1.46	1.51
3	F	603	FAD	C5'-C4'	-3.55	1.46	1.51
3	Е	606	FAD	C9A-N10	-3.49	1.35	1.41
3	В	604	FAD	C9A-N10	-3.45	1.35	1.41
3	Е	606	FAD	C5'-C4'	-3.44	1.46	1.51
3	G	607	FAD	C5'-C4'	-3.43	1.46	1.51
3	F	603	FAD	C9A-N10	-3.43	1.35	1.41

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
3	С	600	FAD	C9A-N10	-3.43	1.35	1.41
3	Н	605	FAD	C9A-N10	-3.37	1.35	1.41
3	G	607	FAD	C9A-N10	-3.31	1.35	1.41
3	В	604	FAD	C5'-C4'	-3.22	1.47	1.51
3	D	601	FAD	C9A-N10	-3.16	1.35	1.41
3	А	602	FAD	C2B-C1B	-3.06	1.49	1.53
3	G	607	FAD	C2B-C1B	-3.04	1.49	1.53
3	А	602	FAD	PA-O1A	-2.91	1.40	1.50
3	В	604	FAD	C2B-C1B	-2.91	1.49	1.53
3	Н	605	FAD	C2B-C1B	-2.88	1.49	1.53
3	С	600	FAD	PA-O1A	-2.86	1.40	1.50
3	Е	606	FAD	PA-O1A	-2.83	1.40	1.50
3	D	601	FAD	PA-O1A	-2.81	1.40	1.50
3	D	601	FAD	C2B-C1B	-2.80	1.49	1.53
3	F	603	FAD	C2B-C1B	-2.77	1.49	1.53
3	F	603	FAD	PA-O1A	-2.73	1.41	1.50
3	В	604	FAD	PA-O1A	-2.73	1.41	1.50
3	Н	605	FAD	PA-O1A	-2.70	1.41	1.50
3	С	600	FAD	C2B-C1B	-2.68	1.49	1.53
3	G	607	FAD	PA-O1A	-2.65	1.41	1.50
3	Е	606	FAD	C2B-C1B	-2.59	1.49	1.53
3	G	607	FAD	O4B-C1B	-2.57	1.37	1.41
3	D	601	FAD	C7M-C7	2.53	1.56	1.51
3	А	602	FAD	C3B-C4B	-2.51	1.46	1.53
3	С	600	FAD	C7M-C7	2.49	1.56	1.51
3	F	603	FAD	C7M-C7	2.46	1.55	1.51
3	В	604	FAD	C4-N3	-2.46	1.34	1.38
3	С	600	FAD	C3B-C4B	-2.46	1.46	1.53
3	D	601	FAD	C3B-C4B	-2.45	1.46	1.53
3	D	601	FAD	O4B-C1B	-2.43	1.37	1.41
3	C	600	FAD	O4B-C1B	-2.42	1.37	1.41
3	В	604	FAD	C7M-C7	2.41	1.55	1.51
3	A	602	FAD	C7M-C7	2.40	1.55	1.51
3	Н	605	FAD	C7M-C7	2.38	1.55	1.51
3	G	607	FAD	C7M-C7	2.37	1.55	1.51
3	E	606	FAD	O4B-C4B	-2.36	1.39	1.45
3	E	606	FAD	C3B-C4B	-2.35	1.47	1.53
3	F	603	FAD	O4B-C4B	-2.35	1.39	1.45
3	С	600	FAD	O4B-C4B	-2.34	1.39	1.45
3	D	601	FAD	O4B-C4B	-2.33	1.39	1.45
3	G	607	FAD	O4B-C4B	-2.33	1.39	1.45
3	В	604	FAD	C3B-C4B	-2.32	1.47	1.53

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	F	603	FAD	C3B-C4B	-2.30	1.47	1.53
3	Е	606	FAD	C7M-C7	2.30	1.55	1.51
3	F	603	FAD	O4B-C1B	-2.29	1.37	1.41
3	А	602	FAD	O4B-C4B	-2.28	1.39	1.45
3	Н	605	FAD	C3B-C4B	-2.28	1.47	1.53
3	А	602	FAD	O4B-C1B	-2.28	1.37	1.41
3	А	602	FAD	C4-N3	-2.28	1.34	1.38
3	F	603	FAD	C4-N3	-2.27	1.34	1.38
3	D	601	FAD	C4-N3	-2.26	1.34	1.38
3	В	604	FAD	O4B-C4B	-2.25	1.40	1.45
3	Н	605	FAD	O4B-C4B	-2.23	1.40	1.45
3	D	601	FAD	C4X-N5	2.21	1.35	1.30
3	С	600	FAD	C2'-C3'	-2.20	1.49	1.53
3	А	602	FAD	C4X-N5	2.19	1.35	1.30
3	G	607	FAD	C4X-N5	2.19	1.35	1.30
3	G	607	FAD	C3B-C4B	-2.17	1.47	1.53
3	Е	606	FAD	C6A-N6A	2.17	1.41	1.34
3	F	603	FAD	C4X-N5	2.17	1.35	1.30
3	Н	605	FAD	C6A-N6A	2.15	1.41	1.34
3	Е	606	FAD	C2'-C3'	-2.15	1.49	1.53
3	С	600	FAD	C4-N3	-2.14	1.34	1.38
3	В	604	FAD	C6A-N6A	2.14	1.41	1.34
3	Е	606	FAD	C4-N3	-2.13	1.34	1.38
3	G	607	FAD	C6A-N6A	2.13	1.41	1.34
3	Н	605	FAD	C4X-N5	2.12	1.34	1.30
3	В	604	FAD	O4B-C1B	-2.12	1.38	1.41
3	G	607	FAD	C4-N3	-2.11	1.34	1.38
3	Н	605	FAD	C2'-C3'	-2.11	1.49	1.53
3	В	604	FAD	C4X-N5	2.10	1.34	1.30
3	С	600	FAD	C6A-N6A	2.08	1.41	1.34
3	А	602	FAD	C6A-N6A	2.07	1.41	1.34
3	D	601	FAD	C6A-N6A	2.06	1.41	1.34
3	F	603	FAD	C6A-N6A	2.04	1.41	1.34
2	Н	800	UDP	C6-C5	2.03	1.39	1.35
2	D	800	UDP	C6-C5	2.02	1.39	1.35
2	Е	800	UDP	C6-C5	2.02	1.39	1.35
3	D	601	FAD	C2'-C3'	-2.02	1.49	1.53
3	G	607	FAD	C2'-C3'	-2.01	1.49	1.53
3	С	600	FAD	C4X-N5	2.00	1.34	1.30

All (183) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	А	800	UDP	C4-N3-C2	-5.34	119.54	126.58
2	С	800	UDP	C4-N3-C2	-5.15	119.78	126.58
2	Н	800	UDP	C4-N3-C2	-4.97	120.02	126.58
2	D	800	UDP	C4-N3-C2	-4.94	120.06	126.58
2	F	800	UDP	C4-N3-C2	-4.87	120.16	126.58
2	G	800	UDP	C4-N3-C2	-4.82	120.22	126.58
2	Е	800	UDP	C4-N3-C2	-4.71	120.37	126.58
2	В	800	UDP	C4-N3-C2	-4.63	120.47	126.58
3	Н	605	FAD	C4-C4X-N5	4.52	124.66	118.23
3	Н	605	FAD	O2'-C2'-C1'	4.41	120.47	109.80
3	А	602	FAD	N3A-C2A-N1A	-4.33	121.91	128.68
3	С	600	FAD	N3A-C2A-N1A	-4.22	122.08	128.68
3	Н	605	FAD	N3A-C2A-N1A	-4.20	122.11	128.68
3	В	604	FAD	N3A-C2A-N1A	-4.20	122.11	128.68
2	А	800	UDP	N3-C2-N1	4.15	120.40	114.89
3	D	601	FAD	N3A-C2A-N1A	-4.15	122.19	128.68
2	Е	800	UDP	N3-C2-N1	4.12	120.35	114.89
3	F	603	FAD	N3A-C2A-N1A	-4.08	122.30	128.68
3	Ε	606	FAD	N3A-C2A-N1A	-4.08	122.30	128.68
2	Н	800	UDP	N3-C2-N1	4.06	120.28	114.89
3	В	604	FAD	C1B-N9A-C4A	-4.05	119.52	126.64
3	Н	605	FAD	C1B-N9A-C4A	-4.04	119.54	126.64
3	G	607	FAD	C1B-N9A-C4A	-4.03	119.55	126.64
2	С	800	UDP	N3-C2-N1	4.00	120.19	114.89
2	D	800	UDP	N3-C2-N1	3.98	120.18	114.89
3	G	607	FAD	N3A-C2A-N1A	-3.96	122.49	128.68
2	G	800	UDP	N3-C2-N1	3.92	120.10	114.89
2	F	800	UDP	N3-C2-N1	3.90	120.06	114.89
3	С	600	FAD	O2'-C2'-C1'	3.87	119.15	109.80
3	F	603	FAD	C1B-N9A-C4A	-3.86	119.86	126.64
3	D	601	FAD	O2'-C2'-C1'	3.86	119.13	109.80
3	Н	605	FAD	O2'-C2'-C3'	3.86	118.48	109.10
3	С	600	FAD	C1B-N9A-C4A	-3.84	119.89	126.64
2	В	800	UDP	N3-C2-N1	3.78	119.91	114.89
3	Ε	606	FAD	O2'-C2'-C1'	3.77	118.91	109.80
3	А	602	FAD	C1B-N9A-C4A	-3.77	120.03	126.64
3	F	603	FAD	O2'-C2'-C1'	3.76	118.88	109.80
3	G	607	FAD	O2'-C2'-C1'	3.70	118.76	109.80
3	С	600	FAD	C4-C4X-N5	3.70	123.49	118.23
3	Ε	606	FAD	C3B-C2B-C1B	3.66	106.48	100.98
3	G	$60\overline{7}$	FAD	C4-C4X-N5	$3.6\overline{2}$	123.38	118.23
3	E	606	FAD	O5'-C5'-C4'	3.60	118.97	109.36
3	F	603	FAD	O2'-C2'-C3'	3.60	117.84	109.10

2	IIVI	
J	UNL	1

Conti	Continued from previous page											
Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$					
3	D	601	FAD	C1B-N9A-C4A	-3.53	120.44	126.64					
2	Е	800	UDP	PA-O3A-PB	-3.51	120.79	132.83					
3	F	603	FAD	C4-C4X-N5	3.45	123.14	118.23					
3	D	601	FAD	O5'-C5'-C4'	3.43	118.52	109.36					
3	F	603	FAD	C3B-C2B-C1B	3.43	106.14	100.98					
3	D	601	FAD	C4-C4X-N5	3.38	123.05	118.23					
3	А	602	FAD	O2'-C2'-C1'	3.38	117.96	109.80					
3	Е	606	FAD	C1B-N9A-C4A	-3.36	120.73	126.64					
3	В	604	FAD	C4-N3-C2	-3.35	119.45	125.64					
3	В	604	FAD	O2'-C2'-C1'	3.34	117.88	109.80					
3	G	607	FAD	O2'-C2'-C3'	3.33	117.19	109.10					
3	Е	606	FAD	C4-N3-C2	-3.31	119.52	125.64					
3	А	602	FAD	C4-N3-C2	-3.31	119.53	125.64					
3	D	601	FAD	C3B-C2B-C1B	3.28	105.92	100.98					
3	В	604	FAD	O5'-C5'-C4'	3.27	118.09	109.36					
3	G	607	FAD	P-O3P-PA	-3.23	121.74	132.83					
3	Е	606	FAD	O4-C4-C4X	-3.23	118.04	126.60					
3	Н	605	FAD	C4X-C10-N10	3.22	121.19	116.48					
3	Н	605	FAD	C4-N3-C2	-3.21	119.72	125.64					
3	F	603	FAD	C4-N3-C2	-3.20	119.72	125.64					
3	D	601	FAD	C4-N3-C2	-3.20	119.74	125.64					
3	Н	605	FAD	O5'-C5'-C4'	3.18	117.84	109.36					
3	С	600	FAD	C3B-C2B-C1B	3.18	105.76	100.98					
3	Е	606	FAD	C4-C4X-N5	3.16	122.73	118.23					
3	D	601	FAD	O2'-C2'-C3'	3.16	116.78	109.10					
3	А	602	FAD	C4-C4X-N5	3.15	122.72	118.23					
3	С	600	FAD	C4-N3-C2	-3.14	119.84	125.64					
3	А	602	FAD	C1'-N10-C9A	-3.14	115.28	120.51					
3	G	607	FAD	C4-N3-C2	-3.12	119.88	125.64					
3	G	607	FAD	O5'-C5'-C4'	3.11	117.66	109.36					
3	Н	605	FAD	O5B-C5B-C4B	3.08	119.58	108.99					
3	В	604	FAD	C1'-N10-C9A	-3.06	115.40	120.51					
3	С	600	FAD	P-O3P-PA	-3.03	122.42	132.83					
3	А	602	FAD	O2'-C2'-C3'	3.02	116.43	109.10					
3	Н	605	FAD	C4X-C4-N3	3.01	120.84	113.19					
3	А	602	FAD	O5B-C5B-C4B	3.01	119.34	108.99					
3	Е	606	FAD	C4X-C4-N3	3.00	120.81	113.19					
3	В	604	FAD	O4-C4-C4X	-2.99	118.67	126.60					
3	Е	606	FAD	O5B-C5B-C4B	2.98	119.25	108.99					
3	А	602	FAD	C4X-C4-N3	2.98	120.76	113.19					
3	F	603	FAD	C4X-C4-N3	2.96	120.72	113.19					
3	G	607	FAD	C4X-C4-N3	2.95	120.69	113.19					

	Chain	i previ	Unit Tube	Atoms	Z	$Observed(^{o})$	Ideal(°)
2		602			2.04	118 80	106 60
<u>्</u> र	F B	604	FAD FAD	$\begin{array}{c} 04-04-04\Lambda \\ \hline 04X \ C4 \ N3 \end{array}$	-2.94	110.60	120.00 113.10
3	G	607	FAD	C4A-C5A-N7A	_2.94	106.34	110.19
3		601	FAD	C4X C10 N10	-2.94	100.54	116.48
$\frac{1}{2}$	E E	800	IIDP	$PA \cap 3A PB$	2.92 2.02	120.70	132.83
$\frac{2}{3}$	r C	607		$\begin{array}{c} 1 \text{ A-O3A-1 D} \\ \hline 0 4 \text{ C4 C4X} \end{array}$	-2.92	118.85	192.00
3		602	FAD	$\frac{04-04-04X}{028}$	-2.92	105.37	120.00
3 3	С	600	FAD	$\frac{\text{C}_{3}\text{D}_{\text{C}_{2}}\text{C}_{2}\text{D}_{\text{C}_{1}}\text{D}_{1}}{\text{C}_{4}\text{X}_{\text{C}_{4}}\text{N}_{3}}$	2.32 2.80	100.57	113 10
3	C	600	FAD	02'-02'-03'	2.00 2.80	116.12	110.15
3	Н	605	FAD	02 - 02 - 03	-2.85	118.00	105.10
$\frac{0}{2}$	С	800	IIDP	C5-C4-N3	2.01	110.55	120.00
3	F	603	FAD	05'-C5'-C4'	2.00 2.84	116.94	109.36
3	D	601	FAD	04 - C4 - C4X	-2.04	110.94	126.60
3	D	601	FAD	C4X-C4-N3	2.04 2.83	120.38	113.10
3	B	604	FAD	C3B-C2B-C1B	2.00 2.82	105.22	100.98
3	G	607	FAD	C3B-C2B-C1B	2.02 2.82	105.22	100.90
3	F	603	FAD	C4A-C5A-N7A	-2.82	106.22	100.30
3	D	601	FAD	O5B-C5B-C4B	2.02	118.67	103.10
$\frac{3}{2}$	G	800	UDP	C5-C4-N3	$\frac{2.01}{2.81}$	119.04	114 84
$\frac{2}{2}$	Н	800	UDP	C5-C4-N3	$\frac{2.01}{2.80}$	119.03	114.84
3	C	600	FAD	04-C4-C4X	-2.80	119.19	126.60
2	B	800	UDP	C5-C4-N3	2.79	119.02	114.84
3	F	603	FAD	P-O3P-PA	-2.79	123.25	132.83
2	F	800	UDP	C5-C4-N3	2.79	119.01	114.84
2	Н	800	UDP	PA-O3A-PB	-2.78	123.30	132.83
3	Н	605	FAD	C10-C4X-N5	-2.77	118.97	124.86
3	A	602	FAD	O4-C4-C4X	-2.77	119.26	126.60
3	В	604	FAD	P-O3P-PA	-2.77	123.33	132.83
3	А	602	FAD	C4A-C5A-N7A	-2.75	106.53	109.40
2	D	800	UDP	C5-C4-N3	2.75	118.95	114.84
2	А	800	UDP	PA-O3A-PB	-2.74	123.42	132.83
2	А	800	UDP	C5-C4-N3	2.72	118.91	114.84
2	Е	800	UDP	C5-C4-N3	2.72	118.91	114.84
3	В	604	FAD	C4A-C5A-N7A	-2.70	106.58	109.40
3	А	602	FAD	P-O3P-PA	-2.70	123.56	132.83
3	В	604	FAD	O2'-C2'-C3'	2.69	115.64	109.10
3	G	607	FAD	C4X-C10-N10	2.68	120.41	116.48
3	В	604	FAD	O5B-C5B-C4B	2.67	118.19	108.99
3	Н	605	FAD	P-O3P-PA	-2.66	123.71	132.83
3	D	601	FAD	C5'-C4'-C3'	-2.65	107.09	112.20
3	С	600	FAD	C4X-C10-N10	2.64	120.34	116.48
3	Е	606	FAD	O2'-C2'-C3'	2.63	115.49	109.10

Contir d fa

31	JKL

Continued from previous page								
Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$	
3	Н	605	FAD	O2-C2-N1	-2.62	117.49	121.83	
2	С	800	UDP	O4-C4-C5	-2.59	120.61	125.16	
3	F	603	FAD	O5B-C5B-C4B	2.56	117.81	108.99	
2	G	800	UDP	PA-O3A-PB	-2.56	124.06	132.83	
3	В	604	FAD	C4-C4X-N5	2.56	121.87	118.23	
3	D	601	FAD	C4A-C5A-N7A	-2.55	106.74	109.40	
3	Н	605	FAD	C3B-C2B-C1B	2.55	104.81	100.98	
2	С	800	UDP	PA-O3A-PB	-2.54	124.10	132.83	
3	G	607	FAD	O5B-C5B-C4B	2.54	117.72	108.99	
2	А	800	UDP	O4-C4-C5	-2.52	120.73	125.16	
2	А	800	UDP	O2-C2-N1	-2.50	119.46	122.79	
3	С	600	FAD	C10-C4X-N5	-2.50	119.56	124.86	
2	D	800	UDP	O4-C4-C5	-2.49	120.78	125.16	
3	F	603	FAD	C4X-C10-N10	2.48	120.11	116.48	
3	А	602	FAD	O5'-C5'-C4'	2.48	115.99	109.36	
2	Е	800	UDP	O4-C4-C5	-2.48	120.80	125.16	
3	D	601	FAD	P-O3P-PA	-2.48	124.33	132.83	
2	F	800	UDP	O4-C4-C5	-2.48	120.80	125.16	
2	В	800	UDP	PA-O3A-PB	-2.45	124.42	132.83	
2	G	800	UDP	O4-C4-C5	-2.45	120.86	125.16	
3	Е	606	FAD	C4A-C5A-N7A	-2.44	106.85	109.40	
3	С	600	FAD	C4A-C5A-N7A	-2.42	106.87	109.40	
3	F	603	FAD	C10-C4X-N5	-2.40	119.77	124.86	
3	G	607	FAD	C10-C4X-N5	-2.38	119.80	124.86	
3	А	602	FAD	C10-C4X-N5	-2.37	119.83	124.86	
2	Н	800	UDP	O4-C4-C5	-2.37	121.00	125.16	
3	D	601	FAD	C10-C4X-N5	-2.36	119.84	124.86	
3	Е	606	FAD	C4X-C10-N10	2.36	119.93	116.48	
3	Н	605	FAD	C4A-C5A-N7A	-2.33	106.97	109.40	
3	А	602	FAD	C4X-C10-N10	2.31	119.86	116.48	
3	С	600	FAD	O5'-C5'-C4'	2.31	115.53	109.36	
2	В	800	UDP	O4-C4-C5	-2.29	121.13	125.16	
3	В	604	FAD	C4X-C10-N1	-2.24	119.54	124.73	
2	Е	800	UDP	O2-C2-N1	-2.23	119.82	122.79	
3	Е	606	FAD	C10-C4X-N5	-2.23	120.13	124.86	
3	F	603	FAD	O2-C2-N1	-2.22	118.15	121.83	
3	А	602	FAD	C4X-C10-N1	-2.22	119.58	124.73	
3	Е	606	FAD	O2-C2-N1	-2.22	118.16	121.83	
3	В	604	FAD	C10-C4X-N5	-2.19	120.21	124.86	
3	D	601	FAD	O2-C2-N1	-2.16	118.25	121.83	
2	Н	800	UDP	O2-C2-N1	-2.15	119.92	122.79	
3	А	602	FAD	O2-C2-N1	-2.13	118.30	121.83	

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	С	600	FAD	O2-C2-N1	-2.13	118.30	121.83
3	D	601	FAD	C4'-C3'-C2'	2.12	117.77	113.36
3	С	600	FAD	O5B-C5B-C4B	2.11	116.25	108.99
2	D	800	UDP	PA-O3A-PB	-2.10	125.62	132.83
3	С	600	FAD	O4B-C4B-C3B	2.10	109.26	105.11
3	Н	605	FAD	C5'-C4'-C3'	-2.10	108.16	112.20
3	G	607	FAD	O2-C2-N1	-2.09	118.37	121.83
3	В	604	FAD	C4X-C10-N10	2.06	119.49	116.48
3	G	607	FAD	O4B-C1B-C2B	-2.06	103.92	106.93
3	F	603	FAD	C4'-C3'-C2'	2.05	117.63	113.36
3	А	602	FAD	C10-N1-C2	2.04	120.99	116.90
2	D	800	UDP	O2-C2-N1	-2.03	120.09	122.79
3	А	602	FAD	C9-C9A-N10	-2.02	119.10	121.84
2	С	800	UDP	C6-N1-C2	-2.02	118.41	120.99

There are no chirality outliers.

All ((120)) torsion	outliers	are	listed	below:
-------	-------	-----------	----------	-----	--------	--------

Mol	Chain	Res	Type	Atoms
2	А	800	UDP	C5'-O5'-PA-O1A
2	А	800	UDP	C5'-O5'-PA-O3A
2	А	800	UDP	PA-O3A-PB-O2B
2	А	800	UDP	PA-O3A-PB-O3B
2	В	800	UDP	C3'-C4'-C5'-O5'
2	В	800	UDP	O4'-C4'-C5'-O5'
2	В	800	UDP	PA-O3A-PB-O2B
2	В	800	UDP	PA-O3A-PB-O3B
2	С	800	UDP	PA-O3A-PB-O2B
2	С	800	UDP	PA-O3A-PB-O3B
2	Е	800	UDP	C5'-O5'-PA-O2A
2	Е	800	UDP	C5'-O5'-PA-O3A
2	F	800	UDP	C5'-O5'-PA-O1A
2	F	800	UDP	PA-O3A-PB-O3B
2	G	800	UDP	C5'-O5'-PA-O1A
2	G	800	UDP	PA-O3A-PB-O3B
2	Н	800	UDP	C5'-O5'-PA-O1A
2	Н	800	UDP	PA-O3A-PB-O2B
2	Н	800	UDP	PA-O3A-PB-O3B
3	A	602	FAD	C5B-O5B-PA-O1A
3	A	602	FAD	C5B-O5B-PA-O2A
3	В	604	FAD	C5B-O5B-PA-O1A
3	В	604	FAD	C5B-O5B-PA-O2A

			Jus puye	• • •
Mol	Chain	Res	Type	Atoms
3	С	600	FAD	C5B-O5B-PA-O1A
3	С	600	FAD	C5B-O5B-PA-O2A
3	C	600	FAD	P-O3P-PA-O5B
3	С	600	FAD	$C3B-C\overline{4B}-C\overline{5B}-O\overline{5B}$
3	D	601	FAD	C5B-O5B-PA-O1A
3	D	601	FAD	C5B-O5B-PA-O2A
3	D	601	FAD	C5'-O5'-P-O3P
3	Е	606	FAD	C5B-O5B-PA-O1A
3	Е	606	FAD	C5B-O5B-PA-O2A
3	Е	606	FAD	O4B-C4B-C5B-O5B
3	F	603	FAD	C5B-O5B-PA-O1A
3	F	603	FAD	C5B-O5B-PA-O2A
3	G	607	FAD	C5B-O5B-PA-O2A
3	G	607	FAD	P-O3P-PA-O5B
3	Н	605	FAD	C5B-O5B-PA-O2A
3	Н	605	FAD	C5B-O5B-PA-O3P
3	Н	605	FAD	N10-C1'-C2'-O2'
2	Е	800	UDP	O4'-C4'-C5'-O5'
3	А	602	FAD	O4B-C4B-C5B-O5B
3	А	602	FAD	C3B-C4B-C5B-O5B
3	В	604	FAD	O4B-C4B-C5B-O5B
3	В	604	FAD	C3B-C4B-C5B-O5B
3	С	600	FAD	O4B-C4B-C5B-O5B
3	D	601	FAD	O4B-C4B-C5B-O5B
3	D	601	FAD	C3B-C4B-C5B-O5B
3	F	603	FAD	O4B-C4B-C5B-O5B
3	F	603	FAD	C3B-C4B-C5B-O5B
3	G	607	FAD	O4B-C4B-C5B-O5B
3	Н	605	FAD	O4B-C4B-C5B-O5B
3	Н	605	FAD	C3B-C4B-C5B-O5B
3	В	604	FAD	O2'-C2'-C3'-C4'
3	G	607	FAD	O2'-C2'-C3'-C4'
3	E	606	FAD	C3B-C4B-C5B-O5B
3	В	604	FAD	O2'-C2'-C3'-O3'
2	D	800	UDP	C3'-C4'-C5'-O5'
2	E	800	UDP	C3'-C4'-C5'-O5'
3	G	607	FAD	C3B-C4B-C5B-O5B
3	F	603	FAD	<u>O2'-C2'-C3'-C4'</u>
3	G	607	FAD	04'-C4'-C5'-O5'
3	A	602	FAD	<u>O2'-C2'-C3'-C4'</u>
2	D	800	UDP	04'-C4'-C5'-O5'
3	G	607	FAD	C3'-C4'-C5'-O5'
U	U U	001		

Continued from previous page...

607FADC3'-C4'-C5'-O5'Continued on next page...

Mol	Chain	Res	Type	Atoms
3	G	607	FAD	O2'-C2'-C3'-O3'
3	А	602	FAD	P-O3P-PA-O5B
3	В	604	FAD	P-O3P-PA-O5B
3	D	601	FAD	P-O3P-PA-O5B
3	Е	606	FAD	P-O3P-PA-O5B
3	F	603	FAD	P-O3P-PA-O5B
3	Н	605	FAD	P-O3P-PA-O5B
2	В	800	UDP	C5'-O5'-PA-O3A
2	F	800	UDP	C5'-O5'-PA-O3A
2	G	800	UDP	C5'-O5'-PA-O3A
2	Н	800	UDP	C5'-O5'-PA-O3A
3	В	604	FAD	C5'-O5'-P-O3P
3	D	601	FAD	C5B-O5B-PA-O3P
3	F	603	FAD	C5'-O5'-P-O3P
3	G	607	FAD	C5B-O5B-PA-O3P
3	G	607	FAD	C5'-O5'-P-O3P
3	Е	606	FAD	PA-O3P-P-O1P
3	Н	605	FAD	PA-O3P-P-O1P
2	Е	800	UDP	C5'-O5'-PA-O1A
3	D	601	FAD	C3'-C4'-C5'-O5'
3	D	601	FAD	C5'-O5'-P-O1P
3	D	601	FAD	C5'-O5'-P-O2P
3	F	603	FAD	C5'-O5'-P-O2P
3	G	607	FAD	C5B-O5B-PA-O1A
3	Н	605	FAD	C5B-O5B-PA-O1A
3	D	601	FAD	N10-C1'-C2'-O2'
3	D	601	FAD	O4'-C4'-C5'-O5'
3	А	602	FAD	O2'-C2'-C3'-O3'
3	F	603	FAD	O2'-C2'-C3'-O3'
3	F	603	FAD	PA-O3P-P-O1P
3	A	602	FAD	C2'-C1'-N10-C10
3	В	604	FAD	C2'-C1'-N10-C10
3	С	600	FAD	O2'-C2'-C3'-C4'
2	D	800	UDP	PB-O3A-PA-O1A
3	В	604	FAD	PA-O3P-P-O2P
2	F	800	UDP	PA-O3A-PB-O1B
2	G	800	UDP	PA-O3A-PB-O1B
2	D	800	UDP	PA-O3A-PB-O2B
2	Е	800	UDP	PA-O3A-PB-O2B
2	F	800	UDP	PA-O3A-PB-O2B
2	G	800	UDP	PA-O3A-PB-O2B
2	C	800	UDP	C5'-O5'-PA-O3A

Continued from previous page...

Mol	Chain	Res	Type	Atoms
2	D	800	UDP	C5'-O5'-PA-O3A
3	А	602	FAD	C5B-O5B-PA-O3P
3	В	604	FAD	C5B-O5B-PA-O3P
3	С	600	FAD	C5B-O5B-PA-O3P
3	Ε	606	FAD	C5B-O5B-PA-O3P
3	F	603	FAD	C5B-O5B-PA-O3P
3	Н	605	FAD	C5'-O5'-P-O3P
3	D	601	FAD	PA-O3P-P-O1P
2	С	800	UDP	C5'-O5'-PA-O1A
2	D	800	UDP	C5'-O5'-PA-O1A
3	G	607	FAD	C5'-O5'-P-O2P
3	H	605	FAD	C1'-C2'-C3'-O3'
2	Ε	800	UDP	O4'-C1'-N1-C6

Continued from previous page...

There are no ring outliers.

14 monomers are involved in 16 short contacts:

Mol	Chain	\mathbf{Res}	Type	Clashes	Symm-Clashes
3	Н	605	FAD	2	0
2	D	800	UDP	1	0
2	Н	800	UDP	1	0
2	А	800	UDP	1	0
2	Е	800	UDP	1	0
3	D	601	FAD	1	0
3	G	607	FAD	1	0
2	С	800	UDP	2	0
2	G	800	UDP	1	0
2	F	800	UDP	1	0
3	С	600	FAD	1	0
3	В	604	FAD	1	0
3	A	602	FAD	1	0
3	Е	606	FAD	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and

any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$\mathbf{OWAB}(\mathrm{\AA}^2)$	Q < 0.9
1	А	510/510~(100%)	-0.26	8 (1%) 72 69	21, 41, 77, 114	0
1	В	510/510~(100%)	-0.18	3 (0%) 89 88	22, 40, 77, 114	0
1	С	510/510~(100%)	-0.29	10 (1%) 65 61	22, 41, 77, 118	0
1	D	510/510~(100%)	-0.23	10 (1%) 65 61	23, 43, 79, 119	0
1	Ε	510/510~(100%)	-0.24	12 (2%) 59 55	21, 43, 77, 118	0
1	F	510/510~(100%)	-0.11	15 (2%) 51 48	22, 44, 79, 119	0
1	G	510/510~(100%)	-0.30	5 (0%) 82 81	25, 44, 78, 116	0
1	Η	510/510~(100%)	-0.14	14 (2%) 54 50	25, 45, 80, 117	0
All	All	4080/4080 (100%)	-0.22	77 (1%) 66 64	21, 43, 79, 119	0

All (77) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	В	511	LEU	5.0
1	Н	201	ALA	4.9
1	Е	358	GLN	4.6
1	F	208	ALA	4.6
1	G	511	LEU	4.5
1	С	510	GLN	4.4
1	F	358	GLN	4.4
1	Е	511	LEU	4.0
1	С	507	SER	3.9
1	D	204	TRP	3.9
1	F	510	GLN	3.8
1	А	2	THR	3.8
1	Е	201	ALA	3.6
1	А	201	ALA	3.4
1	Н	208	ALA	3.4
1	F	2	THR	3.3

Mol	Chain	Res	Type	RSRZ
1	Н	2	THR	3.3
1	F	201	ALA	3.3
1	F	203	ASN	3.2
1	F	362	ALA	3.1
1	D	510	GLN	3.1
1	D	205	GLY	3.0
1	D	2	THR	3.0
1	С	203	ASN	2.9
1	Н	206	PRO	2.9
1	F	511	LEU	2.9
1	А	62	GLY	2.9
1	Н	204	TRP	2.9
1	С	208	ALA	2.9
1	D	308	GLU	2.8
1	F	356	ARG	2.8
1	Е	2	THR	2.8
1	Е	204	TRP	2.8
1	С	2	THR	2.8
1	В	201	ALA	2.6
1	G	358	GLN	2.6
1	Е	203	ASN	2.6
1	Н	202	GLY	2.6
1	С	509	ALA	2.5
1	А	309	ARG	2.5
1	D	208	ALA	2.4
1	Н	283	LEU	2.4
1	А	510	GLN	2.4
1	F	360	THR	2.4
1	D	3	HIS	2.4
1	Н	3	HIS	2.3
1	Е	200	THR	2.3
1	Н	203	ASN	2.3
1	F	200	THR	2.3
1	Ε	202	GLY	2.3
1	F	357	PRO	2.3
1	А	3	HIS	2.3
1	С	308	GLU	2.3
1	Е	356	ARG	2.3
1	А	64	VAL	2.2
1	D	203	ASN	2.2
1	Н	62	GLY	2.2
1	Н	511	LEU	2.2

Mol	Chain	Res	Type	RSRZ
1	G	202	GLY	2.2
1	С	204	TRP	2.2
1	F	342	ALA	2.2
1	F	359	SER	2.2
1	Н	110	ILE	2.2
1	Е	510	GLN	2.1
1	С	62	GLY	2.1
1	Е	110	ILE	2.1
1	G	356	ARG	2.1
1	Н	185	ALA	2.1
1	А	65	ILE	2.1
1	Н	200	THR	2.1
1	В	140	LYS	2.1
1	D	511	LEU	2.1
1	Е	359	SER	2.1
1	G	359	SER	2.1
1	С	511	LEU	2.1
1	F	341	GLU	2.0
1	D	509	ALA	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
4	CL	F	512	1/1	0.67	0.33	81,81,81,81	0
4	CL	F	1	1/1	0.80	0.23	85,85,85,85	0
4	CL	Е	1	1/1	0.85	0.14	75,75,75,75	0
4	CL	А	512	1/1	0.90	0.20	79,79,79,79	0

$\begin{array}{c c} \hline \mathbf{M} & \mathbf{I} & \mathbf{F} \\ \hline \mathbf{M} & \mathbf{I} & \mathbf{I} \\ \hline \mathbf{M} & \mathbf{M} \\ \hline \mathbf{M} & $								
Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors(A^2)	Q < 0.9
2	UDP	А	800	25/25	0.91	0.19	$53,\!74,\!109,\!122$	0
2	UDP	D	800	25/25	0.92	0.21	41,86,121,130	0
2	UDP	Н	800	25/25	0.93	0.17	50,80,110,113	0
2	UDP	F	800	25/25	0.93	0.17	47,68,104,116	0
4	CL	С	1	1/1	0.93	0.14	58,58,58,58	0
2	UDP	G	800	25/25	0.94	0.18	45,69,97,117	0
4	CL	Н	1	1/1	0.94	0.13	66,66,66,66	0
4	CL	А	1	1/1	0.95	0.10	62,62,62,62	0
2	UDP	С	800	25/25	0.95	0.18	43,61,94,104	0
4	CL	В	1	1/1	0.95	0.12	63,63,63,63	0
3	FAD	Н	605	53/53	0.95	0.17	27,44,64,69	0
3	FAD	G	607	53/53	0.96	0.16	$22,\!39,\!53,\!62$	0
2	UDP	Е	800	25/25	0.96	0.12	32,63,96,107	0
2	UDP	В	800	25/25	0.96	0.13	30,50,91,101	0
3	FAD	С	600	53/53	0.96	0.17	11,33,48,54	0
3	FAD	D	601	53/53	0.96	0.18	$23,\!37,\!50,\!57$	0
3	FAD	A	602	53/53	0.97	0.17	16,33,53,70	0
3	FAD	В	604	53/53	0.97	0.18	18,35,47,51	0
3	FAD	Е	606	53/53	0.98	0.16	19,31,47,59	0
3	FAD	F	603	53/53	0.98	0.20	19,39,52,67	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

