

#### Apr 3, 2023 – 08:00 PM EDT

PDB ID : 7THT EMDB ID : EMD-25904 Title : CryoEM structure of SARS-CoV-2 S protein in complex with Receptor Binding Domain antibody DH1042 Manne, K.; May, A.; Acharya, P. Authors : 2022-01-12 Deposited on : 3.42 Å(reported) Resolution : Based on initial models 7EAN, 6VYB :

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| EMDB validation analysis       | : | 0.0.1.dev50                                                        |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| MolProbity                     | : | 4.02b-467                                                          |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| MapQ                           | : | 1.9.9                                                              |
| Ideal geometry (proteins)      | : | Engh & Huber $(2001)$                                              |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.32.2                                                             |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $ELECTRON\ MICROSCOPY$ 

The reported resolution of this entry is 3.42 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | Whole archive<br>(#Entries) | ${ m EM} { m structures} \ (\#{ m Entries})$ |
|-----------------------|-----------------------------|----------------------------------------------|
| Clashscore            | 158937                      | 4297                                         |
| Ramachandran outliers | 154571                      | 4023                                         |
| Sidechain outliers    | 154315                      | 3826                                         |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain |           |
|-----|-------|--------|------------------|-----------|
| 1   | С     | 1121   | 81%              | 7% • 12%  |
| 1   | S     | 1121   | 79%              | 8% •• 12% |
| 1   | V     | 1121   | 77%              | 8% • 12%  |
| 2   | Н     | 122    | 97%              | •         |
| 2   | a     | 122    | 95%              | 5%        |
| 2   | d     | 122    | 92%              | 7% •      |
| 3   | L     | 106    | •<br>98%         | •         |
| 3   | b     | 106    | 25%              | •         |



| Mol | Chain | Length | Quality of chain |   |
|-----|-------|--------|------------------|---|
| 3   | с     | 106    | 97%              | • |
| 4   | А     | 3      | 67% 33%          |   |
| 5   | В     | 2      | 100%             |   |
| 5   | D     | 2      | 100%             |   |
| 5   | Е     | 2      | 100%             |   |
| 5   | F     | 2      | 100%             |   |
| 5   | G     | 2      | 100%             |   |
| 5   | Ι     | 2      | 100%             |   |
| 5   | J     | 2      | 100%             |   |
| 5   | K     | 2      | 100%             |   |
| 5   | М     | 2      | 100%             |   |
| 5   | N     | 2      | 100%             |   |
| 5   | 0     | 2      | 100%             |   |
| 5   | W     | 2      | 100%             |   |
| 5   | W     | 2      | 100%             |   |



# 2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 28900 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues |       | А    | toms |      |              | AltConf | Trace |
|-----|-------|----------|-------|------|------|------|--------------|---------|-------|
| 1   | q     | 001      | Total | С    | Ν    | Ο    | $\mathbf{S}$ | 0       | 0     |
| 1   | U U   | 991      | 7620  | 4877 | 1268 | 1441 | 34           | 0       | 0     |
| 1   | V     | 086      | Total | С    | Ν    | Ο    | $\mathbf{S}$ | 0       | 0     |
| 1   | v     | 980      | 7587  | 4856 | 1260 | 1437 | 34           | 0       | 0     |
| 1   | C     | 000      | Total | С    | Ν    | Ο    | S            | 0       | 0     |
|     | U     | 990      | 7606  | 4872 | 1270 | 1430 | 34           | 0       | 0     |

• Molecule 1 is a protein called Spike glycoprotein.

There are 9 discrepancies between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment  | Reference  |
|-------|---------|----------|--------|----------|------------|
| S     | 607     | GLU      | GLN    | conflict | UNP P0DTC2 |
| S     | 986     | PRO      | LYS    | conflict | UNP P0DTC2 |
| S     | 987     | PRO      | VAL    | conflict | UNP P0DTC2 |
| V     | 607     | GLU      | GLN    | conflict | UNP P0DTC2 |
| V     | 986     | PRO      | LYS    | conflict | UNP P0DTC2 |
| V     | 987     | PRO      | VAL    | conflict | UNP P0DTC2 |
| С     | 607     | GLU      | GLN    | conflict | UNP P0DTC2 |
| C     | 986     | PRO      | LYS    | conflict | UNP P0DTC2 |
| Ċ     | 987     | PRO      | VAL    | conflict | UNP P0DTC2 |

• Molecule 2 is a protein called DH1042 heavy chain.

| Mol | Chain | Residues |       | At  | oms |     |   | AltConf | Trace |
|-----|-------|----------|-------|-----|-----|-----|---|---------|-------|
| 9   | Ц     | 199      | Total | С   | Ν   | 0   | S | 0       | 0     |
|     | 11    | 122      | 946   | 597 | 159 | 184 | 6 | 0       | 0     |
| 0   | 9     | 199      | Total | С   | Ν   | 0   | S | 0       | 0     |
|     | a     | 122      | 946   | 597 | 159 | 184 | 6 | 0       | 0     |
| 0   | d     | 199      | Total | С   | Ν   | 0   | S | 0       | 0     |
|     | u     | 122      | 946   | 597 | 159 | 184 | 6 |         |       |

• Molecule 3 is a protein called DH1042 light chain.



| Mol | Chain | Residues |       | At  | oms |     |              | AltConf | Trace |
|-----|-------|----------|-------|-----|-----|-----|--------------|---------|-------|
| 3   | T.    | 106      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 0     |
| 0   | Ľ     | 100      | 804   | 504 | 132 | 165 | 3            | 0       | 0     |
| 3   | C     | 106      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 0     |
| 0   | U     | 100      | 804   | 504 | 132 | 165 | 3            | 0       | 0     |
| 3   | h     | 106      | Total | С   | Ν   | 0   | S            | 0       | 0     |
| 0   | U     | 100      | 804   | 504 | 132 | 165 | 3            |         | 0     |

• Molecule 4 is an oligosaccharide called beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-b eta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.



| Mol | Chain | Residues | A           | ton     | ns     |         | AltConf | Trace |
|-----|-------|----------|-------------|---------|--------|---------|---------|-------|
| 4   | А     | 3        | Total<br>39 | C<br>22 | N<br>2 | 0<br>15 | 0       | 0     |

• Molecule 5 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.



| Mol | Chain | Residues | Atoms         | AltConf | Trace |
|-----|-------|----------|---------------|---------|-------|
| 5   | В     | 2        | Total C N O   | 0       | 0     |
| 0   | D     |          | 28  16  2  10 | 0       | 0     |
| 5   | Л     | 9        | Total C N O   | 0       | 0     |
| 0   | D     | 2        | 28  16  2  10 | 0       | 0     |
| 5   | F     | 9        | Total C N O   | 0       | 0     |
| 0   | Ľ     | 2        | 28  16  2  10 | 0       | 0     |
| 5   | Б     | 2        | Total C N O   | 0       | 0     |
| 0   | Г     | 2        | 28  16  2  10 | 0       |       |
| 5   | С     | 9        | Total C N O   | 0       | 0     |
| 0   | G     | 2        | 28  16  2  10 | 0       |       |
| 5   | W     | 9        | Total C N O   | 0       | 0     |
| 0   | vv    | 2        | 28  16  2  10 | 0       | 0     |
| 5   | Т     | 9        | Total C N O   | 0       | 0     |
|     |       | 2        | 28  16  2  10 | 0       | U     |
| 5   | Т     | 2        | Total C N O   | 0       | 0     |
|     | 5 J   | J Z      | 28 16 2 10    | 0       | U     |



| Mol | Chain | Residues | Atoms       | AltConf | Trace |
|-----|-------|----------|-------------|---------|-------|
| Б   | K     | n        | Total C N O | 0       | 0     |
| 0   | П     | ۷        | 28 16 2 10  | 0       | 0     |
| Б   | М     | n        | Total C N O | 0       | 0     |
| 0   | 111   | 2        | 28 16 2 10  | 0       |       |
| Б   | Ν     | n        | Total C N O | 0       | 0     |
| 0   | IN    | 2        | 28 16 2 10  | 0       | 0     |
| Б   | 0     | 9        | Total C N O | 0       | 0     |
| -0  | 0     | 2        | 28 16 2 10  | 0       | 0     |

Continued from previous page...

• Molecule 6 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula:  $C_8H_{15}NO_6$ ).



| Mol | Chain | Residues | Atoms                                                                          | AltConf |
|-----|-------|----------|--------------------------------------------------------------------------------|---------|
| 6   | S     | 1        | Total C N O<br>14 8 1 5                                                        | 0       |
| 6   | S     | 1        | Total         C         N         O           14         8         1         5 | 0       |
| 6   | S     | 1        | Total         C         N         O           14         8         1         5 | 0       |
| 6   | S     | 1        | Total         C         N         O           14         8         1         5 | 0       |
| 6   | S     | 1        | Total         C         N         O           14         8         1         5 | 0       |
| 6   | S     | 1        | Total         C         N         O           14         8         1         5 | 0       |
| 6   | S     | 1        | Total         C         N         O           14         8         1         5 | 0       |



Continued from previous page...

| Mol | Chain      | Residues | A     | ton | ns |   | AltConf |
|-----|------------|----------|-------|-----|----|---|---------|
| C   | G          | 1        | Total | С   | Ν  | 0 | 0       |
| 0   | 5          | 1        | 14    | 8   | 1  | 5 | 0       |
| 0   | C          | 1        | Total | С   | Ν  | Ο | 0       |
| 6   | S          | 1        | 14    | 8   | 1  | 5 | 0       |
|     | C          | 1        | Total | С   | Ν  | Ο | 0       |
| 6   | S          | 1        | 14    | 8   | 1  | 5 | 0       |
|     | <b>T</b> 7 | 1        | Total | С   | Ν  | Ο | 0       |
| 0   | V          | 1        | 14    | 8   | 1  | 5 | 0       |
|     | 17         | 1        | Total | С   | Ν  | 0 | 0       |
| 0   | V          | 1        | 14    | 8   | 1  | 5 | 0       |
| C   | V          | 1        | Total | С   | Ν  | 0 | 0       |
| 0   | V          | 1        | 14    | 8   | 1  | 5 | 0       |
| C   | V          | 1        | Total | С   | Ν  | Ο | 0       |
| 0   | V          | 1        | 14    | 8   | 1  | 5 | 0       |
| C   | V          | 1        | Total | С   | Ν  | Ο | 0       |
| 0   | V          | 1        | 14    | 8   | 1  | 5 | 0       |
| C   | V          | 1        | Total | С   | Ν  | Ο | 0       |
| 0   | V          | 1        | 14    | 8   | 1  | 5 | 0       |
| C   | V          | 1        | Total | С   | Ν  | Ο | 0       |
| 0   | V          | 1        | 14    | 8   | 1  | 5 | 0       |
| C   | τ <i>ι</i> | 1        | Total | С   | Ν  | Ο | 0       |
| 0   | V I        | 1        | 14    | 8   | 1  | 5 | 0       |
| C   | 6 V        | 1        | Total | С   | Ν  | Ο | 0       |
| 0   | V          | 1        | 14    | 8   | 1  | 5 | 0       |
| 6   | V          | 1        | Total | С   | Ν  | 0 | 0       |
| 0   | V          | 1        | 14    | 8   | 1  | 5 | 0       |
| 6   | V          | 1        | Total | С   | Ν  | 0 | 0       |
| 0   | v          | 1        | 14    | 8   | 1  | 5 | 0       |
| 6   | V          | 1        | Total | С   | Ν  | 0 | 0       |
| 0   | v          | 1        | 14    | 8   | 1  | 5 | 0       |
| 6   | С          | 1        | Total | С   | Ν  | Ο | 0       |
| 0   | U          | 1        | 14    | 8   | 1  | 5 | 0       |
| 6   | С          | 1        | Total | С   | Ν  | Ο | 0       |
| 0   | U          | T        | 14    | 8   | 1  | 5 | 0       |
| 6   | 6 C        | 1        | Total | С   | N  | 0 | 0       |
|     |            | 1        | 14    | 8   | 1  | 5 |         |
| 6   | C          | 1        | Total | С   | Ν  | 0 | 0       |
|     |            |          | 1     | 5   |    |   |         |
| 6   | С          | 1        | Total | С   | Ν  | 0 | 0       |
|     |            | 1        | 14    | 8   | 1  | 5 |         |
| 6   | C          | 1        | Total | С   | Ν  | 0 | 0       |
| 6   |            | 1        | 14    | 8   | 1  | 5 |         |



Continued from previous page...

| Mol | Chain | Residues | Atoms       | AltConf |             |   |   |  |   |             |   |
|-----|-------|----------|-------------|---------|-------------|---|---|--|---|-------------|---|
| G   | С     | 1        | Total C N O | 0       |             |   |   |  |   |             |   |
| 0   | U     | 1        | 14  8  1  5 | 0       |             |   |   |  |   |             |   |
| 6   | С     | 1        | Total C N O | 0       |             |   |   |  |   |             |   |
| 0   | U     | U        | U           | 1       | 14  8  1  5 | 0 |   |  |   |             |   |
| G   | С     | С        | С           | С       | С           | С | С |  | 1 | Total C N O | 0 |
| 0   | U     | 1        | 14  8  1  5 | 0       |             |   |   |  |   |             |   |
| 6   | С     | 1        | Total C N O | 0       |             |   |   |  |   |             |   |
| 0   | U     | 1        | 14  8  1  5 | 0       |             |   |   |  |   |             |   |
| 6   | С     | 1        | Total C N O | 0       |             |   |   |  |   |             |   |
| 0   | U     | I        | 14  8  1  5 | 0       |             |   |   |  |   |             |   |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Spike glycoprotein









| Chain d:                                                                                                                                                                                                             | 92%                                                                                            | 7%                                                       |                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------|
| Q1<br>L4<br>C3<br>C3<br>C3<br>C3<br>C3<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C5<br>C4<br>C4<br>C5<br>C4<br>C4<br>C5<br>C5<br>C4<br>C4<br>C5<br>C5<br>C5<br>C5<br>C5<br>C5<br>C5<br>C5<br>C5<br>C5<br>C5<br>C5<br>C5 | 443<br>P41<br>P41<br>P41<br>P43<br>P43<br>P43<br>P43<br>P43<br>P43<br>P43<br>P43<br>P43<br>P43 | A88<br>A93<br>R94<br>R94<br>R95<br>R99<br>R99<br>S112    |                          |
| • Molecule 3: DH1042 light ch                                                                                                                                                                                        | nain                                                                                           |                                                          |                          |
| Chain L:                                                                                                                                                                                                             | 98%                                                                                            |                                                          | <del>.</del>             |
|                                                                                                                                                                                                                      |                                                                                                |                                                          |                          |
| • Molecule 3: DH1042 light ch                                                                                                                                                                                        | nain                                                                                           |                                                          |                          |
| Chain c:                                                                                                                                                                                                             | 97%                                                                                            |                                                          |                          |
| 01<br>110<br>860<br>110<br>80                                                                                                                                                                                        |                                                                                                |                                                          |                          |
| • Molecule 3: DH1042 light ch                                                                                                                                                                                        | nain                                                                                           |                                                          |                          |
| Chain b:                                                                                                                                                                                                             | 99%                                                                                            |                                                          | -                        |
| D1<br>S7<br>S10<br>L11<br>S12<br>A13<br>S12<br>A13<br>S14<br>V15<br>G16<br>D17<br>R18<br>R18<br>R18<br>R39<br>F40<br>C41                                                                                             | L46<br>455<br>860<br>867<br>867<br>867<br>877<br>178<br>979<br>979                             | B80<br>B81<br>D82<br>F83<br>K103<br>L104<br>E105<br>I106 |                          |
| • Molecule 4: beta-D-mannop etamido-2-deoxy-beta-D-gluco                                                                                                                                                             | yranose-(1-4)-2-acetam<br>pyranose                                                             | iido-2-deoxy-beta-D-g                                    | glucopyranose-(1-4)-2-ac |
| Chain A:                                                                                                                                                                                                             | 67%                                                                                            | 33%                                                      | -                        |
| NAC1<br>NAC2<br>BNA3<br>BNA3                                                                                                                                                                                         |                                                                                                |                                                          |                          |
| • Molecule 5: 2-acetamido-2-c<br>opyranose                                                                                                                                                                           | leoxy-beta-D-glucopyra                                                                         | anose-(1-4)-2-acetami                                    | do-2-deoxy-beta-D-gluc   |

Chain B:

100%

NAG1 NAG2

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain D:

100%



• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain E:

100%

#### NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

| Chain F:                  | 100%                                                         |                       |
|---------------------------|--------------------------------------------------------------|-----------------------|
| NAG1<br>NAG2              |                                                              |                       |
| • Molecule 5<br>opyranose | : 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido | )-2-deoxy-beta-D-gluc |
|                           |                                                              |                       |

| Chan G.                                      | 100%                        |                                      |
|----------------------------------------------|-----------------------------|--------------------------------------|
| NAG2<br>NAG2                                 |                             |                                      |
| • Molecule 5: 2-acetamido-2-dec<br>opyranose | oxy-beta-D-glucopyranose-(1 | l-4)-2-acetamido-2-deoxy-beta-D-gluc |

| 01 .  | <b>TT</b> 7 |  |
|-------|-------------|--|
| Chain | W:          |  |

100%

#### NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

| Ch | ain | I: |
|----|-----|----|
|    |     |    |

100%

#### NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain J:

100%

#### NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain K:

100%



#### NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

100%

100%

#### NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain N:

#### NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

| 010      |      |
|----------|------|
| Chain U: | 100% |
|          |      |

NAG1 NAG2



# 4 Experimental information (i)

| Property                           | Value                        | Source    |
|------------------------------------|------------------------------|-----------|
| EM reconstruction method           | SINGLE PARTICLE              | Depositor |
| Imposed symmetry                   | POINT, Not provided          |           |
| Number of particles used           | 175460                       | Depositor |
| Resolution determination method    | FSC 0.143 CUT-OFF            | Depositor |
| CTF correction method              | PHASE FLIPPING AND AMPLITUDE | Depositor |
|                                    | CORRECTION                   |           |
| Microscope                         | FEI TITAN KRIOS              | Depositor |
| Voltage (kV)                       | 300                          | Depositor |
| Electron dose $(e^-/\text{\AA}^2)$ | 54.02                        | Depositor |
| Minimum defocus (nm)               | 750                          | Depositor |
| Maximum defocus (nm)               | 2500                         | Depositor |
| Magnification                      | Not provided                 |           |
| Image detector                     | GATAN K3 $(6k \times 4k)$    | Depositor |
| Maximum map value                  | 2.997                        | Depositor |
| Minimum map value                  | -1.602                       | Depositor |
| Average map value                  | 0.001                        | Depositor |
| Map value standard deviation       | 0.070                        | Depositor |
| Recommended contour level          | 0.1321                       | Depositor |
| Map size (Å)                       | 338.56, 338.56, 338.56       | wwPDB     |
| Map dimensions                     | 320, 320, 320                | wwPDB     |
| Map angles (°)                     | 90.0, 90.0, 90.0             | wwPDB     |
| Pixel spacing (Å)                  | 1.058, 1.058, 1.058          | Depositor |



# 5 Model quality (i)

## 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAG, BMA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol | Chain | Bond | lengths  | Bond angles |                 |
|-----|-------|------|----------|-------------|-----------------|
|     | Unam  | RMSZ | # Z  > 5 | RMSZ        | # Z  > 5        |
| 1   | С     | 0.65 | 0/7777   | 0.99        | 27/10596~(0.3%) |
| 1   | S     | 0.65 | 0/7790   | 1.00        | 33/10611~(0.3%) |
| 1   | V     | 0.65 | 0/7757   | 0.96        | 22/10565~(0.2%) |
| 2   | Н     | 0.74 | 0/966    | 1.08        | 3/1307~(0.2%)   |
| 2   | a     | 0.74 | 0/966    | 1.06        | 3/1307~(0.2%)   |
| 2   | d     | 0.75 | 0/966    | 1.09        | 5/1307~(0.4%)   |
| 3   | L     | 0.71 | 0/823    | 0.96        | 0/1118          |
| 3   | b     | 0.70 | 0/823    | 0.98        | 1/1118~(0.1%)   |
| 3   | с     | 0.70 | 0/823    | 0.97        | 1/1118~(0.1%)   |
| All | All   | 0.67 | 0/28691  | 0.99        | 95/39047~(0.2%) |

There are no bond length outliers.

All (95) bond angle outliers are listed below:

| Mol | Chain | Res  | Type | Atoms     | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|-----------|-------|------------------|---------------|
| 1   | S     | 190  | ARG  | NE-CZ-NH1 | 8.83  | 124.72           | 120.30        |
| 1   | V     | 403  | ARG  | NE-CZ-NH1 | 8.72  | 124.66           | 120.30        |
| 1   | С     | 403  | ARG  | NE-CZ-NH1 | 8.20  | 124.40           | 120.30        |
| 1   | S     | 357  | ARG  | CG-CD-NE  | -8.14 | 94.71            | 111.80        |
| 1   | С     | 495  | TYR  | CB-CA-C   | -8.10 | 94.19            | 110.40        |
| 1   | S     | 457  | ARG  | NE-CZ-NH1 | 7.88  | 124.24           | 120.30        |
| 1   | С     | 1019 | ARG  | NE-CZ-NH1 | 7.84  | 124.22           | 120.30        |
| 2   | Н     | 94   | ARG  | NE-CZ-NH1 | 7.74  | 124.17           | 120.30        |
| 1   | С     | 577  | ARG  | NE-CZ-NH1 | 7.60  | 124.10           | 120.30        |
| 1   | V     | 577  | ARG  | NE-CZ-NH1 | 7.57  | 124.08           | 120.30        |
| 2   | a     | 94   | ARG  | NE-CZ-NH1 | 7.46  | 124.03           | 120.30        |
| 1   | С     | 1014 | ARG  | NE-CZ-NH1 | 7.45  | 124.03           | 120.30        |
| 1   | V     | 408  | ARG  | NE-CZ-NH1 | 7.39  | 123.99           | 120.30        |
| 1   | С     | 904  | TYR  | CB-CG-CD2 | -7.28 | 116.63           | 121.00        |
| 1   | V     | 457  | ARG  | NE-CZ-NH1 | 7.21  | 123.91           | 120.30        |



| $\alpha \cdot \cdot \cdot \cdot$ | C      |                        |      |
|----------------------------------|--------|------------------------|------|
| Continued                        | trom   | nromanic               | naae |
| Continucu                        | 110110 | $p_{1}c_{0}a_{0}a_{0}$ | page |
|                                  | 5      | 1                      | 1 0  |

| Mol | Chain | Res  | Type | Atoms     | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|-----------|-------|------------------|---------------|
| 1   | S     | 237  | ARG  | CB-CA-C   | -7.06 | 96.28            | 110.40        |
| 2   | Н     | 66   | ARG  | NE-CZ-NH1 | 7.01  | 123.81           | 120.30        |
| 1   | С     | 995  | ARG  | NE-CZ-NH1 | 6.95  | 123.77           | 120.30        |
| 1   | С     | 102  | ARG  | NE-CZ-NH1 | 6.92  | 123.76           | 120.30        |
| 1   | S     | 1014 | ARG  | NE-CZ-NH1 | 6.91  | 123.76           | 120.30        |
| 1   | S     | 904  | TYR  | CB-CG-CD2 | -6.90 | 116.86           | 121.00        |
| 1   | V     | 509  | ARG  | NE-CZ-NH1 | 6.88  | 123.74           | 120.30        |
| 1   | С     | 457  | ARG  | NE-CZ-NH1 | 6.81  | 123.70           | 120.30        |
| 1   | С     | 567  | ARG  | NE-CZ-NH1 | 6.79  | 123.69           | 120.30        |
| 2   | d     | 50   | ARG  | NE-CZ-NH1 | 6.77  | 123.69           | 120.30        |
| 1   | С     | 509  | ARG  | NE-CZ-NH1 | 6.75  | 123.68           | 120.30        |
| 1   | С     | 905  | ARG  | NE-CZ-NH1 | 6.75  | 123.67           | 120.30        |
| 1   | С     | 333  | THR  | CB-CA-C   | -6.73 | 93.43            | 111.60        |
| 1   | V     | 1014 | ARG  | NE-CZ-NH1 | 6.66  | 123.63           | 120.30        |
| 1   | S     | 815  | ARG  | NE-CZ-NH1 | 6.53  | 123.56           | 120.30        |
| 1   | V     | 334  | ASN  | CB-CA-C   | 6.50  | 123.40           | 110.40        |
| 2   | a     | 66   | ARG  | NE-CZ-NH1 | 6.49  | 123.55           | 120.30        |
| 1   | S     | 565  | PHE  | CB-CG-CD2 | -6.47 | 116.27           | 120.80        |
| 1   | S     | 403  | ARG  | NE-CZ-NH1 | 6.46  | 123.53           | 120.30        |
| 2   | d     | 66   | ARG  | NE-CZ-NH1 | 6.46  | 123.53           | 120.30        |
| 1   | V     | 904  | TYR  | CB-CG-CD2 | -6.44 | 117.14           | 121.00        |
| 1   | S     | 1019 | ARG  | NE-CZ-NH1 | 6.43  | 123.52           | 120.30        |
| 1   | С     | 190  | ARG  | NE-CZ-NH1 | 6.24  | 123.42           | 120.30        |
| 1   | S     | 408  | ARG  | NE-CZ-NH1 | -6.22 | 117.19           | 120.30        |
| 1   | С     | 44   | ARG  | NE-CZ-NH1 | 6.18  | 123.39           | 120.30        |
| 1   | S     | 389  | ASP  | N-CA-CB   | -6.15 | 99.53            | 110.60        |
| 1   | V     | 815  | ARG  | NE-CZ-NH1 | 6.12  | 123.36           | 120.30        |
| 1   | С     | 1039 | ARG  | NE-CZ-NH1 | 6.12  | 123.36           | 120.30        |
| 2   | a     | 50   | ARG  | NE-CZ-NH1 | 6.06  | 123.33           | 120.30        |
| 1   | S     | 390  | LEU  | CB-CA-C   | -6.06 | 98.69            | 110.20        |
| 1   | S     | 1107 | ARG  | NE-CZ-NH1 | 6.04  | 123.32           | 120.30        |
| 1   | V     | 1091 | ARG  | NE-CZ-NH1 | 6.04  | 123.32           | 120.30        |
| 1   | S     | 389  | ASP  | CB-CA-C   | 6.00  | 122.40           | 110.40        |
| 1   | V     | 333  | THR  | CB-CA-C   | -5.95 | 95.53            | 111.60        |
| 2   | d     | 99   | ARG  | NE-CZ-NH1 | 5.87  | 123.23           | 120.30        |
| 1   | S     | 391  | CYS  | CA-CB-SG  | -5.84 | 103.50           | 114.00        |
| 1   | V     | 328  | ARG  | NE-CZ-NH1 | 5.82  | 123.21           | 120.30        |
| 1   | С     | 342  | PHE  | CB-CA-C   | -5.82 | 98.76            | 110.40        |
| 1   | C     | 408  | ARG  | NE-CZ-NH1 | 5.82  | 123.21           | 120.30        |
| 1   | S     | 565  | PHE  | CB-CG-CD1 | 5.81  | 124.87           | 120.80        |
| 1   | S     | 102  | ARG  | NE-CZ-NH1 | 5.78  | 123.19           | 120.30        |
| 1   | С     | 815  | ARG  | NE-CZ-NH1 | 5.76  | 123.18           | 120.30        |



| a 1       | C    | •        |      |
|-----------|------|----------|------|
| Continued | trom | previous | page |
|           | J    | 1        | 1 5  |

| Mol | Chain | Res  | Type | Atoms     | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|-----------|-------|------------------|---------------|
| 1   | S     | 509  | ARG  | NE-CZ-NH1 | 5.76  | 123.18           | 120.30        |
| 1   | S     | 995  | ARG  | NE-CZ-NH1 | 5.75  | 123.17           | 120.30        |
| 1   | С     | 454  | ARG  | NE-CZ-NH1 | 5.72  | 123.16           | 120.30        |
| 1   | С     | 273  | ARG  | NE-CZ-NH1 | 5.72  | 123.16           | 120.30        |
| 1   | V     | 44   | ARG  | NE-CZ-NH1 | 5.71  | 123.16           | 120.30        |
| 1   | С     | 1107 | ARG  | NE-CZ-NH1 | 5.71  | 123.16           | 120.30        |
| 1   | V     | 995  | ARG  | NE-CZ-NH1 | 5.68  | 123.14           | 120.30        |
| 1   | S     | 577  | ARG  | NE-CZ-NH1 | 5.67  | 123.13           | 120.30        |
| 1   | V     | 454  | ARG  | NE-CZ-NH1 | 5.65  | 123.12           | 120.30        |
| 1   | V     | 917  | TYR  | CB-CG-CD1 | -5.62 | 117.63           | 121.00        |
| 1   | S     | 567  | ARG  | NE-CZ-NH1 | 5.61  | 123.11           | 120.30        |
| 1   | С     | 457  | ARG  | NE-CZ-NH2 | -5.60 | 117.50           | 120.30        |
| 1   | С     | 646  | ARG  | NE-CZ-NH1 | 5.57  | 123.09           | 120.30        |
| 1   | S     | 44   | ARG  | NE-CZ-NH1 | 5.56  | 123.08           | 120.30        |
| 1   | S     | 34   | ARG  | NE-CZ-NH1 | 5.55  | 123.08           | 120.30        |
| 3   | b     | 61   | ARG  | NE-CZ-NH1 | 5.54  | 123.07           | 120.30        |
| 1   | S     | 717  | ASN  | CB-CA-C   | -5.52 | 99.37            | 110.40        |
| 3   | с     | 24   | ARG  | NE-CZ-NH1 | 5.51  | 123.06           | 120.30        |
| 2   | Н     | 50   | ARG  | NE-CZ-NH1 | 5.51  | 123.06           | 120.30        |
| 1   | V     | 567  | ARG  | NE-CZ-NH1 | 5.48  | 123.04           | 120.30        |
| 1   | S     | 319  | ARG  | NE-CZ-NH1 | 5.44  | 123.02           | 120.30        |
| 1   | V     | 319  | ARG  | NE-CZ-NH1 | 5.43  | 123.02           | 120.30        |
| 1   | S     | 466  | ARG  | NE-CZ-NH1 | 5.40  | 123.00           | 120.30        |
| 1   | S     | 454  | ARG  | NE-CZ-NH1 | 5.35  | 122.97           | 120.30        |
| 1   | S     | 1039 | ARG  | NE-CZ-NH2 | -5.31 | 117.64           | 120.30        |
| 1   | С     | 1091 | ARG  | NE-CZ-NH1 | 5.27  | 122.94           | 120.30        |
| 1   | S     | 403  | ARG  | NE-CZ-NH2 | -5.24 | 117.68           | 120.30        |
| 1   | С     | 917  | TYR  | CB-CG-CD1 | -5.21 | 117.87           | 121.00        |
| 1   | V     | 335  | LEU  | CA-C-N    | 5.16  | 128.54           | 117.20        |
| 1   | S     | 815  | ARG  | NE-CZ-NH2 | -5.14 | 117.73           | 120.30        |
| 1   | V     | 335  | LEU  | N-CA-C    | -5.12 | 97.16            | 111.00        |
| 1   | S     | 357  | ARG  | CB-CG-CD  | -5.09 | 98.35            | 111.60        |
| 1   | V     | 190  | ARG  | NE-CZ-NH1 | 5.09  | 122.85           | 120.30        |
| 2   | d     | 38   | ARG  | NE-CZ-NH1 | 5.09  | 122.85           | 120.30        |
| 1   | C     | 328  | ARG  | NE-CZ-NH1 | 5.07  | 122.83           | 120.30        |
| 1   | S     | 389  | ASP  | CB-CG-OD2 | 5.07  | 122.86           | 118.30        |
| 1   | V     | 408  | ARG  | CD-NE-CZ  | 5.04  | 130.66           | 123.60        |
| 2   | d     | 32   | TYR  | CB-CG-CD2 | -5.04 | 117.98           | 121.00        |

There are no chirality outliers.

There are no planarity outliers.



## 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | С     | 7606  | 0        | 7342     | 73      | 0            |
| 1   | S     | 7620  | 0        | 7364     | 105     | 0            |
| 1   | V     | 7587  | 0        | 7307     | 247     | 0            |
| 2   | Н     | 946   | 0        | 926      | 0       | 0            |
| 2   | a     | 946   | 0        | 926      | 0       | 0            |
| 2   | d     | 946   | 0        | 924      | 0       | 0            |
| 3   | L     | 804   | 0        | 781      | 1       | 0            |
| 3   | b     | 804   | 0        | 781      | 0       | 0            |
| 3   | с     | 804   | 0        | 781      | 0       | 0            |
| 4   | А     | 39    | 0        | 34       | 5       | 0            |
| 5   | В     | 28    | 0        | 25       | 3       | 0            |
| 5   | D     | 28    | 0        | 25       | 0       | 0            |
| 5   | Е     | 28    | 0        | 25       | 0       | 0            |
| 5   | F     | 28    | 0        | 25       | 0       | 0            |
| 5   | G     | 28    | 0        | 25       | 0       | 0            |
| 5   | Ι     | 28    | 0        | 25       | 0       | 0            |
| 5   | J     | 28    | 0        | 25       | 0       | 0            |
| 5   | Κ     | 28    | 0        | 25       | 0       | 0            |
| 5   | М     | 28    | 0        | 25       | 0       | 0            |
| 5   | Ν     | 28    | 0        | 25       | 0       | 0            |
| 5   | 0     | 28    | 0        | 25       | 0       | 0            |
| 5   | W     | 28    | 0        | 25       | 0       | 0            |
| 6   | С     | 154   | 0        | 143      | 0       | 0            |
| 6   | S     | 140   | 0        | 130      | 4       | 0            |
| 6   | V     | 168   | 0        | 156      | 4       | 0            |
| All | All   | 28900 | 0        | 27895    | 420     | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 8.

All (420) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom-1          | Atom-2          | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|-----------------|-----------------|-----------------------------|----------------------|
| 1:V:380:TYR:CD2 | 1:V:429:PHE:HE2 | 1.16                        | 1.64                 |
| 1:V:353:TRP:CZ3 | 1:V:466:ARG:CD  | 1.81                        | 1.61                 |



| Atom-1                        | Atom-2           | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|-------------------------------|------------------|-----------------------------|----------------------|
| 1:V:353:TRP:CZ3               | 1:V:466:ARG:HD2  | 1.35                        | 1.58                 |
| 1:S:357:ARG:HH22              | 1:V:230:PRO:CB   | 0.98                        | 1.56                 |
| 1:S:83:VAL:CG1                | 1:S:237:ARG:HD3  | 1.25                        | 1.56                 |
| 1:V:336:CYS:H                 | 1:V:363:ALA:CB   | 0.94                        | 1.53                 |
| 1:V:380:TYR:CD2               | 1:V:429:PHE:CE2  | 1.93                        | 1.53                 |
| 1:V:331:ASN:ND2               | 6:V:1204:NAG:C1  | 1.71                        | 1.53                 |
| 1:C:403:ARG:HB2               | 1:C:495:TYR:CE2  | 1.40                        | 1.52                 |
| 1:V:336:CYS:N                 | 1:V:363:ALA:CB   | 1.78                        | 1.45                 |
| 1:C:403:ARG:CB                | 1:C:495:TYR:CE2  | 2.08                        | 1.35                 |
| 1:V:421:TYR:CD1               | 1:V:457:ARG:HB3  | 1.63                        | 1.34                 |
| 1:C:337:PRO:O                 | 1:C:341:VAL:CG1  | 1.75                        | 1.33                 |
| 1:V:336:CYS:N                 | 1:V:363:ALA:HB2  | 1.34                        | 1.33                 |
| 1:V:350:VAL:CG1               | 1:V:453:TYR:HA   | 1.59                        | 1.30                 |
| 1:S:357:ARG:NH2               | 1:V:230:PRO:HB2  | 0.99                        | 1.30                 |
| 1:C:403:ARG:CB                | 1:C:495:TYR:HE2  | 1.43                        | 1.27                 |
| 1:V:362:VAL:CG1               | 1:V:526:GLY:O    | 1.82                        | 1.26                 |
| 1:V:353:TRP:CZ3               | 1:V:466:ARG:NE   | 2.03                        | 1.24                 |
| 1:V:382:VAL:HG11              | 1:V:515:PHE:CE2  | 1.73                        | 1.23                 |
| 1:S:386:LYS:NZ                | 1:V:981:LEU:O    | 1.68                        | 1.22                 |
| 1:S:83:VAL:CG1                | 1:S:237:ARG:CD   | 2.20                        | 1.20                 |
| 1:V:422:ASN:O                 | 1:V:461:LEU:HD11 | 1.39                        | 1.20                 |
| 1:V:342:PHE:CD1               | 1:V:511:VAL:HG21 | 1.77                        | 1.19                 |
| 1:V:353:TRP:CH2               | 1:V:466:ARG:CG   | 2.27                        | 1.18                 |
| 1:V:342:PHE:CE1               | 1:V:511:VAL:CB   | 2.28                        | 1.17                 |
| 1:V:342:PHE:CE1               | 1:V:511:VAL:HG21 | 1.81                        | 1.15                 |
| 1:V:362:VAL:HG11              | 1:V:526:GLY:O    | 1.42                        | 1.14                 |
| 1:V:350:VAL:HG11              | 1:V:453:TYR:HA   | 1.18                        | 1.13                 |
| 1:V:365:TYR:CD2               | 1:V:527:PRO:HG3  | 1.81                        | 1.13                 |
| 1:S:83:VAL:HG13               | 1:S:237:ARG:HD3  | 1.32                        | 1.12                 |
| 1:S:106:PHE:HB3               | 1:S:235:ILE:HG21 | 1.32                        | 1.11                 |
| 1:V:350:VAL:HG11              | 1:V:453:TYR:CA   | 1.80                        | 1.11                 |
| 1:C:337:PRO:O                 | 1:C:341:VAL:HG12 | 0.94                        | 1.11                 |
| 1:V:374:PHE:CD1               | 1:V:434:ILE:HG21 | 1.86                        | 1.10                 |
| 1:V:362:VAL:HG22              | 1:V:525:CYS:HB2  | 1.34                        | 1.10                 |
| 1:C:329:PHE:CE2               | 1:C:391:CYS:SG   | 2.45                        | 1.10                 |
| 1:C:452:LEU:HD23              | 1:C:494:SER:HB2  | 1.32                        | 1.10                 |
| 1:V:336:CYS:N                 | 1:V:363:ALA:HB1  | 1.57                        | 1.10                 |
| 1:V:342:PHE:CE1               | 1:V:511:VAL:CG2  | 2.33                        | 1.10                 |
| 1:V:395:VAL:HG11              | 1:V:515:PHE:CD1  | 1.85                        | 1.10                 |
| 1:V:353:TRP:CE3               | 1:V:466:ARG:NE   | 2.15                        | 1.09                 |
| $1:\overline{V:422:ASN:HD21}$ | 1:V:454:ARG:HB3  | 1.13                        | 1.09                 |



| Atom-1           | Atom-2           | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
|                  |                  | distance (A) | overlap (A) |
| 1:V:342:PHE:HE1  | 1:V:511:VAL:HB   | 1.07         | 1.09        |
| 1:S:83:VAL:HG11  | 1:S:237:ARG:CD   | 1.81         | 1.08        |
| 1:V:422:ASN:O    | 1:V:461:LEU:CD1  | 2.02         | 1.08        |
| 1:V:342:PHE:CE1  | 1:V:511:VAL:HB   | 1.88         | 1.07        |
| 1:V:342:PHE:CZ   | 1:V:511:VAL:HG11 | 1.90         | 1.07        |
| 1:V:353:TRP:CH2  | 1:V:466:ARG:HG3  | 1.87         | 1.07        |
| 1:V:374:PHE:HD1  | 1:V:434:ILE:CG2  | 1.67         | 1.07        |
| 1:V:371:SER:HB2  | 1:V:374:PHE:HD2  | 1.15         | 1.07        |
| 1:V:374:PHE:CD1  | 1:V:434:ILE:CG2  | 2.38         | 1.06        |
| 1:C:329:PHE:HE2  | 1:C:391:CYS:SG   | 1.78         | 1.05        |
| 1:V:380:TYR:O    | 1:V:430:THR:HA   | 1.55         | 1.05        |
| 1:S:357:ARG:HH22 | 1:V:230:PRO:HB3  | 1.13         | 1.04        |
| 1:V:382:VAL:HG11 | 1:V:515:PHE:CD2  | 1.91         | 1.04        |
| 1:C:403:ARG:HB3  | 1:C:495:TYR:HE2  | 1.22         | 1.04        |
| 1:S:116:SER:N    | 1:S:233:ILE:CD1  | 2.20         | 1.03        |
| 1:V:342:PHE:HE1  | 1:V:511:VAL:CB   | 1.65         | 1.03        |
| 1:S:409:GLN:OE1  | 1:S:418:ILE:HG22 | 1.60         | 1.01        |
| 1:V:353:TRP:CH2  | 1:V:466:ARG:CD   | 2.44         | 1.01        |
| 1:V:376:THR:O    | 1:V:434:ILE:HA   | 1.58         | 1.01        |
| 1:S:985:ASP:OD2  | 1:C:383:SER:OG   | 1.79         | 1.01        |
| 1:S:409:GLN:CD   | 1:S:418:ILE:HG22 | 1.80         | 1.01        |
| 1:V:371:SER:HB2  | 1:V:374:PHE:CD2  | 1.96         | 1.01        |
| 1:V:336:CYS:H    | 1:V:363:ALA:HB1  | 1.12         | 1.00        |
| 1:V:380:TYR:CE2  | 1:V:429:PHE:HE2  | 1.80         | 1.00        |
| 1:S:83:VAL:HG11  | 1:S:237:ARG:HD3  | 1.00         | 0.99        |
| 1:C:716:THR:HG22 | 1:C:1071:GLN:O   | 1.61         | 0.99        |
| 1:S:236:THR:HG21 | 5:B:1:NAG:H62    | 1.45         | 0.98        |
| 1:V:365:TYR:HD2  | 1:V:527:PRO:HG3  | 1.21         | 0.98        |
| 1:V:421:TYR:CD1  | 1:V:457:ARG:CB   | 2.47         | 0.97        |
| 1:V:380:TYR:HD2  | 1:V:429:PHE:CE2  | 1.75         | 0.97        |
| 1:C:338:PHE:HA   | 1:C:341:VAL:HG13 | 1.47         | 0.97        |
| 1:V:358:ILE:HD13 | 1:V:358:ILE:H    | 1.30         | 0.97        |
| 1:V:353:TRP:HH2  | 1:V:466:ARG:HB2  | 1.29         | 0.96        |
| 1:V:350:VAL:HG11 | 1:V:453:TYR:CB   | 1.96         | 0.96        |
| 1:V:353:TRP:CH2  | 1:V:466:ARG:HD2  | 1.98         | 0.96        |
| 1:S:357:ARG:NH2  | 1:V:230:PRO:CB   | 1.76         | 0.94        |
| 1:V:357:ARG:H    | 1:V:357:ARG:HE   | 1.15         | 0.94        |
| 1:V:422:ASN:ND2  | 1:V:454:ARG:HB3  | 1.82         | 0.94        |
| 1:S:106:PHE:HB3  | 1:S:235:ILE:CG2  | 1.96         | 0.94        |
| 1:S:332:ILE:HD11 | 1:S:360:ASN:OD1  | 1.67         | 0.94        |
| 1:V:353:TRP:CZ3  | 1:V:466:ARG:CG   | 2.47         | 0.93        |



|                  | to us page       | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:S:409:GLN:OE1  | 1:S:418:ILE:CG2  | 2.16         | 0.93        |
| 1:C:452:LEU:CD2  | 1:C:494:SER:HB2  | 1.98         | 0.92        |
| 1:V:350:VAL:CG1  | 1:V:453:TYR:CA   | 2.44         | 0.92        |
| 1:V:380:TYR:CG   | 1:V:429:PHE:CE2  | 2.59         | 0.90        |
| 1:V:395:VAL:HG22 | 1:V:514:SER:O    | 1.48         | 0.89        |
| 1:S:342:PHE:CE1  | 1:S:511:VAL:HG21 | 2.07         | 0.88        |
| 1:V:388:ASN:O    | 1:V:526:GLY:HA3  | 1.74         | 0.88        |
| 1:V:350:VAL:HG13 | 1:V:453:TYR:HA   | 1.53         | 0.88        |
| 1:V:362:VAL:HG13 | 1:V:526:GLY:O    | 1.74         | 0.88        |
| 1:V:375:SER:N    | 1:V:435:ALA:O    | 2.07         | 0.88        |
| 1:S:415:THR:OG1  | 1:S:420:ASP:OD1  | 1.91         | 0.87        |
| 1:V:365:TYR:HA   | 1:V:527:PRO:CG   | 2.05         | 0.87        |
| 1:C:403:ARG:HB3  | 1:C:495:TYR:CE2  | 1.99         | 0.86        |
| 1:V:377:PHE:CD1  | 1:V:432:CYS:SG   | 2.70         | 0.85        |
| 1:V:342:PHE:CZ   | 1:V:511:VAL:CG1  | 2.60         | 0.85        |
| 1:V:353:TRP:CH2  | 1:V:466:ARG:CB   | 2.60         | 0.85        |
| 1:V:353:TRP:CH2  | 1:V:466:ARG:HB2  | 2.12         | 0.85        |
| 1:V:421:TYR:CD1  | 1:V:459:SER:O    | 2.30         | 0.84        |
| 1:V:353:TRP:HZ3  | 1:V:466:ARG:CD   | 1.41         | 0.83        |
| 1:V:380:TYR:OH   | 1:V:433:VAL:N    | 2.10         | 0.83        |
| 1:C:64:TRP:CD1   | 1:C:266:TYR:CE1  | 2.67         | 0.83        |
| 1:V:331:ASN:CG   | 6:V:1204:NAG:C1  | 2.47         | 0.83        |
| 1:V:380:TYR:CG   | 1:V:429:PHE:HE2  | 1.90         | 0.83        |
| 1:C:337:PRO:C    | 1:C:341:VAL:HG12 | 1.99         | 0.83        |
| 1:S:83:VAL:HG12  | 1:S:237:ARG:HD3  | 1.59         | 0.83        |
| 1:S:109:THR:O    | 1:S:111:ASP:N    | 2.09         | 0.83        |
| 1:V:421:TYR:CE1  | 1:V:457:ARG:HB3  | 2.13         | 0.82        |
| 1:V:353:TRP:HE3  | 1:V:466:ARG:HE   | 1.26         | 0.82        |
| 1:V:374:PHE:CE1  | 1:V:434:ILE:HG21 | 2.14         | 0.82        |
| 1:V:716:THR:HG22 | 1:V:1071:GLN:O   | 1.80         | 0.82        |
| 1:V:392:PHE:CE1  | 1:V:516:GLU:N    | 2.46         | 0.81        |
| 1:S:357:ARG:HH21 | 1:V:230:PRO:HB2  | 1.37         | 0.81        |
| 1:V:382:VAL:CG1  | 1:V:515:PHE:CE2  | 2.61         | 0.81        |
| 1:V:421:TYR:CE1  | 1:V:459:SER:O    | 2.34         | 0.81        |
| 1:V:356:LYS:HE3  | 1:V:396:TYR:HA   | 1.62         | 0.81        |
| 1:V:365:TYR:HA   | 1:V:527:PRO:HD3  | 1.62         | 0.81        |
| 1:S:116:SER:N    | 1:S:233:ILE:HD11 | 1.94         | 0.81        |
| 1:C:338:PHE:HA   | 1:C:341:VAL:CG1  | 2.11         | 0.80        |
| 1:V:350:VAL:HG12 | 1:V:452:LEU:O    | 1.81         | 0.79        |
| 1:V:336:CYS:H    | 1:V:363:ALA:HB2  | 0.63         | 0.79        |
| 1:V:365:TYR:HA   | 1:V:527:PRO:CD   | 2.12         | 0.79        |



|                  |                  | Interatomic    | Clash       |
|------------------|------------------|----------------|-------------|
| Atom-1           | Atom-2           | distance $(Å)$ | overlap (Å) |
| 1:S:409:GLN:CD   | 1:S:418:ILE:CG2  | 2.51           | 0.79        |
| 1:V:380:TYR:CE2  | 1:V:429:PHE:CE2  | 2.62           | 0.79        |
| 1:C:337:PRO:C    | 1:C:341:VAL:CG1  | 2.51           | 0.79        |
| 1:V:380:TYR:O    | 1:V:430:THR:CA   | 2.30           | 0.79        |
| 1:V:342:PHE:CE1  | 1:V:511:VAL:CG1  | 2.66           | 0.78        |
| 1:S:108:THR:HG23 | 1:S:236:THR:CG2  | 2.13           | 0.78        |
| 1:V:359:SER:O    | 1:V:523:THR:HB   | 1.83           | 0.78        |
| 1:S:386:LYS:O    | 1:S:389:ASP:HB2  | 1.84           | 0.78        |
| 1:V:354:ASN:OD1  | 1:V:399:SER:OG   | 2.01           | 0.78        |
| 1:V:377:PHE:CE1  | 1:V:432:CYS:SG   | 2.76           | 0.78        |
| 1:V:353:TRP:HZ3  | 1:V:466:ARG:HD2  | 0.74           | 0.77        |
| 1:S:408:ARG:H    | 1:S:408:ARG:HD3  | 1.46           | 0.77        |
| 1:V:350:VAL:HG21 | 1:V:422:ASN:OD1  | 1.83           | 0.77        |
| 1:V:342:PHE:CD1  | 1:V:511:VAL:CG2  | 2.59           | 0.77        |
| 1:V:395:VAL:CG2  | 1:V:514:SER:O    | 2.30           | 0.77        |
| 4:A:1:NAG:O7     | 4:A:1:NAG:O3     | 2.03           | 0.77        |
| 1:V:358:ILE:HG22 | 1:V:524:VAL:HG21 | 1.67           | 0.76        |
| 1:C:519:HIS:O    | 1:C:565:PHE:HE2  | 1.67           | 0.76        |
| 1:S:926:GLN:NE2  | 4:A:1:NAG:H82    | 1.99           | 0.76        |
| 1:V:358:ILE:HG13 | 1:V:393:THR:O    | 1.85           | 0.76        |
| 1:C:338:PHE:CA   | 1:C:341:VAL:HG13 | 2.15           | 0.76        |
| 1:C:403:ARG:HB2  | 1:C:495:TYR:CD2  | 2.17           | 0.76        |
| 1:V:342:PHE:CE1  | 1:V:511:VAL:HG11 | 2.21           | 0.75        |
| 1:V:421:TYR:CE1  | 1:V:459:SER:C    | 2.60           | 0.75        |
| 1:S:125:ASN:OD1  | 6:S:1208:NAG:O6  | 2.04           | 0.74        |
| 1:V:365:TYR:CD2  | 1:V:527:PRO:CG   | 2.66           | 0.74        |
| 1:V:380:TYR:CD2  | 1:V:431:GLY:C    | 2.62           | 0.74        |
| 1:S:386:LYS:O    | 1:S:389:ASP:OD2  | 2.05           | 0.73        |
| 1:V:331:ASN:ND2  | 6:V:1204:NAG:O5  | 2.23           | 0.72        |
| 1:V:394:ASN:O    | 1:V:516:GLU:HB3  | 1.89           | 0.72        |
| 1:S:108:THR:HG23 | 1:S:236:THR:HG23 | 1.69           | 0.72        |
| 1:V:365:TYR:CA   | 1:V:527:PRO:HD3  | 2.20           | 0.72        |
| 1:V:392:PHE:CZ   | 1:V:515:PHE:HB3  | 2.25           | 0.72        |
| 1:C:519:HIS:O    | 1:C:565:PHE:CE2  | 2.43           | 0.72        |
| 1:V:352:ALA:HB1  | 1:V:466:ARG:CZ   | 2.20           | 0.71        |
| 1:S:107:GLY:O    | 1:S:236:THR:N    | 2.19           | 0.71        |
| 1:V:395:VAL:HG11 | 1:V:515:PHE:HD1  | 1.52           | 0.71        |
| 1:V:358:ILE:HB   | 1:V:524:VAL:HG23 | 1.72           | 0.71        |
| 1:V:421:TYR:HE1  | 1:V:459:SER:C    | 1.94           | 0.71        |
| 1:V:392:PHE:CZ   | 1:V:516:GLU:N    | 2.58           | 0.71        |
| 1:C:452:LEU:HD23 | 1:C:494:SER:CB   | 2.16           | 0.71        |



|                  | the of the office of the offic | Interatomic  | Clash       |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|
| Atom-1           | Atom-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | distance (Å) | overlap (Å) |
| 1:V:355:ARG:NH1  | 1:V:355:ARG:HG3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.06         | 0.71        |
| 1:S:393:THR:HG21 | 1:S:518:LEU:HD11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.73         | 0.71        |
| 1:V:358:ILE:HD13 | 1:V:358:ILE:N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.06         | 0.71        |
| 1:V:716:THR:CG2  | 1:V:1071:GLN:O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.39         | 0.70        |
| 1:V:421:TYR:HB3  | 1:V:457:ARG:HD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.73         | 0.70        |
| 1:V:355:ARG:HG3  | 1:V:355:ARG:HH11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.57         | 0.69        |
| 1:V:395:VAL:CG1  | 1:V:515:PHE:CD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.72         | 0.69        |
| 3:L:13:ALA:O     | 3:L:106:ILE:OXT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.10         | 0.69        |
| 1:V:377:PHE:HD1  | 1:V:432:CYS:SG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.16         | 0.69        |
| 1:S:985:ASP:CG   | 1:C:383:SER:OG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.31         | 0.69        |
| 1:V:352:ALA:HB1  | 1:V:466:ARG:NH1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.09         | 0.68        |
| 1:C:403:ARG:N    | 1:C:495:TYR:OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.19         | 0.68        |
| 1:V:357:ARG:H    | 1:V:357:ARG:NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.91         | 0.68        |
| 1:C:329:PHE:HB3  | 1:C:330:PRO:HD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.75         | 0.68        |
| 1:V:365:TYR:HA   | 1:V:527:PRO:HG3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.75         | 0.68        |
| 1:V:353:TRP:CZ2  | 1:V:466:ARG:HG3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.30         | 0.67        |
| 1:S:31:SER:HB3   | 1:S:62:VAL:HG11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.76         | 0.66        |
| 1:V:382:VAL:CG1  | 1:V:515:PHE:CD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.76         | 0.66        |
| 1:V:387:LEU:C    | 1:V:387:LEU:HD23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.16         | 0.66        |
| 1:V:365:TYR:N    | 1:V:527:PRO:HD3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.11         | 0.66        |
| 1:S:374:PHE:CG   | 1:S:434:ILE:HD11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.32         | 0.65        |
| 1:S:329:PHE:HB3  | 1:S:330:PRO:HD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.78         | 0.65        |
| 1:V:371:SER:CB   | 1:V:374:PHE:CD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.75         | 0.65        |
| 1:V:349:SER:OG   | 1:V:451:TYR:HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.96         | 0.65        |
| 1:V:380:TYR:O    | 1:V:431:GLY:N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.29         | 0.64        |
| 1:V:364:ASP:CB   | 1:V:526:GLY:HA2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.27         | 0.64        |
| 1:S:462:LYS:HB3  | 1:S:463:PRO:HD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.80         | 0.64        |
| 1:S:409:GLN:OE1  | 1:S:418:ILE:HG23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.98         | 0.64        |
| 1:V:392:PHE:CZ   | 1:V:517:LEU:CD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.81         | 0.64        |
| 1:V:368:LEU:HA   | 1:V:374:PHE:CE2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.33         | 0.63        |
| 1:V:355:ARG:HH11 | 1:V:355:ARG:CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.12         | 0.63        |
| 1:S:332:ILE:CD1  | 1:S:360:ASN:OD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.46         | 0.63        |
| 1:S:386:LYS:O    | 1:S:389:ASP:CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.46         | 0.62        |
| 1:V:380:TYR:CD2  | 1:V:429:PHE:CZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.81         | 0.62        |
| 1:V:368:LEU:HD22 | 1:V:374:PHE:CZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.34         | 0.62        |
| 1:C:332:ILE:C    | 1:C:332:ILE:HD12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.18         | 0.62        |
| 1:C:338:PHE:CA   | 1:C:341:VAL:CG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.76         | 0.62        |
| 1:C:392:PHE:HB3  | 1:C:516:GLU:O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.00         | 0.62        |
| 1:V:421:TYR:HD1  | 1:V:459:SER:O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.82         | 0.61        |
| 1:V:348:ALA:HB3  | 1:V:353:TRP:HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.81         | 0.61        |
| 1:V:331:ASN:OD1  | 6:V:1204:NAG:C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.48         | 0.61        |



| Atom-1           | Atom-2            | Interatomic | Clash |
|------------------|-------------------|-------------|-------|
| 1.C.227.WAL.UC12 | 1.C.200.DUE.UD1   |             | 0.61  |
| 1:0:327:VAL:HG12 | 1:0:329:P HE:HD1  | 1.04        | 0.01  |
| 1:0:405:ARG:0D   | 1:0:495:11K:02    | 2.80        | 0.01  |
| 1:5:109:1 HR:U   | 1:5:109:1 HK:HG22 | 2.01        | 0.01  |
| 1:V:300:1YK:H    | 1:V:527:PKU:HD5   | 1.00        | 0.01  |
| 1:5:110:5ER:N    | 1:S:233:ILE:HD12  | 2.14        | 0.60  |
| 1:V:374:PHE:HDI  | 1:V:434:ILE:HG22  | 1.01        | 0.60  |
| 1:V:366:SER:OG   | 1:V:388:ASN:HB3   | 2.01        | 0.60  |
| 5:B:I:NAG:H3     | 5:B:2:NAG:H83     | 1.84        | 0.60  |
| 1:V:362:VAL:HG13 | 1:V:525:CYS:C     | 2.22        | 0.59  |
| 1:S:408:ARG:HD3  | 1:S:408:ARG:N     | 2.16        | 0.59  |
| 1:S:985:ASP:CG   | 1:C:383:SER:CB    | 2.71        | 0.59  |
| 1:S:427:ASP:OD1  | 1:S:427:ASP:N     | 2.35        | 0.59  |
| 1:C:327:VAL:CG1  | 1:C:329:PHE:CE1   | 2.85        | 0.59  |
| 1:S:357:ARG:NH2  | 1:V:230:PRO:CA    | 2.64        | 0.59  |
| 1:V:380:TYR:CE2  | 1:V:432:CYS:N     | 2.70        | 0.59  |
| 1:C:332:ILE:HD12 | 1:C:332:ILE:O     | 2.03        | 0.59  |
| 1:V:62:VAL:O     | 1:V:62:VAL:HG23   | 2.03        | 0.58  |
| 1:V:352:ALA:HB2  | 1:V:468:ILE:HG22  | 1.85        | 0.58  |
| 1:S:201:PHE:CE2  | 1:S:235:ILE:CD1   | 2.86        | 0.58  |
| 1:S:520:ALA:N    | 1:S:521:PRO:HD3   | 2.18        | 0.58  |
| 1:S:108:THR:HG23 | 1:S:236:THR:HG21  | 1.85        | 0.57  |
| 1:V:353:TRP:N    | 1:V:353:TRP:CD2   | 2.72        | 0.57  |
| 1:V:358:ILE:HB   | 1:V:523:THR:OG1   | 2.03        | 0.57  |
| 5:B:2:NAG:O7     | 5:B:2:NAG:H3      | 2.04        | 0.57  |
| 1:V:379:CYS:HB3  | 1:V:382:VAL:HG23  | 1.86        | 0.57  |
| 6:S:1208:NAG:O3  | 6:S:1208:NAG:H82  | 2.03        | 0.57  |
| 1:S:342:PHE:CE1  | 1:S:511:VAL:CG2   | 2.86        | 0.57  |
| 1:V:357:ARG:HE   | 1:V:357:ARG:N     | 1.95        | 0.57  |
| 1:V:364:ASP:HB2  | 1:V:526:GLY:HA2   | 1.87        | 0.57  |
| 1:C:453:TYR:CZ   | 1:C:493:GLN:HG2   | 2.40        | 0.57  |
| 1:S:233:ILE:HG23 | 1:S:235:ILE:HG12  | 1.87        | 0.57  |
| 1:V:375:SER:HB2  | 1:V:436:TRP:HA    | 1.87        | 0.57  |
| 1:S:386:LYS:O    | 1:S:389:ASP:CG    | 2.44        | 0.56  |
| 1:V:392:PHE:HE1  | 1:V:516:GLU:H     | 1.52        | 0.56  |
| 1:C:327:VAL:CG1  | 1:C:329:PHE:CD1   | 2.88        | 0.56  |
| 1:V:422:ASN:O    | 1:V:461:LEU:HD13  | 2.01        | 0.56  |
| 1:S:116:SER:N    | 1:S:233:ILE:HD13  | 2.17        | 0.56  |
| 1:S:237:ARG:NH1  | 1:S:237:ARG:HG3   | 2.20        | 0.56  |
| 1:V:382:VAL:HG11 | 1:V:515:PHE:HE2   | 1.60        | 0.56  |
| 1:S:423:TYB:CE2  | 1:S:425:LEU·HD21  | 2.41        | 0.55  |
| 1:V:420:ASP:O    | 1:V:461:LEU:HD23  | 2.05        | 0.55  |



|                  | io de page       | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:S:201:PHE:CD2  | 1:S:235:ILE:HD11 | 2.40         | 0.55        |
| 1:V:336:CYS:CA   | 1:V:363:ALA:CB   | 2.81         | 0.55        |
| 1:C:327:VAL:HG12 | 1:C:329:PHE:CD1  | 2.41         | 0.55        |
| 1:V:369:TYR:HA   | 1:V:377:PHE:CE2  | 2.42         | 0.55        |
| 1:C:64:TRP:CD1   | 1:C:266:TYR:CD1  | 2.94         | 0.55        |
| 1:V:341:VAL:O    | 1:V:341:VAL:HG22 | 2.06         | 0.55        |
| 1:V:362:VAL:HG13 | 1:V:525:CYS:O    | 2.07         | 0.55        |
| 1:V:422:ASN:C    | 1:V:461:LEU:HD11 | 2.20         | 0.54        |
| 1:C:64:TRP:HD1   | 1:C:266:TYR:CD1  | 2.25         | 0.54        |
| 1:C:329:PHE:CD2  | 1:C:391:CYS:SG   | 2.99         | 0.54        |
| 1:V:392:PHE:CE2  | 1:V:517:LEU:HD11 | 2.42         | 0.54        |
| 1:V:373:SER:O    | 1:V:436:TRP:HB3  | 2.07         | 0.54        |
| 1:V:380:TYR:CG   | 1:V:429:PHE:CD2  | 2.94         | 0.54        |
| 1:S:86:PHE:HB3   | 1:S:236:THR:O    | 2.08         | 0.54        |
| 1:V:350:VAL:HG11 | 1:V:453:TYR:HB3  | 1.86         | 0.53        |
| 1:C:452:LEU:HA   | 1:C:494:SER:HA   | 1.90         | 0.53        |
| 1:V:355:ARG:HH21 | 1:V:396:TYR:HB2  | 1.74         | 0.53        |
| 1:V:362:VAL:CG1  | 1:V:526:GLY:C    | 2.72         | 0.53        |
| 1:S:122:ASN:O    | 1:S:124:THR:N    | 2.42         | 0.52        |
| 1:S:201:PHE:HD2  | 1:S:235:ILE:HD11 | 1.74         | 0.52        |
| 1:S:426:PRO:CG   | 1:S:464:PHE:CE2  | 2.92         | 0.52        |
| 1:V:378:LYS:O    | 1:V:432:CYS:HA   | 2.09         | 0.52        |
| 1:S:329:PHE:HB3  | 1:S:330:PRO:CD   | 2.40         | 0.52        |
| 1:S:926:GLN:HE21 | 4:A:1:NAG:H82    | 1.71         | 0.52        |
| 1:S:83:VAL:HG13  | 1:S:237:ARG:CD   | 2.16         | 0.52        |
| 1:S:391:CYS:SG   | 1:S:525:CYS:HA   | 2.49         | 0.52        |
| 1:V:377:PHE:HE1  | 1:V:432:CYS:SG   | 2.30         | 0.52        |
| 1:C:452:LEU:CD2  | 1:C:494:SER:CB   | 2.82         | 0.52        |
| 1:S:199:GLY:HA2  | 1:S:232:GLY:HA2  | 1.92         | 0.52        |
| 1:C:453:TYR:CE1  | 1:C:493:GLN:HG2  | 2.44         | 0.52        |
| 1:S:29:THR:O     | 1:S:62:VAL:HG22  | 2.10         | 0.51        |
| 1:V:353:TRP:O    | 1:V:466:ARG:NH2  | 2.41         | 0.51        |
| 1:S:391:CYS:HB3  | 1:S:522:ALA:HB1  | 1.91         | 0.51        |
| 1:V:353:TRP:C    | 1:V:466:ARG:HH21 | 2.14         | 0.51        |
| 1:V:380:TYR:CB   | 1:V:429:PHE:CD2  | 2.93         | 0.51        |
| 1:S:201:PHE:CD2  | 1:S:235:ILE:CD1  | 2.93         | 0.51        |
| 1:V:388:ASN:HB2  | 1:V:527:PRO:HD2  | 1.93         | 0.51        |
| 1:C:599:THR:HG22 | 1:C:601:GLY:H    | 1.74         | 0.51        |
| 1:V:392:PHE:CZ   | 1:V:517:LEU:HD12 | 2.44         | 0.51        |
| 1:V:395:VAL:CG1  | 1:V:515:PHE:HD1  | 2.16         | 0.51        |
| 1:C:403:ARG:N    | 1:C:495:TYR:CZ   | 2.78         | 0.51        |



|                  | ious puge        | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:V:420:ASP:O    | 1:V:461:LEU:CD2  | 2.59         | 0.51        |
| 1:S:107:GLY:N    | 1:S:235:ILE:HG22 | 2.26         | 0.50        |
| 1:S:718:PHE:CD1  | 1:S:718:PHE:C    | 2.85         | 0.50        |
| 1:V:355:ARG:NH2  | 1:V:396:TYR:HB2  | 2.27         | 0.50        |
| 1:V:718:PHE:C    | 1:V:718:PHE:CD1  | 2.85         | 0.50        |
| 1:C:327:VAL:HG13 | 1:C:329:PHE:CE1  | 2.47         | 0.50        |
| 1:S:426:PRO:HG3  | 1:S:464:PHE:CE2  | 2.46         | 0.50        |
| 1:V:380:TYR:HD2  | 1:V:431:GLY:CA   | 2.25         | 0.50        |
| 1:C:265:TYR:CD1  | 1:C:265:TYR:C    | 2.84         | 0.50        |
| 1:C:718:PHE:CD1  | 1:C:718:PHE:C    | 2.85         | 0.50        |
| 1:S:106:PHE:CB   | 1:S:235:ILE:CG2  | 2.83         | 0.49        |
| 1:V:332:ILE:HD11 | 1:V:527:PRO:HA   | 1.93         | 0.49        |
| 1:V:388:ASN:O    | 1:V:526:GLY:CA   | 2.55         | 0.49        |
| 1:S:41:LYS:HD3   | 1:C:519:HIS:CD2  | 2.47         | 0.49        |
| 1:C:327:VAL:CG1  | 1:C:329:PHE:HE1  | 2.26         | 0.49        |
| 1:S:107:GLY:N    | 1:S:235:ILE:CG2  | 2.76         | 0.49        |
| 1:S:519:HIS:O    | 1:S:565:PHE:CZ   | 2.66         | 0.49        |
| 1:V:353:TRP:CZ3  | 1:V:466:ARG:HG3  | 2.27         | 0.49        |
| 1:S:355:ARG:NH2  | 1:S:464:PHE:CD1  | 2.80         | 0.49        |
| 1:V:368:LEU:HD22 | 1:V:374:PHE:HZ   | 1.76         | 0.49        |
| 1:V:29:THR:O     | 1:V:62:VAL:HG22  | 2.12         | 0.49        |
| 1:V:380:TYR:CD2  | 1:V:431:GLY:CA   | 2.96         | 0.48        |
| 1:C:327:VAL:HG13 | 1:C:329:PHE:HE1  | 1.77         | 0.48        |
| 1:C:455:LEU:HD22 | 1:C:493:GLN:HB3  | 1.94         | 0.48        |
| 1:C:62:VAL:HG23  | 1:C:62:VAL:O     | 2.14         | 0.48        |
| 6:S:1207:NAG:O6  | 6:S:1207:NAG:O4  | 2.30         | 0.48        |
| 1:V:379:CYS:SG   | 1:V:384:PRO:HD3  | 2.54         | 0.48        |
| 1:V:377:PHE:HE1  | 1:V:432:CYS:HG   | 1.55         | 0.48        |
| 1:V:394:ASN:O    | 1:V:394:ASN:ND2  | 2.45         | 0.48        |
| 1:V:338:PHE:O    | 1:V:341:VAL:HG12 | 2.14         | 0.48        |
| 1:S:926:GLN:HE22 | 4:A:1:NAG:H82    | 1.78         | 0.48        |
| 1:V:422:ASN:HD21 | 1:V:454:ARG:CB   | 2.03         | 0.47        |
| 1:C:390:LEU:HD22 | 1:C:390:LEU:N    | 2.29         | 0.47        |
| 1:V:396:TYR:CD1  | 1:V:396:TYR:N    | 2.80         | 0.47        |
| 1:V:364:ASP:HB3  | 1:V:526:GLY:HA2  | 1.96         | 0.47        |
| 1:V:371:SER:CB   | 1:V:374:PHE:HD2  | 2.03         | 0.47        |
| 1:C:265:TYR:CG   | 1:C:265:TYR:O    | 2.67         | 0.47        |
| 1:C:364:ASP:HB2  | 1:C:527:PRO:HG3  | 1.97         | 0.47        |
| 1:S:409:GLN:CB   | 1:S:418:ILE:CG2  | 2.93         | 0.47        |
| 1:S:237:ARG:CG   | 1:S:237:ARG:HH11 | 2.28         | 0.47        |
| 1:V:358:ILE:HG22 | 1:V:524:VAL:CG2  | 2.42         | 0.47        |



|                  |                   | Interatomic  | Clash       |  |
|------------------|-------------------|--------------|-------------|--|
| Atom-1           | Atom-2            | distance (Å) | overlap (Å) |  |
| 1:V:378:LYS:HB2  | 1:V:378:LYS:HE2   | 1.44         | 0.47        |  |
| 1:V:353:TRP:N    | 1:V:466:ARG:HH21  | 2.12         | 0.47        |  |
| 1:V:383:SER:HB3  | 1:V:386:LYS:HG3   | 1.97         | 0.47        |  |
| 1:V:335:LEU:HD13 | 1:V:335:LEU:N     | 2.29         | 0.47        |  |
| 1:V:353:TRP:HB2  | 1:V:354:ASN:H     | 1.56         | 0.47        |  |
| 1:V:395:VAL:CB   | 1:V:514:SER:O     | 2.63         | 0.47        |  |
| 1:S:408:ARG:N    | 1:S:408:ARG:CD    | 2.73         | 0.47        |  |
| 1:V:421:TYR:CG   | 1:V:457:ARG:CB    | 2.97         | 0.47        |  |
| 1:C:329:PHE:HD2  | 1:C:525:CYS:HB3   | 1.80         | 0.47        |  |
| 1:V:380:TYR:CE2  | 1:V:431:GLY:C     | 2.88         | 0.46        |  |
| 1:C:105:ILE:HD12 | 1:C:135:PHE:CE1   | 2.50         | 0.46        |  |
| 1:V:335:LEU:HA   | 1:V:363:ALA:HA    | 1.97         | 0.46        |  |
| 6:S:1210:NAG:O7  | 6:S:1210:NAG:O3   | 2.21         | 0.46        |  |
| 1:V:352:ALA:CB   | 1:V:468:ILE:HG22  | 2.45         | 0.46        |  |
| 1:V:373:SER:O    | 1:V:436:TRP:CB    | 2.63         | 0.46        |  |
| 1:S:237:ARG:NH1  | 1:S:237:ARG:CG    | 2.77         | 0.46        |  |
| 1:V:350:VAL:CG2  | 1:V:422:ASN:HB3   | 2.45         | 0.46        |  |
| 1:S:233:ILE:CG2  | 1:S:235:ILE:HG12  | 2.44         | 0.46        |  |
| 1:V:350:VAL:CG2  | 1:V:422:ASN:OD1   | 2.58         | 0.46        |  |
| 1:S:110:LEU:HD21 | 1:S:237:ARG:HD2   | 1.97         | 0.46        |  |
| 1:V:332:ILE:CD1  | 1:V:527:PRO:HA    | 2.45         | 0.46        |  |
| 1:V:355:ARG:HD2  | 1:V:355:ARG:HA    | 1.62         | 0.46        |  |
| 1:V:353:TRP:N    | 1:V:466:ARG:NH2   | 2.63         | 0.46        |  |
| 1:S:29:THR:OG1   | 1:S:62:VAL:HG23   | 2.16         | 0.46        |  |
| 1:S:31:SER:HB3   | 1:S:62:VAL:CG1    | 2.46         | 0.46        |  |
| 1:V:421:TYR:HD1  | 1:V:457:ARG:HB3   | 1.60         | 0.46        |  |
| 1:V:387:LEU:C    | 1:V:387:LEU:CD2   | 2.85         | 0.46        |  |
| 1:S:41:LYS:HD3   | 1:C:519:HIS:NE2   | 2.32         | 0.45        |  |
| 1:V:335:LEU:N    | 1:V:335:LEU:CD1   | 2.79         | 0.45        |  |
| 1:V:392:PHE:CE2  | 1:V:515:PHE:HB3   | 2.51         | 0.45        |  |
| 1:S:342:PHE:CZ   | 1:S:511:VAL:CG2   | 3.00         | 0.45        |  |
| 1:V:421:TYR:C    | 1:V:461:LEU:HD22  | 2.37         | 0.45        |  |
| 1:V:353:TRP:CE3  | 1:V:353:TRP:N     | 2.76         | 0.45        |  |
| 1:V:358:ILE:N    | 1:V:358:ILE:CD1   | 2.73         | 0.45        |  |
| 1:S:332:ILE:HD13 | 1:S:360:ASN:C     | 2.37         | 0.45        |  |
| 1:S:374:PHE:CD1  | 1:S:434:ILE:HD11  | 2.52         | 0.45        |  |
| 1:C:265:TYR:CD1  | 1:C:265:TYR:O     | 2.70         | 0.45        |  |
| 1:C:714:ILE:HD12 | 1:C:1096:VAL:HG11 | 1.99         | 0.45        |  |
| 1:S:718:PHE:CD1  | 1:S:718:PHE:O     | 2.70         | 0.45        |  |
| 1:V:375:SER:CB   | 1:V:435:ALA:O     | 2.65         | 0.45        |  |
| 1:V:395:VAL:HG12 | 1:V:395:VAL:O     | 2.18         | 0.44        |  |



|                  |                   | Interatomic  | Clash       |  |
|------------------|-------------------|--------------|-------------|--|
| Atom-1           | Atom-2            | distance (Å) | overlap (Å) |  |
| 1.S.107.GLY.O    | 1·S·235·ILE·HA    | 2.16         | 0.44        |  |
| 1:V:422:ASN:C    | 1:V:461:LEU:CD1   | 2.80         | 0.44        |  |
| 1.V:714:ILE:HD12 | 1:V:1096:VAL:HG11 | 1.99         | 0.44        |  |
| 1:V:375:SEB:CA   | 1.V.435:ALA:O     | 2.66         | 0.44        |  |
| 1:V:369:TYR:HA   | 1:V:377:PHE:HE2   | 1.80         | 0.44        |  |
| 1:V:385:THR:H    | 1:V:385:THR:HG1   | 1.50         | 0.44        |  |
| 1:S:83:VAL:HG12  | 1:S:237:ARG:CD    | 2.30         | 0.44        |  |
| 1:V:393:THR:CG2  | 1:V:521:PRO:O     | 2.61         | 0.44        |  |
| 1:V:421:TYR:HD1  | 1:V:457:ARG:HD3   | 1.83         | 0.44        |  |
| 1:S:393:THR:CG2  | 1:S:518:LEU:HD11  | 2.45         | 0.44        |  |
| 1:V:357:ARG:NE   | 1:V:357:ARG:N     | 2.60         | 0.43        |  |
| 1:V:422:ASN:N    | 1:V:461:LEU:HD22  | 2.32         | 0.43        |  |
| 1:S:519:HIS:O    | 1:S:565:PHE:HZ    | 2.01         | 0.43        |  |
| 1:C:387:LEU:HA   | 1:C:390:LEU:HD23  | 1.98         | 0.43        |  |
| 1:S:926:GLN:HE21 | 4:A:1:NAG:C8      | 2.31         | 0.43        |  |
| 1:C:877:LEU:HD13 | 1:C:1029:MET:SD   | 2.58         | 0.43        |  |
| 1:S:327:VAL:CG1  | 1:S:329:PHE:CE2   | 3.02         | 0.43        |  |
| 1:V:368:LEU:N    | 1:V:368:LEU:HD23  | 2.34         | 0.43        |  |
| 1:V:380:TYR:HB2  | 1:V:429:PHE:CD2   | 2.54         | 0.43        |  |
| 1:V:394:ASN:ND2  | 1:V:516:GLU:O     | 2.52         | 0.43        |  |
| 1:S:408:ARG:HH11 | 1:S:408:ARG:HD2   | 1.65         | 0.43        |  |
| 1:C:329:PHE:CD2  | 1:C:525:CYS:HB3   | 2.54         | 0.43        |  |
| 1:C:390:LEU:N    | 1:C:390:LEU:CD2   | 2.82         | 0.43        |  |
| 1:S:106:PHE:CB   | 1:S:235:ILE:HG21  | 2.24         | 0.42        |  |
| 1:S:332:ILE:HD13 | 1:S:360:ASN:HA    | 2.00         | 0.42        |  |
| 1:V:360:ASN:HA   | 1:V:523:THR:HB    | 2.01         | 0.42        |  |
| 1:V:352:ALA:HB2  | 1:V:468:ILE:CG2   | 2.50         | 0.42        |  |
| 1:V:364:ASP:CB   | 1:V:526:GLY:CA    | 2.95         | 0.42        |  |
| 1:V:364:ASP:HB2  | 1:V:526:GLY:CA    | 2.48         | 0.42        |  |
| 1:C:389:ASP:OD1  | 1:C:389:ASP:N     | 2.51         | 0.42        |  |
| 1:V:359:SER:O    | 1:V:523:THR:CB    | 2.61         | 0.42        |  |
| 1:V:418:ILE:O    | 1:V:422:ASN:HB2   | 2.19         | 0.42        |  |
| 1:C:404:GLY:HA3  | 1:C:508:TYR:CE1   | 2.55         | 0.42        |  |
| 1:V:395:VAL:CA   | 1:V:514:SER:O     | 2.68         | 0.41        |  |
| 1:V:350:VAL:CG2  | 1:V:422:ASN:CG    | 2.88         | 0.41        |  |
| 1:C:31:SER:HB3   | 1:C:62:VAL:HG13   | 2.01         | 0.41        |  |
| 1:V:382:VAL:CG1  | 1:V:515:PHE:HE2   | 2.22         | 0.41        |  |
| 1:S:429:PHE:CZ   | 1:S:431:GLY:HA3   | 2.55         | 0.41        |  |
| 1:V:363:ALA:N    | 1:V:525:CYS:O     | 2.53         | 0.41        |  |
| 1:C:92:PHE:CE2   | 1:C:265:TYR:CE1   | 3.09         | 0.41        |  |
| 1:V:392:PHE:CZ   | 1:V:517:LEU:HD11  | 2.55         | 0.41        |  |



| Atom 1          | Atom 2           | Interatomic  | Clash       |
|-----------------|------------------|--------------|-------------|
| Atom-1          | Atom-2           | distance (Å) | overlap (Å) |
| 1:C:329:PHE:HD2 | 1:C:525:CYS:SG   | 2.44         | 0.41        |
| 1:C:493:GLN:O   | 1:C:493:GLN:CG   | 2.68         | 0.41        |
| 1:C:329:PHE:CD2 | 1:C:525:CYS:SG   | 3.14         | 0.41        |
| 1:S:699:LEU:H   | 1:S:699:LEU:HD12 | 1.86         | 0.40        |
| 1:S:387:LEU:C   | 1:S:389:ASP:H    | 2.24         | 0.40        |
| 1:V:349:SER:HB2 | 1:V:351:TYR:HE1  | 1.86         | 0.40        |
| 1:C:341:VAL:O   | 1:C:341:VAL:CG2  | 2.68         | 0.40        |
| 1:V:395:VAL:CG1 | 1:V:395:VAL:O    | 2.69         | 0.40        |

There are no symmetry-related clashes.

### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Favoured   | Allowed  | Outliers | Perce | entiles |
|-----|-------|-----------------|------------|----------|----------|-------|---------|
| 1   | С     | 972/1121~(87%)  | 904 (93%)  | 62 (6%)  | 6 (1%)   | 25    | 61      |
| 1   | S     | 971/1121~(87%)  | 899~(93%)  | 65~(7%)  | 7(1%)    | 22    | 58      |
| 1   | V     | 964/1121~(86%)  | 895~(93%)  | 64 (7%)  | 5~(0%)   | 29    | 65      |
| 2   | Η     | 120/122~(98%)   | 110 (92%)  | 10 (8%)  | 0        | 100   | 100     |
| 2   | a     | 120/122~(98%)   | 112 (93%)  | 8 (7%)   | 0        | 100   | 100     |
| 2   | d     | 120/122~(98%)   | 107~(89%)  | 12 (10%) | 1 (1%)   | 19    | 56      |
| 3   | L     | 104/106~(98%)   | 97~(93%)   | 7 (7%)   | 0        | 100   | 100     |
| 3   | b     | 104/106~(98%)   | 98~(94%)   | 6 (6%)   | 0        | 100   | 100     |
| 3   | с     | 104/106~(98%)   | 98 (94%)   | 5 (5%)   | 1 (1%)   | 15    | 51      |
| All | All   | 3579/4047~(88%) | 3320 (93%) | 239 (7%) | 20 (1%)  | 29    | 61      |

All (20) Ramachandran outliers are listed below:



| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | S     | 110  | LEU  |
| 1   | S     | 122  | ASN  |
| 1   | S     | 518  | LEU  |
| 1   | S     | 528  | LYS  |
| 1   | V     | 364  | ASP  |
| 1   | С     | 112  | SER  |
| 1   | S     | 123  | ALA  |
| 1   | V     | 350  | VAL  |
| 1   | V     | 420  | ASP  |
| 1   | С     | 604  | THR  |
| 2   | d     | 83   | ARG  |
| 1   | S     | 582  | LEU  |
| 1   | V     | 351  | TYR  |
| 1   | V     | 1091 | ARG  |
| 3   | с     | 60   | SER  |
| 1   | С     | 582  | LEU  |
| 1   | С     | 123  | ALA  |
| 1   | С     | 614  | ASP  |
| 1   | С     | 476  | GLY  |
| 1   | S     | 231  | ILE  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed       | Rotameric | Outliers | Perce | $\mathbf{ntiles}$ |
|-----|-------|----------------|-----------|----------|-------|-------------------|
| 1   | С     | 827/972~(85%)  | 810~(98%) | 17~(2%)  | 53    | 79                |
| 1   | S     | 833/972~(86%)  | 805~(97%) | 28~(3%)  | 37    | 68                |
| 1   | V     | 830/972~(85%)  | 790~(95%) | 40 (5%)  | 25    | 59                |
| 2   | Н     | 101/101 (100%) | 100 (99%) | 1 (1%)   | 76    | 88                |
| 2   | a     | 101/101~(100%) | 98~(97%)  | 3~(3%)   | 41    | 71                |
| 2   | d     | 101/101 (100%) | 96~(95%)  | 5 (5%)   | 24    | 57                |
| 3   | L     | 92/92~(100%)   | 92~(100%) | 0        | 100   | 100               |
| 3   | b     | 92/92~(100%)   | 92 (100%) | 0        | 100   | 100               |
| 3   | с     | 92/92~(100%)   | 91~(99%)  | 1 (1%)   | 73    | 87                |



Continued from previous page...

| Mol | Chain | Analysed        | Rotameric  | Outliers | Percentiles |
|-----|-------|-----------------|------------|----------|-------------|
| All | All   | 3069/3495~(88%) | 2974~(97%) | 95~(3%)  | 43 70       |

All (95) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | S     | 96   | GLU  |
| 1   | S     | 108  | THR  |
| 1   | S     | 110  | LEU  |
| 1   | S     | 122  | ASN  |
| 1   | S     | 233  | ILE  |
| 1   | S     | 235  | ILE  |
| 1   | S     | 237  | ARG  |
| 1   | S     | 324  | GLU  |
| 1   | S     | 346  | ARG  |
| 1   | S     | 357  | ARG  |
| 1   | S     | 367  | VAL  |
| 1   | S     | 390  | LEU  |
| 1   | S     | 408  | ARG  |
| 1   | S     | 414  | GLN  |
| 1   | S     | 415  | THR  |
| 1   | S     | 427  | ASP  |
| 1   | S     | 441  | LEU  |
| 1   | S     | 457  | ARG  |
| 1   | S     | 461  | LEU  |
| 1   | S     | 483  | VAL  |
| 1   | S     | 518  | LEU  |
| 1   | S     | 519  | HIS  |
| 1   | S     | 531  | THR  |
| 1   | S     | 546  | LEU  |
| 1   | S     | 565  | PHE  |
| 1   | S     | 887  | THR  |
| 1   | S     | 975  | SER  |
| 1   | S     | 1004 | LEU  |
| 1   | V     | 117  | LEU  |
| 1   | V     | 130  | VAL  |
| 1   | V     | 303  | LEU  |
| 1   | V     | 333  | THR  |
| 1   | V     | 334  | ASN  |
| 1   | V     | 335  | LEU  |
| 1   | V     | 336  | CYS  |
| 1   | V     | 343  | ASN  |
| 1   | V     | 346  | ARG  |



| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | V     | 351  | TYR  |
| 1   | V     | 353  | TRP  |
| 1   | V     | 354  | ASN  |
| 1   | V     | 355  | ARG  |
| 1   | V     | 356  | LYS  |
| 1   | V     | 357  | ARG  |
| 1   | V     | 358  | ILE  |
| 1   | V     | 364  | ASP  |
| 1   | V     | 367  | VAL  |
| 1   | V     | 370  | ASN  |
| 1   | V     | 373  | SER  |
| 1   | V     | 377  | PHE  |
| 1   | V     | 378  | LYS  |
| 1   | V     | 380  | TYR  |
| 1   | V     | 385  | THR  |
| 1   | V     | 390  | LEU  |
| 1   | V     | 392  | PHE  |
| 1   | V     | 393  | THR  |
| 1   | V     | 394  | ASN  |
| 1   | V     | 395  | VAL  |
| 1   | V     | 396  | TYR  |
| 1   | V     | 408  | ARG  |
| 1   | V     | 455  | LEU  |
| 1   | V     | 461  | LEU  |
| 1   | V     | 546  | LEU  |
| 1   | V     | 567  | ARG  |
| 1   | V     | 658  | ASN  |
| 1   | V     | 716  | THR  |
| 1   | V     | 760  | CYS  |
| 1   | V     | 820  | ASP  |
| 1   | V     | 1004 | LEU  |
| 1   | С     | 265  | TYR  |
| 1   | С     | 267  | VAL  |
| 1   | C     | 340  | GLU  |
| 1   | C     | 341  | VAL  |
| 1   | С     | 346  | ARG  |
| 1   | С     | 389  | ASP  |
| 1   | С     | 392  | PHE  |
| 1   | C     | 408  | ARG  |
| 1   | С     | 474  | GLN  |
| 1   | С     | 493  | GLN  |
| 1   | С     | 501  | ASN  |



| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | С     | 546  | LEU  |
| 1   | С     | 572  | THR  |
| 1   | С     | 578  | ASP  |
| 1   | С     | 760  | CYS  |
| 1   | С     | 984  | LEU  |
| 1   | С     | 1135 | ASN  |
| 2   | Н     | 99   | ARG  |
| 2   | a     | 32   | TYR  |
| 2   | a     | 67   | VAL  |
| 2   | a     | 99   | ARG  |
| 3   | с     | 33   | LEU  |
| 2   | d     | 85   | GLU  |
| 2   | d     | 92   | CYS  |
| 2   | d     | 94   | ARG  |
| 2   | d     | 95   | TYR  |
| 2   | d     | 99   | ARG  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (3) such sidechains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | S     | 926 | GLN  |
| 1   | V     | 370 | ASN  |
| 1   | V     | 422 | ASN  |

### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

## 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

## 5.5 Carbohydrates (i)

27 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond



| Mal | Tune | Chain | Dec | Tiple    | Bo       | ond leng | ths     | Bond angles |      |                      |  |
|-----|------|-------|-----|----------|----------|----------|---------|-------------|------|----------------------|--|
|     | туре | Chain | nes |          | Counts   | RMSZ     | # Z >2  | Counts      | RMSZ | # Z >2               |  |
| 4   | NAG  | А     | 1   | 4,1      | 14,14,15 | 2.52     | 5 (35%) | 17,19,21    | 2.54 | 5 (29%)              |  |
| 4   | NAG  | А     | 2   | 4        | 14,14,15 | 0.72     | 0       | 17,19,21    | 2.19 | 5 (29%)              |  |
| 4   | BMA  | А     | 3   | 4        | 11,11,12 | 0.44     | 0       | 15,15,17    | 2.21 | <mark>6 (40%)</mark> |  |
| 5   | NAG  | В     | 1   | 5,1      | 14,14,15 | 0.53     | 0       | 17,19,21    | 2.32 | <mark>6 (35%)</mark> |  |
| 5   | NAG  | В     | 2   | 5        | 14,14,15 | 0.44     | 0       | 17,19,21    | 1.21 | 2 (11%)              |  |
| 5   | NAG  | D     | 1   | 5,1      | 14,14,15 | 0.28     | 0       | 17,19,21    | 0.68 | 0                    |  |
| 5   | NAG  | D     | 2   | 5        | 14,14,15 | 0.28     | 0       | 17,19,21    | 0.72 | 0                    |  |
| 5   | NAG  | Е     | 1   | 5,1      | 14,14,15 | 0.27     | 0       | 17,19,21    | 0.74 | 0                    |  |
| 5   | NAG  | Ε     | 2   | 5        | 14,14,15 | 0.27     | 0       | 17,19,21    | 0.66 | 0                    |  |
| 5   | NAG  | F     | 1   | 5,1      | 14,14,15 | 1.20     | 2 (14%) | 17,19,21    | 0.68 | 0                    |  |
| 5   | NAG  | F     | 2   | 5        | 14,14,15 | 1.21     | 1 (7%)  | 17,19,21    | 0.85 | 1 (5%)               |  |
| 5   | NAG  | G     | 1   | $^{5,1}$ | 14,14,15 | 1.22     | 1 (7%)  | 17,19,21    | 0.94 | 1 (5%)               |  |
| 5   | NAG  | G     | 2   | 5        | 14,14,15 | 1.19     | 1 (7%)  | 17,19,21    | 0.84 | 1 (5%)               |  |
| 5   | NAG  | Ι     | 1   | 5,1      | 14,14,15 | 1.16     | 1 (7%)  | 17,19,21    | 0.67 | 0                    |  |
| 5   | NAG  | Ι     | 2   | 5        | 14,14,15 | 1.23     | 2 (14%) | 17,19,21    | 0.75 | 0                    |  |
| 5   | NAG  | J     | 1   | 5,1      | 14,14,15 | 1.27     | 3 (21%) | 17,19,21    | 1.01 | 1 (5%)               |  |
| 5   | NAG  | J     | 2   | 5        | 14,14,15 | 1.22     | 2 (14%) | 17,19,21    | 0.79 | 0                    |  |
| 5   | NAG  | K     | 1   | 5,1      | 14,14,15 | 1.20     | 2 (14%) | 17,19,21    | 0.70 | 0                    |  |
| 5   | NAG  | K     | 2   | 5        | 14,14,15 | 1.19     | 1 (7%)  | 17,19,21    | 0.82 | 1(5%)                |  |
| 5   | NAG  | М     | 1   | 5,1      | 14,14,15 | 1.19     | 2 (14%) | 17,19,21    | 0.75 | 0                    |  |
| 5   | NAG  | М     | 2   | 5        | 14,14,15 | 1.23     | 1 (7%)  | 17,19,21    | 0.99 | 1 (5%)               |  |
| 5   | NAG  | Ν     | 1   | 5,1      | 14,14,15 | 1.25     | 2 (14%) | 17,19,21    | 0.85 | 0                    |  |
| 5   | NAG  | N     | 2   | 5        | 14,14,15 | 1.20     | 1 (7%)  | 17,19,21    | 0.77 | 0                    |  |
| 5   | NAG  | 0     | 1   | 5,1      | 14,14,15 | 1.22     | 2 (14%) | 17,19,21    | 0.68 | 0                    |  |
| 5   | NAG  | Ο     | 2   | 5        | 14,14,15 | 1.26     | 2 (14%) | 17,19,21    | 0.77 | 1 (5%)               |  |
| 5   | NAG  | W     | 1   | 5,1      | 14,14,15 | 1.18     | 2 (14%) | 17,19,21    | 0.78 | 0                    |  |
| 5   | NAG  | W     | 2   | 5        | 14,14,15 | 1.26     | 2 (14%) | 17,19,21    | 1.03 | 1 (5%)               |  |

length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.



| Mol | Type | Chain | Res | Link | Chirals | Torsions  | Rings   |
|-----|------|-------|-----|------|---------|-----------|---------|
| 4   | NAG  | А     | 1   | 4,1  | -       | 3/6/23/26 | 0/1/1/1 |
| 4   | NAG  | А     | 2   | 4    | -       | 3/6/23/26 | 0/1/1/1 |
| 4   | BMA  | А     | 3   | 4    | -       | 0/2/19/22 | 0/1/1/1 |
| 5   | NAG  | В     | 1   | 5,1  | -       | 5/6/23/26 | 0/1/1/1 |
| 5   | NAG  | В     | 2   | 5    | -       | 3/6/23/26 | 0/1/1/1 |
| 5   | NAG  | D     | 1   | 5,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 5   | NAG  | D     | 2   | 5    | -       | 1/6/23/26 | 0/1/1/1 |
| 5   | NAG  | Е     | 1   | 5,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 5   | NAG  | Е     | 2   | 5    | -       | 0/6/23/26 | 0/1/1/1 |
| 5   | NAG  | F     | 1   | 5,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 5   | NAG  | F     | 2   | 5    | -       | 0/6/23/26 | 0/1/1/1 |
| 5   | NAG  | G     | 1   | 5,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 5   | NAG  | G     | 2   | 5    | -       | 0/6/23/26 | 0/1/1/1 |
| 5   | NAG  | Ι     | 1   | 5,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 5   | NAG  | Ι     | 2   | 5    | -       | 0/6/23/26 | 0/1/1/1 |
| 5   | NAG  | J     | 1   | 5,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 5   | NAG  | J     | 2   | 5    | -       | 0/6/23/26 | 0/1/1/1 |
| 5   | NAG  | K     | 1   | 5,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 5   | NAG  | K     | 2   | 5    | -       | 0/6/23/26 | 0/1/1/1 |
| 5   | NAG  | М     | 1   | 5,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 5   | NAG  | М     | 2   | 5    | -       | 0/6/23/26 | 0/1/1/1 |
| 5   | NAG  | N     | 1   | 5,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 5   | NAG  | N     | 2   | 5    | -       | 0/6/23/26 | 0/1/1/1 |
| 5   | NAG  | 0     | 1   | 5,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 5   | NAG  | 0     | 2   | 5    | -       | 1/6/23/26 | 0/1/1/1 |
| 5   | NAG  | W     | 1   | 5,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 5   | NAG  | W     | 2   | 5    | -       | 2/6/23/26 | 0/1/1/1 |

All (35) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|-------|-------|-------------|----------|
| 4   | А     | 1   | NAG  | O5-C1 | -5.60 | 1.34        | 1.43     |
| 4   | А     | 1   | NAG  | C1-C2 | -4.23 | 1.46        | 1.52     |
| 4   | А     | 1   | NAG  | O5-C5 | -3.59 | 1.36        | 1.43     |
| 4   | А     | 1   | NAG  | C2-N2 | -3.06 | 1.41        | 1.46     |
| 5   | J     | 2   | NAG  | O5-C5 | 2.73  | 1.49        | 1.43     |
| 5   | Ι     | 2   | NAG  | O5-C5 | 2.71  | 1.48        | 1.43     |
| 5   | W     | 2   | NAG  | O5-C5 | 2.70  | 1.48        | 1.43     |
| 5   | Ν     | 2   | NAG  | O5-C5 | 2.68  | 1.48        | 1.43     |
| 5   | F     | 2   | NAG  | O5-C5 | 2.65  | 1.48        | 1.43     |
| 5   | J     | 1   | NAG  | O5-C5 | 2.64  | 1.48        | 1.43     |
| 5   | М     | 2   | NAG  | O5-C5 | 2.63  | 1.48        | 1.43     |



| Mol | Chain | Res | Type | Atoms | Ζ     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|-------|-------|-------------|----------|
| 5   | G     | 2   | NAG  | O5-C5 | 2.58  | 1.48        | 1.43     |
| 5   | Ν     | 1   | NAG  | O5-C5 | 2.52  | 1.48        | 1.43     |
| 5   | Κ     | 2   | NAG  | O5-C5 | 2.51  | 1.48        | 1.43     |
| 5   | 0     | 2   | NAG  | O5-C5 | 2.39  | 1.48        | 1.43     |
| 5   | G     | 1   | NAG  | O5-C5 | 2.38  | 1.48        | 1.43     |
| 5   | 0     | 2   | NAG  | O5-C1 | 2.29  | 1.47        | 1.43     |
| 5   | W     | 1   | NAG  | O5-C5 | 2.22  | 1.47        | 1.43     |
| 5   | М     | 1   | NAG  | O4-C4 | 2.21  | 1.48        | 1.43     |
| 5   | 0     | 1   | NAG  | O5-C5 | 2.21  | 1.47        | 1.43     |
| 5   | К     | 1   | NAG  | O5-C5 | 2.20  | 1.47        | 1.43     |
| 5   | М     | 1   | NAG  | O5-C5 | 2.15  | 1.47        | 1.43     |
| 4   | А     | 1   | NAG  | C3-C2 | -2.13 | 1.48        | 1.52     |
| 5   | 0     | 1   | NAG  | O4-C4 | 2.11  | 1.48        | 1.43     |
| 5   | Ι     | 1   | NAG  | O5-C5 | 2.11  | 1.47        | 1.43     |
| 5   | F     | 1   | NAG  | O5-C5 | 2.11  | 1.47        | 1.43     |
| 5   | Ι     | 2   | NAG  | O5-C1 | 2.09  | 1.47        | 1.43     |
| 5   | F     | 1   | NAG  | O4-C4 | 2.07  | 1.47        | 1.43     |
| 5   | J     | 1   | NAG  | O5-C1 | 2.06  | 1.47        | 1.43     |
| 5   | Κ     | 1   | NAG  | O4-C4 | 2.05  | 1.47        | 1.43     |
| 5   | W     | 1   | NAG  | O4-C4 | 2.03  | 1.47        | 1.43     |
| 5   | W     | 2   | NAG  | O5-C1 | 2.01  | 1.46        | 1.43     |
| 5   | J     | 2   | NAG  | O5-C1 | 2.01  | 1.46        | 1.43     |
| 5   | Ν     | 1   | NAG  | O4-C4 | 2.01  | 1.47        | 1.43     |
| 5   | J     | 1   | NAG  | O4-C4 | 2.01  | 1.47        | 1.43     |

| All ( | 32) | bond | angle | outliers | are | listed | below: |
|-------|-----|------|-------|----------|-----|--------|--------|
|-------|-----|------|-------|----------|-----|--------|--------|

| Mol | Chain | Res | Type | Atoms    | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|----------|-------|------------------|---------------|
| 4   | А     | 1   | NAG  | O4-C4-C3 | 6.47  | 125.32           | 110.35        |
| 4   | А     | 1   | NAG  | O5-C5-C6 | -5.43 | 98.69            | 107.20        |
| 4   | А     | 3   | BMA  | O5-C1-C2 | -5.18 | 102.77           | 110.77        |
| 4   | А     | 2   | NAG  | O3-C3-C4 | -5.03 | 98.73            | 110.35        |
| 5   | В     | 1   | NAG  | C1-C2-N2 | -4.99 | 101.97           | 110.49        |
| 5   | В     | 1   | NAG  | C1-O5-C5 | 4.32  | 118.05           | 112.19        |
| 5   | В     | 1   | NAG  | O4-C4-C5 | 4.23  | 119.81           | 109.30        |
| 4   | А     | 2   | NAG  | O3-C3-C2 | -4.21 | 100.75           | 109.47        |
| 4   | А     | 2   | NAG  | C2-N2-C7 | 3.77  | 128.27           | 122.90        |
| 4   | А     | 1   | NAG  | C1-C2-N2 | -3.55 | 104.42           | 110.49        |
| 5   | В     | 1   | NAG  | O3-C3-C4 | -3.30 | 102.72           | 110.35        |
| 4   | А     | 3   | BMA  | C1-O5-C5 | 3.28  | 116.64           | 112.19        |
| 4   | А     | 3   | BMA  | O2-C2-C3 | -3.12 | 103.90           | 110.14        |
| 5   | В     | 1   | NAG  | O5-C5-C6 | 3.09  | 112.04           | 107.20        |



| Mol | Chain | Res | Type | Atoms            | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|------------------|-------|------------------|---------------|
| 4   | А     | 1   | NAG  | C4-C3-C2         | -2.95 | 106.70           | 111.02        |
| 5   | М     | 2   | NAG  | C1-O5-C5         | 2.72  | 115.88           | 112.19        |
| 5   | G     | 2   | NAG  | C1-O5-C5         | 2.55  | 115.65           | 112.19        |
| 4   | А     | 3   | BMA  | C2-C3-C4         | -2.50 | 106.56           | 110.89        |
| 5   | В     | 2   | NAG  | O5-C1-C2         | -2.49 | 107.36           | 111.29        |
| 4   | А     | 2   | NAG  | C1-O5-C5         | 2.48  | 115.55           | 112.19        |
| 4   | А     | 1   | NAG  | O5-C5-C4         | -2.46 | 104.85           | 110.83        |
| 5   | W     | 2   | NAG  | C1-O5-C5         | 2.41  | 115.46           | 112.19        |
| 5   | В     | 2   | NAG  | C1-O5-C5         | 2.37  | 115.41           | 112.19        |
| 5   | 0     | 2   | NAG  | C1-O5-C5         | 2.31  | 115.33           | 112.19        |
| 5   | F     | 2   | NAG  | C1-O5-C5         | 2.29  | 115.30           | 112.19        |
| 4   | А     | 2   | NAG  | C6-C5-C4         | -2.18 | 107.89           | 113.00        |
| 5   | В     | 1   | NAG  | O5-C1-C2         | -2.18 | 107.85           | 111.29        |
| 5   | J     | 1   | NAG  | C1-O5-C5         | 2.16  | 115.12           | 112.19        |
| 5   | K     | 2   | NAG  | C1-O5-C5         | 2.16  | 115.12           | 112.19        |
| 5   | G     | 1   | NAG  | C3-C4-C5         | 2.15  | 114.08           | 110.24        |
| 4   | A     | 3   | BMA  | C1-C2-C3         | 2.13  | 112.28           | 109.67        |
| 4   | А     | 3   | BMA  | O <u>5-C5-C6</u> | 2.04  | 110.41           | 107.20        |

There are no chirality outliers.

All (20) torsion outliers are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type | Atoms       |
|-----|-------|----------------|------|-------------|
| 4   | А     | 2              | NAG  | C8-C7-N2-C2 |
| 4   | А     | 2              | NAG  | O7-C7-N2-C2 |
| 5   | В     | 1              | NAG  | C4-C5-C6-O6 |
| 5   | В     | 1              | NAG  | O5-C5-C6-O6 |
| 5   | В     | 1              | NAG  | C1-C2-N2-C7 |
| 4   | А     | 1              | NAG  | C8-C7-N2-C2 |
| 5   | В     | 1              | NAG  | C8-C7-N2-C2 |
| 5   | D     | 2              | NAG  | C1-C2-N2-C7 |
| 4   | А     | 1              | NAG  | O7-C7-N2-C2 |
| 5   | В     | 1              | NAG  | O7-C7-N2-C2 |
| 5   | D     | 1              | NAG  | C1-C2-N2-C7 |
| 5   | 0     | 2              | NAG  | O5-C5-C6-O6 |
| 4   | А     | 1              | NAG  | C3-C2-N2-C7 |
| 5   | В     | 2              | NAG  | C3-C2-N2-C7 |
| 4   | А     | 2              | NAG  | C3-C2-N2-C7 |
| 5   | В     | 2              | NAG  | C8-C7-N2-C2 |
| 5   | В     | 2              | NAG  | O7-C7-N2-C2 |
| 5   | W     | 2              | NAG  | C1-C2-N2-C7 |
| 5   | D     | 1              | NAG  | C8-C7-N2-C2 |



Continued from previous page...

| Mol | Chain | Res | Type | Atoms       |
|-----|-------|-----|------|-------------|
| 5   | W     | 2   | NAG  | C3-C2-N2-C7 |

There are no ring outliers.

3 monomers are involved in 8 short contacts:

| Mol | Chain | Res | Type | Clashes | Symm-Clashes |
|-----|-------|-----|------|---------|--------------|
| 4   | А     | 1   | NAG  | 5       | 0            |
| 5   | В     | 1   | NAG  | 2       | 0            |
| 5   | В     | 2   | NAG  | 2       | 0            |

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.



















































## 5.6 Ligand geometry (i)

33 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol Turno Chain |      | Chain | Dec  | Res | Dec      | Dec  | Dec      | Dag      | Dec  | Dog      | Dog | Ros | Tink | Bo | ond leng | $_{\rm sths}$ | В | ond ang | les |
|-----------------|------|-------|------|-----|----------|------|----------|----------|------|----------|-----|-----|------|----|----------|---------------|---|---------|-----|
| WIOI            | туре | Unam  |      |     | Counts   | RMSZ | # Z  > 2 | Counts   | RMSZ | # Z  > 2 |     |     |      |    |          |               |   |         |     |
| 6               | NAG  | V     | 1210 | 1   | 14,14,15 | 1.29 | 2 (14%)  | 17,19,21 | 0.63 | 0        |     |     |      |    |          |               |   |         |     |
| 6               | NAG  | S     | 1203 | 1   | 14,14,15 | 1.20 | 1 (7%)   | 17,19,21 | 0.68 | 0        |     |     |      |    |          |               |   |         |     |
| 6               | NAG  | С     | 1202 | 1   | 14,14,15 | 1.29 | 2 (14%)  | 17,19,21 | 0.60 | 0        |     |     |      |    |          |               |   |         |     |



| Mal   | Tuno | Chain | Dec  | Tiple | Bo             | ond leng | ths      | Bond angles |      |          |
|-------|------|-------|------|-------|----------------|----------|----------|-------------|------|----------|
| IVIOI | Type | Chain | nes  |       | Counts         | RMSZ     | # Z  > 2 | Counts      | RMSZ | # Z  > 2 |
| 6     | NAG  | S     | 1208 | 1     | 14,14,15       | 0.27     | 0        | 17,19,21    | 0.73 | 0        |
| 6     | NAG  | V     | 1212 | 1     | $14,\!14,\!15$ | 0.33     | 0        | 17,19,21    | 0.90 | 1 (5%)   |
| 6     | NAG  | С     | 1201 | 1     | 14,14,15       | 1.42     | 2 (14%)  | 17,19,21    | 0.70 | 0        |
| 6     | NAG  | V     | 1206 | 1     | 14,14,15       | 1.24     | 2 (14%)  | 17,19,21    | 0.79 | 1 (5%)   |
| 6     | NAG  | C     | 1209 | 1     | 14,14,15       | 1.21     | 1 (7%)   | 17,19,21    | 1.01 | 1 (5%)   |
| 6     | NAG  | S     | 1204 | 1     | 14,14,15       | 1.29     | 3 (21%)  | 17,19,21    | 0.84 | 1 (5%)   |
| 6     | NAG  | S     | 1210 | 1     | 14,14,15       | 0.51     | 0        | 17,19,21    | 2.33 | 6 (35%)  |
| 6     | NAG  | С     | 1211 | 1     | 14,14,15       | 0.30     | 0        | 17,19,21    | 0.72 | 0        |
| 6     | NAG  | C     | 1206 | 1     | 14,14,15       | 1.29     | 3 (21%)  | 17,19,21    | 0.97 | 1 (5%)   |
| 6     | NAG  | С     | 1207 | 1     | 14,14,15       | 1.25     | 2 (14%)  | 17,19,21    | 0.75 | 0        |
| 6     | NAG  | V     | 1202 | 1     | 14,14,15       | 1.24     | 2 (14%)  | 17,19,21    | 0.74 | 1 (5%)   |
| 6     | NAG  | V     | 1203 | 1     | 14,14,15       | 1.23     | 1 (7%)   | 17,19,21    | 0.83 | 1 (5%)   |
| 6     | NAG  | С     | 1203 | 1     | 14,14,15       | 1.34     | 2 (14%)  | 17,19,21    | 0.76 | 1 (5%)   |
| 6     | NAG  | V     | 1201 | 1     | 14,14,15       | 1.27     | 3 (21%)  | 17,19,21    | 1.08 | 1 (5%)   |
| 6     | NAG  | С     | 1204 | 1     | 14,14,15       | 1.25     | 1 (7%)   | 17,19,21    | 0.82 | 1 (5%)   |
| 6     | NAG  | S     | 1205 | 1     | 14,14,15       | 1.18     | 1 (7%)   | 17,19,21    | 0.74 | 0        |
| 6     | NAG  | V     | 1211 | 1     | 14,14,15       | 0.32     | 0        | 17,19,21    | 0.67 | 0        |
| 6     | NAG  | S     | 1201 | 1     | 14,14,15       | 1.23     | 1 (7%)   | 17,19,21    | 0.87 | 1 (5%)   |
| 6     | NAG  | С     | 1208 | 1     | 14,14,15       | 1.18     | 2 (14%)  | 17,19,21    | 1.04 | 1 (5%)   |
| 6     | NAG  | V     | 1208 | 1     | 14,14,15       | 1.20     | 1 (7%)   | 17,19,21    | 0.76 | 1 (5%)   |
| 6     | NAG  | S     | 1207 | 1     | 14,14,15       | 0.30     | 0        | 17,19,21    | 0.96 | 0        |
| 6     | NAG  | S     | 1206 | 1     | 14,14,15       | 1.24     | 2 (14%)  | 17,19,21    | 1.07 | 1 (5%)   |
| 6     | NAG  | V     | 1207 | 1     | 14,14,15       | 1.29     | 3 (21%)  | 17,19,21    | 0.82 | 1 (5%)   |
| 6     | NAG  | V     | 1209 | 1     | 14,14,15       | 1.21     | 1 (7%)   | 17,19,21    | 0.82 | 1 (5%)   |
| 6     | NAG  | С     | 1205 | 1     | 14,14,15       | 1.36     | 3 (21%)  | 17,19,21    | 0.92 | 1 (5%)   |
| 6     | NAG  | V     | 1204 | -     | 14,14,15       | 1.20     | 1 (7%)   | 17,19,21    | 0.76 | 1 (5%)   |
| 6     | NAG  | S     | 1209 | 1     | 14,14,15       | 0.30     | 0        | 17,19,21    | 0.71 | 0        |
| 6     | NAG  | C     | 1210 | 1     | 14,14,15       | 1.31     | 3 (21%)  | 17,19,21    | 0.88 | 1 (5%)   |
| 6     | NAG  | S     | 1202 | 1     | 14,14,15       | 1.28     | 3 (21%)  | 17,19,21    | 0.92 | 1 (5%)   |
| 6     | NAG  | V     | 1205 | 1     | 14,14,15       | 1.45     | 3 (21%)  | 17,19,21    | 0.74 | 0        |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.



| Mol | Type | Chain | Res  | Link | Chirals | Torsions               | Rings   |
|-----|------|-------|------|------|---------|------------------------|---------|
| 6   | NAG  | V     | 1210 | 1    | -       | 1/6/23/26              | 0/1/1/1 |
| 6   | NAG  | S     | 1203 | 1    | -       | 1/6/23/26              | 0/1/1/1 |
| 6   | NAG  | С     | 1202 | 1    | -       | 1/6/23/26              | 0/1/1/1 |
| 6   | NAG  | S     | 1208 | 1    | -       | 6/6/23/26              | 0/1/1/1 |
| 6   | NAG  | V     | 1212 | 1    | -       | 2/6/23/26              | 0/1/1/1 |
| 6   | NAG  | С     | 1201 | 1    | -       | 1/6/23/26              | 0/1/1/1 |
| 6   | NAG  | V     | 1206 | 1    | -       | 0/6/23/26              | 0/1/1/1 |
| 6   | NAG  | С     | 1209 | 1    | -       | 0/6/23/26              | 0/1/1/1 |
| 6   | NAG  | S     | 1204 | 1    | -       | 0/6/23/26              | 0/1/1/1 |
| 6   | NAG  | S     | 1210 | 1    | -       | 2/6/23/26              | 0/1/1/1 |
| 6   | NAG  | С     | 1211 | 1    | -       | 3/6/23/26              | 0/1/1/1 |
| 6   | NAG  | С     | 1206 | 1    | -       | 0/6/23/26              | 0/1/1/1 |
| 6   | NAG  | С     | 1207 | 1    | -       | 0/6/23/26              | 0/1/1/1 |
| 6   | NAG  | V     | 1202 | 1    | -       | 1/6/23/26              | 0/1/1/1 |
| 6   | NAG  | V     | 1203 | 1    | -       | 0/6/23/26              | 0/1/1/1 |
| 6   | NAG  | С     | 1203 | 1    | -       | 0/6/23/26              | 0/1/1/1 |
| 6   | NAG  | V     | 1201 | 1    | -       | 1/6/23/26              | 0/1/1/1 |
| 6   | NAG  | С     | 1204 | 1    | -       | 0/6/23/26              | 0/1/1/1 |
| 6   | NAG  | S     | 1205 | 1    | -       | 1/6/23/26              | 0/1/1/1 |
| 6   | NAG  | V     | 1211 | 1    | -       | 0/6/23/26              | 0/1/1/1 |
| 6   | NAG  | S     | 1201 | 1    | -       | 0/6/23/26              | 0/1/1/1 |
| 6   | NAG  | С     | 1208 | 1    | -       | 2/6/23/26              | 0/1/1/1 |
| 6   | NAG  | V     | 1208 | 1    | -       | 1/6/23/26              | 0/1/1/1 |
| 6   | NAG  | S     | 1207 | 1    | -       | 2/6/23/26              | 0/1/1/1 |
| 6   | NAG  | S     | 1206 | 1    | -       | 1/6/23/26              | 0/1/1/1 |
| 6   | NAG  | V     | 1207 | 1    | -       | 0/6/23/26              | 0/1/1/1 |
| 6   | NAG  | V     | 1209 | 1    | -       | 0/6/23/26              | 0/1/1/1 |
| 6   | NAG  | С     | 1205 | 1    | -       | 0/6/23/26              | 0/1/1/1 |
| 6   | NAG  | V     | 1204 | -    | -       | 0/6/23/26              | 0/1/1/1 |
| 6   | NAG  | S     | 1209 | 1    | -       | 2/6/23/26              | 0/1/1/1 |
| 6   | NAG  | С     | 1210 | 1    | -       | 1/6/23/26              | 0/1/1/1 |
| 6   | NAG  | S     | 1202 | 1    | -       | $\overline{0/6/23/26}$ | 0/1/1/1 |
| 6   | NAG  | V     | 1205 | 1    | -       | 0/6/23/26              | 0/1/1/1 |

All (51) bond length outliers are listed below:

| Mol | Chain | Res  | Type | Atoms | Z    | Observed(Å) | $\mathrm{Ideal}(\mathrm{\AA})$ |
|-----|-------|------|------|-------|------|-------------|--------------------------------|
| 6   | V     | 1205 | NAG  | O5-C5 | 3.04 | 1.49        | 1.43                           |
| 6   | С     | 1203 | NAG  | O5-C5 | 3.01 | 1.49        | 1.43                           |
| 6   | С     | 1201 | NAG  | O5-C1 | 2.90 | 1.48        | 1.43                           |
| 6   | С     | 1201 | NAG  | O5-C5 | 2.79 | 1.49        | 1.43                           |
| 6   | С     | 1207 | NAG  | O5-C5 | 2.76 | 1.49        | 1.43                           |

| $\alpha$ $\cdot$ $\cdot$ $\cdot$ | C    |          |      |
|----------------------------------|------|----------|------|
| Continued                        | trom | previous | page |
|                                  | J    | 1        | I J  |

| Mol | Chain | Res  | Type | Atoms | Z    | Observed(Å) | Ideal(Å) |
|-----|-------|------|------|-------|------|-------------|----------|
| 6   | С     | 1205 | NAG  | O5-C5 | 2.75 | 1.49        | 1.43     |
| 6   | С     | 1204 | NAG  | O5-C5 | 2.75 | 1.49        | 1.43     |
| 6   | S     | 1204 | NAG  | O5-C5 | 2.73 | 1.49        | 1.43     |
| 6   | S     | 1201 | NAG  | O5-C5 | 2.71 | 1.48        | 1.43     |
| 6   | S     | 1202 | NAG  | O5-C5 | 2.67 | 1.48        | 1.43     |
| 6   | V     | 1207 | NAG  | O5-C5 | 2.66 | 1.48        | 1.43     |
| 6   | С     | 1210 | NAG  | O5-C5 | 2.65 | 1.48        | 1.43     |
| 6   | V     | 1204 | NAG  | O5-C5 | 2.65 | 1.48        | 1.43     |
| 6   | V     | 1203 | NAG  | O5-C5 | 2.63 | 1.48        | 1.43     |
| 6   | V     | 1209 | NAG  | O5-C5 | 2.63 | 1.48        | 1.43     |
| 6   | V     | 1205 | NAG  | O5-C1 | 2.59 | 1.47        | 1.43     |
| 6   | С     | 1209 | NAG  | O5-C5 | 2.59 | 1.48        | 1.43     |
| 6   | С     | 1206 | NAG  | O5-C5 | 2.55 | 1.48        | 1.43     |
| 6   | S     | 1206 | NAG  | O5-C5 | 2.54 | 1.48        | 1.43     |
| 6   | V     | 1208 | NAG  | O5-C5 | 2.52 | 1.48        | 1.43     |
| 6   | С     | 1202 | NAG  | O5-C5 | 2.50 | 1.48        | 1.43     |
| 6   | V     | 1210 | NAG  | O5-C5 | 2.47 | 1.48        | 1.43     |
| 6   | S     | 1205 | NAG  | O5-C5 | 2.46 | 1.48        | 1.43     |
| 6   | С     | 1205 | NAG  | C1-C2 | 2.39 | 1.55        | 1.52     |
| 6   | V     | 1206 | NAG  | O5-C5 | 2.37 | 1.48        | 1.43     |
| 6   | V     | 1206 | NAG  | C1-C2 | 2.36 | 1.55        | 1.52     |
| 6   | V     | 1201 | NAG  | O5-C5 | 2.32 | 1.48        | 1.43     |
| 6   | V     | 1202 | NAG  | O5-C5 | 2.32 | 1.48        | 1.43     |
| 6   | S     | 1203 | NAG  | O5-C5 | 2.32 | 1.48        | 1.43     |
| 6   | V     | 1205 | NAG  | C1-C2 | 2.26 | 1.55        | 1.52     |
| 6   | С     | 1208 | NAG  | O5-C5 | 2.24 | 1.48        | 1.43     |
| 6   | V     | 1201 | NAG  | C1-C2 | 2.23 | 1.55        | 1.52     |
| 6   | С     | 1205 | NAG  | O5-C1 | 2.20 | 1.47        | 1.43     |
| 6   | С     | 1206 | NAG  | C1-C2 | 2.20 | 1.55        | 1.52     |
| 6   | С     | 1206 | NAG  | O5-C1 | 2.19 | 1.47        | 1.43     |
| 6   | С     | 1210 | NAG  | C1-C2 | 2.14 | 1.55        | 1.52     |
| 6   | V     | 1201 | NAG  | O5-C1 | 2.13 | 1.47        | 1.43     |
| 6   | S     | 1206 | NAG  | O5-C1 | 2.11 | 1.47        | 1.43     |
| 6   | С     | 1210 | NAG  | O5-C1 | 2.11 | 1.47        | 1.43     |
| 6   | S     | 1204 | NAG  | O5-C1 | 2.10 | 1.47        | 1.43     |
| 6   | C     | 1203 | NAG  | O5-C1 | 2.09 | 1.47        | 1.43     |
| 6   | V     | 1207 | NAG  | C1-C2 | 2.06 | 1.55        | 1.52     |
| 6   | V     | 1207 | NAG  | O5-C1 | 2.05 | 1.47        | 1.43     |
| 6   | V     | 1202 | NAG  | O5-C1 | 2.03 | 1.47        | 1.43     |
| 6   | S     | 1202 | NAG  | O5-C1 | 2.02 | 1.46        | 1.43     |
| 6   | С     | 1207 | NAG  | O5-C1 | 2.02 | 1.46        | 1.43     |
| 6   | S     | 1204 | NAG  | C1-C2 | 2.02 | 1.55        | 1.52     |



| 00.000 | Jerre Jerre Persona Person<br>Persona Persona Per |                |      |       |      |                                               |          |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|-------|------|-----------------------------------------------|----------|
| Mol    | Chain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\mathbf{Res}$ | Type | Atoms | Z    | $\operatorname{Observed}(\operatorname{\AA})$ | Ideal(Å) |
| 6      | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1202           | NAG  | O5-C1 | 2.01 | 1.46                                          | 1.43     |
| 6      | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1210           | NAG  | O5-C1 | 2.00 | 1.46                                          | 1.43     |
| 6      | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1208           | NAG  | C1-C2 | 2.00 | 1.55                                          | 1.52     |
| 6      | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1202           | NAG  | C1-C2 | 2.00 | 1.55                                          | 1.52     |

All (26) bond angle outliers are listed below:

| Mol | Chain | Res  | Type | Atoms    |       | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|----------|-------|------------------|---------------|
| 6   | S     | 1210 | NAG  | C2-N2-C7 | -4.38 | 116.67           | 122.90        |
| 6   | S     | 1210 | NAG  | C1-C2-N2 | 4.33  | 117.88           | 110.49        |
| 6   | S     | 1210 | NAG  | O5-C1-C2 | -4.15 | 104.73           | 111.29        |
| 6   | S     | 1210 | NAG  | C4-C3-C2 | -3.94 | 105.25           | 111.02        |
| 6   | V     | 1201 | NAG  | C1-O5-C5 | 3.87  | 117.43           | 112.19        |
| 6   | S     | 1206 | NAG  | C1-O5-C5 | 3.77  | 117.30           | 112.19        |
| 6   | С     | 1208 | NAG  | C1-O5-C5 | 3.72  | 117.23           | 112.19        |
| 6   | S     | 1210 | NAG  | C6-C5-C4 | -3.51 | 104.79           | 113.00        |
| 6   | С     | 1209 | NAG  | C1-O5-C5 | 3.44  | 116.85           | 112.19        |
| 6   | С     | 1206 | NAG  | C1-O5-C5 | 3.29  | 116.65           | 112.19        |
| 6   | S     | 1202 | NAG  | C1-O5-C5 | 2.73  | 115.89           | 112.19        |
| 6   | S     | 1201 | NAG  | C1-O5-C5 | 2.70  | 115.85           | 112.19        |
| 6   | V     | 1202 | NAG  | C1-O5-C5 | 2.58  | 115.69           | 112.19        |
| 6   | S     | 1204 | NAG  | C1-O5-C5 | 2.50  | 115.57           | 112.19        |
| 6   | V     | 1209 | NAG  | C1-O5-C5 | 2.45  | 115.52           | 112.19        |
| 6   | V     | 1207 | NAG  | C1-O5-C5 | 2.43  | 115.48           | 112.19        |
| 6   | V     | 1208 | NAG  | C1-O5-C5 | 2.37  | 115.40           | 112.19        |
| 6   | С     | 1205 | NAG  | C1-O5-C5 | 2.37  | 115.40           | 112.19        |
| 6   | С     | 1204 | NAG  | C1-O5-C5 | 2.34  | 115.36           | 112.19        |
| 6   | S     | 1210 | NAG  | C1-O5-C5 | 2.32  | 115.33           | 112.19        |
| 6   | V     | 1212 | NAG  | C2-N2-C7 | -2.29 | 119.65           | 122.90        |
| 6   | V     | 1206 | NAG  | C1-O5-C5 | 2.23  | 115.22           | 112.19        |
| 6   | V     | 1203 | NAG  | C1-O5-C5 | 2.22  | 115.19           | 112.19        |
| 6   | С     | 1203 | NAG  | C1-O5-C5 | 2.09  | 115.02           | 112.19        |
| 6   | С     | 1210 | NAG  | C1-O5-C5 | 2.03  | 114.94           | 112.19        |
| 6   | V     | 1204 | NAG  | C1-O5-C5 | 2.03  | 114.94           | 112.19        |

There are no chirality outliers.

All (29) torsion outliers are listed below:

| Mol | Chain | Res  | Type | Atoms       |
|-----|-------|------|------|-------------|
| 6   | S     | 1208 | NAG  | C1-C2-N2-C7 |
| 6   | S     | 1208 | NAG  | C8-C7-N2-C2 |
| 6   | S     | 1208 | NAG  | O7-C7-N2-C2 |



| EMD-25904, | 7THT |
|------------|------|
|------------|------|

| Mol | Chain | Res  | Type | Atoms       |
|-----|-------|------|------|-------------|
| 6   | V     | 1212 | NAG  | C8-C7-N2-C2 |
| 6   | V     | 1212 | NAG  | O7-C7-N2-C2 |
| 6   | S     | 1210 | NAG  | C8-C7-N2-C2 |
| 6   | S     | 1210 | NAG  | O7-C7-N2-C2 |
| 6   | С     | 1211 | NAG  | C8-C7-N2-C2 |
| 6   | С     | 1211 | NAG  | O7-C7-N2-C2 |
| 6   | S     | 1207 | NAG  | O5-C5-C6-O6 |
| 6   | С     | 1210 | NAG  | O5-C5-C6-O6 |
| 6   | S     | 1205 | NAG  | O5-C5-C6-O6 |
| 6   | S     | 1206 | NAG  | O5-C5-C6-O6 |
| 6   | С     | 1211 | NAG  | O5-C5-C6-O6 |
| 6   | V     | 1202 | NAG  | O5-C5-C6-O6 |
| 6   | V     | 1210 | NAG  | O5-C5-C6-O6 |
| 6   | V     | 1208 | NAG  | O5-C5-C6-O6 |
| 6   | V     | 1201 | NAG  | O5-C5-C6-O6 |
| 6   | С     | 1202 | NAG  | O5-C5-C6-O6 |
| 6   | S     | 1203 | NAG  | O5-C5-C6-O6 |
| 6   | С     | 1201 | NAG  | O5-C5-C6-O6 |
| 6   | S     | 1208 | NAG  | C4-C5-C6-O6 |
| 6   | S     | 1208 | NAG  | O5-C5-C6-O6 |
| 6   | S     | 1209 | NAG  | C8-C7-N2-C2 |
| 6   | S     | 1208 | NAG  | C3-C2-N2-C7 |
| 6   | S     | 1209 | NAG  | O7-C7-N2-C2 |
| 6   | С     | 1208 | NAG  | O5-C5-C6-O6 |
| 6   | С     | 1208 | NAG  | C4-C5-C6-O6 |
| 6   | S     | 1207 | NAG  | C4-C5-C6-O6 |

Continued from previous page...

There are no ring outliers.

4 monomers are involved in 8 short contacts:

| Mol | Chain | Res  | Type | Clashes | Symm-Clashes |
|-----|-------|------|------|---------|--------------|
| 6   | S     | 1208 | NAG  | 2       | 0            |
| 6   | S     | 1210 | NAG  | 1       | 0            |
| 6   | S     | 1207 | NAG  | 1       | 0            |
| 6   | V     | 1204 | NAG  | 4       | 0            |

## 5.7 Other polymers (i)

There are no such residues in this entry.



## 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-25904. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

## 6.1 Orthogonal projections (i)

#### 6.1.1 Primary map



The images above show the map projected in three orthogonal directions.

## 6.2 Central slices (i)

### 6.2.1 Primary map



X Index: 160

Y Index: 160



Z Index: 160

The images above show central slices of the map in three orthogonal directions.

## 6.3 Largest variance slices (i)

#### 6.3.1 Primary map



X Index: 170

Y Index: 164

Z Index: 147

The images above show the largest variance slices of the map in three orthogonal directions.

### 6.4 Orthogonal standard-deviation projections (False-color) (i)

#### 6.4.1 Primary map



The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.



## 6.5 Orthogonal surface views (i)

#### 6.5.1 Primary map



The images above show the 3D surface view of the map at the recommended contour level 0.1321. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

## 6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.



# 7 Map analysis (i)

This section contains the results of statistical analysis of the map.

## 7.1 Map-value distribution (i)



The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.



## 7.2 Volume estimate (i)



The volume at the recommended contour level is 793  $\rm nm^3;$  this corresponds to an approximate mass of 717 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.



## 7.3 Rotationally averaged power spectrum (i)



\*Reported resolution corresponds to spatial frequency of 0.292  ${\rm \AA^{-1}}$ 



# 8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.



# 9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-25904 and PDB model 7THT. Per-residue inclusion information can be found in section 3 on page 9.

## 9.1 Map-model overlay (i)



The images above show the 3D surface view of the map at the recommended contour level 0.1321 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



### 9.2 Q-score mapped to coordinate model (i)



The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

### 9.3 Atom inclusion mapped to coordinate model (i)



The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.1321).



## 9.4 Atom inclusion (i)



At the recommended contour level, 97% of all backbone atoms, 96% of all non-hydrogen atoms, are inside the map.



1.0

0.0 <0.0

## 9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.1321) and Q-score for the entire model and for each chain.

| Chain        | Atom inclusion | Q-score |
|--------------|----------------|---------|
| All          | 0.9560         | 0.4070  |
| А            | 1.0000         | 0.5340  |
| В            | 0.9640         | 0.4470  |
| С            | 0.9830         | 0.4680  |
| D            | 1.0000         | 0.4380  |
| Ε            | 1.0000         | 0.3880  |
| F            | 1.0000         | 0.4390  |
| G            | 1.0000         | 0.4310  |
| Н            | 0.9330         | 0.1470  |
| Ι            | 1.0000         | 0.4310  |
| J            | 1.0000         | 0.4590  |
| К            | 1.0000         | 0.4040  |
| L            | 0.8890         | 0.1380  |
| М            | 1.0000         | 0.4230  |
| Ν            | 1.0000         | 0.4790  |
| О            | 1.0000         | 0.4380  |
| $\mathbf{S}$ | 0.9860         | 0.4820  |
| V            | 0.9770         | 0.4510  |
| W            | 1.0000         | 0.4330  |
| a            | 0.9320         | 0.2060  |
| b            | 0.6360         | 0.0440  |
| с            | 0.9100         | 0.2030  |
| d            | 0.7080         | 0.0990  |

