

Full wwPDB NMR Structure Validation Report (i)

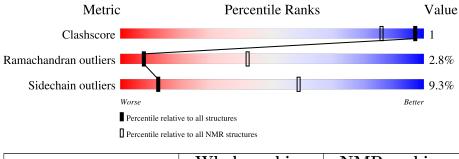
Feb 19, 2022 – 08:35 PM EST

PDB ID	:	1TFS
Title	:	NMR AND RESTRAINED MOLECULAR DYNAMICS STUDY OF THE
		THREE-DIMENSIONAL SOLUTION STRUCTURE OF TOXIN FS2, A
		SPECIFIC BLOCKER OF THE L-TYPE CALCIUM CHANNEL, ISO-
		LATED FROM BLACK MAMBA VENOM
Authors	:	Albrand, JP.; Blackledge, M.J.; Pascaud, F.; Hollecker, M.; Marion, D.
Deposited on	:	1995-01-26

This is a Full wwPDB NMR Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/NMRValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (i)) were used in the production of this report:


MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
RCI	:	v_1n_11_5_13_A (Berjanski et al., 2005)
PANAV	:	Wang et al. (2010)
ShiftChecker	:	2.26
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.26

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $SOLUTION\ NMR$

The overall completeness of chemical shifts assignment was not calculated.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	NMR archive
Metric	$(\# { m Entries})$	(# Entries)
Clashscore	158937	12864
Ramachandran outliers	154571	11451
Sidechain outliers	154315	11428

The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain		
1		00			
	A	60	77%	10%	13%

2 Ensemble composition and analysis (i)

This entry contains 20 models. Model 16 is the overall representative, medoid model (most similar to other models).

The following residues are included in the computation of the global validation metrics.

Well-defined (core) protein residues					
Well-defined core Residue range (total) Backbone RMSD (Å) Medoid model					
1	A:1-A:5, A:14-A:60 (52)	0.45	16		

Ill-defined regions of proteins are excluded from the global statistics.

Ligands and non-protein polymers are included in the analysis.

The models can be grouped into 2 clusters. No single-model clusters were found.

Cluster number	Models
1	2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 18, 20
2	1, 3, 9, 17, 19

3 Entry composition (i)

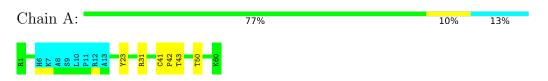
There is only 1 type of molecule in this entry. The entry contains 952 atoms, of which 467 are hydrogens and 0 are deuteriums.

• Molecule 1 is a protein called TOXIN FS2.

Mol	Chain	Residues	Atoms				Trace		
1	٨	60	Total	С	Η	Ν	Ο	S	0
	60	952	297	467	91	87	10	0	

There is a discrepancy between the modelled and reference sequences:

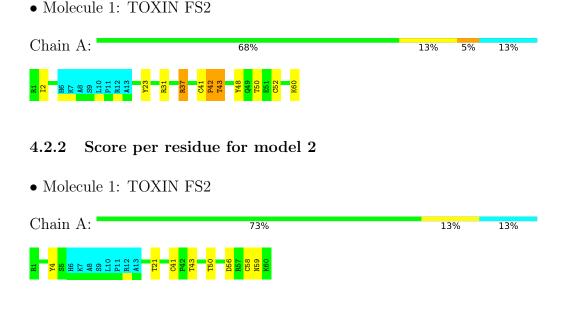
Chain	Residue	Modelled	Actual	Comment	Reference
A	32	GLU	GLN	conflict	UNP P01414



4 Residue-property plots (i)

4.1 Average score per residue in the NMR ensemble

These plots are provided for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.


• Molecule 1: TOXIN FS2

4.2 Scores per residue for each member of the ensemble

Colouring as in section 4.1 above.

4.2.1 Score per residue for model 1

4.2.3 Score per residue for model 3

• Molecule 1: TOXIN FS2

Chain	A: 67%	18% •	13%
R1 I2 H6 K7	A8 110 111 112 113 113 113 113 113 113		
4.2.4	Score per residue for model 4		
• Mole	cule 1: TOXIN FS2		
Chain	A: 77%	8% •	13%
I2 H6 K7	A8 111 111 111 111 111 111 111 1		
4.2.5	Score per residue for model 5		
• Mole	cule 1: TOXIN FS2		
Chain	A: 75%	12%	13%
R1 12 35 85	H6 88 89 81 81 83 83 83 83 83 83 84 85 86 85 86 86 86 86 86 86 86 86 86 86 86 86 86		
4.2.6	Score per residue for model 6		
• Mole	cule 1: TOXIN FS2		
Chain	A: 82%	5%	13%
R1 H6 K7	88 1110 1211 160 110 110 110 110 110 110		
4.2.7	Score per residue for model 7		
• Mole	cule 1: TOXIN FS2		
Chain	A: 67%	20%	13%
R1 I2 H6 K7	88 1110 1111		

4.2.8 Score per residue for model 8

 \bullet Molecule 1: TOXIN FS2

Chain A: 73%	10% •	13%
R1 X4 X4 X6 X6 X7 X13 X13 X13 X13 X13 X13 X13 X13		
4.2.9 Score per residue for model 9		
• Molecule 1: TOXIN FS2		
Chain A: 72%	12% ••	13%
R1 H6 X7 88 89 1110 110 8110 8110 8110 8110 8110		
4.2.10 Score per residue for model 10		
• Molecule 1: TOXIN FS2		
Chain A: 78%	8%	13%
R1 K7 A8 A8 A8 A13 C17 C17 C17 C17 C17 C17 C17 C17 C17 C17		
4.2.11 Score per residue for model 11		
• Molecule 1: TOXIN FS2		
Chain A: 72%	13% ·	13%
R 85 86 71 723 723 723 723 723 723 75 85 75 75 75 75 75 75 75 75 75 75 75 75 75		
4.2.12 Score per residue for model 12		
• Molecule 1: TOXIN FS2		
Chain A: 75%	12%	13%
R1 H6 K7 K7 K7 K6 K12 K12 K12 K13 K13 K60 K60		

4.2.13 Score per residue for model 13

 \bullet Molecule 1: TOXIN FS2

Chain A	: 77%	1	0%	13%
R1 Y4 S5 K7	A8 811 110 110 110 110 110 110 110 110 11			
4.2.14	Score per residue for model 14			
• Molect	ıle 1: TOXIN FS2			
Chain A	: 78%	8	3%	13%
R1 H6 A8 S9	L10 P11 A13 A13 A13 F5 F6 R60			
4.2.15	Score per residue for model 15			
• Molect	ıle 1: TOXIN FS2			
Chain A	: 65%	20%	•	13%
R1 Y4 S5 K7	A8 811 110 1110 1110 1110 1110 1110 1110			
4.2.16	Score per residue for model 16 (medoid)			
• Molect	ıle 1: TOXIN FS2			
Chain A	: 77%	1	0%	13%
R1 Y4 S5 K7	A8 P11 110 1110 1110 1110 1110 1110 1110			
4.2.17	Score per residue for model 17			
• Molect	ıle 1: TOXIN FS2			
Chain A	: 70%	15%	•	13%
R1 Y4 S5 K7	8 8 8 9 1 10 1 10 1 14 1 14 1 14 1 14 1 14 1 14			

4.2.18 Score per residue for model 18

 \bullet Molecule 1: TOXIN FS2

Chain A:	67%	18%	• 13%
R1 H16 K7 K7 K7 88 89 811 114 812 C17 C17 C17 C17 C17 C17 C17 C17 C17 C17	C39 C41 C41 C41 C44 C49 K50 K50		
4.2.19 Score per residue	for model 19		
• Molecule 1: TOXIN FS2			
Chain A:	70%	12% •	• 13%
R1 R1 R1 R1 R1 R3 R3 R3 R3 R3 R3 R3 R3 R3 R3	R57 K60		
4.2.20 Score per residue	for model 20		
• Molecule 1: TOXIN FS2			
Chain A:	77%	8%	• 13%
R1 85 85 85 85 85 81 81 81 83 83 83 83 83 83 83 83 83 83 83 83 83	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

5 Refinement protocol and experimental data overview (i)

Of the ? calculated structures, 20 were deposited, based on the following criterion: ?.

The following table shows the software used for structure solution, optimisation and refinement.

Software name	Classification	Version
Discover	refinement	

No chemical shift data was provided.

6 Model quality (i)

6.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the (average) root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	B	Sond lengths	Bond angles		
	Unam	RMSZ	$\#Z{>}5$	RMSZ	#Z > 5	
1	А	$0.61 {\pm} 0.01$	$0{\pm}0/433~(~0.0{\pm}~0.0\%)$	1.07 ± 0.07	$1{\pm}1/579~(~0.2{\pm}~0.1\%)$	
All	All	0.61	0/8660~(~0.0%)	1.08	21/11580~(~0.2%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	Chirality	Planarity
1	А	$0.0{\pm}0.0$	1.8 ± 1.3
All	All	0	36

There are no bond-length outliers.

All unique angle outliers are listed below. They are sorted according to the Z-score of the worst occurrence in the ensemble.

Mal	Chain	Dec	Turne	Atoms	Z	Observed(0)	Ideal(°)	Moo	dels
Mol	Chain	Res	Type	Atoms		$\mathbf{Observed}(^{o})$	Ideal()	Worst	Total
1	А	42	PRO	CA-N-CD	-7.87	100.48	111.50	3	1
1	А	41	CYS	CA-CB-SG	7.86	128.15	114.00	19	4
1	А	37	ARG	NE-CZ-NH2	-6.63	116.98	120.30	8	3
1	А	37	ARG	NE-CZ-NH1	6.58	123.59	120.30	19	3
1	А	31	ARG	NE-CZ-NH2	-6.50	117.05	120.30	11	3
1	А	1	ARG	NE-CZ-NH2	-5.93	117.33	120.30	6	3
1	А	4	TYR	CB-CG-CD2	-5.27	117.84	121.00	16	2
1	А	1	ARG	NE-CZ-NH1	5.23	122.92	120.30	6	1
1	А	31	ARG	NE-CZ-NH1	5.11	122.86	120.30	5	1

There are no chirality outliers.

All unique planar outliers are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Group	Models (Total)
1	А	23	TYR	Sidechain	12
1	А	33	TYR	Sidechain	8
1	А	4	TYR	Sidechain	7
1	А	31	ARG	Sidechain	3
1	А	37	ARG	Sidechain	3
1	А	48	TYR	Sidechain	2
1	А	1	ARG	Sidechain	1

6.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble.

Mol	Chain	Non-H	H(model)	H(added)	Clashes
1	А	424	401	401	0±1
All	All	8480	8020	8020	10

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 1.

All unique clashes are listed below, sorted by their clash magnitude.

Atom-1	Atom 2	Clash(Å)	Distance(Å)	Models	
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
1:A:42:PRO:HD2	1:A:52:CYS:SG	0.47	2.50	9	4
1:A:42:PRO:CD	1:A:52:CYS:SG	0.45	3.04	19	4
1:A:46:TRP:CD1	1:A:47:PRO:HA	0.42	2.50	15	1
1:A:58:CYS:SG	1:A:59:ASN:N	0.42	2.92	2	1

6.3 Torsion angles (i)

6.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	50/60~(83%)	43 ± 2 (86 $\pm4\%$)	$6\pm2~(12\pm3\%)$	$1\pm1 (3\pm2\%)$	8 42

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
All	All	1000/1200~(83%)	855 (86%)	117 (12%)	28 (3%)	8 42

All 7 unique Ramachandran outliers are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Models (Total)
1	А	41	CYS	8
1	А	40	GLY	7
1	А	42	PRO	6
1	А	57	ARG	3
1	А	43	THR	2
1	А	19	GLU	1
1	А	56	ASP	1

6.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the side chain conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	48/54~(89%)	44 ± 2 (91 $\pm4\%$)	$4\pm2~(9\pm4\%)$	12	59
All	All	960/1080 (89%)	871 (91%)	89~(9%)	12	59

All 28 unique residues with a non-rotameric sidechain are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Models (Total)
1	А	50	THR	14
1	А	43	THR	9
1	А	31	ARG	7
1	А	60	LYS	6
1	А	2	ILE	5
1	А	49	GLN	5
1	А	21	THR	4
1	А	42	PRO	4
1	А	56	ASP	3
1	А	1	ARG	3
1	А	57	ARG	3
1	А	37	ARG	2

Continued on next page...

Mol	Chain	Res	Type	Models (Total)
1	А	24	LYS	2
1	А	36	GLU	2
1	А	35	SER	2
1	А	19	GLU	2
1	А	39	CYS	2
1	А	52	CYS	2
1	А	17	CYS	2
1	А	26	PHE	2
1	А	54	LYS	1
1	А	20	ASN	1
1	А	46	TRP	1
1	А	32	GLU	1
1	А	51	GLU	1
1	А	58	CYS	1
1	А	5	SER	1
1	А	15	LYS	1

Continued from previous page...

6.3.3 RNA (i)

There are no RNA molecules in this entry.

6.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.5 Carbohydrates (i)

There are no monosaccharides in this entry.

6.6 Ligand geometry (i)

There are no ligands in this entry.

6.7 Other polymers (i)

There are no such molecules in this entry.

6.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

7 Chemical shift validation (i)

No chemical shift data were provided

