

#### May 4, 2024 – 02:44 PM EDT

| PDB ID       | : | 8T7S                                        |
|--------------|---|---------------------------------------------|
| EMDB ID      | : | EMD-41093                                   |
| Title        | : | SpRYmer bound to NAC PAM DNA                |
| Authors      | : | Hibshman, G.N.; Bravo, J.P.K.; Taylor, D.W. |
| Deposited on | : | 2023-06-21                                  |
| Resolution   | : | 3.01  Å(reported)                           |
|              |   |                                             |

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| EMDB validation analysis       | : | 0.0.1.dev92                                                        |
|--------------------------------|---|--------------------------------------------------------------------|
| MolProbity                     | : | 4.02b-467                                                          |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| MapQ                           | : | 1.9.13                                                             |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.36.2                                                             |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $ELECTRON\ MICROSCOPY$ 

The reported resolution of this entry is 3.01 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | $egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$ | ${f EM} {f structures} \ (\#{f Entries})$ |
|-----------------------|----------------------------------------------------------------------|-------------------------------------------|
| Clashscore            | 158937                                                               | 4297                                      |
| Ramachandran outliers | 154571                                                               | 4023                                      |
| Sidechain outliers    | 154315                                                               | 3826                                      |
| RNA backbone          | 4643                                                                 | 859                                       |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for  $\geq=3, 2, 1$  and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions  $\leq=5\%$  The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chai | n      |         |
|-----|-------|--------|-----------------|--------|---------|
| 1   | А     | 1369   | 85%             |        | 10% • • |
| 1   | G     | 1369   | 66%             | 15% •• | 15%     |
| 2   | В     | 98     | 64%             | 24%    | 9% •    |
| 2   | Н     | 98     | 55%             | 31%    | • 10%   |
| 3   | С     | 55     | 29% 7% ·        | 62%    |         |
| 3   | с     | 55     | 25% • 73        | 3%     |         |
| 4   | D     | 55     | 24% 7%          | 69%    |         |



# 2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 24994 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called CRISPR-associated endonuclease Cas9/Csn1.

| Mol | Chain | Residues | Atoms          |           |           |           | AltConf     | Trace |   |
|-----|-------|----------|----------------|-----------|-----------|-----------|-------------|-------|---|
| 1   | А     | 1312     | Total<br>10774 | C<br>6864 | N<br>1885 | O<br>2003 | S<br>22     | 0     | 0 |
| 1   | G     | 1157     | Total<br>9139  | C<br>5843 | N<br>1570 | O<br>1709 | ${ m S}$ 17 | 0     | 0 |

| Chain | Residue | Modelled | Actual | Comment             | Reference  |
|-------|---------|----------|--------|---------------------|------------|
| А     | 1       | GLU      | -      | expression tag      | UNP Q99ZW2 |
| А     | 61      | ARG      | ALA    | engineered mutation | UNP Q99ZW2 |
| А     | 1111    | ARG      | LEU    | engineered mutation | UNP Q99ZW2 |
| А     | 1135    | LEU      | ASP    | engineered mutation | UNP Q99ZW2 |
| А     | 1136    | TRP      | SER    | engineered mutation | UNP Q99ZW2 |
| А     | 1218    | LYS      | GLY    | engineered mutation | UNP Q99ZW2 |
| А     | 1219    | GLN      | GLU    | engineered mutation | UNP Q99ZW2 |
| А     | 1317    | ARG      | ASN    | engineered mutation | UNP Q99ZW2 |
| А     | 1322    | ARG      | ALA    | engineered mutation | UNP Q99ZW2 |
| А     | 1333    | PRO      | ARG    | engineered mutation | UNP Q99ZW2 |
| А     | 1335    | GLN      | ARG    | engineered mutation | UNP Q99ZW2 |
| А     | 1337    | ARG      | THR    | engineered mutation | UNP Q99ZW2 |
| А     | 1369    | GLY      | -      | expression tag      | UNP Q99ZW2 |
| G     | 1       | GLU      | -      | expression tag      | UNP Q99ZW2 |
| G     | 61      | ARG      | ALA    | engineered mutation | UNP Q99ZW2 |
| G     | 1111    | ARG      | LEU    | engineered mutation | UNP Q99ZW2 |
| G     | 1135    | LEU      | ASP    | engineered mutation | UNP Q99ZW2 |
| G     | 1136    | TRP      | SER    | engineered mutation | UNP Q99ZW2 |
| G     | 1218    | LYS      | GLY    | engineered mutation | UNP Q99ZW2 |
| G     | 1219    | GLN      | GLU    | engineered mutation | UNP Q99ZW2 |
| G     | 1317    | ARG      | ASN    | engineered mutation | UNP Q99ZW2 |
| G     | 1322    | ARG      | ALA    | engineered mutation | UNP Q99ZW2 |
| G     | 1333    | PRO      | ARG    | engineered mutation | UNP Q99ZW2 |
| G     | 1335    | GLN      | ARG    | engineered mutation | UNP Q99ZW2 |
| G     | 1337    | ARG      | THR    | engineered mutation | UNP Q99ZW2 |
| G     | 1369    | GLY      | -      | expression tag      | UNP Q99ZW2 |

There are 26 discrepancies between the modelled and reference sequences:



• Molecule 2 is a RNA chain called gRNA.

| Mol | Chain | Residues |       | $\mathbf{A}$ | toms |     |    | AltConf | Trace |
|-----|-------|----------|-------|--------------|------|-----|----|---------|-------|
| 0   | Р     | 98       | Total | С            | Ν    | 0   | Р  | 0       | 0     |
|     | 2 B   | 90       | 2103  | 941          | 389  | 675 | 98 | 0       | 0     |
| 9   | Ц     | 88       | Total | С            | Ν    | 0   | Р  | 0       | 0     |
|     | 11    | 00       | 1887  | 844          | 346  | 609 | 88 |         |       |

• Molecule 3 is a DNA chain called TS.

| Mol        | Chain | Residues |       | At  | $\mathbf{oms}$ |     |    | AltConf | Trace |
|------------|-------|----------|-------|-----|----------------|-----|----|---------|-------|
| 3          | С     | 21       | Total | С   | Ν              | Ο   | Р  | 0       | 0     |
| 5          |       |          | 433   | 206 | 76             | 130 | 21 | 0       | 0     |
| 2          | 0     | 15       | Total | С   | Ν              | Ο   | Р  | 0       | 0     |
| ່ <u>ບ</u> | C     | 10       | 302   | 146 | 46             | 95  | 15 | 0       | 0     |

• Molecule 4 is a DNA chain called NTS.

| Mol | Chain | Residues |              | Ate      | $\mathbf{oms}$ |         |         | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------------|---------|---------|---------|-------|
| 4   | D     | 17       | Total<br>349 | C<br>166 | N<br>68        | O<br>98 | Р<br>17 | 0       | 0     |

• Molecule 5 is MAGNESIUM ION (three-letter code: MG) (formula: Mg) (labeled as "Ligand of Interest" by depositor).

| Mol | Chain | Residues | Atoms           | AltConf |
|-----|-------|----------|-----------------|---------|
| 5   | А     | 4        | Total Mg<br>4 4 | 0       |
| 5   | с     | 1        | Total Mg<br>1 1 | 0       |

• Molecule 6 is water.

| Mol | Chain | Residues | Atoms          | AltConf |
|-----|-------|----------|----------------|---------|
| 6   | А     | 2        | Total O<br>2 2 | 0       |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: CRISPR-associated endonuclease Cas9/Csn1





| L1236<br>11238<br>11238<br>11238<br>11238<br>11238<br>1123<br>1123   | PR0<br>GLU<br>ASP<br>N1252<br>E1253<br>Q1254             | 11255<br>11255<br>11255<br>11273<br>11273                                                                                  | L1287<br>L1288<br>11302<br>E1307                          | T1316<br>R1317<br>T1331<br>D1332<br>R1337                                  | 81351<br>L1355<br>11356<br>E1357<br>T1358<br>R1359<br>11360 | L1 <mark>365<br/>G1366</mark><br>GLY<br>ASP<br>GLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Molecule 2: g                                                      | RNA                                                      |                                                                                                                            | _                                                         |                                                                            |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chain B:                                                             |                                                          | 64%                                                                                                                        |                                                           | 24%                                                                        | 9% •                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6 4 4 2 3 3 4 2 4 4 5 3 3 4 5 4 4 5 5 3 4 5 5 5 5 5 5 5              | 023<br>023<br>428<br>629<br>629                          | 633<br>834<br>835<br>835<br>835<br>838<br>838<br>838<br>848<br>846<br>846                                                  | A51<br>G54<br>C55<br>C55<br>A57<br>A57<br>G58<br>U59      | A68<br>C83<br>C85<br>C85<br>C86<br>C86                                     | <b>0</b> 89<br>190<br><b>1</b> 98<br><b>1</b> 98            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| • Molecule 2: g                                                      | RNA                                                      |                                                                                                                            |                                                           |                                                                            |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chain H:                                                             |                                                          | 55%                                                                                                                        |                                                           | 31%                                                                        | • 10%                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| •<br>۲۱<br>۲۱<br>۲۱<br>۲۱<br>۲۱<br>۲۱<br>۲۱                          | A15<br>C20<br>U25<br>A26<br>C27                          | A28<br>A29<br>C30<br>C30<br>C30<br>C30<br>C30<br>A31<br>A35<br>A35<br>A35<br>A35<br>A35<br>A35<br>A35<br>A35<br>A35<br>A35 | 03<br>03<br>038<br>044<br>045<br>045<br>045<br>A47<br>A51 | U56<br>A57<br>U59<br>U59<br>A68                                            | 673<br>476<br>884<br>685<br>689                             | C 0 0<br>C 0 1<br>C 0 4<br>C 0 6<br>C 0 6<br>C 0 6<br>C 0 6<br>C 0 7<br>C 0 7 |
| 2 00<br>2 00                                                         |                                                          |                                                                                                                            |                                                           |                                                                            |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| • Molecule 3: 7                                                      | rs                                                       |                                                                                                                            |                                                           |                                                                            |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chain C:                                                             | 29%                                                      | 7% •                                                                                                                       |                                                           | 62%                                                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DA<br>62<br>63<br>63<br>617<br>621<br>621<br>621                     | DT<br>DT<br>DT<br>DT<br>DT<br>DT                         | DT<br>DA<br>DA<br>DC<br>DC<br>DC<br>DC                                                                                     | DA<br>DG<br>DA<br>DA<br>DA<br>DT                          | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11 |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| • Molecule 3: 7                                                      | rs                                                       |                                                                                                                            |                                                           |                                                                            |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chain c:                                                             | 25%                                                      | •                                                                                                                          | 73%                                                       | 6                                                                          |                                                             | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DA<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC<br>DC | A C C C C C C C C C C C C C C C C C C C                  | DG<br>DC<br>123<br>0<br>17<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D       | DC<br>DA<br>DA<br>DA<br>DT<br>DT<br>DT                    | DC<br>DC<br>DC<br>TC                                                       |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| • Molecule 4: N                                                      | ITS                                                      |                                                                                                                            |                                                           |                                                                            |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chain D:                                                             | 24%                                                      | 7%                                                                                                                         | 6                                                         | 69%                                                                        |                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DA<br>DG<br>DG<br>DA<br>DA<br>DA<br>DA<br>DA<br>C<br>C               | DD<br>DD<br>DD<br>DD<br>DD<br>DD<br>DD<br>DD<br>DD<br>DD | DG<br>D7<br>D7<br>D7<br>D7<br>D7                                                                                           | DG<br>DA<br>DA<br>DC<br>DC<br>T1                          | A4<br>G5<br>A7<br>A7<br>DC<br>DC<br>DT                                     |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



# 4 Experimental information (i)

| Property                           | Value                        | Source    |
|------------------------------------|------------------------------|-----------|
| EM reconstruction method           | SINGLE PARTICLE              | Depositor |
| Imposed symmetry                   | POINT, Not provided          |           |
| Number of particles used           | 62283                        | Depositor |
| Resolution determination method    | FSC 0.143 CUT-OFF            | Depositor |
| CTF correction method              | PHASE FLIPPING AND AMPLITUDE | Depositor |
|                                    | CORRECTION                   |           |
| Microscope                         | FEI TITAN KRIOS              | Depositor |
| Voltage (kV)                       | 300                          | Depositor |
| Electron dose $(e^-/\text{\AA}^2)$ | 80                           | Depositor |
| Minimum defocus (nm)               | 1500                         | Depositor |
| Maximum defocus (nm)               | 2500                         | Depositor |
| Magnification                      | Not provided                 |           |
| Image detector                     | GATAN K3 ( $6k \ge 4k$ )     | Depositor |
| Maximum map value                  | 0.578                        | Depositor |
| Minimum map value                  | -0.045                       | Depositor |
| Average map value                  | 0.004                        | Depositor |
| Map value standard deviation       | 0.014                        | Depositor |
| Recommended contour level          | 0.0797                       | Depositor |
| Map size (Å)                       | 311.04, 311.04, 311.04       | wwPDB     |
| Map dimensions                     | 384, 384, 384                | wwPDB     |
| Map angles (°)                     | 90.0, 90.0, 90.0             | wwPDB     |
| Pixel spacing (Å)                  | 0.81, 0.81, 0.81             | Depositor |



# 5 Model quality (i)

## 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol Chain |     | Bo   | ond lengths     | Bond angles |                  |  |
|-----------|-----|------|-----------------|-------------|------------------|--|
|           |     | RMSZ | # Z  > 5        | RMSZ        | # Z  > 5         |  |
| 1         | А   | 0.36 | 1/10963~(0.0%)  | 0.74        | 20/14719~(0.1%)  |  |
| 1         | G   | 0.70 | 16/9308~(0.2%)  | 1.57        | 200/12582~(1.6%) |  |
| 2         | В   | 0.77 | 10/2355~(0.4%)  | 1.60        | 27/3665~(0.7%)   |  |
| 2         | Н   | 0.45 | 0/2114          | 1.14        | 3/3294~(0.1%)    |  |
| 3         | С   | 0.73 | 1/484~(0.2%)    | 1.10        | 1/746~(0.1%)     |  |
| 3         | с   | 0.67 | 0/335           | 1.22        | 1/514~(0.2%)     |  |
| 4         | D   | 0.69 | 0/392           | 1.01        | 0/602            |  |
| All       | All | 0.57 | 28/25951~(0.1%) | 1.24        | 252/36122~(0.7%) |  |

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| 1   | А     | 0                   | 2                   |
| 1   | G     | 2                   | 27                  |
| 2   | В     | 0                   | 1                   |
| All | All   | 2                   | 30                  |

All (28) bond length outliers are listed below:

| Mol | Chain | Res  | Type | Atoms   | Z      | Observed(Å) | $\operatorname{Ideal}(\operatorname{\AA})$ |
|-----|-------|------|------|---------|--------|-------------|--------------------------------------------|
| 2   | В     | 4    | G    | C3'-O3' | 15.53  | 1.63        | 1.42                                       |
| 2   | В     | 4    | G    | N9-C4   | 13.79  | 1.49        | 1.38                                       |
| 1   | G     | 643  | PHE  | CE2-CZ  | -13.22 | 1.12        | 1.37                                       |
| 2   | В     | 4    | G    | C3'-C2' | 11.39  | 1.65        | 1.52                                       |
| 2   | В     | 4    | G    | C1'-N9  | 8.90   | 1.62        | 1.48                                       |
| 2   | В     | 4    | G    | C2'-C1' | 8.88   | 1.63        | 1.53                                       |
| 1   | G     | 746  | GLU  | CD-OE1  | -8.75  | 1.16        | 1.25                                       |
| 1   | А     | 1090 | PRO  | CG-CD   | -8.38  | 1.23        | 1.50                                       |



| Mol | Chain | Res  | Type | Atoms   | Ζ     | Observed(Å) | Ideal(Å) |
|-----|-------|------|------|---------|-------|-------------|----------|
| 2   | В     | 4    | G    | C5-C4   | 8.09  | 1.44        | 1.38     |
| 1   | G     | 470  | GLU  | CD-OE1  | -8.05 | 1.16        | 1.25     |
| 2   | В     | 4    | G    | C2-N3   | 7.88  | 1.39        | 1.32     |
| 1   | G     | 212  | LEU  | CG-CD2  | 7.62  | 1.80        | 1.51     |
| 1   | G     | 746  | GLU  | CG-CD   | -7.56 | 1.40        | 1.51     |
| 1   | G     | 1139 | VAL  | CB-CG1  | -7.38 | 1.37        | 1.52     |
| 1   | G     | 750  | VAL  | CB-CG1  | -7.07 | 1.38        | 1.52     |
| 1   | G     | 246  | LEU  | CG-CD1  | -7.03 | 1.25        | 1.51     |
| 1   | G     | 1092 | VAL  | CB-CG1  | -6.75 | 1.38        | 1.52     |
| 2   | В     | 4    | G    | C6-O6   | 6.51  | 1.30        | 1.24     |
| 1   | G     | 1160 | VAL  | CB-CG2  | -6.18 | 1.39        | 1.52     |
| 2   | В     | 4    | G    | N3-C4   | 5.92  | 1.39        | 1.35     |
| 1   | G     | 623  | LEU  | CG-CD1  | -5.92 | 1.29        | 1.51     |
| 1   | G     | 220  | ARG  | CG-CD   | 5.46  | 1.65        | 1.51     |
| 2   | В     | 4    | G    | N7-C5   | -5.34 | 1.36        | 1.39     |
| 3   | С     | 17   | DG   | C1'-N9  | -5.27 | 1.39        | 1.47     |
| 1   | G     | 1169 | MET  | CB-CG   | 5.25  | 1.68        | 1.51     |
| 1   | G     | 1162 | GLU  | CB-CG   | 5.10  | 1.61        | 1.52     |
| 1   | G     | 470  | GLU  | CD-OE2  | 5.03  | 1.31        | 1.25     |
| 1   | G     | 18   | TRP  | CE3-CZ3 | -5.02 | 1.29        | 1.38     |

All (252) bond angle outliers are listed below:

| Mol | Chain | Res  | Type | Atoms       | Z      | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|-------------|--------|------------------|---------------|
| 2   | В     | 4    | G    | C8-N9-C4    | -41.50 | 89.80            | 106.40        |
| 1   | G     | 616  | LEU  | CB-CG-CD1   | 31.44  | 164.45           | 111.00        |
| 1   | G     | 1288 | ASP  | CB-CG-OD2   | 28.45  | 143.91           | 118.30        |
| 1   | G     | 1288 | ASP  | CB-CG-OD1   | -24.48 | 96.27            | 118.30        |
| 2   | В     | 4    | G    | C3'-C2'-C1' | 22.70  | 119.66           | 101.50        |
| 1   | G     | 338  | LEU  | CB-CG-CD2   | 22.07  | 148.51           | 111.00        |
| 1   | G     | 383  | MET  | CG-SD-CE    | 21.96  | 135.33           | 100.20        |
| 1   | G     | 513  | LEU  | CB-CG-CD1   | 21.72  | 147.92           | 111.00        |
| 2   | В     | 4    | G    | N3-C4-C5    | -20.58 | 118.31           | 128.60        |
| 1   | G     | 513  | LEU  | CB-CG-CD2   | -19.68 | 77.55            | 111.00        |
| 2   | В     | 4    | G    | N7-C8-N9    | 19.49  | 122.84           | 113.10        |
| 1   | G     | 1043 | MET  | CG-SD-CE    | 18.61  | 129.97           | 100.20        |
| 1   | G     | 1332 | ASP  | CB-CG-OD1   | 17.52  | 134.06           | 118.30        |
| 1   | А     | 133  | PRO  | N-CD-CG     | -17.46 | 77.01            | 103.20        |
| 1   | G     | 921  | LEU  | CB-CG-CD2   | -17.27 | 81.65            | 111.00        |
| 1   | G     | 338  | LEU  | CB-CG-CD1   | -16.48 | 82.98            | 111.00        |
| 1   | G     | 1169 | MET  | CG-SD-CE    | -15.99 | 74.62            | 100.20        |
| 1   | G     | 1139 | VAL  | CG1-CB-CG2  | -15.27 | 86.47            | 110.90        |



| $\alpha$ $\cdot$ $\cdot$ $\cdot$ | C    |          |      |
|----------------------------------|------|----------|------|
| Continued                        | from | previous | page |

| Mol | Chain | Res  | Type | Atoms       | Z      | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|-------------|--------|------------------|---------------|
| 2   | В     | 4    | G    | C4'-C3'-C2' | -14.99 | 87.61            | 102.60        |
| 1   | G     | 1097 | LYS  | CD-CE-NZ    | -14.97 | 77.27            | 111.70        |
| 2   | В     | 4    | G    | C4-N9-C1'   | 14.89  | 145.86           | 126.50        |
| 2   | В     | 4    | G    | C4-C5-C6    | 14.77  | 127.66           | 118.80        |
| 2   | В     | 4    | G    | C5-N7-C8    | -14.19 | 97.20            | 104.30        |
| 1   | G     | 76   | LYS  | CD-CE-NZ    | 14.12  | 144.18           | 111.70        |
| 1   | G     | 616  | LEU  | CB-CG-CD2   | -13.90 | 87.37            | 111.00        |
| 1   | G     | 746  | GLU  | OE1-CD-OE2  | -13.72 | 106.84           | 123.30        |
| 2   | В     | 4    | G    | N9-C1'-C2'  | 13.55  | 131.62           | 114.00        |
| 1   | G     | 419  | LEU  | CB-CG-CD2   | 13.45  | 133.86           | 111.00        |
| 1   | G     | 321  | MET  | CG-SD-CE    | 13.38  | 121.61           | 100.20        |
| 2   | В     | 4    | G    | O4'-C1'-C2' | -13.32 | 92.48            | 105.80        |
| 1   | G     | 246  | LEU  | CD1-CG-CD2  | -12.98 | 71.56            | 110.50        |
| 1   | G     | 751  | MET  | CG-SD-CE    | -12.94 | 79.50            | 100.20        |
| 1   | G     | 222  | LEU  | CB-CG-CD1   | 12.93  | 132.98           | 111.00        |
| 1   | G     | 648  | MET  | CA-CB-CG    | 12.76  | 134.99           | 113.30        |
| 1   | G     | 621  | LEU  | CB-CG-CD2   | -12.57 | 89.64            | 111.00        |
| 1   | G     | 763  | MET  | CA-CB-CG    | -12.15 | 92.65            | 113.30        |
| 2   | В     | 4    | G    | N3-C4-N9    | 12.14  | 133.29           | 126.00        |
| 1   | G     | 296  | LEU  | CB-CG-CD2   | -11.81 | 90.93            | 111.00        |
| 2   | В     | 4    | G    | C6-C5-N7    | -11.32 | 123.61           | 130.40        |
| 2   | В     | 4    | G    | C4'-C3'-O3' | 11.26  | 135.53           | 113.00        |
| 1   | G     | 513  | LEU  | CA-CB-CG    | 11.26  | 141.19           | 115.30        |
| 1   | G     | 90   | MET  | CG-SD-CE    | 10.91  | 117.66           | 100.20        |
| 1   | G     | 212  | LEU  | CB-CG-CD2   | -10.88 | 92.50            | 111.00        |
| 1   | G     | 302  | LEU  | CB-CG-CD1   | -10.82 | 92.61            | 111.00        |
| 1   | G     | 1331 | ILE  | CG1-CB-CG2  | -10.69 | 87.89            | 111.40        |
| 1   | G     | 1043 | MET  | CA-CB-CG    | 10.65  | 131.41           | 113.30        |
| 1   | G     | 237  | LEU  | CB-CG-CD2   | -10.51 | 93.14            | 111.00        |
| 2   | В     | 4    | G    | O4'-C1'-N9  | 10.51  | 116.60           | 108.20        |
| 1   | G     | 921  | LEU  | CB-CG-CD1   | 10.25  | 128.42           | 111.00        |
| 1   | G     | 184  | LEU  | CB-CG-CD2   | -10.23 | 93.61            | 111.00        |
| 1   | G     | 616  | LEU  | CD1-CG-CD2  | -10.05 | 80.36            | 110.50        |
| 1   | G     | 291  | LEU  | CB-CG-CD2   | -10.02 | 93.96            | 111.00        |
| 1   | G     | 513  | LEU  | CD1-CG-CD2  | -10.01 | 80.48            | 110.50        |
| 1   | G     | 1123 | LYS  | CD-CE-NZ    | 9.90   | 134.46           | 111.70        |
| 1   | A     | 1090 | PRO  | CA-N-CD     | -9.88  | 97.66            | 111.50        |
| 1   | G     | 1332 | ASP  | OD1-CG-OD2  | -9.88  | 104.52           | 123.30        |
| 1   | G     | 750  | VAL  | CG1-CB-CG2  | -9.82  | 95.19            | 110.90        |
| 1   | G     | 433  | LEU  | CB-CG-CD2   | -9.80  | 94.34            | 111.00        |
| 1   | G     | 631  | MET  | CG-SD-CE    | 9.80   | 115.87           | 100.20        |
| 1   | G     | 1196 | ILE  | CG1-CB-CG2  | -9.72  | 90.01            | 111.40        |



| $\alpha$ $\cdot$ $\cdot$ $\cdot$ | C    |          |      |
|----------------------------------|------|----------|------|
| Continued                        | from | previous | page |

| Mol | Chain | Res  | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|-------------|-------|------------------|---------------|
| 1   | G     | 339  | VAL  | CG1-CB-CG2  | -9.69 | 95.39            | 110.90        |
| 1   | G     | 246  | LEU  | CB-CG-CD1   | -9.39 | 95.04            | 111.00        |
| 2   | В     | 4    | G    | C2'-C3'-O3' | 9.31  | 129.99           | 109.50        |
| 1   | А     | 133  | PRO  | CA-CB-CG    | -9.24 | 86.45            | 104.00        |
| 1   | G     | 643  | PHE  | CB-CG-CD2   | -9.18 | 114.37           | 120.80        |
| 1   | G     | 643  | PHE  | CB-CG-CD1   | 9.12  | 127.18           | 120.80        |
| 1   | G     | 433  | LEU  | CB-CG-CD1   | 9.11  | 126.49           | 111.00        |
| 1   | G     | 622  | THR  | CA-CB-CG2   | -9.08 | 99.68            | 112.40        |
| 1   | G     | 301  | LEU  | CD1-CG-CD2  | -9.05 | 83.33            | 110.50        |
| 1   | G     | 1257 | LEU  | CB-CG-CD2   | -9.06 | 95.60            | 111.00        |
| 1   | G     | 939  | MET  | CG-SD-CE    | 9.04  | 114.66           | 100.20        |
| 1   | G     | 291  | LEU  | CB-CG-CD1   | 8.95  | 126.21           | 111.00        |
| 1   | G     | 1007 | GLU  | CA-CB-CG    | 8.88  | 132.94           | 113.40        |
| 1   | G     | 237  | LEU  | CD1-CG-CD2  | -8.87 | 83.90            | 110.50        |
| 1   | G     | 644  | ASP  | CB-CG-OD1   | 8.82  | 126.23           | 118.30        |
| 1   | G     | 922  | VAL  | CG1-CB-CG2  | -8.80 | 96.83            | 110.90        |
| 1   | G     | 607  | LEU  | CA-CB-CG    | 8.74  | 135.39           | 115.30        |
| 1   | G     | 1236 | LEU  | CB-CG-CD2   | -8.72 | 96.17            | 111.00        |
| 1   | G     | 629  | ARG  | NE-CZ-NH2   | -8.67 | 115.97           | 120.30        |
| 1   | G     | 45   | LYS  | CD-CE-NZ    | 8.62  | 131.53           | 111.70        |
| 1   | А     | 1090 | PRO  | N-CD-CG     | -8.62 | 90.27            | 103.20        |
| 1   | G     | 623  | LEU  | CD1-CG-CD2  | -8.52 | 84.94            | 110.50        |
| 1   | G     | 482  | VAL  | CG1-CB-CG2  | -8.46 | 97.36            | 110.90        |
| 1   | А     | 829  | ASP  | CB-CG-OD1   | 8.42  | 125.88           | 118.30        |
| 1   | G     | 942  | LYS  | CD-CE-NZ    | 8.27  | 130.72           | 111.70        |
| 1   | G     | 403  | ARG  | CD-NE-CZ    | 8.27  | 135.17           | 123.60        |
| 1   | G     | 222  | LEU  | CB-CG-CD2   | -8.25 | 96.97            | 111.00        |
| 1   | G     | 1261 | GLN  | CB-CA-C     | 8.09  | 126.58           | 110.40        |
| 1   | G     | 648  | MET  | CG-SD-CE    | 8.08  | 113.13           | 100.20        |
| 2   | В     | 4    | G    | C2-N3-C4    | 8.07  | 115.94           | 111.90        |
| 1   | G     | 470  | GLU  | CG-CD-OE1   | -8.06 | 102.18           | 118.30        |
| 1   | G     | 1332 | ASP  | CB-CG-OD2   | -8.00 | 111.10           | 118.30        |
| 1   | G     | 212  | LEU  | CB-CG-CD1   | 7.93  | 124.48           | 111.00        |
| 1   | G     | 1331 | ILE  | C-N-CA      | 7.92  | 141.49           | 121.70        |
| 1   | А     | 1004 | LEU  | CA-CB-CG    | 7.82  | 133.29           | 115.30        |
| 2   | В     | 4    | G    | N3-C2-N2    | 7.78  | 125.34           | 119.90        |
| 1   | G     | 90   | MET  | CB-CA-C     | -7.74 | 94.92            | 110.40        |
| 1   | G     | 306  | LEU  | CB-CG-CD2   | -7.72 | 97.88            | 111.00        |
| 1   | G     | 751  | MET  | CA-CB-CG    | 7.62  | 126.25           | 113.30        |
| 1   | A     | 133  | PRO  | CA-N-CD     | -7.59 | 100.87           | 111.50        |
| 1   | G     | 623  | LEU  | CB-CA-C     | 7.52  | 124.48           | 110.20        |
| 2   | В     | 4    | G    | N9-C4-C5    | 7.50  | 108.40           | 105.40        |



| $\alpha$ $\cdot$ $\cdot$ $\cdot$ | C    |          |      |
|----------------------------------|------|----------|------|
| Continued                        | trom | previous | page |
|                                  | 0    | 1        | 1 0  |

| Mol | Chain | Res  | Type | Atoms      | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|------------|-------|------------------|---------------|
| 1   | G     | 161  | MET  | CG-SD-CE   | 7.49  | 112.19           | 100.20        |
| 1   | G     | 724  | ILE  | CG1-CB-CG2 | -7.48 | 94.95            | 111.40        |
| 1   | G     | 470  | GLU  | CG-CD-OE2  | 7.47  | 133.24           | 118.30        |
| 1   | G     | 514  | LEU  | CB-CG-CD2  | -7.46 | 98.33            | 111.00        |
| 1   | G     | 621  | LEU  | CD1-CG-CD2 | -7.43 | 88.22            | 110.50        |
| 1   | G     | 237  | LEU  | CA-CB-CG   | 7.42  | 132.37           | 115.30        |
| 1   | G     | 302  | LEU  | CD1-CG-CD2 | -7.39 | 88.33            | 110.50        |
| 1   | G     | 616  | LEU  | CA-CB-CG   | 7.38  | 132.28           | 115.30        |
| 1   | G     | 1307 | GLU  | OE1-CD-OE2 | -7.38 | 114.44           | 123.30        |
| 2   | В     | 4    | G    | C5-C6-N1   | -7.38 | 107.81           | 111.50        |
| 1   | G     | 763  | MET  | N-CA-CB    | 7.37  | 123.86           | 110.60        |
| 1   | G     | 1062 | LEU  | CB-CG-CD1  | 7.31  | 123.42           | 111.00        |
| 1   | G     | 403  | ARG  | NE-CZ-NH2  | -7.25 | 116.68           | 120.30        |
| 1   | G     | 1148 | LYS  | CD-CE-NZ   | 7.22  | 128.31           | 111.70        |
| 1   | G     | 403  | ARG  | NE-CZ-NH1  | 7.21  | 123.90           | 120.30        |
| 1   | G     | 1139 | VAL  | CA-CB-CG2  | -7.19 | 100.12           | 110.90        |
| 1   | G     | 997  | LEU  | CB-CG-CD2  | -7.16 | 98.83            | 111.00        |
| 1   | G     | 1261 | GLN  | CG-CD-OE1  | 7.16  | 135.92           | 121.60        |
| 1   | G     | 398  | LEU  | CB-CG-CD2  | -7.13 | 98.88            | 111.00        |
| 1   | G     | 1287 | LEU  | CB-CG-CD2  | 7.07  | 123.02           | 111.00        |
| 1   | G     | 623  | LEU  | N-CA-CB    | -7.06 | 96.28            | 110.40        |
| 1   | G     | 90   | MET  | CA-CB-CG   | -7.05 | 101.32           | 113.30        |
| 1   | G     | 223  | GLU  | CA-CB-CG   | 7.04  | 128.88           | 113.40        |
| 1   | G     | 702  | LEU  | CB-CG-CD2  | -7.02 | 99.06            | 111.00        |
| 1   | G     | 713  | VAL  | CG1-CB-CG2 | -7.02 | 99.67            | 110.90        |
| 1   | G     | 212  | LEU  | CA-CB-CG   | -7.01 | 99.19            | 115.30        |
| 1   | G     | 1316 | THR  | CA-CB-CG2  | 6.98  | 122.17           | 112.40        |
| 1   | G     | 1043 | MET  | N-CA-CB    | -6.96 | 98.08            | 110.60        |
| 1   | G     | 339  | VAL  | CA-CB-CG1  | 6.93  | 121.30           | 110.90        |
| 1   | G     | 594  | TYR  | OH-CZ-CE2  | -6.87 | 101.56           | 120.10        |
| 1   | G     | 636  | LEU  | CB-CG-CD2  | -6.83 | 99.39            | 111.00        |
| 1   | G     | 1169 | MET  | CA-CB-CG   | 6.83  | 124.91           | 113.30        |
| 1   | G     | 1043 | MET  | CB-CA-C    | 6.82  | 124.04           | 110.40        |
| 1   | G     | 684  | LYS  | CD-CE-NZ   | 6.79  | 127.32           | 111.70        |
| 1   | G     | 648  | MET  | CB-CG-SD   | -6.78 | 92.05            | 112.40        |
| 3   | с     | 23   | DT   | OP1-P-OP2  | -6.76 | 109.46           | 119.60        |
| 1   | А     | 379  | ILE  | CG1-CB-CG2 | -6.68 | 96.71            | 111.40        |
| 1   | G     | 615  | ILE  | CG1-CB-CG2 | -6.68 | 96.71            | 111.40        |
| 1   | G     | 594  | TYR  | CE1-CZ-OH  | 6.67  | 138.10           | 120.10        |
| 1   | G     | 989  | LEU  | CA-CB-CG   | -6.66 | 99.98            | 115.30        |
| 1   | G     | 93   | VAL  | CG1-CB-CG2 | -6.61 | 100.33           | 110.90        |
| 1   | А     | 416  | LEU  | CB-CG-CD1  | -6.61 | 99.77            | 111.00        |



| $\alpha$ $\cdot$ $\cdot$ $\cdot$ | C              | •         |      |
|----------------------------------|----------------|-----------|------|
| Continued                        | trom           | nremous   | naae |
| Contentaca                       | <i>J</i> 10110 | proceeduo | pagc |

| Mol | Chain | Res  | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|-------------|-------|------------------|---------------|
| 1   | А     | 499  | ASP  | CB-CG-OD1   | 6.58  | 124.22           | 118.30        |
| 1   | G     | 1124 | LYS  | CD-CE-NZ    | 6.58  | 126.83           | 111.70        |
| 1   | G     | 383  | MET  | CB-CA-C     | 6.54  | 123.49           | 110.40        |
| 1   | G     | 586  | ARG  | NE-CZ-NH2   | -6.50 | 117.05           | 120.30        |
| 2   | В     | 4    | G    | C1'-O4'-C4' | 6.49  | 115.09           | 109.90        |
| 1   | G     | 938  | ARG  | CA-CB-CG    | 6.49  | 127.67           | 113.40        |
| 1   | G     | 544  | GLN  | CA-CB-CG    | 6.48  | 127.66           | 113.40        |
| 1   | G     | 1073 | VAL  | CG1-CB-CG2  | 6.47  | 121.25           | 110.90        |
| 1   | G     | 1237 | TYR  | OH-CZ-CE2   | -6.43 | 102.74           | 120.10        |
| 1   | G     | 1076 | LYS  | CD-CE-NZ    | 6.42  | 126.48           | 111.70        |
| 1   | G     | 1358 | THR  | CA-CB-CG2   | 6.42  | 121.39           | 112.40        |
| 1   | G     | 302  | LEU  | CB-CA-C     | 6.40  | 122.36           | 110.20        |
| 1   | G     | 1261 | GLN  | CG-CD-NE2   | -6.38 | 101.39           | 116.70        |
| 1   | G     | 922  | VAL  | CA-CB-CG2   | -6.38 | 101.33           | 110.90        |
| 2   | В     | 59   | U    | C2-N1-C1'   | 6.37  | 125.34           | 117.70        |
| 1   | А     | 644  | ASP  | CB-CG-OD1   | 6.36  | 124.03           | 118.30        |
| 1   | G     | 643  | PHE  | CE1-CZ-CE2  | -6.35 | 108.57           | 120.00        |
| 1   | G     | 908  | LEU  | CA-CB-CG    | 6.27  | 129.72           | 115.30        |
| 1   | G     | 1214 | LEU  | CA-CB-CG    | 6.27  | 129.72           | 115.30        |
| 1   | G     | 484  | LYS  | CD-CE-NZ    | 6.23  | 126.03           | 111.70        |
| 1   | G     | 603  | ASP  | CB-CG-OD1   | -6.21 | 112.71           | 118.30        |
| 1   | G     | 1073 | VAL  | CA-CB-CG2   | 6.19  | 120.19           | 110.90        |
| 1   | G     | 1214 | LEU  | CB-CG-CD2   | -6.18 | 100.50           | 111.00        |
| 1   | G     | 918  | LYS  | CD-CE-NZ    | 6.17  | 125.89           | 111.70        |
| 1   | G     | 1237 | TYR  | CE1-CZ-OH   | 6.14  | 136.67           | 120.10        |
| 1   | G     | 1057 | ILE  | CG1-CB-CG2  | 6.12  | 124.87           | 111.40        |
| 1   | А     | 1303 | ARG  | CB-CG-CD    | 6.10  | 127.45           | 111.60        |
| 1   | G     | 625  | LEU  | CB-CG-CD1   | -6.09 | 100.64           | 111.00        |
| 1   | G     | 1261 | GLN  | CA-CB-CG    | 6.08  | 126.78           | 113.40        |
| 1   | A     | 147  | ASP  | CB-CG-OD1   | 6.07  | 123.76           | 118.30        |
| 1   | G     | 1288 | ASP  | OD1-CG-OD2  | -6.04 | 111.83           | 123.30        |
| 1   | A     | 791  | LEU  | CA-CB-CG    | 6.00  | 129.10           | 115.30        |
| 1   | G     | 702  | LEU  | CB-CG-CD1   | 5.94  | 121.09           | 111.00        |
| 1   | G     | 686  | ASP  | CB-CG-OD1   | -5.93 | 112.96           | 118.30        |
| 1   | G     | 322  | ILE  | CG1-CB-CG2  | -5.93 | 98.35            | 111.40        |
| 1   | G     | 629  | ARG  | NE-CZ-NH1   | 5.92  | 123.26           | 120.30        |
| 1   | G     | 958  | LEU  | CB-CG-CD2   | -5.91 | 100.95           | 111.00        |
| 1   | A     | 1214 | LEU  | CA-CB-CG    | 5.87  | 128.81           | 115.30        |
| 1   | A     | 138  | LEU  | CA-CB-CG    | 5.86  | 128.78           | 115.30        |
| 1   | G     | 212  | LEU  | CD1-CG-CD2  | -5.86 | 92.94            | 110.50        |
| 1   | G     | 1092 | VAL  | CG1-CB-CG2  | -5.85 | 101.54           | 110.90        |
| 1   | G     | 1144 | LEU  | CA-CB-CG    | 5.85  | 128.75           | 115.30        |



| $\alpha$ $\cdots$ $1$ | e    |          |      |
|-----------------------|------|----------|------|
| Continued             | from | previous | page |

| Mol | Chain | Res  | Type | Atoms                  | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|------------------------|-------|------------------|---------------|
| 1   | G     | 921  | LEU  | CA-CB-CG               | 5.85  | 128.75           | 115.30        |
| 1   | G     | 301  | LEU  | CB-CA-C                | 5.83  | 121.28           | 110.20        |
| 1   | А     | 597  | LEU  | CA-CB-CG               | -5.82 | 101.91           | 115.30        |
| 1   | G     | 617  | GLU  | CA-CB-CG               | -5.77 | 100.70           | 113.40        |
| 1   | G     | 1195 | ILE  | CG1-CB-CG2             | -5.77 | 98.71            | 111.40        |
| 1   | G     | 213  | SER  | N-CA-CB                | 5.74  | 119.11           | 110.50        |
| 1   | G     | 718  | ASP  | CB-CG-OD1              | -5.71 | 113.16           | 118.30        |
| 1   | G     | 1069 | THR  | C-N-CA                 | -5.70 | 110.33           | 122.30        |
| 2   | В     | 4    | G    | N1-C2-N2               | -5.69 | 111.08           | 116.20        |
| 1   | G     | 306  | LEU  | CB-CG-CD1              | 5.64  | 120.58           | 111.00        |
| 1   | G     | 1144 | LEU  | CB-CG-CD2              | -5.63 | 101.42           | 111.00        |
| 1   | G     | 623  | LEU  | CB-CG-CD1              | -5.62 | 101.45           | 111.00        |
| 2   | В     | 23   | U    | C6-N1-C2               | -5.60 | 117.64           | 121.00        |
| 1   | G     | 343  | LEU  | CA-CB-CG               | 5.60  | 128.17           | 115.30        |
| 1   | G     | 1182 | LEU  | CB-CG-CD2              | -5.60 | 101.49           | 111.00        |
| 1   | G     | 248  | LEU  | CB-CG-CD1              | -5.58 | 101.51           | 111.00        |
| 1   | А     | 1312 | LEU  | CA-CB-CG               | 5.58  | 128.12           | 115.30        |
| 1   | G     | 76   | LYS  | CB-CG-CD               | 5.57  | 126.09           | 111.60        |
| 1   | G     | 470  | GLU  | N-CA-CB                | 5.56  | 120.60           | 110.60        |
| 1   | G     | 93   | VAL  | CA-CB-CG2              | -5.55 | 102.57           | 110.90        |
| 1   | G     | 195  | LEU  | CB-CG-CD2              | 5.55  | 120.44           | 111.00        |
| 1   | G     | 155  | TYR  | CE1-CZ-OH              | -5.51 | 105.21           | 120.10        |
| 1   | G     | 325  | TYR  | OH-CZ-CE2              | -5.51 | 105.23           | 120.10        |
| 1   | G     | 1236 | LEU  | CB-CG-CD1              | 5.49  | 120.33           | 111.00        |
| 1   | G     | 1316 | THR  | OG1-CB-CG2             | 5.48  | 122.60           | 110.00        |
| 1   | G     | 1360 | ILE  | CG1-CB-CG2             | -5.47 | 99.36            | 111.40        |
| 2   | Н     | 20   | C    | N3-C2-O2               | -5.45 | 118.08           | 121.90        |
| 1   | G     | 90   | MET  | N-CA-CB                | 5.45  | 120.41           | 110.60        |
| 1   | G     | 380  | LEU  | CB-CG-CD2              | -5.43 | 101.76           | 111.00        |
| 2   | В     | 56   | U    | N3-C2-O2               | -5.43 | 118.40           | 122.20        |
| 1   | G     | 1358 | THR  | OG1-CB-CG2             | 5.42  | 122.46           | 110.00        |
| 2   | Н     | 20   | С    | N1-C2-O2               | 5.40  | 122.14           | 118.90        |
| 1   | G     | 212  | LEU  | CB-CA-C                | 5.39  | 120.45           | 110.20        |
| 1   | А     | 470  | GLU  | CA-CB-CG               | 5.39  | 125.26           | 113.40        |
| 1   | G     | 403  | ARG  | CA-CB-CG               | -5.38 | 101.56           | 113.40        |
| 2   | В     | 4    | G    | C4-C5-N7               | -5.37 | 108.65           | 110.80        |
| 2   | В     | 56   | U    | N1-C2-O2               | 5.35  | 126.55           | 122.80        |
| 1   | G     | 1257 | LEU  | $CB-CG-\overline{CD1}$ | 5.35  | 120.10           | 111.00        |
| 1   | G     | 101  | LEU  | CB-CG-CD2              | -5.35 | 101.91           | 111.00        |
| 1   | G     | 1063 | ILE  | CG1-CB-CG2             | -5.34 | 99.65            | 111.40        |
| 1   | G     | 944  | ASP  | CB-CG-OD1              | 5.31  | 123.08           | 118.30        |
| 1   | G     | 1238 | LEU  | CB-CG-CD2              | -5.29 | 102.00           | 111.00        |



| Mol | Chain | Res  | Type | Atoms      | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|------------|-------|------------------|---------------|
| 1   | G     | 325  | TYR  | CE1-CZ-OH  | 5.29  | 134.37           | 120.10        |
| 1   | G     | 212  | LEU  | C-N-CA     | 5.28  | 134.91           | 121.70        |
| 1   | G     | 398  | LEU  | CB-CG-CD1  | 5.26  | 119.94           | 111.00        |
| 1   | G     | 1164 | LEU  | CB-CG-CD1  | -5.20 | 102.15           | 111.00        |
| 2   | В     | 46   | А    | O5'-P-OP1  | -5.17 | 101.04           | 105.70        |
| 2   | Н     | 20   | С    | C6-N1-C2   | -5.17 | 118.23           | 120.30        |
| 1   | G     | 211  | ILE  | CG1-CB-CG2 | 5.12  | 122.67           | 111.40        |
| 1   | G     | 1062 | LEU  | CA-CB-CG   | -5.12 | 103.52           | 115.30        |
| 1   | G     | 1069 | THR  | CA-CB-CG2  | 5.10  | 119.54           | 112.40        |
| 1   | G     | 966  | PHE  | CB-CG-CD1  | 5.09  | 124.36           | 120.80        |
| 1   | G     | 465  | MET  | CB-CG-SD   | 5.09  | 127.66           | 112.40        |
| 1   | G     | 34   | VAL  | CG1-CB-CG2 | -5.08 | 102.77           | 110.90        |
| 1   | G     | 196  | PHE  | CB-CG-CD2  | -5.08 | 117.24           | 120.80        |
| 1   | G     | 126  | VAL  | CG1-CB-CG2 | -5.07 | 102.79           | 110.90        |
| 1   | G     | 1120 | ILE  | CG1-CB-CG2 | -5.07 | 100.25           | 111.40        |
| 3   | С     | 3    | DC   | O4'-C1'-N1 | 5.06  | 111.54           | 108.00        |
| 1   | G     | 988  | TYR  | OH-CZ-CE2  | 5.06  | 133.76           | 120.10        |
| 1   | G     | 763  | MET  | CB-CA-C    | -5.06 | 100.28           | 110.40        |
| 1   | G     | 419  | LEU  | CB-CA-C    | -5.05 | 100.60           | 110.20        |
| 1   | G     | 586  | ARG  | CD-NE-CZ   | 5.05  | 130.67           | 123.60        |
| 1   | G     | 988  | TYR  | CE1-CZ-OH  | -5.04 | 106.50           | 120.10        |
| 1   | G     | 296  | LEU  | CD1-CG-CD2 | -5.03 | 95.41            | 110.50        |
| 1   | А     | 948  | LYS  | CB-CG-CD   | 5.02  | 124.66           | 111.60        |
| 1   | G     | 586  | ARG  | NE-CZ-NH1  | 5.00  | 122.80           | 120.30        |

All (2) chirality outliers are listed below:

| Mol | Chain | Res  | Type | Atom |
|-----|-------|------|------|------|
| 1   | G     | 1069 | THR  | CB   |
| 1   | G     | 1358 | THR  | CB   |

All (30) planarity outliers are listed below:

| Mol | Chain | Res  | Type | Group     |
|-----|-------|------|------|-----------|
| 1   | А     | 309  | ASN  | Peptide   |
| 1   | А     | 832  | ARG  | Sidechain |
| 2   | В     | 4    | G    | Sidechain |
| 1   | G     | 1104 | GLY  | Mainchain |
| 1   | G     | 1140 | ALA  | Mainchain |
| 1   | G     | 1171 | ARG  | Sidechain |
| 1   | G     | 1288 | ASP  | Sidechain |
| 1   | G     | 1307 | GLU  | Sidechain |



|       | Choin | <b>P</b> oc | $\mathbf{T}_{\mathbf{T}}$ | Croup     |
|-------|-------|-------------|---------------------------|-----------|
| INIOI | Unain | nes         | туре                      | Group     |
| 1     | G     | 1332        | ASP                       | Sidechain |
| 1     | G     | 1337        | ARG                       | Sidechain |
| 1     | G     | 144         | ASP                       | Peptide   |
| 1     | G     | 220         | ARG                       | Sidechain |
| 1     | G     | 324         | ARG                       | Sidechain |
| 1     | G     | 330         | GLN                       | Sidechain |
| 1     | G     | 342         | GLN                       | Sidechain |
| 1     | G     | 382         | LYS                       | Mainchain |
| 1     | G     | 384         | ASP                       | Mainchain |
| 1     | G     | 424         | ARG                       | Sidechain |
| 1     | G     | 500         | LYS                       | Mainchain |
| 1     | G     | 586         | ARG                       | Sidechain |
| 1     | G     | 629         | ARG                       | Sidechain |
| 1     | G     | 641         | HIS                       | Sidechain |
| 1     | G     | 643         | PHE                       | Sidechain |
| 1     | G     | 725         | ALA                       | Mainchain |
| 1     | G     | 746         | GLU                       | Sidechain |
| 1     | G     | 752         | GLY                       | Mainchain |
| 1     | G     | 76          | LYS                       | Mainchain |
| 1     | G     | 919         | ARG                       | Sidechain |
| 1     | G     | 920         | GLN                       | Sidechain |
| 1     | G     | 938         | ARG                       | Sidechain |

Continued from previous page...

#### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 10774 | 0        | 10978    | 82      | 0            |
| 1   | G     | 9139  | 0        | 8954     | 103     | 0            |
| 2   | В     | 2103  | 0        | 1058     | 35      | 0            |
| 2   | Н     | 1887  | 0        | 947      | 11      | 0            |
| 3   | С     | 433   | 0        | 238      | 3       | 0            |
| 3   | с     | 302   | 0        | 173      | 0       | 0            |
| 4   | D     | 349   | 0        | 191      | 3       | 0            |
| 5   | А     | 4     | 0        | 0        | 0       | 0            |
| 5   | с     | 1     | 0        | 0        | 0       | 0            |
| 6   | А     | 2     | 0        | 0        | 0       | 0            |
| All | All   | 24994 | 0        | 22539    | 217     | 0            |



The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

All (217) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom-1           | Atom-2            | Interatomic    | $\mathbf{Clash}$ |
|------------------|-------------------|----------------|------------------|
|                  | 1100111 2         | distance $(Å)$ | overlap (Å)      |
| 1:G:212:LEU:CG   | 1:G:212:LEU:CD2   | 1.80           | 1.58             |
| 2:B:4:G:C3'      | 2:B:4:G:O3'       | 1.63           | 1.42             |
| 2:B:4:G:H2'      | 2:B:5:C:P         | 1.72           | 1.29             |
| 1:A:661:ARG:HB2  | 2:B:4:G:O3'       | 1.45           | 1.15             |
| 2:B:4:G:O3'      | 2:B:4:G:H3'       | 1.33           | 1.10             |
| 2:B:4:G:C2'      | 2:B:5:C:P         | 2.38           | 1.09             |
| 1:G:212:LEU:CD2  | 1:G:212:LEU:CD1   | 2.33           | 1.05             |
| 1:G:212:LEU:CD2  | 1:G:212:LEU:CB    | 2.41           | 0.97             |
| 1:A:661:ARG:CB   | 2:B:4:G:O3'       | 2.17           | 0.93             |
| 2:B:4:G:C3'      | 2:B:5:C:P         | 2.61           | 0.88             |
| 1:A:661:ARG:HB2  | 2:B:4:G:H3'       | 1.59           | 0.85             |
| 1:A:661:ARG:HB2  | 2:B:4:G:C3'       | 2.08           | 0.84             |
| 1:A:723:HIS:CE1  | 1:A:727:LEU:HD21  | 2.16           | 0.81             |
| 1:A:661:ARG:CG   | 2:B:4:G:H3'       | 2.12           | 0.80             |
| 1:G:212:LEU:HD23 | 1:G:212:LEU:HA    | 1.63           | 0.79             |
| 1:A:661:ARG:CB   | 2:B:4:G:H3'       | 2.16           | 0.76             |
| 1:G:212:LEU:CD2  | 1:G:212:LEU:HD13  | 2.16           | 0.73             |
| 1:A:597:LEU:HD13 | 1:A:616:LEU:HD11  | 1.71           | 0.71             |
| 1:A:1309:ILE:HA  | 1:A:1312:LEU:HD13 | 1.73           | 0.71             |
| 1:A:878:LYS:HG3  | 1:A:879:MET:HG3   | 1.73           | 0.69             |
| 1:G:619:ILE:O    | 1:G:623:LEU:HB2   | 1.93           | 0.68             |
| 1:G:134:THR:HG23 | 2:H:45:U:H4'      | 1.76           | 0.67             |
| 1:G:184:LEU:HD21 | 1:G:296:LEU:HB2   | 1.77           | 0.67             |
| 1:G:24:GLU:OE2   | 1:G:1079:ASP:OD1  | 2.13           | 0.67             |
| 1:A:875:VAL:HA   | 1:A:878:LYS:HG2   | 1.77           | 0.66             |
| 1:G:212:LEU:CD2  | 1:G:212:LEU:HA    | 2.25           | 0.66             |
| 1:A:661:ARG:HG3  | 2:B:4:G:H3'       | 1.78           | 0.66             |
| 1:G:32:PHE:CE2   | 1:G:1355:LEU:HD12 | 2.30           | 0.66             |
| 1:G:455:LEU:HD13 | 1:G:473:ILE:HG21  | 1.78           | 0.65             |
| 1:G:1147:ALA:HB2 | 1:G:1190:VAL:HG12 | 1.77           | 0.65             |
| 1:A:557:ARG:NH2  | 1:A:596:ASP:OD1   | 2.27           | 0.65             |
| 1:G:921:LEU:HD23 | 1:G:922:VAL:HG23  | 1.78           | 0.64             |
| 1:G:237:LEU:HD21 | 1:G:255:ASN:HB3   | 1.78           | 0.64             |
| 1:A:548:ILE:HD13 | 1:A:564:LEU:HD11  | 1.80           | 0.63             |
| 1:A:515:TYR:OH   | 2:B:4:G:O3'       | 2.13           | 0.63             |
| 1:G:596:ASP:OD2  | 1:G:656:TYR:OH    | 2.16           | 0.62             |
| 1:A:723:HIS:HE1  | 1:A:727:LEU:HD21  | 1.66           | 0.61             |



|                   | jus puge          | Interatomic  | Clash       |
|-------------------|-------------------|--------------|-------------|
| Atom-1            | Atom-2            | distance (Å) | overlap (Å) |
| 1:G:746:GLU:OE1   | 1:G:1351:SER:HB2  | 2.00         | 0.60        |
| 1:G:745:ASP:OD2   | 1:G:938:ARG:NH1   | 2.34         | 0.60        |
| 2:B:37:U:H2'      | 2:B:38:A:C8       | 2.37         | 0.60        |
| 1:G:919:ARG:HG2   | 1:G:919:ARG:HH11  | 1.67         | 0.59        |
| 1:G:1243:GLU:N    | 1:G:1243:GLU:OE2  | 2.35         | 0.59        |
| 2:H:73:G:N2       | 2:H:76:A:OP2      | 2.35         | 0.59        |
| 1:A:438:GLU:HA    | 1:A:441:GLU:HB2   | 1.85         | 0.59        |
| 1:G:212:LEU:CD2   | 1:G:212:LEU:CA    | 2.80         | 0.59        |
| 1:G:763:MET:HE2   | 1:G:928:THR:HG23  | 1.85         | 0.59        |
| 1:G:419:LEU:HD13  | 1:G:444:LEU:HD13  | 1.85         | 0.58        |
| 1:A:627:GLU:N     | 1:A:627:GLU:OE1   | 2.36         | 0.58        |
| 1:G:586:ARG:HG2   | 1:G:587:PHE:N     | 2.18         | 0.58        |
| 2:B:83:C:H2'      | 2:B:84:A:H8       | 1.69         | 0.57        |
| 1:A:1210:ARG:HG3  | 1:A:1280:VAL:HA   | 1.85         | 0.57        |
| 2:B:4:G:C3'       | 2:B:4:G:HO3'      | 2.07         | 0.57        |
| 3:C:17:DG:C2      | 4:D:4:DA:C2       | 2.92         | 0.57        |
| 1:A:869:ASN:OD1   | 1:A:870:VAL:N     | 2.38         | 0.56        |
| 2:H:27:G:N2       | 2:H:44:U:OP2      | 2.39         | 0.56        |
| 1:A:1243:GLU:OE1  | 1:A:1303:ARG:NH1  | 2.39         | 0.56        |
| 1:A:151:LEU:HA    | 1:A:154:ILE:HD12  | 1.88         | 0.55        |
| 1:G:212:LEU:HD21  | 1:G:246:LEU:HD21  | 1.87         | 0.55        |
| 1:A:750:VAL:HG21  | 1:A:1355:LEU:HD12 | 1.87         | 0.55        |
| 1:A:1105:PHE:CG   | 1:A:1169:MET:HG3  | 2.41         | 0.55        |
| 1:G:421:ALA:O     | 1:G:425:ARG:CB    | 2.54         | 0.55        |
| 1:A:661:ARG:CG    | 2:B:4:G:O3'       | 2.54         | 0.55        |
| 1:G:297:SER:O     | 1:G:301:LEU:HB2   | 2.06         | 0.54        |
| 2:B:8:A:H2'       | 2:B:9:A:C8        | 2.42         | 0.54        |
| 1:A:1228:LEU:HD11 | 1:A:1232:TYR:HB2  | 1.90         | 0.54        |
| 1:G:237:LEU:CD2   | 1:G:255:ASN:HB3   | 2.37         | 0.54        |
| 2:B:83:C:H2'      | 2:B:84:A:C8       | 2.43         | 0.54        |
| 1:G:621:LEU:O     | 1:G:625:LEU:HB2   | 2.08         | 0.53        |
| 1:A:225:LEU:HD11  | 1:A:241:LEU:HD22  | 1.90         | 0.53        |
| 2:B:46:A:H2'      | 2:B:47:A:C8       | 2.44         | 0.53        |
| 1:A:1306:ALA:HA   | 1:A:1309:ILE:HD12 | 1.90         | 0.53        |
| 1:G:145:SER:OG    | 1:G:145:SER:O     | 2.27         | 0.53        |
| 2:B:4:G:H2'       | 2:B:5:C:OP2       | 2.06         | 0.53        |
| 1:G:14:ASN:OD1    | 1:G:55:SER:OG     | 2.18         | 0.52        |
| 1:G:615:ILE:HG23  | 1:G:639:TYR:CE1   | 2.44         | 0.52        |
| 1:A:597:LEU:O     | 1:A:601:ILE:N     | 2.43         | 0.52        |
| 1:G:467:ARG:HD2   | 1:G:470:GLU:OE2   | 2.09         | 0.52        |
| 1:A:450:TYR:OH    | 1:A:627:GLU:OE2   | 2.23         | 0.51        |



|                   | h h o             | Interatomic  | Clash       |
|-------------------|-------------------|--------------|-------------|
| Atom-1            | Atom-2            | distance (Å) | overlap (Å) |
| 1:A:995:THR:HG22  | 1:A:999:LYS:HE2   | 1.92         | 0.51        |
| 2:B:37:U:H2'      | 2:B:38:A:H8       | 1.74         | 0.51        |
| 1:G:952:GLU:H     | 1:G:952:GLU:CD    | 2.14         | 0.51        |
| 2:B:4:G:O3'       | 2:B:5:C:P         | 2.69         | 0.51        |
| 1:A:763:MET:HE2   | 1:A:765:ARG:HH11  | 1.77         | 0.50        |
| 1:A:1228:LEU:HD12 | 1:A:1229:PRO:HD2  | 1.94         | 0.50        |
| 1:A:459:ASN:O     | 1:A:459:ASN:ND2   | 2.45         | 0.50        |
| 2:B:38:A:H2'      | 2:B:39:G:C8       | 2.46         | 0.50        |
| 1:A:46:ASN:O      | 1:A:1093:ASN:ND2  | 2.38         | 0.49        |
| 1:A:596:ASP:O     | 1:A:599:LYS:HG2   | 2.12         | 0.49        |
| 1:G:138:LEU:HD11  | 1:G:153:LEU:HB3   | 1.94         | 0.49        |
| 2:H:46:A:H2'      | 2:H:47:A:C8       | 2.48         | 0.49        |
| 1:A:1208:ASN:OD1  | 1:A:1279:ARG:HG3  | 2.13         | 0.49        |
| 1:G:1111:ARG:HG3  | 1:G:1135:LEU:HD12 | 1.94         | 0.49        |
| 1:G:492:ILE:HG12  | 1:G:625:LEU:HD11  | 1.94         | 0.49        |
| 1:G:677:LYS:HB3   | 1:G:681:ASP:HB2   | 1.95         | 0.49        |
| 1:A:519:THR:HG23  | 2:B:5:C:H4'       | 1.94         | 0.48        |
| 1:G:18:TRP:CH2    | 1:G:1355:LEU:HD21 | 2.48         | 0.48        |
| 1:G:212:LEU:CD2   | 1:G:212:LEU:HB3   | 2.36         | 0.48        |
| 1:G:249:THR:HG23  | 1:G:265:GLN:HB2   | 1.95         | 0.48        |
| 1:G:26:LYS:HE3    | 1:G:26:LYS:HB3    | 1.51         | 0.48        |
| 1:A:356:LYS:HB3   | 1:A:356:LYS:HE3   | 1.68         | 0.48        |
| 1:G:643:PHE:HB2   | 1:G:648:MET:SD    | 2.53         | 0.48        |
| 2:B:54:G:H2'      | 2:B:55:C:C6       | 2.49         | 0.48        |
| 1:A:94:ASP:OD2    | 1:A:152:ARG:NH1   | 2.47         | 0.47        |
| 1:A:544:GLN:O     | 1:A:548:ILE:HG13  | 2.15         | 0.47        |
| 1:A:737:ILE:HG23  | 1:A:931:VAL:HG22  | 1.97         | 0.47        |
| 1:G:511:HIS:ND1   | 1:G:656:TYR:HB3   | 2.29         | 0.47        |
| 1:A:661:ARG:HB3   | 2:B:4:G:H5"       | 1.97         | 0.47        |
| 1:A:662:LEU:HD21  | 2:B:4:G:C5'       | 2.45         | 0.47        |
| 1:G:45:LYS:NZ     | 1:G:1357:GLU:OE2  | 2.41         | 0.47        |
| 1:G:225:LEU:HD13  | 1:G:242:ILE:HG21  | 1.97         | 0.47        |
| 1:G:921:LEU:HB2   | 1:G:1042:ILE:HD13 | 1.96         | 0.47        |
| 1:G:24:GLU:HB3    | 1:G:26:LYS:HG2    | 1.97         | 0.47        |
| 1:A:137:HIS:HA    | 1:A:322:ILE:HD11  | 1.97         | 0.47        |
| 1:G:217:SER:N     | 1:G:220:ARG:HH11  | 2.12         | 0.47        |
| 1:G:603:ASP:OD1   | 1:G:603:ASP:N     | 2.39         | 0.47        |
| 1:A:118:ILE:O     | 1:A:152:ARG:HD2   | 2.15         | 0.46        |
| 1:A:552:LEU:HD13  | 1:A:559:VAL:HG21  | 1.96         | 0.46        |
| 1:G:1203:LEU:HD13 | 1:G:1213:MET:HE3  | 1.98         | 0.46        |
| 1:G:302:LEU:HA    | 1:G:302:LEU:HD22  | 1.68         | 0.46        |



|                   |                   | Interatomic  | Clash       |
|-------------------|-------------------|--------------|-------------|
| Atom-1            | Atom-2            | distance (Å) | overlap (Å) |
| 1:A:455:LEU:HD13  | 1:A:473:ILE:HG21  | 1.98         | 0.46        |
| 1:A:930:HIS:O     | 1:A:934:ILE:HG13  | 2.14         | 0.46        |
| 1:G:244:LEU:HD21  | 1:G:271:TYR:OH    | 2.16         | 0.46        |
| 1:G:718:ASP:OD1   | 1:G:718:ASP:N     | 2.47         | 0.46        |
| 1:G:184:LEU:C     | 1:G:184:LEU:HD23  | 2.37         | 0.45        |
| 1:G:184:LEU:HD11  | 1:G:295:ASN:HB3   | 1.98         | 0.45        |
| 1:G:469:SER:HB3   | 1:G:481:VAL:HG13  | 1.97         | 0.45        |
| 1:A:1131:TYR:HA   | 2:B:24:U:H4'      | 1.97         | 0.45        |
| 3:C:8:DG:H2'      | 3:C:9:DT:C6       | 2.50         | 0.45        |
| 1:G:1194:LEU:HD21 | 1:G:1365:LEU:HB3  | 1.97         | 0.45        |
| 1:G:720:LEU:O     | 1:G:724:ILE:HG12  | 2.17         | 0.45        |
| 1:A:790:GLU:HG2   | 1:A:889:ALA:HA    | 1.98         | 0.45        |
| 1:A:821:ASP:OD1   | 1:A:822:MET:N     | 2.50         | 0.45        |
| 2:B:89:G:H4'      | 2:B:90:U:H5'      | 1.99         | 0.45        |
| 1:A:81:TYR:HB2    | 1:A:443:ILE:HD12  | 1.98         | 0.45        |
| 1:G:217:SER:H     | 1:G:220:ARG:HD2   | 1.82         | 0.45        |
| 1:G:909:SER:H     | 1:G:912:ASP:HB2   | 1.82         | 0.45        |
| 1:G:663:SER:O     | 1:G:667:ILE:HG13  | 2.18         | 0.44        |
| 1:G:692:ASN:OD1   | 1:G:694:MET:HG2   | 2.17         | 0.44        |
| 1:G:622:THR:HG23  | 1:G:635:ARG:HD3   | 1.98         | 0.44        |
| 1:A:723:HIS:CE1   | 1:A:727:LEU:CD2   | 2.94         | 0.44        |
| 1:A:840:HIS:CE1   | 1:A:844:GLN:HE21  | 2.35         | 0.44        |
| 1:A:1305:GLN:O    | 1:A:1309:ILE:HG13 | 2.18         | 0.44        |
| 1:G:143:VAL:HG13  | 1:G:421:ALA:HB1   | 1.99         | 0.44        |
| 1:A:16:VAL:HG22   | 1:A:51:LEU:HB3    | 1.99         | 0.44        |
| 1:A:1280:VAL:HG23 | 1:A:1281:ILE:HG12 | 1.99         | 0.44        |
| 1:A:948:LYS:HE3   | 1:A:948:LYS:HA    | 2.00         | 0.44        |
| 1:A:978:ILE:HG21  | 1:A:1228:LEU:HD23 | 2.00         | 0.44        |
| 1:G:967:ARG:HA    | 1:G:972:PHE:HB3   | 1.99         | 0.44        |
| 1:A:421:ALA:O     | 1:A:425:ARG:HG2   | 2.18         | 0.44        |
| 1:A:661:ARG:CB    | 2:B:4:G:H5"       | 2.48         | 0.43        |
| 1:A:390:LEU:HD12  | 1:A:390:LEU:HA    | 1.86         | 0.43        |
| 2:H:25:U:H2'      | 2:H:26:A:C8       | 2.54         | 0.43        |
| 1:G:456:ALA:O     | 1:G:465:MET:HE1   | 2.18         | 0.43        |
| 2:H:84:A:H2'      | 2:H:85:C:C6       | 2.54         | 0.43        |
| 1:A:100:ARG:HA    | 1:A:103:GLU:HG2   | 2.01         | 0.43        |
| 1:A:1231:LYS:HE3  | 1:A:1232:TYR:CZ   | 2.53         | 0.43        |
| 2:B:85:C:H2'      | 2:B:86:C:C6       | 2.53         | 0.43        |
| 1:G:18:TRP:CE3    | 1:G:747:LEU:HD11  | 2.53         | 0.43        |
| 1:G:212:LEU:HD23  | 1:G:212:LEU:CA    | 2.41         | 0.43        |
| 1:G:1360:ILE:HD13 | 1:G:1360:ILE:HG21 | 1.82         | 0.43        |



|                   |                   | Interatomic    | Clash       |
|-------------------|-------------------|----------------|-------------|
| Atom-1            | Atom-2            | distance $(Å)$ | overlap (Å) |
| 1:G:424:ARG:HG2   | 1:G:427:GLU:CD    | 2.39           | 0.43        |
| 1:A:61:ARG:NH1    | 1:A:1108:GLU:OE2  | 2.47           | 0.43        |
| 1:A:1176:LYS:HE3  | 1:A:1176:LYS:HB3  | 1.80           | 0.42        |
| 1:G:451:TYR:HA    | 1:G:491:PHE:CD1   | 2.54           | 0.42        |
| 1:G:977:GLU:OE1   | 1:G:1317:ARG:NH2  | 2.52           | 0.42        |
| 1:A:708:ILE:O     | 1:A:712:GLN:HG2   | 2.18           | 0.42        |
| 1:G:11:ILE:HD13   | 1:G:11:ILE:HG21   | 1.79           | 0.42        |
| 1:G:184:LEU:HD21  | 1:G:296:LEU:CB    | 2.47           | 0.42        |
| 1:G:670:ILE:HD13  | 1:G:670:ILE:HG21  | 1.73           | 0.42        |
| 1:G:671:ARG:HG2   | 1:G:678:THR:HG22  | 2.01           | 0.42        |
| 2:B:8:A:H2'       | 2:B:9:A:H8        | 1.81           | 0.42        |
| 1:G:980:ASN:H     | 1:G:1225:GLU:CD   | 2.22           | 0.42        |
| 1:A:597:LEU:HD23  | 1:A:597:LEU:HA    | 1.78           | 0.42        |
| 1:G:25:TYR:HB3    | 1:G:992:VAL:HG12  | 2.02           | 0.42        |
| 2:B:23:U:H2'      | 2:B:24:U:C6       | 2.55           | 0.41        |
| 1:G:419:LEU:HD21  | 1:G:440:ILE:HG22  | 2.00           | 0.41        |
| 1:G:1302:ILE:HG21 | 1:G:1302:ILE:HD13 | 1.85           | 0.41        |
| 1:G:335:LEU:O     | 1:G:338:LEU:HB3   | 2.21           | 0.41        |
| 1:G:1358:THR:HG23 | 2:H:68:A:H2       | 1.86           | 0.41        |
| 1:G:560:THR:HG23  | 1:G:563:GLN:H     | 1.86           | 0.41        |
| 1:G:615:ILE:HD13  | 1:G:615:ILE:HG21  | 1.89           | 0.41        |
| 1:G:94:ASP:OD2    | 1:G:152:ARG:NH1   | 2.49           | 0.41        |
| 1:G:289:LEU:HA    | 1:G:289:LEU:HD23  | 1.85           | 0.41        |
| 1:G:419:LEU:HD23  | 1:G:423:LEU:CD1   | 2.51           | 0.41        |
| 1:G:548:ILE:HD13  | 1:G:548:ILE:HA    | 1.78           | 0.41        |
| 1:G:724:ILE:HG21  | 1:G:724:ILE:HD13  | 1.72           | 0.41        |
| 2:H:38:A:H2'      | 2:H:39:G:C8       | 2.55           | 0.41        |
| 1:A:1065:THR:HG22 | 1:A:1072:ILE:HA   | 2.02           | 0.41        |
| 2:H:84:A:H2'      | 2:H:85:C:H6       | 1.85           | 0.41        |
| 1:G:116:HIS:HA    | 1:G:117:PRO:HD3   | 1.85           | 0.41        |
| 1:G:474:THR:O     | 1:G:478:PHE:HB2   | 2.21           | 0.41        |
| 1:A:1109:SER:N    | 3:C:20:DG:OP1     | 2.40           | 0.41        |
| 1:A:440:ILE:O     | 1:A:443:ILE:HG22  | 2.20           | 0.41        |
| 1:A:459:ASN:OD1   | 2:B:56:U:N3       | 2.52           | 0.41        |
| 1:A:747:LEU:O     | 1:A:751:MET:HG2   | 2.21           | 0.41        |
| 1:A:1086:VAL:O    | 1:A:1089:MET:HG3  | 2.21           | 0.41        |
| 1:G:256:PHE:CZ    | 1:G:282:ILE:HD12  | 2.55           | 0.41        |
| 4:D:5:DG:H1'      | 4:D:6:DT:H5'      | 2.02           | 0.41        |
| 1:A:988:TYR:HE2   | 1:A:1083:VAL:HG13 | 1.86           | 0.41        |
| 1:A:1218:LYS:HE3  | 1:A:1337:ARG:HH22 | 1.86           | 0.41        |
| 1:G:171:GLU:CD    | 1:G:629:ARG:HD2   | 2.41           | 0.41        |



| Continued from prette | we page           |                |             |
|-----------------------|-------------------|----------------|-------------|
| Atom-1                | Atom-2            | Interatomic    | Clash       |
|                       | 1100111 2         | distance $(Å)$ | overlap (Å) |
| 1:G:1195:ILE:HD13     | 1:G:1195:ILE:HG21 | 1.63           | 0.40        |
| 1:G:24:GLU:O          | 1:G:26:LYS:N      | 2.54           | 0.40        |
| 4:D:6:DT:H1'          | 4:D:7:DA:C8       | 2.57           | 0.40        |
| 1:A:972:PHE:HD1       | 1:A:972:PHE:HA    | 1.70           | 0.40        |
| 1:A:1276:PHE:O        | 1:A:1280:VAL:HG22 | 2.22           | 0.40        |
| 1:G:611:GLU:OE1       | 1:G:611:GLU:N     | 2.51           | 0.40        |
| 1:A:967:ARG:NH1       | 1:A:972:PHE:O     | 2.52           | 0.40        |
| 1:A:1094:ILE:HG21     | 1:A:1225:GLU:OE2  | 2.22           | 0.40        |
| 1:G:512:SER:HA        | 1:G:620:VAL:HG21  | 2.03           | 0.40        |
| 1:G:1105:PHE:CD1      | 1:G:1168:ILE:HG22 | 2.56           | 0.40        |
| 1:G:1270:ILE:HA       | 1:G:1273:ILE:HG22 | 2.04           | 0.40        |
| 2:H:94:U:H2'          | 2:H:95:G:C8       | 2.56           | 0.40        |
| 1:A:89:GLU:HG3        | 1:A:432:PHE:CD1   | 2.56           | 0.40        |
| 1:G:450:TYR:HE1       | 2:H:15:A:C5       | 2.39           | 0.40        |
| 1:G:727:LEU:HD22      | 1:G:930:HIS:HB3   | 2.03           | 0.40        |
| 1:G:1105:PHE:HD1      | 1:G:1168:ILE:HG22 | 1.86           | 0.40        |

There are no symmetry-related clashes.

#### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Favoured   | Allowed | Outliers | Perce | ntiles |
|-----|-------|-----------------|------------|---------|----------|-------|--------|
| 1   | А     | 1300/1369~(95%) | 1269~(98%) | 31 (2%) | 0        | 100   | 100    |
| 1   | G     | 1145/1369~(84%) | 1099 (96%) | 45 (4%) | 1 (0%)   | 51    | 85     |
| All | All   | 2445/2738 (89%) | 2368 (97%) | 76 (3%) | 1 (0%)   | 100   | 100    |

All (1) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | G     | 25  | TYR  |



#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Rotameric  | Outliers | Percentiles |
|-----|-------|-----------------|------------|----------|-------------|
| 1   | А     | 1184/1230~(96%) | 1162~(98%) | 22~(2%)  | 57 83       |
| 1   | G     | 955/1230~(78%)  | 937~(98%)  | 18 (2%)  | 57 83       |
| All | All   | 2139/2460 (87%) | 2099 (98%) | 40 (2%)  | 59 83       |

All (40) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | А     | 23   | ASP  |
| 1   | А     | 144  | ASP  |
| 1   | А     | 215  | ARG  |
| 1   | А     | 263  | LYS  |
| 1   | А     | 397  | ASP  |
| 1   | А     | 420  | HIS  |
| 1   | А     | 429  | PHE  |
| 1   | А     | 432  | PHE  |
| 1   | А     | 543  | GLU  |
| 1   | А     | 630  | GLU  |
| 1   | А     | 645  | ASP  |
| 1   | А     | 723  | HIS  |
| 1   | А     | 776  | ASN  |
| 1   | А     | 832  | ARG  |
| 1   | А     | 970  | PHE  |
| 1   | А     | 972  | PHE  |
| 1   | А     | 1031 | LYS  |
| 1   | А     | 1039 | TYR  |
| 1   | А     | 1080 | PHE  |
| 1   | А     | 1116 | SER  |
| 1   | А     | 1117 | ASP  |
| 1   | А     | 1356 | TYR  |
| 1   | G     | 23   | ASP  |
| 1   | G     | 26   | LYS  |
| 1   | G     | 71   | ARG  |
| 1   | G     | 82   | LEU  |
| 1   | G     | 223  | GLU  |



| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | G     | 302  | LEU  |
| 1   | G     | 450  | TYR  |
| 1   | G     | 623  | LEU  |
| 1   | G     | 625  | LEU  |
| 1   | G     | 641  | HIS  |
| 1   | G     | 751  | MET  |
| 1   | G     | 918  | LYS  |
| 1   | G     | 976  | ARG  |
| 1   | G     | 1008 | PHE  |
| 1   | G     | 1043 | MET  |
| 1   | G     | 1069 | THR  |
| 1   | G     | 1212 | ARG  |
| 1   | G     | 1261 | GLN  |

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (1) such side chains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | G     | 990 | ASN  |

#### 5.3.3 RNA (i)

| Mol | Chain | Analysed      | Backbone Outliers | Pucker Outliers |
|-----|-------|---------------|-------------------|-----------------|
| 2   | В     | 96/98~(97%)   | 19 (19%)          | 3~(3%)          |
| 2   | Н     | 87/98~(88%)   | 20 (22%)          | 2(2%)           |
| All | All   | 183/196~(93%) | 39 (21%)          | 5 (2%)          |

All (39) RNA backbone outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | В     | 3   | С    |
| 2   | В     | 9   | А    |
| 2   | В     | 17  | А    |
| 2   | В     | 20  | С    |
| 2   | В     | 28  | А    |
| 2   | В     | 29  | G    |
| 2   | В     | 33  | G    |
| 2   | В     | 35  | А    |
| 2   | В     | 36  | А    |
| 2   | В     | 37  | U    |
| 2   | В     | 39  | G    |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | В     | 51  | А    |
| 2   | В     | 56  | U    |
| 2   | В     | 57  | А    |
| 2   | В     | 58  | G    |
| 2   | В     | 59  | U    |
| 2   | В     | 68  | А    |
| 2   | В     | 89  | G    |
| 2   | В     | 91  | С    |
| 2   | Н     | 20  | С    |
| 2   | Н     | 28  | А    |
| 2   | Н     | 30  | С    |
| 2   | Н     | 32  | А    |
| 2   | Н     | 33  | G    |
| 2   | Н     | 34  | А    |
| 2   | Н     | 35  | А    |
| 2   | Н     | 36  | А    |
| 2   | Н     | 37  | U    |
| 2   | Н     | 38  | А    |
| 2   | Н     | 39  | G    |
| 2   | Н     | 51  | А    |
| 2   | Н     | 56  | U    |
| 2   | Н     | 57  | А    |
| 2   | Н     | 59  | U    |
| 2   | Н     | 68  | А    |
| 2   | Н     | 89  | G    |
| 2   | Н     | 90  | U    |
| 2   | Н     | 91  | С    |
| 2   | Н     | 96  | С    |

All (5) RNA pucker outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | В     | 2   | А    |
| 2   | В     | 8   | А    |
| 2   | В     | 38  | А    |
| 2   | Н     | 36  | А    |
| 2   | Н     | 38  | А    |

## 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.



### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

## 5.6 Ligand geometry (i)

Of 5 ligands modelled in this entry, 5 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

## 5.7 Other polymers (i)

There are no such residues in this entry.

## 5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

| Mol | Chain | Number of breaks |
|-----|-------|------------------|
| 2   | В     | 2                |

All chain breaks are listed below:

| Model | Chain | Residue-1 | Atom-1 | Residue-2 | Atom-2 | Distance (Å) |
|-------|-------|-----------|--------|-----------|--------|--------------|
| 1     | В     | 1:G       | O3'    | 2:A       | Р      | 4.01         |
| 1     | В     | 4:G       | O3'    | 5:C       | Р      | 2.69         |



# 6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-41093. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

## 6.1 Orthogonal projections (i)

#### 6.1.1 Primary map



6.1.2 Raw map



The images above show the map projected in three orthogonal directions.



### 6.2 Central slices (i)

#### 6.2.1 Primary map



X Index: 192





Z Index: 192

#### 6.2.2 Raw map



X Index: 192

Y Index: 192



The images above show central slices of the map in three orthogonal directions.



### 6.3 Largest variance slices (i)

#### 6.3.1 Primary map



X Index: 192





Z Index: 207

#### 6.3.2 Raw map



X Index: 197

Y Index: 183



The images above show the largest variance slices of the map in three orthogonal directions.



## 6.4 Orthogonal standard-deviation projections (False-color) (i)

#### 6.4.1 Primary map



6.4.2 Raw map



The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.



### 6.5 Orthogonal surface views (i)

6.5.1 Primary map



The images above show the 3D surface view of the map at the recommended contour level 0.0797. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

#### 6.5.2 Raw map



These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

## 6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.



## 7 Map analysis (i)

This section contains the results of statistical analysis of the map.

## 7.1 Map-value distribution (i)



The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.



### 7.2 Volume estimate (i)



The volume at the recommended contour level is  $172 \text{ nm}^3$ ; this corresponds to an approximate mass of 156 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.



## 7.3 Rotationally averaged power spectrum (i)



\*Reported resolution corresponds to spatial frequency of 0.332  ${\rm \AA^{-1}}$ 



## 8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

#### 8.1 FSC (i)



\*Reported resolution corresponds to spatial frequency of 0.332  ${\rm \AA^{-1}}$ 



### 8.2 Resolution estimates (i)

| $\mathbf{B}_{\mathrm{assolution ostimato}}(\mathbf{\hat{\lambda}})$ | Estim | ation | criterion (FSC cut-off) |
|---------------------------------------------------------------------|-------|-------|-------------------------|
| Resolution estimate (A)                                             | 0.143 | 0.5   | Half-bit                |
| Reported by author                                                  | 3.01  | -     | -                       |
| Author-provided FSC curve                                           | -     | -     | -                       |
| Unmasked-calculated*                                                | 3.78  | 7.19  | 3.93                    |

\*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.78 differs from the reported value 3.01 by more than 10 %



## 9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-41093 and PDB model 8T7S. Per-residue inclusion information can be found in section 3 on page 5.

## 9.1 Map-model overlay (i)



The images above show the 3D surface view of the map at the recommended contour level 0.0797 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



### 9.2 Q-score mapped to coordinate model (i)



The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

#### 9.3 Atom inclusion mapped to coordinate model (i)



The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.0797).



### 9.4 Atom inclusion (i)



At the recommended contour level, 79% of all backbone atoms, 74% of all non-hydrogen atoms, are inside the map.



### 9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.0797) and Q-score for the entire model and for each chain.

| Chain | Atom inclusion | Q-score |
|-------|----------------|---------|
| All   | 0.7430         | 0.4080  |
| А     | 0.7300         | 0.4020  |
| В     | 0.9210         | 0.4320  |
| С     | 0.9100         | 0.4550  |
| D     | 0.9400         | 0.4530  |
| G     | 0.6690         | 0.3960  |
| Н     | 0.9010         | 0.4320  |
| С     | 0.9600         | 0.5430  |

