

Sep 30, 2023 – 12:37 PM EDT

| PDB ID       | : | 8T4S                                                           |
|--------------|---|----------------------------------------------------------------|
| EMDB ID      | : | EMD-41039                                                      |
| Title        | : | MERS-CoV Nsp1 protein bound to the Human 40S Ribosomal subunit |
| Authors      | : | Devarkar, S.C.; Xiong, Y.                                      |
| Deposited on | : | 2023-06-09                                                     |
| Resolution   | : | 2.60 Å(reported)                                               |
|              |   |                                                                |

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| : | 0.0.1. dev 50                                                      |
|---|--------------------------------------------------------------------|
| : | 4.02b-467                                                          |
| : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| : | 1.9.9                                                              |
| : | Engh & Huber $(2001)$                                              |
| : | Parkinson et al. (1996)                                            |
| : | 2.35.1                                                             |
|   | :<br>:<br>:<br>:<br>:                                              |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $ELECTRON\ MICROSCOPY$ 

The reported resolution of this entry is 2.60 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | Whole archive | EM structures |
|-----------------------|---------------|---------------|
|                       | (#Entries)    | (#Entries)    |
| Ramachandran outliers | 154571        | 4023          |
| Sidechain outliers    | 154315        | 3826          |
| RNA backbone          | 4643          | 859           |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for  $\geq=3, 2, 1$  and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions  $\leq=5\%$  The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain |       |
|-----|-------|--------|------------------|-------|
| 1   | 2     | 1869   | 65% 24%          | 11%   |
| 2   | А     | 295    | • · ·            | 28%   |
| 3   | В     | 264    | 76% 5%           | 19%   |
| 4   | С     | 293    | 73% •            | 26%   |
| 5   | D     | 243    | 89%              | • 7%  |
| 6   | Е     | 263    | •<br>98%         | •     |
| 7   | F     | 204    | 87%              | 5% 7% |
| 8   | G     | 249    | 90%              | • 8%  |



| Mol | Chain | Length | Quality of chain  |          |
|-----|-------|--------|-------------------|----------|
| 9   | Н     | 194    | 91%               | 5% •     |
| 10  | Ι     | 208    | 98%               |          |
| 11  | J     | 194    | <b>•</b><br>89%   | •• 7%    |
| 12  | K     | 165    | 58% • 41%         |          |
| 13  | L     | 158    | <b>•</b><br>91%   | 5% •     |
| 14  | M     | 132    | 5%                | 6% 8%    |
| 15  | N     | 152    |                   | 0 / 0 // |
| 10  | 0     | 151    | 95%               | •••      |
| 10  | 0     | 101    | 86%               | • 11%    |
| 17  | Р     | 145    | 77% 10%           | 13%      |
| 18  | Q     | 146    | 90%               | 5% 5%    |
| 19  | R     | 135    | <b>•</b><br>96%   | • •      |
| 20  | S     | 152    | 89%               | 5% 6%    |
| 21  | Т     | 145    | 99%               | ••       |
| 22  | U     | 119    | 82%               | 15%      |
| 23  | V     | 83     | 92%               | 7% •     |
| 24  | W     | 130    | 93%               | 6% •     |
| 25  | Х     | 143    | 94%               |          |
| 26  | Y     | 133    | <b>•</b><br>88%   | 5% 7%    |
| 27  | Ζ     | 125    | 56% · 42%         |          |
| 28  | a     | 115    | 80% 6%            | 6 14%    |
| 29  | b     | 84     | 96%               | •••      |
| 30  | с     | 69     | 84%               | 6% 10%   |
| 31  | d     | 56     | 95%               |          |
| 32  | е     | 133    | <b>4</b> 0% • 58% |          |
| 33  | f     | 156    | <b>42%</b> 6% 53% |          |



| Mol | Chain | Length | Quality of chain |     |
|-----|-------|--------|------------------|-----|
| 34  | g     | 317    | 96%              |     |
| 35  | h     | 25     | 88%              | 12% |
| 36  | n     | 193    | 13% 87%          |     |



# 2 Entry composition (i)

There are 39 unique types of molecules in this entry. The entry contains 74894 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 18S rRNA.

| Mol | Chain | Residues |                | 1          | AltConf   | Trace      |           |   |   |
|-----|-------|----------|----------------|------------|-----------|------------|-----------|---|---|
| 1   | 2     | 1671     | Total<br>35677 | C<br>15925 | N<br>6406 | O<br>11675 | Р<br>1671 | 0 | 0 |

• Molecule 2 is a protein called 40S ribosomal protein SA.

| Mol | Chain | Residues | Atoms         |           |          |          |        | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|--------|---------|-------|
| 2   | А     | 213      | Total<br>1686 | C<br>1072 | N<br>295 | 0<br>311 | S<br>8 | 0       | 0     |

• Molecule 3 is a protein called 40S ribosomal protein S3a.

| Mol | Chain | Residues | Atoms         |           |          |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|-------|
| 3   | В     | 213      | Total<br>1729 | C<br>1098 | N<br>309 | O<br>308 | S<br>14 | 0       | 0     |

• Molecule 4 is a protein called 40S ribosomal protein S2.

| Mol | Chain | Residues | Atoms         |           |          |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|-------|
| 4   | С     | 218      | Total<br>1690 | C<br>1094 | N<br>289 | O<br>297 | S<br>10 | 0       | 0     |

• Molecule 5 is a protein called 40S ribosomal protein S3.

| Mol | Chain | Residues | Atoms         |           |          |          | AltConf | Trace |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|-------|---|
| 5   | D     | 225      | Total<br>1752 | С<br>1117 | N<br>315 | 0<br>313 | S<br>7  | 0     | 0 |

• Molecule 6 is a protein called 40S ribosomal protein S4, X isoform.

| Mol | Chain | Residues | Atoms         |           |          |          |        | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|--------|---------|-------|
| 6   | Ε     | 262      | Total<br>2076 | C<br>1324 | N<br>386 | O<br>358 | S<br>8 | 0       | 0     |



• Molecule 7 is a protein called 40S ribosomal protein S5.

| Mol | Chain | Residues |               | At       | oms      |          |            | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|------------|---------|-------|
| 7   | F     | 189      | Total<br>1495 | C<br>934 | N<br>284 | O<br>270 | ${ m S} 7$ | 0       | 0     |

• Molecule 8 is a protein called 40S ribosomal protein S6.

| Mol | Chain | Residues |               | Ate       | AltConf  | Trace    |        |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|--------|---|---|
| 8   | G     | 230      | Total<br>1864 | C<br>1164 | N<br>373 | O<br>320 | S<br>7 | 0 | 0 |

There is a discrepancy between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment | Reference  |
|-------|---------|----------|--------|---------|------------|
| G     | 221     | ARG      | LYS    | variant | UNP P62753 |

• Molecule 9 is a protein called 40S ribosomal protein S7.

| Mol | Chain | Residues |               | At       | AltConf  | Trace    |        |   |   |
|-----|-------|----------|---------------|----------|----------|----------|--------|---|---|
| 9   | Н     | 186      | Total<br>1501 | C<br>957 | N<br>276 | O<br>267 | S<br>1 | 0 | 0 |

• Molecule 10 is a protein called 40S ribosomal protein S8.

| Mol | Chain | Residues |               | Ate       | AltConf  | Trace    |                |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|----------------|---|---|
| 10  | Ι     | 205      | Total<br>1682 | C<br>1056 | N<br>331 | O<br>290 | ${ m S}{ m 5}$ | 0 | 0 |

• Molecule 11 is a protein called 40S ribosomal protein S9.

| Mol | Chain | Residues |               | At       | AltConf  | Trace    |               |   |   |
|-----|-------|----------|---------------|----------|----------|----------|---------------|---|---|
| 11  | J     | 180      | Total<br>1499 | C<br>955 | N<br>300 | 0<br>242 | ${S \over 2}$ | 0 | 0 |

• Molecule 12 is a protein called 40S ribosomal protein S10.

| Mol | Chain | Residues |              | At       | AltConf  | Trace    |        |   |   |
|-----|-------|----------|--------------|----------|----------|----------|--------|---|---|
| 12  | Κ     | 97       | Total<br>816 | C<br>533 | N<br>144 | 0<br>133 | S<br>6 | 0 | 0 |

• Molecule 13 is a protein called 40S ribosomal protein S11.



| Mol | Chain | Residues |               | At       | oms      |          |        | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|--------|---------|-------|
| 13  | L     | 151      | Total<br>1229 | C<br>782 | N<br>230 | O<br>211 | S<br>6 | 0       | 0     |

• Molecule 14 is a protein called 40S ribosomal protein S12.

| Mol | Chain | Residues |              | At       | oms      |          |            | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|------------|---------|-------|
| 14  | М     | 121      | Total<br>935 | C<br>586 | N<br>165 | 0<br>175 | ${ m S} 9$ | 0       | 0     |

• Molecule 15 is a protein called 40S ribosomal protein S13.

| Mol | Chain | Residues |               | At       | oms      |          |        | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|--------|---------|-------|
| 15  | N     | 149      | Total<br>1202 | C<br>770 | N<br>228 | O<br>203 | S<br>1 | 0       | 0     |

• Molecule 16 is a protein called 40S ribosomal protein S14.

| Mol | Chain | Residues |               | At       | AltConf  | Trace    |        |   |   |
|-----|-------|----------|---------------|----------|----------|----------|--------|---|---|
| 16  | О     | 135      | Total<br>1010 | C<br>618 | N<br>198 | 0<br>188 | S<br>6 | 0 | 0 |

• Molecule 17 is a protein called 40S ribosomal protein S15.

| Mol | Chain | Residues |               | At       | AltConf  | Trace    |        |   |   |
|-----|-------|----------|---------------|----------|----------|----------|--------|---|---|
| 17  | Р     | 126      | Total<br>1037 | C<br>659 | N<br>196 | 0<br>175 | S<br>7 | 0 | 0 |

• Molecule 18 is a protein called 40S ribosomal protein S16.

| Mol | Chain | Residues |               | At       | oms      | AltConf  | Trace           |   |   |
|-----|-------|----------|---------------|----------|----------|----------|-----------------|---|---|
| 18  | Q     | 138      | Total<br>1097 | C<br>698 | N<br>206 | O<br>190 | ${ m S} { m 3}$ | 0 | 0 |

• Molecule 19 is a protein called 40S ribosomal protein S17.

| Mol | Chain | Residues |               | At       | oms      | AltConf  | Trace                                          |   |   |
|-----|-------|----------|---------------|----------|----------|----------|------------------------------------------------|---|---|
| 19  | R     | 132      | Total<br>1068 | C<br>670 | N<br>199 | 0<br>195 | $\begin{array}{c} \mathrm{S} \\ 4 \end{array}$ | 0 | 0 |

• Molecule 20 is a protein called 40S ribosomal protein S18.



| Mol | Chain | Residues |               | At       | oms      | AltConf  | Trace  |   |   |
|-----|-------|----------|---------------|----------|----------|----------|--------|---|---|
| 20  | S     | 143      | Total<br>1184 | C<br>743 | N<br>240 | O<br>200 | S<br>1 | 0 | 0 |

• Molecule 21 is a protein called 40S ribosomal protein S19.

| Mol | Chain | Residues |               | At       | oms      | AltConf  | Trace           |   |   |
|-----|-------|----------|---------------|----------|----------|----------|-----------------|---|---|
| 21  | Т     | 144      | Total<br>1122 | C<br>703 | N<br>217 | 0<br>199 | ${ m S} { m 3}$ | 0 | 0 |

• Molecule 22 is a protein called 40S ribosomal protein S20.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace         |   |   |
|-----|-------|----------|--------------|----------|----------|----------|---------------|---|---|
| 22  | U     | 101      | Total<br>803 | C<br>504 | N<br>153 | 0<br>142 | $\frac{S}{4}$ | 0 | 0 |

• Molecule 23 is a protein called 40S ribosomal protein S21.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace          |   |   |
|-----|-------|----------|--------------|----------|----------|----------|----------------|---|---|
| 23  | V     | 82       | Total<br>625 | C<br>384 | N<br>116 | O<br>120 | ${ m S}{ m 5}$ | 0 | 0 |

• Molecule 24 is a protein called 40S ribosomal protein S15a.

| Mol | Chain | Residues |               | At       | AltConf  | Trace    |        |   |   |
|-----|-------|----------|---------------|----------|----------|----------|--------|---|---|
| 24  | W     | 129      | Total<br>1034 | C<br>659 | N<br>193 | O<br>176 | S<br>6 | 0 | 0 |

• Molecule 25 is a protein called 40S ribosomal protein S23.

| Mol | Chain | Residues |               | At       | oms      | AltConf  | Trace           |   |   |
|-----|-------|----------|---------------|----------|----------|----------|-----------------|---|---|
| 25  | X     | 141      | Total<br>1098 | C<br>693 | N<br>219 | 0<br>183 | ${ m S} { m 3}$ | 0 | 0 |

• Molecule 26 is a protein called 40S ribosomal protein S24.

| Mol | Chain | Residues |               | At       | oms      | AltConf  | Trace         |   |   |
|-----|-------|----------|---------------|----------|----------|----------|---------------|---|---|
| 26  | Y     | 124      | Total<br>1014 | C<br>641 | N<br>198 | 0<br>170 | ${S \atop 5}$ | 0 | 0 |

• Molecule 27 is a protein called 40S ribosomal protein S25.



| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace  |   |   |
|-----|-------|----------|--------------|----------|----------|----------|--------|---|---|
| 27  | Ζ     | 72       | Total<br>574 | C<br>368 | N<br>104 | 0<br>101 | S<br>1 | 0 | 0 |

• Molecule 28 is a protein called 40S ribosomal protein S26.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace          |   |   |
|-----|-------|----------|--------------|----------|----------|----------|----------------|---|---|
| 28  | a     | 99       | Total<br>794 | C<br>494 | N<br>165 | O<br>130 | ${ m S}{ m 5}$ | 0 | 0 |

There is a discrepancy between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment  | Reference  |
|-------|---------|----------|--------|----------|------------|
| a     | 78      | VAL      | ALA    | conflict | UNP P62854 |

• Molecule 29 is a protein called 40S ribosomal protein S27.

| Mol | Chain | Residues |              | At       | oms      |          |            | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|------------|---------|-------|
| 29  | b     | 82       | Total<br>640 | C<br>402 | N<br>118 | 0<br>113 | ${f S}{7}$ | 0       | 0     |

• Molecule 30 is a protein called 40S ribosomal protein S28.

| Mol | Chain | Residues |              | Atc      | $\mathbf{ms}$ |         |                 | AltConf | Trace |
|-----|-------|----------|--------------|----------|---------------|---------|-----------------|---------|-------|
| 30  | с     | 62       | Total<br>488 | C<br>297 | N<br>97       | O<br>92 | ${ m S} { m 2}$ | 0       | 0     |

• Molecule 31 is a protein called 40S ribosomal protein S29.

| Mol | Chain | Residues |              | Ato      | $\mathbf{ms}$ |         |               | AltConf | Trace |
|-----|-------|----------|--------------|----------|---------------|---------|---------------|---------|-------|
| 31  | d     | 55       | Total<br>458 | C<br>286 | N<br>94       | O<br>73 | ${S \atop 5}$ | 0       | 0     |

• Molecule 32 is a protein called FAU ubiquitin-like and ribosomal protein S30.

| Mol | Chain | Residues |              | Ato      | $\mathbf{ms}$ |         |        | AltConf | Trace |
|-----|-------|----------|--------------|----------|---------------|---------|--------|---------|-------|
| 32  | е     | 56       | Total<br>442 | C<br>273 | N<br>96       | 0<br>72 | S<br>1 | 0       | 0     |

• Molecule 33 is a protein called Ubiquitin-40S ribosomal protein S27a.



| Mol | Chain | Residues |              | At                                               | oms      |          |            | AltConf | Trace |
|-----|-------|----------|--------------|--------------------------------------------------|----------|----------|------------|---------|-------|
| 33  | f     | 74       | Total<br>610 | $\begin{array}{c} \mathrm{C} \\ 385 \end{array}$ | N<br>117 | 0<br>101 | ${ m S} 7$ | 0       | 0     |

• Molecule 34 is a protein called Receptor of activated protein C kinase 1.

| Mol | Chain | Residues |               | Atoms     |          |          | AltConf | Trace |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|-------|---|
| 34  | g     | 314      | Total<br>2440 | C<br>1537 | N<br>425 | O<br>466 | S<br>12 | 0     | 0 |

• Molecule 35 is a protein called 60S ribosomal protein L41.

| Mol | Chain | Residues |              | Ato      | $\mathbf{ms}$ |         |                 | AltConf | Trace |
|-----|-------|----------|--------------|----------|---------------|---------|-----------------|---------|-------|
| 35  | h     | 22       | Total<br>213 | C<br>130 | N<br>57       | O<br>23 | ${ m S} { m 3}$ | 0       | 0     |

• Molecule 36 is a protein called Replicase polyprotein 1ab.

| Mol | Chain | Residues |       | Ato | $\mathbf{ms}$ |    |   | AltConf | Trace |
|-----|-------|----------|-------|-----|---------------|----|---|---------|-------|
| 36  | n     | 25       | Total | C   | N             | 0  | S | 0       | 0     |
|     |       |          | 206   | 134 | 32            | 38 | 2 |         |       |

• Molecule 37 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

| Mol | Chain | Residues | Atoms             | AltConf |
|-----|-------|----------|-------------------|---------|
| 37  | 2     | 96       | Total Mg<br>96 96 | 0       |
| 37  | Ι     | 1        | Total Mg<br>1 1   | 0       |

• Molecule 38 is ZINC ION (three-letter code: ZN) (formula: Zn).

| Mol | Chain | Residues | Atoms           | AltConf |
|-----|-------|----------|-----------------|---------|
| 38  | a     | 1        | Total Zn<br>1 1 | 0       |
| 38  | d     | 1        | Total Zn<br>1 1 | 0       |
| 38  | f     | 1        | Total Zn<br>1 1 | 0       |

• Molecule 39 is water.



| Mol | Chain | Residues | Atoms          | AltConf |
|-----|-------|----------|----------------|---------|
| 39  | 2     | 4        | Total O<br>4 4 | 0       |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Chain 2: 65% 24% 11% זיז גז היז היז גז היז גז היז גז גז היז גז גז היז היז גז היז היז היז היז היז היז היז גז היז
- Molecule 1: 18S rRNA











| • Molecule 11: 40S                                                                                                                     | s ribosomal protein S9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Chain J:                                                                                                                               | 89%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •• 7%                                                                                                      |
| MET<br>P2<br>E34<br>R79<br>D95<br>S122<br>S122                                                                                         | S160<br>L161<br>L161<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185<br>C185 |                                                                                                            |
| • Molecule 12: 40S                                                                                                                     | b ribosomal protein S10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            |
| Chain K:                                                                                                                               | 58% .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41%                                                                                                        |
| MI<br>V90<br>ARG<br>GLU<br>ARG<br>ARG<br>ARG<br>PRD<br>ARG<br>PRD<br>PRD                                                               | LYN<br>LYN<br>GLY<br>GLV<br>GLV<br>GLV<br>GLV<br>ARG<br>ALA<br>ARG<br>GLV<br>ARG<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SER<br>VAL<br>VAL<br>PRO<br>GLY<br>GLY<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>A |
| ARG<br>GLY<br>GLY<br>PHE<br>GLY<br>ARG<br>GLY<br>CLY<br>PRO<br>PRO<br>PRO<br>PRO                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                            |
| • Molecule 13: 40S                                                                                                                     | b ribosomal protein S11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            |
| Chain L:                                                                                                                               | 91%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5% •                                                                                                       |
| MET<br>A2<br>C26<br>C26<br>C29<br>C30<br>C39<br>C31<br>C30<br>C45<br>C3<br>C30<br>C30<br>C30<br>C30<br>C30<br>C30<br>C30<br>C30<br>C30 | N 141<br>N 141<br>N 141<br>N 141<br>CVS<br>CVS<br>CVS<br>CVS<br>CVS<br>CVS<br>CVS<br>CVS<br>CVS<br>CVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                            |
| • Molecule 14: 40S                                                                                                                     | b ribosomal protein S12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            |
| Chain M:                                                                                                                               | 86%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6% 8%                                                                                                      |
| MET<br>ALA<br>ALA<br>ALA<br>BLU<br>BLU<br>BLA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA                           | 043<br>043<br>043<br>044<br>045<br>045<br>0413<br>0113<br>0113<br>0113<br>0113<br>0113<br>0113<br>0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                            |
| • Molecule 15: 40S                                                                                                                     | 5 ribosomal protein S13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            |
| Chain N:                                                                                                                               | - 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            |
| MET<br>8512<br>812<br>813<br>814<br>814<br>814<br>814<br>814                                                                           | A147<br>A148<br>V150<br>ALA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                            |
| • Molecule 16: 40S                                                                                                                     | b ribosomal protein S14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            |
| Chain O:                                                                                                                               | 86%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • 11%                                                                                                      |
| MET<br>ALA<br>ALA<br>PRO<br>ARG<br>ARG<br>GLY<br>GLU<br>GLU<br>GLU<br>GLU<br>VAL                                                       | 11.<br>11.<br>11.<br>11.<br>11.<br>12.<br>12.<br>13.<br>13.<br>13.<br>13.<br>13.<br>13.<br>13.<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                            |
| • Molecule 17: 40S                                                                                                                     | s ribosomal protein S15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            |
| Chain P:                                                                                                                               | 77%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10% 13%                                                                                                    |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TA BANK                                                                                                    |

| MET<br>MET<br>ALA<br>GLU<br>CVAL<br>CVAL<br>CVAL<br>CVAL<br>CVAL<br>CVAL<br>CVAL<br>CVAL                                                                           | ARG<br>PHE<br>TLE<br>PRO<br>LEU<br>LYS |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| • Molecule 18: 40S ribosomal protein S16                                                                                                                           |                                        |
| Chain Q: 90%                                                                                                                                                       | 5% 5%                                  |
| MET<br>PRO<br>SER<br>LIYS<br>CLY<br>PRO<br>PRO<br>PRO<br>LEU<br>LEU<br>CL57<br>L13<br>R117<br>T118<br>R117<br>T118<br>R117<br>T118<br>R117<br>T118<br>R117<br>T118 |                                        |
| • Molecule 19: 40S ribosomal protein S17                                                                                                                           |                                        |
| Chain R: 96%                                                                                                                                                       |                                        |
| MET<br>02<br>02<br>02<br>04<br>04<br>074<br>074<br>074<br>074<br>074<br>074                                                                                        |                                        |
| • Molecule 20: 40S ribosomal protein S18                                                                                                                           |                                        |
| Chain S: 89%                                                                                                                                                       | 5% 6%                                  |
| MET<br>SER<br>150<br>150<br>150<br>150<br>150<br>150<br>153<br>153<br>153<br>153<br>153<br>153<br>153<br>153<br>153<br>153                                         |                                        |
| • Molecule 21: 40S ribosomal protein S19                                                                                                                           |                                        |
| Chain T: 99%                                                                                                                                                       |                                        |
|                                                                                                                                                                    |                                        |
| • Molecule 22: 40S ribosomal protein S20                                                                                                                           |                                        |
| Chain U: 82%                                                                                                                                                       | • 15%                                  |
| MET<br>LYS<br>LYS<br>LYS<br>LYS<br>LYS<br>LYS<br>LYS<br>LYS<br>CUU<br>CUU<br>CUU<br>CUU<br>CUU<br>CUU<br>CUU<br>CUU<br>CUU<br>CU                                   |                                        |
| • Molecule 23: 40S ribosomal protein S21                                                                                                                           |                                        |
| Chain V: 92%                                                                                                                                                       | 7% •                                   |
| M V1 3 V1                                                                                                                            |                                        |
| • Molecule 24: 40S ribosomal protein S15a                                                                                                                          |                                        |
| Chain W: 93%                                                                                                                                                       | 6% •                                   |
|                                                                                                                                                                    |                                        |



#### MET V2 V2 127 127 C30 C30 C30 C30 C31 C4 N57 R78 R78 R79 D80 D80

• Molecule 25: 40S ribosomal protein S23

| Chain X:                                                                                                  | 94%                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MET<br>G2<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134                           | S<br>S<br>S                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                              |
| • Molecule 26: 40S r                                                                                      | ibosomal protein S24                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                              |
| Chain Y:                                                                                                  | 88%                                                                                                                                                  | 5% 7%                                                                                                                                                                                                                                                                                                                                        |
| MET<br>ASN<br>ASN<br>B3<br>M15<br>N15<br>N15<br>N15<br>N15<br>N14<br>N74<br>S78                           | H94<br>G126<br>ALA<br>ALA<br>CLY<br>CLY<br>FRO<br>CLU                                                                                                |                                                                                                                                                                                                                                                                                                                                              |
| • Molecule 27: 40S ri                                                                                     | ibosomal protein S25                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                              |
| Chain Z:                                                                                                  | 56% •                                                                                                                                                | 42%                                                                                                                                                                                                                                                                                                                                          |
| MET<br>PRO<br>PRO<br>LYS<br>ASP<br>LYS<br>LYS<br>LYS<br>LYS<br>LYS<br>CLYS<br>CYS<br>GILA<br>GILA<br>GILA | LYS<br>LYS<br>LYS<br>LYS<br>LYS<br>LYS<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>CYS<br>LYS<br>CLYS<br>CLYS<br>CLYS<br>CLYS<br>CLYS<br>SER<br>TRP<br>SER | LYS<br>GLY<br>VAL<br>VAL<br>ARL<br>ARC<br><b>D42</b><br><b>D42</b><br><b>C10</b><br><b>C10</b><br><b>C10</b><br><b>C10</b><br><b>C11</b><br><b>C113</b><br><b>C10</b><br><b>C113</b><br><b>C113</b><br><b>C113</b><br><b>C113</b><br><b>C113</b><br><b>C114</b><br><b>ALA</b><br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA |
| • Molecule 28: 40S ri                                                                                     | ibosomal protein S26                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                              |
| Chain a:                                                                                                  | 80%                                                                                                                                                  | 6% 14%                                                                                                                                                                                                                                                                                                                                       |
| MET<br>12<br>R6<br>19<br>857<br>857<br>881<br>881<br>881<br>881                                           | ARG<br>ARG<br>ALA<br>GLY<br>GLY<br>ALA<br>ALA<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO                                                |                                                                                                                                                                                                                                                                                                                                              |
| • Molecule 29: 40S ri                                                                                     | ibosomal protein S27                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                              |
| Chain b:                                                                                                  | 96%                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                              |
| MET<br>P2<br>827<br>938<br>938<br>938<br>938<br>639<br>441<br>441<br>441<br>441<br>441<br>860<br>860      | HIS<br>HIS                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |
| • Molecule 30: 40S r                                                                                      | ibosomal protein S28                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                              |
| Chain c:                                                                                                  | 84%                                                                                                                                                  | 6% 10%                                                                                                                                                                                                                                                                                                                                       |
| MET<br>ASP<br>THR<br>SER<br>SER<br>ARG<br>VAL<br>K10<br>K10<br>C<br>K10<br>V46<br>K1<br>K51               | L68<br>ARG                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |

• Molecule 31: 40S ribosomal protein S29



| Chain d:                                                                          |                                                                                         | 95%                                                                               |                                                                                                                                   |                                                                                                |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| MET<br>G2<br>F14<br>R40<br>D56                                                    |                                                                                         |                                                                                   |                                                                                                                                   |                                                                                                |
| • Molecule 32:                                                                    | FAU ubiquitin-                                                                          | like and riboso                                                                   | mal protein S30                                                                                                                   |                                                                                                |
| Chain e:                                                                          | 40%                                                                                     | ·                                                                                 | 58%                                                                                                                               |                                                                                                |
| MET<br>GLN<br>CLEU<br>PHE<br>VAL<br>ARG<br>ALA<br>GLN<br>GLN<br>HIS               | THR<br>PHE<br>GLU<br>GLU<br>GLV<br>GLV<br>GLN<br>THR<br>GLU<br>THR<br>VAL               | GLN<br>ILE<br>LYS<br>ALA<br>ALA<br>ALA<br>SER<br>LEU<br>GLU<br>GLU                | ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>CLU<br>ALA<br>LEU<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA                             | GLU<br>ASP<br>GLU<br>ALA<br>ALA<br>THR<br>LEU<br>GLY<br>GLY<br>GLY<br>GLY<br>GLU               |
| ・ Molecule 33:                                                                    | B등중음봉발 <mark>중 음</mark> 일<br>Ubiquitin-40S :                                            | ribosomal prote                                                                   | in S27a                                                                                                                           |                                                                                                |
| Chain f:                                                                          | 42%                                                                                     | 6%                                                                                | 53%                                                                                                                               |                                                                                                |
| MET<br>GLN<br>TILE<br>PHE<br>VAL<br>LYS<br>THR<br>LEU<br>GLY<br>LYS               | THR<br>TLE<br>LLEU<br>LLEU<br>VAL<br>GLU<br>PRO<br>SER<br>SER                           | TLE<br>GLU<br>VAL<br>LYS<br>ALA<br>ALA<br>ALA<br>GLN<br>GLN<br>ASP<br>GLN         | GLLY<br>TILE<br>PRO<br>PRO<br>GLN<br>GLN<br>GLN<br>TILE<br>TLEU<br>ALA<br>ALA<br>ALA                                              | GLN<br>LEU<br>GLU<br>GLU<br>GLY<br>ASP<br>SER<br>ASP<br>ASN<br>ASN                             |
| HINSEREESESE<br>• Molecule 34:                                                    | Receptor of act                                                                         | tivated protein                                                                   | C kinase 1                                                                                                                        |                                                                                                |
| Chain g:                                                                          |                                                                                         | 96%                                                                               |                                                                                                                                   |                                                                                                |
| MET<br>72<br>048<br>7113<br>7113<br>7116<br>7116<br>7116<br>7182                  | 1366<br>1234<br>1275<br>12776<br>12776<br>1314                                          | G315<br>THR<br>ARG                                                                |                                                                                                                                   |                                                                                                |
| • Molecule 35:                                                                    | 60S ribosomal                                                                           | protein L41                                                                       |                                                                                                                                   |                                                                                                |
| Chain h:                                                                          |                                                                                         | 88%                                                                               |                                                                                                                                   | 12%                                                                                            |
| M1<br>Q22<br>ARG<br>SER<br>LYS                                                    |                                                                                         |                                                                                   |                                                                                                                                   |                                                                                                |
| • Molecule 36:                                                                    | Replicase poly                                                                          | protein 1ab                                                                       |                                                                                                                                   |                                                                                                |
| Chain n: 13%                                                                      | 0                                                                                       | 8                                                                                 | 37%                                                                                                                               |                                                                                                |
| MET<br>SER<br>PHE<br>VAL<br>ALA<br>GLY<br>CALA<br>GLN<br>GLN<br>GLY               | ALA<br>ARG<br>GLY<br>THR<br>TYR<br>ARG<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>SER<br>SER | GLU<br>LYS<br>LIYS<br>HIS<br>GLN<br>ASP<br>HIS<br>SER<br>LEU<br>THR<br>THR<br>VAL | LEU<br>CYS<br>CYS<br>GLY<br>GLY<br>GLY<br>LEU<br>LEU<br>CYS<br>LEU<br>LYS<br>LEU<br>CYS<br>TRO<br>FRO                             | PHE<br>MET<br>ASP<br>GLV<br>GLU<br>GLU<br>ASN<br>ASN<br>ASN<br>GLU<br>VAL<br>VAL<br>VAL<br>LYS |
| ALA<br>MET<br>MET<br>LEU<br>LEU<br>LYS<br>CLYS<br>GLU<br>PRO<br>LEU<br>LEU<br>TYR | VAL<br>PRO<br>TLE<br>ARG<br>CLY<br>HTS<br>ARG<br>ARG                                    | LEU<br>PRO<br>GLY<br>PRO<br>ARG<br>VAL<br>TYR<br>LEU<br>VAL<br>CLU<br>SCLU        | TLE<br>ALA<br>ALA<br>ALA<br>ALA<br>ASN<br>MET<br>MET<br>VAL<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN | SER<br>SER<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>CLY<br>CLY<br>CLY<br>THR<br>THR               |



GLY GLY



# 4 Experimental information (i)

| Property                           | Value                        | Source    |
|------------------------------------|------------------------------|-----------|
| EM reconstruction method           | SINGLE PARTICLE              | Depositor |
| Imposed symmetry                   | POINT, Not provided          |           |
| Number of particles used           | 267551                       | Depositor |
| Resolution determination method    | FSC 0.143 CUT-OFF            | Depositor |
| CTF correction method              | PHASE FLIPPING AND AMPLITUDE | Depositor |
|                                    | CORRECTION                   |           |
| Microscope                         | TFS KRIOS                    | Depositor |
| Voltage (kV)                       | 300                          | Depositor |
| Electron dose $(e^-/\text{\AA}^2)$ | 50                           | Depositor |
| Minimum defocus (nm)               | 800                          | Depositor |
| Maximum defocus (nm)               | 1800                         | Depositor |
| Magnification                      | 81000                        | Depositor |
| Image detector                     | GATAN K3 ( $6k \ge 4k$ )     | Depositor |
| Maximum map value                  | 1.809                        | Depositor |
| Minimum map value                  | -0.270                       | Depositor |
| Average map value                  | 0.008                        | Depositor |
| Map value standard deviation       | 0.052                        | Depositor |
| Recommended contour level          | 0.14                         | Depositor |
| Map size (Å)                       | 406.6, 406.6, 406.6          | wwPDB     |
| Map dimensions                     | 380, 380, 380                | wwPDB     |
| Map angles (°)                     | 90.0, 90.0, 90.0             | wwPDB     |
| Pixel spacing (Å)                  | 1.07, 1.07, 1.07             | Depositor |



# 5 Model quality (i)

## 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Chain | Bond | $\mathbf{lengths}$ | B    | ond angles     |
|-----|-------|------|--------------------|------|----------------|
|     | Unam  | RMSZ | # Z  > 5           | RMSZ | # Z  > 5       |
| 1   | 2     | 0.51 | 0/39895            | 0.78 | 1/62174~(0.0%) |
| 2   | А     | 0.31 | 0/1723             | 0.52 | 0/2341         |
| 3   | В     | 0.28 | 0/1756             | 0.50 | 0/2350         |
| 4   | С     | 0.33 | 0/1726             | 0.50 | 0/2332         |
| 5   | D     | 0.33 | 0/1780             | 0.56 | 0/2397         |
| 6   | Е     | 0.34 | 0/2118             | 0.55 | 0/2849         |
| 7   | F     | 0.38 | 0/1516             | 0.62 | 0/2037         |
| 8   | G     | 0.30 | 0/1887             | 0.58 | 0/2513         |
| 9   | Н     | 0.28 | 0/1524             | 0.54 | 0/2042         |
| 10  | Ι     | 0.33 | 0/1711             | 0.57 | 0/2282         |
| 11  | J     | 0.35 | 0/1524             | 0.60 | 1/2035~(0.0%)  |
| 12  | Κ     | 0.35 | 0/840              | 0.54 | 0/1133         |
| 13  | L     | 0.35 | 0/1250             | 0.57 | 0/1673         |
| 14  | М     | 0.29 | 0/945              | 0.54 | 0/1269         |
| 15  | Ν     | 0.30 | 0/1226             | 0.53 | 0/1649         |
| 16  | 0     | 0.28 | 0/1023             | 0.58 | 0/1372         |
| 17  | Р     | 0.37 | 0/1058             | 0.62 | 0/1414         |
| 18  | Q     | 0.35 | 0/1114             | 0.58 | 0/1492         |
| 19  | R     | 0.30 | 0/1082             | 0.56 | 0/1452         |
| 20  | S     | 0.32 | 0/1202             | 0.60 | 0/1610         |
| 21  | Т     | 0.32 | 0/1142             | 0.52 | 0/1530         |
| 22  | U     | 0.30 | 0/813              | 0.58 | 0/1092         |
| 23  | V     | 0.33 | 0/631              | 0.61 | 1/844~(0.1%)   |
| 24  | W     | 0.40 | 0/1051             | 0.56 | 0/1406         |
| 25  | Х     | 0.35 | 0/1116             | 0.59 | 1/1490~(0.1%)  |
| 26  | Y     | 0.34 | 0/1031             | 0.57 | 0/1370         |
| 27  | Ζ     | 0.31 | 0/580              | 0.58 | 0/780          |
| 28  | a     | 0.30 | 0/807              | 0.55 | 0/1082         |
| 29  | b     | 0.27 | 0/653              | 0.51 | 0/876          |
| 30  | с     | 0.34 | 0/490              | 0.72 | 0/656          |
| 31  | d     | 0.39 | 0/469              | 0.56 | 0/623          |
| 32  | е     | 0.42 | 0/447              | 0.55 | 0/587          |



| Mal | ol Chain | Bond lengths |          | Bond angles |                 |
|-----|----------|--------------|----------|-------------|-----------------|
|     |          | RMSZ         | # Z  > 5 | RMSZ        | # Z  > 5        |
| 33  | f        | 0.40         | 0/622    | 0.54        | 0/822           |
| 34  | g        | 0.33         | 0/2497   | 0.53        | 0/3399          |
| 35  | h        | 0.25         | 0/214    | 0.83        | 0/272           |
| 36  | n        | 0.26         | 0/211    | 0.37        | 0/283           |
| All | All      | 0.43         | 0/79674  | 0.69        | 4/115528~(0.0%) |

There are no bond length outliers.

All (4) bond angle outliers are listed below:

| Mol | Chain | Res  | Type | Atoms       | Z    | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|-------------|------|------------------|---------------|
| 1   | 2     | 1658 | G    | C2'-C3'-O3' | 6.57 | 124.21           | 113.70        |
| 25  | Х     | 98   | ASP  | CB-CG-OD1   | 5.18 | 122.96           | 118.30        |
| 23  | V     | 40   | ASP  | CB-CG-OD1   | 5.16 | 122.94           | 118.30        |
| 11  | J     | 95   | ASP  | CB-CG-OD1   | 5.02 | 122.82           | 118.30        |

There are no chirality outliers.

There are no planarity outliers.

#### 5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

#### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed      | Favoured  | Allowed | Outliers | Perce | ntiles |
|-----|-------|---------------|-----------|---------|----------|-------|--------|
| 2   | А     | 211/295~(72%) | 202 (96%) | 8 (4%)  | 1 (0%)   | 29    | 52     |
| 3   | В     | 211/264~(80%) | 205 (97%) | 6 (3%)  | 0        | 100   | 100    |
| 4   | С     | 216/293~(74%) | 210 (97%) | 6 (3%)  | 0        | 100   | 100    |
| 5   | D     | 223/243~(92%) | 217 (97%) | 5 (2%)  | 1 (0%)   | 34    | 57     |



| Mol | Chain | Analysed      | Favoured  | Allowed  | Outliers | Perce | ntiles |
|-----|-------|---------------|-----------|----------|----------|-------|--------|
| 6   | Ε     | 260/263~(99%) | 256~(98%) | 4 (2%)   | 0        | 100   | 100    |
| 7   | F     | 187/204~(92%) | 169 (90%) | 15 (8%)  | 3~(2%)   | 9     | 19     |
| 8   | G     | 228/249~(92%) | 221 (97%) | 7(3%)    | 0        | 100   | 100    |
| 9   | Н     | 184/194~(95%) | 169 (92%) | 15 (8%)  | 0        | 100   | 100    |
| 10  | Ι     | 203/208~(98%) | 198 (98%) | 5 (2%)   | 0        | 100   | 100    |
| 11  | J     | 178/194~(92%) | 170 (96%) | 7 (4%)   | 1 (1%)   | 25    | 47     |
| 12  | К     | 95/165~(58%)  | 91 (96%)  | 4 (4%)   | 0        | 100   | 100    |
| 13  | L     | 149/158 (94%) | 142 (95%) | 7 (5%)   | 0        | 100   | 100    |
| 14  | М     | 119/132~(90%) | 99~(83%)  | 18 (15%) | 2(2%)    | 9     | 18     |
| 15  | Ν     | 147/151 (97%) | 146 (99%) | 1 (1%)   | 0        | 100   | 100    |
| 16  | О     | 133/151 (88%) | 128 (96%) | 5 (4%)   | 0        | 100   | 100    |
| 17  | Р     | 124/145~(86%) | 113 (91%) | 8 (6%)   | 3 (2%)   | 6     | 10     |
| 18  | Q     | 136/146~(93%) | 125 (92%) | 11 (8%)  | 0        | 100   | 100    |
| 19  | R     | 130/135~(96%) | 126 (97%) | 4 (3%)   | 0        | 100   | 100    |
| 20  | S     | 141/152 (93%) | 129 (92%) | 11 (8%)  | 1 (1%)   | 22    | 43     |
| 21  | Т     | 142/145~(98%) | 134 (94%) | 8 (6%)   | 0        | 100   | 100    |
| 22  | U     | 99/119~(83%)  | 94 (95%)  | 5 (5%)   | 0        | 100   | 100    |
| 23  | V     | 80/83~(96%)   | 77 (96%)  | 3 (4%)   | 0        | 100   | 100    |
| 24  | W     | 127/130~(98%) | 123 (97%) | 4 (3%)   | 0        | 100   | 100    |
| 25  | Х     | 139/143~(97%) | 135 (97%) | 3 (2%)   | 1 (1%)   | 22    | 43     |
| 26  | Y     | 122/133~(92%) | 116 (95%) | 6 (5%)   | 0        | 100   | 100    |
| 27  | Z     | 70/125~(56%)  | 69 (99%)  | 1 (1%)   | 0        | 100   | 100    |
| 28  | a     | 97/115~(84%)  | 95~(98%)  | 1 (1%)   | 1 (1%)   | 15    | 32     |
| 29  | b     | 80/84~(95%)   | 75 (94%)  | 5 (6%)   | 0        | 100   | 100    |
| 30  | с     | 60/69~(87%)   | 56 (93%)  | 4 (7%)   | 0        | 100   | 100    |
| 31  | d     | 53/56~(95%)   | 52 (98%)  | 1 (2%)   | 0        | 100   | 100    |
| 32  | е     | 54/133 (41%)  | 50 (93%)  | 4 (7%)   | 0        | 100   | 100    |
| 33  | f     | 72/156~(46%)  | 61 (85%)  | 8 (11%)  | 3 (4%)   | 3     | 3      |
| 34  | g     | 312/317~(98%) | 293 (94%) | 18 (6%)  | 1 (0%)   | 41    | 64     |
| 35  | h     | 20/25~(80%)   | 19 (95%)  | 1(5%)    | 0        | 100   | 100    |
| 36  | n     | 23/193 (12%)  | 23 (100%) | 0        | 0        | 100   | 100    |



Continued from previous page...

| Mol | Chain | Analysed        | Favoured   | Allowed  | Outliers | Percentiles |
|-----|-------|-----------------|------------|----------|----------|-------------|
| All | All   | 4825/5768~(84%) | 4588 (95%) | 219 (4%) | 18 (0%)  | 38 57       |

All (18) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 14  | М     | 110 | VAL  |
| 33  | f     | 88  | PRO  |
| 2   | А     | 189 | ILE  |
| 11  | J     | 161 | LEU  |
| 20  | S     | 38  | ARG  |
| 7   | F     | 20  | PHE  |
| 17  | Р     | 40  | ARG  |
| 33  | f     | 108 | VAL  |
| 34  | g     | 314 | ILE  |
| 7   | F     | 53  | ALA  |
| 14  | М     | 109 | VAL  |
| 17  | Р     | 133 | ILE  |
| 33  | f     | 107 | LYS  |
| 17  | Р     | 87  | PRO  |
| 28  | a     | 63  | VAL  |
| 7   | F     | 21  | GLY  |
| 5   | D     | 196 | GLY  |
| 25  | Х     | 86  | PRO  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed       | Rotameric | Outliers | Perce | ntiles |
|-----|-------|----------------|-----------|----------|-------|--------|
| 2   | А     | 179/243~(74%)  | 173~(97%) | 6 (3%)   | 37    | 63     |
| 3   | В     | 194/231~(84%)  | 182 (94%) | 12 (6%)  | 18    | 37     |
| 4   | С     | 184/225~(82%)  | 179~(97%) | 5(3%)    | 44    | 71     |
| 5   | D     | 189/202~(94%)  | 181 (96%) | 8 (4%)   | 30    | 55     |
| 6   | Ε     | 224/225~(100%) | 220~(98%) | 4 (2%)   | 59    | 80     |
| 7   | F     | 159/170~(94%)  | 151 (95%) | 8 (5%)   | 24    | 47     |



| $\alpha \cdot \cdot \cdot \cdot$ | C      |            |       |
|----------------------------------|--------|------------|-------|
| Continued                        | trom   | nremous    | naae  |
| 00100000000                      | 1.0110 | proceed ac | pagem |

| Mol | Chain | Analysed        | Rotameric  | Outliers | Perce | entiles |
|-----|-------|-----------------|------------|----------|-------|---------|
| 8   | G     | 200/218~(92%)   | 195~(98%)  | 5(2%)    | 47    | 73      |
| 9   | Н     | 167/174~(96%)   | 158~(95%)  | 9~(5%)   | 22    | 44      |
| 10  | Ι     | 178/180~(99%)   | 177~(99%)  | 1 (1%)   | 86    | 95      |
| 11  | J     | 160/168~(95%)   | 154 (96%)  | 6 (4%)   | 33    | 59      |
| 12  | Κ     | 88/136~(65%)    | 87~(99%)   | 1 (1%)   | 73    | 88      |
| 13  | L     | 135/142~(95%)   | 127~(94%)  | 8 (6%)   | 19    | 39      |
| 14  | М     | 102/108~(94%)   | 96~(94%)   | 6~(6%)   | 19    | 39      |
| 15  | Ν     | 130/131~(99%)   | 124~(95%)  | 6~(5%)   | 27    | 51      |
| 16  | Ο     | 105/119~(88%)   | 100~(95%)  | 5 (5%)   | 25    | 49      |
| 17  | Р     | 112/130~(86%)   | 100 (89%)  | 12 (11%) | 6     | 12      |
| 18  | Q     | 114/121~(94%)   | 107 (94%)  | 7~(6%)   | 18    | 38      |
| 19  | R     | 119/122~(98%)   | 116 (98%)  | 3(2%)    | 47    | 73      |
| 20  | S     | 124/132~(94%)   | 118 (95%)  | 6 (5%)   | 25    | 49      |
| 21  | Т     | 114/115~(99%)   | 113 (99%)  | 1 (1%)   | 78    | 91      |
| 22  | U     | 93/107~(87%)    | 89 (96%)   | 4 (4%)   | 29    | 54      |
| 23  | V     | 66/67~(98%)     | 61 (92%)   | 5 (8%)   | 13    | 26      |
| 24  | W     | 112/113~(99%)   | 104 (93%)  | 8 (7%)   | 14    | 29      |
| 25  | Х     | 113/115~(98%)   | 108 (96%)  | 5(4%)    | 28    | 53      |
| 26  | Y     | 108/115~(94%)   | 101 (94%)  | 7~(6%)   | 17    | 34      |
| 27  | Z     | 64/103~(62%)    | 62~(97%)   | 2(3%)    | 40    | 66      |
| 28  | a     | 87/99~(88%)     | 81 (93%)   | 6 (7%)   | 15    | 31      |
| 29  | b     | 74/76~(97%)     | 73~(99%)   | 1 (1%)   | 67    | 85      |
| 30  | с     | 55/62~(89%)     | 51 (93%)   | 4 (7%)   | 14    | 28      |
| 31  | d     | 48/49~(98%)     | 46 (96%)   | 2 (4%)   | 30    | 55      |
| 32  | е     | 45/104 (43%)    | 42 (93%)   | 3 (7%)   | 16    | 33      |
| 33  | f     | 67/140 (48%)    | 61 (91%)   | 6 (9%)   | 9     | 18      |
| 34  | g     | 272/275~(99%)   | 264 (97%)  | 8 (3%)   | 42    | 68      |
| 35  | h     | 21/24 (88%)     | 21 (100%)  | 0        | 100   | 100     |
| 36  | n     | 22/161~(14%)    | 22 (100%)  | 0        | 100   | 100     |
| All | All   | 4224/4902~(86%) | 4044 (96%) | 180 (4%) | 33    | 54      |

All (180) residues with a non-rotameric side chain are listed below:



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | А     | 18  | PHE  |
| 2   | А     | 36  | GLN  |
| 2   | А     | 170 | SER  |
| 2   | А     | 200 | ASP  |
| 2   | А     | 205 | ARG  |
| 2   | А     | 213 | GLU  |
| 3   | В     | 38  | MET  |
| 3   | В     | 59  | SER  |
| 3   | В     | 70  | SER  |
| 3   | В     | 90  | ASP  |
| 3   | В     | 95  | ASN  |
| 3   | В     | 113 | MET  |
| 3   | В     | 128 | LYS  |
| 3   | В     | 129 | THR  |
| 3   | В     | 166 | LYS  |
| 3   | В     | 179 | ASN  |
| 3   | В     | 219 | LYS  |
| 3   | В     | 227 | LYS  |
| 4   | С     | 161 | SER  |
| 4   | С     | 227 | ARG  |
| 4   | С     | 236 | PHE  |
| 4   | С     | 248 | TYR  |
| 4   | С     | 259 | THR  |
| 5   | D     | 3   | VAL  |
| 5   | D     | 66  | ILE  |
| 5   | D     | 94  | ARG  |
| 5   | D     | 110 | LEU  |
| 5   | D     | 139 | SER  |
| 5   | D     | 143 | ARG  |
| 5   | D     | 168 | VAL  |
| 5   | D     | 198 | ILE  |
| 6   | Е     | 91  | SER  |
| 6   | Е     | 143 | ASP  |
| 6   | Е     | 146 | THR  |
| 6   | Е     | 174 | LYS  |
| 7   | F     | 22  | LYS  |
| 7   | F     | 36  | GLN  |
| 7   | F     | 79  | HIS  |
| 7   | F     | 122 | ARG  |
| 7   | F     | 127 | ARG  |
| 7   | F     | 145 | ARG  |
| 7   | F     | 175 | ASP  |
| 7   | F     | 193 | LYS  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 8   | G     | 39  | ASP  |
| 8   | G     | 53  | SER  |
| 8   | G     | 79  | LYS  |
| 8   | G     | 95  | LYS  |
| 8   | G     | 201 | LYS  |
| 9   | Н     | 33  | ASN  |
| 9   | Н     | 45  | ILE  |
| 9   | Н     | 145 | ARG  |
| 9   | Н     | 162 | GLN  |
| 9   | Н     | 164 | ASN  |
| 9   | Н     | 165 | ASN  |
| 9   | Н     | 180 | LEU  |
| 9   | Н     | 184 | ASP  |
| 9   | Н     | 192 | PHE  |
| 10  | Ι     | 130 | THR  |
| 11  | J     | 34  | GLU  |
| 11  | J     | 59  | GLU  |
| 11  | J     | 79  | ARG  |
| 11  | J     | 95  | ASP  |
| 11  | J     | 122 | SER  |
| 11  | J     | 159 | PHE  |
| 12  | K     | 90  | VAL  |
| 13  | L     | 31  | GLU  |
| 13  | L     | 45  | LYS  |
| 13  | L     | 59  | LYS  |
| 13  | L     | 67  | SER  |
| 13  | L     | 124 | ASP  |
| 13  | L     | 141 | ASN  |
| 13  | L     | 146 | THR  |
| 13  | L     | 152 | LYS  |
| 14  | М     | 13  | ASP  |
| 14  | M     | 43  | ASP  |
| 14  | М     | 45  | ARG  |
| 14  | M     | 75  | ASN  |
| 14  | М     | 113 | ASP  |
| 14  | М     | 127 | TYR  |
| 15  | Ν     | 3   | ARG  |
| 15  | N     | 12  | SER  |
| 15  | N     | 14  | SER  |
| 15  | N     | 78  | LYS  |
| 15  | N     | 86  | GLU  |
| 15  | Ν     | 144 | SER  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 16  | Ο     | 39  | ASP  |
| 16  | 0     | 48  | SER  |
| 16  | 0     | 50  | LYS  |
| 16  | 0     | 98  | ARG  |
| 16  | 0     | 122 | SER  |
| 17  | Р     | 16  | THR  |
| 17  | Р     | 21  | ASP  |
| 17  | Р     | 31  | GLU  |
| 17  | Р     | 50  | ARG  |
| 17  | Р     | 51  | ARG  |
| 17  | Р     | 64  | LYS  |
| 17  | Р     | 74  | GLU  |
| 17  | Р     | 75  | VAL  |
| 17  | Р     | 76  | VAL  |
| 17  | Р     | 81  | ARG  |
| 17  | Р     | 84  | ILE  |
| 17  | Р     | 86  | LEU  |
| 18  | Q     | 13  | PHE  |
| 18  | Q     | 57  | LEU  |
| 18  | Q     | 105 | LYS  |
| 18  | Q     | 114 | GLN  |
| 18  | Q     | 117 | ARG  |
| 18  | Q     | 118 | THR  |
| 18  | Q     | 138 | ARG  |
| 19  | R     | 74  | GLN  |
| 19  | R     | 98  | VAL  |
| 19  | R     | 116 | ASN  |
| 20  | S     | 50  | ILE  |
| 20  | S     | 81  | ASP  |
| 20  | S     | 83  | PHE  |
| 20  | S     | 89  | ASP  |
| 20  | S     | 90  | VAL  |
| 20  | S     | 139 | THR  |
| 21  | Т     | 8   | ASP  |
| 22  | U     | 30  | LYS  |
| 22  | U     | 38  | ASP  |
| 22  | U     | 49  | LYS  |
| 22  | U     | 91  | LEU  |
| 23  | V     | 13  | VAL  |
| 23  | V     | 31  | SER  |
| 23  | V     | 52  | THR  |
| 23  | V     | 68  | SER  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 23  | V     | 80  | SER  |
| 24  | W     | 26  | LEU  |
| 24  | W     | 27  | ILE  |
| 24  | W     | 30  | CYS  |
| 24  | W     | 31  | SER  |
| 24  | W     | 57  | ARG  |
| 24  | W     | 74  | VAL  |
| 24  | W     | 78  | ARG  |
| 24  | W     | 80  | ASP  |
| 25  | Х     | 34  | THR  |
| 25  | Х     | 95  | GLU  |
| 25  | Х     | 96  | GLU  |
| 25  | Х     | 98  | ASP  |
| 25  | Х     | 105 | PHE  |
| 26  | Y     | 8   | ARG  |
| 26  | Y     | 15  | ASN  |
| 26  | Y     | 26  | ASP  |
| 26  | Y     | 61  | ARG  |
| 26  | Y     | 74  | MET  |
| 26  | Y     | 78  | SER  |
| 26  | Y     | 94  | HIS  |
| 27  | Z     | 43  | LYS  |
| 27  | Ζ     | 101 | SER  |
| 28  | a     | 2   | THR  |
| 28  | a     | 6   | ARG  |
| 28  | a     | 19  | GLN  |
| 28  | a     | 57  | SER  |
| 28  | a     | 80  | HIS  |
| 28  | a     | 81  | SER  |
| 29  | b     | 27  | SER  |
| 30  | с     | 10  | LYS  |
| 30  | с     | 33  | GLU  |
| 30  | с     | 46  | VAL  |
| 30  | с     | 51  | ARG  |
| 31  | d     | 14  | PHE  |
| 31  | d     | 40  | ARG  |
| 32  | е     | 23  | GLU  |
| 32  | е     | 34  | ARG  |
| 32  | е     | 49  | PHE  |
| 33  | f     | 90  | LYS  |
| 33  | f     | 103 | LEU  |
| 33  | f     | 109 | ASP  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 33  | f     | 111 | ASN  |
| 33  | f     | 136 | PHE  |
| 33  | f     | 149 | CYS  |
| 34  | g     | 2   | THR  |
| 34  | g     | 48  | ASP  |
| 34  | g     | 113 | PHE  |
| 34  | g     | 116 | ASP  |
| 34  | g     | 182 | CYS  |
| 34  | g     | 186 | THR  |
| 34  | g     | 234 | ASP  |
| 34  | g     | 246 | TYR  |

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (7) such side chains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | А     | 193 | HIS  |
| 6   | Е     | 214 | ASN  |
| 12  | Κ     | 84  | HIS  |
| 21  | Т     | 12  | GLN  |
| 30  | с     | 29  | GLN  |
| 31  | d     | 10  | HIS  |
| 34  | g     | 51  | ASN  |

#### 5.3.3 RNA (i)

| Mol | Chain | Analysed        | Backbone Outliers | Pucker Outliers |
|-----|-------|-----------------|-------------------|-----------------|
| 1   | 2     | 1663/1869~(88%) | 433~(26%)         | 53~(3%)         |

All (433) RNA backbone outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | 2     | 3   | С    |
| 1   | 2     | 17  | С    |
| 1   | 2     | 26  | U    |
| 1   | 2     | 33  | G    |
| 1   | 2     | 44  | U    |
| 1   | 2     | 46  | А    |
| 1   | 2     | 56  | G    |
| 1   | 2     | 58  | С    |
| 1   | 2     | 59  | U    |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | 2     | 60  | А    |
| 1   | 2     | 61  | А    |
| 1   | 2     | 65  | С    |
| 1   | 2     | 66  | G    |
| 1   | 2     | 67  | С    |
| 1   | 2     | 68  | А    |
| 1   | 2     | 71  | G    |
| 1   | 2     | 72  | С    |
| 1   | 2     | 73  | С    |
| 1   | 2     | 74  | G    |
| 1   | 2     | 75  | G    |
| 1   | 2     | 76  | U    |
| 1   | 2     | 77  | A    |
| 1   | 2     | 79  | А    |
| 1   | 2     | 103 | A    |
| 1   | 2     | 113 | G    |
| 1   | 2     | 114 | G    |
| 1   | 2     | 115 | U    |
| 1   | 2     | 116 | U    |
| 1   | 2     | 126 | G    |
| 1   | 2     | 129 | С    |
| 1   | 2     | 130 | G    |
| 1   | 2     | 143 | U    |
| 1   | 2     | 144 | U    |
| 1   | 2     | 147 | А    |
| 1   | 2     | 154 | U    |
| 1   | 2     | 155 | G    |
| 1   | 2     | 163 | U    |
| 1   | 2     | 168 | С    |
| 1   | 2     | 174 | С    |
| 1   | 2     | 175 | A    |
| 1   | 2     | 179 | С    |
| 1   | 2     | 181 | A    |
| 1   | 2     | 184 | G    |
| 1   | 2     | 187 | G    |
| 1   | 2     | 188 | С    |
| 1   | 2     | 189 | U    |
| 1   | 2     | 190 | G    |
| 1   | 2     | 191 | A    |
| 1   | 2     | 192 | С    |
| 1   | 2     | 198 | U    |
| 1   | 2     | 199 | С    |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | 2     | 200 | G    |
| 1   | 2     | 215 | G    |
| 1   | 2     | 290 | U    |
| 1   | 2     | 291 | G    |
| 1   | 2     | 292 | А    |
| 1   | 2     | 294 | U    |
| 1   | 2     | 307 | G    |
| 1   | 2     | 308 | G    |
| 1   | 2     | 309 | G    |
| 1   | 2     | 310 | С    |
| 1   | 2     | 315 | С    |
| 1   | 2     | 319 | С    |
| 1   | 2     | 321 | С    |
| 1   | 2     | 330 | G    |
| 1   | 2     | 332 | G    |
| 1   | 2     | 333 | G    |
| 1   | 2     | 335 | G    |
| 1   | 2     | 360 | A    |
| 1   | 2     | 362 | С    |
| 1   | 2     | 364 | A    |
| 1   | 2     | 368 | U    |
| 1   | 2     | 369 | С    |
| 1   | 2     | 370 | G    |
| 1   | 2     | 377 | G    |
| 1   | 2     | 383 | G    |
| 1   | 2     | 385 | G    |
| 1   | 2     | 386 | С    |
| 1   | 2     | 399 | С    |
| 1   | 2     | 400 | С    |
| 1   | 2     | 408 | А    |
| 1   | 2     | 409 | С    |
| 1   | 2     | 418 | A    |
| 1   | 2     | 438 | G    |
| 1   | 2     | 448 | A    |
| 1   | 2     | 450 | С    |
| 1   | 2     | 464 | A    |
| 1   | 2     | 465 | A    |
| 1   | 2     | 466 | G    |
| 1   | 2     | 471 | G    |
| 1   | 2     | 472 | С    |
| 1   | 2     | 473 | А    |
| 1   | 2     | 474 | G    |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | 2     | 482 | G    |
| 1   | 2     | 483 | С    |
| 1   | 2     | 487 | U    |
| 1   | 2     | 492 | С    |
| 1   | 2     | 501 | С    |
| 1   | 2     | 502 | С    |
| 1   | 2     | 530 | U    |
| 1   | 2     | 532 | С    |
| 1   | 2     | 533 | А    |
| 1   | 2     | 534 | G    |
| 1   | 2     | 536 | А    |
| 1   | 2     | 542 | U    |
| 1   | 2     | 546 | G    |
| 1   | 2     | 547 | G    |
| 1   | 2     | 548 | C    |
| 1   | 2     | 549 | С    |
| 1   | 2     | 550 | С    |
| 1   | 2     | 552 | G    |
| 1   | 2     | 554 | А    |
| 1   | 2     | 555 | А    |
| 1   | 2     | 556 | U    |
| 1   | 2     | 559 | G    |
| 1   | 2     | 563 | G    |
| 1   | 2     | 568 | С    |
| 1   | 2     | 570 | С    |
| 1   | 2     | 576 | А    |
| 1   | 2     | 583 | А    |
| 1   | 2     | 587 | А    |
| 1   | 2     | 588 | G    |
| 1   | 2     | 589 | G    |
| 1   | 2     | 590 | A    |
| 1   | 2     | 591 | U    |
| 1   | 2     | 598 | G    |
| 1   | 2     | 604 | A    |
| 1   | 2     | 605 | A    |
| 1   | 2     | 607 | U    |
| 1   | 2     | 608 | С    |
| 1   | 2     | 614 | C    |
| 1   | 2     | 617 | G    |
| 1   | 2     | 629 | A    |
| 1   | 2     | 631 | U    |
| 1   | 2     | 632 | С    |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | 2     | 640 | А    |
| 1   | 2     | 643 | A    |
| 1   | 2     | 644 | G    |
| 1   | 2     | 655 | A    |
| 1   | 2     | 659 | G    |
| 1   | 2     | 660 | С    |
| 1   | 2     | 669 | A    |
| 1   | 2     | 671 | A    |
| 1   | 2     | 672 | A    |
| 1   | 2     | 673 | G    |
| 1   | 2     | 685 | A    |
| 1   | 2     | 687 | С    |
| 1   | 2     | 688 | U    |
| 1   | 2     | 747 | U    |
| 1   | 2     | 749 | U    |
| 1   | 2     | 750 | С    |
| 1   | 2     | 751 | G    |
| 1   | 2     | 792 | С    |
| 1   | 2     | 794 | A    |
| 1   | 2     | 796 | G    |
| 1   | 2     | 797 | С    |
| 1   | 2     | 798 | G    |
| 1   | 2     | 799 | U    |
| 1   | 2     | 809 | A    |
| 1   | 2     | 810 | А    |
| 1   | 2     | 811 | A    |
| 1   | 2     | 812 | A    |
| 1   | 2     | 821 | G    |
| 1   | 2     | 822 | U    |
| 1   | 2     | 823 | U    |
| 1   | 2     | 824 | С    |
| 1   | 2     | 830 | A    |
| 1   | 2     | 845 | G    |
| 1   | 2     | 847 | A    |
| 1   | 2     | 869 | A    |
| 1   | 2     | 870 | A    |
| 1   | 2     | 871 | U    |
| 1   | 2     | 872 | A    |
| 1   | 2     | 873 | G    |
| 1   | 2     | 874 | G    |
| 1   | 2     | 877 | С    |
| 1   | 2     | 878 | G    |



| Mol | Chain | Res               | Type |
|-----|-------|-------------------|------|
| 1   | 2     | 879               | С    |
| 1   | 2     | 880               | G    |
| 1   | 2     | 881               | G    |
| 1   | 2     | 882               | U    |
| 1   | 2     | 887               | U    |
| 1   | 2     | 888               | U    |
| 1   | 2     | 890               | U    |
| 1   | 2     | 891               | G    |
| 1   | 2     | 893               | U    |
| 1   | 2     | 894               | G    |
| 1   | 2     | 895               | G    |
| 1   | 2     | 903               | А    |
| 1   | 2     | 906               | U    |
| 1   | 2     | 913               | A    |
| 1   | 2     | 914               | U    |
| 1   | 2     | 918               | U    |
| 1   | 2     | 919               | А    |
| 1   | 2     | 920               | А    |
| 1   | 2     | 926               | А    |
| 1   | 2     | 930               | С    |
| 1   | 2     | 933               | G    |
| 1   | 2     | 934               | G    |
| 1   | 2     | 943               | U    |
| 1   | 2     | 955               | А    |
| 1   | 2     | 956               | G    |
| 1   | 2     | 959               | G    |
| 1   | 2     | 960               | U    |
| 1   | 2     | 967               | С    |
| 1   | 2     | 969               | U    |
| 1   | 2     | 970               | G    |
| 1   | 2     | 971               | G    |
| 1   | 2     | 978               | G    |
| 1   | 2     | 981               | A    |
| 1   | 2     | 990               | A    |
| 1   | 2     | 992               | А    |
| 1   | 2     | 998               | A    |
| 1   | 2     | 999               | G    |
| 1   | 2     | 1001              | А    |
| 1   | 2     | 1009              | А    |
| 1   | 2     | $1\overline{017}$ | U    |
| 1   | 2     | 1023              | A    |
| 1   | 2     | 1040              | G    |



| Mol | Chain | Res               | Type |
|-----|-------|-------------------|------|
| 1   | 2     | 1041              | G    |
| 1   | 2     | 1049              | А    |
| 1   | 2     | 1060              | А    |
| 1   | 2     | 1061              | U    |
| 1   | 2     | 1062              | А    |
| 1   | 2     | 1080              | А    |
| 1   | 2     | 1083              | А    |
| 1   | 2     | 1085              | С    |
| 1   | 2     | 1087              | А    |
| 1   | 2     | 1088              | U    |
| 1   | 2     | 1096              | G    |
| 1   | 2     | 1107              | G    |
| 1   | 2     | 1114              | U    |
| 1   | 2     | 1116              | С    |
| 1   | 2     | 1117              | С    |
| 1   | 2     | 1118              | С    |
| 1   | 2     | 1119              | А    |
| 1   | 2     | 1120              | U    |
| 1   | 2     | 1122              | А    |
| 1   | 2     | 1133              | А    |
| 1   | 2     | 1138              | С    |
| 1   | 2     | 1139              | С    |
| 1   | 2     | 1143              | А    |
| 1   | 2     | 1153              | С    |
| 1   | 2     | 1154              | U    |
| 1   | 2     | 1157              | G    |
| 1   | 2     | 1171              | G    |
| 1   | 2     | 1195              | А    |
| 1   | 2     | 1199              | А    |
| 1   | 2     | 1203              | G    |
| 1   | 2     | 1207              | G    |
| 1   | 2     | 1208              | A    |
| 1   | 2     | 1211              | G    |
| 1   | 2     | 1215              | C    |
| 1   | 2     | 1221              | G    |
| 1   | 2     | 1224              | G    |
| 1   | 2     | 1225              | U    |
| 1   | 2     | 1226              | G    |
| 1   | 2     | 1232              | U    |
| 1   | 2     | $1\overline{242}$ | U    |
| 1   | 2     | 1245              | G    |
| 1   | 2     | 1247              | С    |



| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | 2     | 1248 | U    |
| 1   | 2     | 1251 | А    |
| 1   | 2     | 1253 | А    |
| 1   | 2     | 1256 | G    |
| 1   | 2     | 1257 | G    |
| 1   | 2     | 1258 | А    |
| 1   | 2     | 1259 | А    |
| 1   | 2     | 1260 | А    |
| 1   | 2     | 1274 | G    |
| 1   | 2     | 1275 | G    |
| 1   | 2     | 1276 | А    |
| 1   | 2     | 1278 | А    |
| 1   | 2     | 1284 | А    |
| 1   | 2     | 1285 | G    |
| 1   | 2     | 1286 | G    |
| 1   | 2     | 1297 | U    |
| 1   | 2     | 1298 | G    |
| 1   | 2     | 1300 | U    |
| 1   | 2     | 1301 | А    |
| 1   | 2     | 1302 | G    |
| 1   | 2     | 1303 | С    |
| 1   | 2     | 1305 | С    |
| 1   | 2     | 1312 | G    |
| 1   | 2     | 1313 | А    |
| 1   | 2     | 1322 | G    |
| 1   | 2     | 1325 | G    |
| 1   | 2     | 1327 | G    |
| 1   | 2     | 1331 | С    |
| 1   | 2     | 1342 | U    |
| 1   | 2     | 1343 | U    |
| 1   | 2     | 1348 | G    |
| 1   | 2     | 1358 | U    |
| 1   | 2     | 1366 | G    |
| 1   | 2     | 1371 | U    |
| 1   | 2     | 1372 | U    |
| 1   | 2     | 1373 | С    |
| 1   | 2     | 1378 | А    |
| 1   | 2     | 1382 | A    |
| 1   | 2     | 1395 | С    |
| 1   | 2     | 1402 | А    |
| 1   | 2     | 1405 | A    |
| 1   | 2     | 1406 | G    |



| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | 2     | 1412 | С    |
| 1   | 2     | 1414 | А    |
| 1   | 2     | 1426 | U    |
| 1   | 2     | 1428 | G    |
| 1   | 2     | 1439 | А    |
| 1   | 2     | 1441 | U    |
| 1   | 2     | 1446 | А    |
| 1   | 2     | 1452 | А    |
| 1   | 2     | 1454 | А    |
| 1   | 2     | 1463 | U    |
| 1   | 2     | 1465 | А    |
| 1   | 2     | 1466 | G    |
| 1   | 2     | 1475 | G    |
| 1   | 2     | 1476 | A    |
| 1   | 2     | 1489 | А    |
| 1   | 2     | 1490 | G    |
| 1   | 2     | 1494 | U    |
| 1   | 2     | 1495 | G    |
| 1   | 2     | 1497 | G    |
| 1   | 2     | 1500 | G    |
| 1   | 2     | 1501 | С    |
| 1   | 2     | 1502 | С    |
| 1   | 2     | 1507 | G    |
| 1   | 2     | 1508 | А    |
| 1   | 2     | 1509 | U    |
| 1   | 2     | 1511 | U    |
| 1   | 2     | 1512 | С    |
| 1   | 2     | 1514 | G    |
| 1   | 2     | 1516 | G    |
| 1   | 2     | 1520 | G    |
| 1   | 2     | 1521 | С    |
| 1   | 2     | 1522 | A    |
| 1   | 2     | 1533 | А    |
| 1   | 2     | 1534 | C    |
| 1   | 2     | 1538 | С    |
| 1   | 2     | 1545 | A    |
| 1   | 2     | 1549 | U    |
| 1   | 2     | 1551 | U    |
| 1   | 2     | 1553 | C    |
| 1   | 2     | 1560 | U    |
| 1   | 2     | 1567 | G    |
| 1   | 2     | 1575 | G    |



| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | 2     | 1579 | А    |
| 1   | 2     | 1580 | А    |
| 1   | 2     | 1581 | С    |
| 1   | 2     | 1585 | U    |
| 1   | 2     | 1586 | U    |
| 1   | 2     | 1588 | А    |
| 1   | 2     | 1598 | G    |
| 1   | 2     | 1600 | G    |
| 1   | 2     | 1601 | А    |
| 1   | 2     | 1603 | G    |
| 1   | 2     | 1605 | G    |
| 1   | 2     | 1606 | G    |
| 1   | 2     | 1614 | А    |
| 1   | 2     | 1616 | U    |
| 1   | 2     | 1618 | С    |
| 1   | 2     | 1619 | А    |
| 1   | 2     | 1621 | U    |
| 1   | 2     | 1623 | А    |
| 1   | 2     | 1624 | U    |
| 1   | 2     | 1629 | С    |
| 1   | 2     | 1640 | А    |
| 1   | 2     | 1646 | С    |
| 1   | 2     | 1647 | А    |
| 1   | 2     | 1649 | U    |
| 1   | 2     | 1650 | А    |
| 1   | 2     | 1652 | G    |
| 1   | 2     | 1654 | G    |
| 1   | 2     | 1656 | G    |
| 1   | 2     | 1658 | G    |
| 1   | 2     | 1659 | U    |
| 1   | 2     | 1663 | A    |
| 1   | 2     | 1665 | G    |
| 1   | 2     | 1671 | G    |
| 1   | 2     | 1675 | А    |
| 1   | 2     | 1683 | С    |
| 1   | 2     | 1686 | G    |
| 1   | 2     | 1688 | С    |
| 1   | 2     | 1689 | C    |
| 1   | 2     | 1690 | U    |
| 1   | 2     | 1695 | А    |
| 1   | 2     | 1697 | A    |
| 1   | 2     | 1699 | А    |



| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | 2     | 1719 | А    |
| 1   | 2     | 1720 | U    |
| 1   | 2     | 1721 | U    |
| 1   | 2     | 1722 | G    |
| 1   | 2     | 1723 | G    |
| 1   | 2     | 1724 | А    |
| 1   | 2     | 1727 | G    |
| 1   | 2     | 1729 | U    |
| 1   | 2     | 1744 | G    |
| 1   | 2     | 1753 | С    |
| 1   | 2     | 1755 | С    |
| 1   | 2     | 1756 | С    |
| 1   | 2     | 1757 | G    |
| 1   | 2     | 1761 | U    |
| 1   | 2     | 1772 | С    |
| 1   | 2     | 1773 | С    |
| 1   | 2     | 1774 | С    |
| 1   | 2     | 1776 | G    |
| 1   | 2     | 1778 | С    |
| 1   | 2     | 1779 | G    |
| 1   | 2     | 1780 | G    |
| 1   | 2     | 1783 | С    |
| 1   | 2     | 1784 | G    |
| 1   | 2     | 1800 | А    |
| 1   | 2     | 1813 | А    |
| 1   | 2     | 1815 | А    |
| 1   | 2     | 1816 | G    |
| 1   | 2     | 1824 | А    |
| 1   | 2     | 1825 | А    |
| 1   | 2     | 1826 | G    |
| 1   | 2     | 1829 | G    |
| 1   | 2     | 1831 | А    |
| 1   | 2     | 1835 | A    |
| 1   | 2     | 1836 | G    |
| 1   | 2     | 1838 | U    |
| 1   | 2     | 1849 | G    |
| 1   | 2     | 1851 | A    |
| 1   | 2     | 1852 | С    |
| 1   | 2     | 1861 | G    |
| 1   | 2     | 1862 | G    |
| 1   | 2     | 1863 | А    |
| 1   | 2     | 1864 | U    |



Continued from previous page...

| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | 2     | 1865 | С    |
| 1   | 2     | 1867 | U    |
| 1   | 2     | 1868 | U    |
| 1   | 2     | 1869 | А    |

| All | (53) | ) RNA | pucker | outliers | are | listed | below: |
|-----|------|-------|--------|----------|-----|--------|--------|
|-----|------|-------|--------|----------|-----|--------|--------|

| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | 2     | 60   | А    |
| 1   | 2     | 65   | С    |
| 1   | 2     | 71   | G    |
| 1   | 2     | 102  | А    |
| 1   | 2     | 114  | G    |
| 1   | 2     | 143  | U    |
| 1   | 2     | 180  | G    |
| 1   | 2     | 189  | U    |
| 1   | 2     | 291  | G    |
| 1   | 2     | 293  | С    |
| 1   | 2     | 306  | С    |
| 1   | 2     | 314  | U    |
| 1   | 2     | 332  | G    |
| 1   | 2     | 368  | U    |
| 1   | 2     | 382  | С    |
| 1   | 2     | 465  | А    |
| 1   | 2     | 500  | А    |
| 1   | 2     | 554  | А    |
| 1   | 2     | 589  | G    |
| 1   | 2     | 591  | U    |
| 1   | 2     | 604  | А    |
| 1   | 2     | 748  | С    |
| 1   | 2     | 750  | С    |
| 1   | 2     | 791  | С    |
| 1   | 2     | 797  | С    |
| 1   | 2     | 811  | А    |
| 1   | 2     | 821  | G    |
| 1   | 2     | 893  | U    |
| 1   | 2     | 958  | G    |
| 1   | 2     | 980  | А    |
| 1   | 2     | 1016 | U    |
| 1   | 2     | 1138 | С    |
| 1   | 2     | 1165 | G    |
| 1   | 2     | 1277 | С    |



| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | 2     | 1312 | G    |
| 1   | 2     | 1330 | G    |
| 1   | 2     | 1342 | U    |
| 1   | 2     | 1425 | G    |
| 1   | 2     | 1438 | А    |
| 1   | 2     | 1440 | С    |
| 1   | 2     | 1464 | С    |
| 1   | 2     | 1494 | U    |
| 1   | 2     | 1548 | G    |
| 1   | 2     | 1585 | U    |
| 1   | 2     | 1587 | G    |
| 1   | 2     | 1603 | G    |
| 1   | 2     | 1618 | С    |
| 1   | 2     | 1649 | U    |
| 1   | 2     | 1658 | G    |
| 1   | 2     | 1718 | G    |
| 1   | 2     | 1721 | U    |
| 1   | 2     | 1773 | С    |
| 1   | 2     | 1825 | А    |

### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

#### 5.6 Ligand geometry (i)

Of 100 ligands modelled in this entry, 100 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.



## 5.7 Other polymers (i)

There are no such residues in this entry.

## 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-41039. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

## 6.1 Orthogonal projections (i)

#### 6.1.1 Primary map



The images above show the map projected in three orthogonal directions.

#### 6.2 Central slices (i)

#### 6.2.1 Primary map



X Index: 190

Y Index: 190



Z Index: 190

The images above show central slices of the map in three orthogonal directions.

#### 6.3 Largest variance slices (i)

#### 6.3.1 Primary map



X Index: 189

Y Index: 165

Z Index: 138

The images above show the largest variance slices of the map in three orthogonal directions.

#### 6.4 Orthogonal standard-deviation projections (False-color) (i)

#### 6.4.1 Primary map



The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.



#### 6.5 Orthogonal surface views (i)

6.5.1 Primary map



The images above show the 3D surface view of the map at the recommended contour level 0.14. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

#### 6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.



## 7 Map analysis (i)

This section contains the results of statistical analysis of the map.

## 7.1 Map-value distribution (i)



The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.



#### 7.2 Volume estimate (i)



The volume at the recommended contour level is  $1093 \text{ nm}^3$ ; this corresponds to an approximate mass of 987 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.



### 7.3 Rotationally averaged power spectrum (i)



\*Reported resolution corresponds to spatial frequency of 0.385  ${\rm \AA^{-1}}$ 



## 8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

#### 8.1 FSC (i)



\*Reported resolution corresponds to spatial frequency of 0.385  $\text{\AA}^{-1}$ 



## 8.2 Resolution estimates (i)

| $\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$ | Estimation criterion (FSC cut-off) |      |          |
|---------------------------------------------------------|------------------------------------|------|----------|
| Resolution estimate (A)                                 | 0.143                              | 0.5  | Half-bit |
| Reported by author                                      | 2.60                               | -    | -        |
| Author-provided FSC curve                               | 2.46                               | 2.88 | 2.55     |
| Unmasked-calculated*                                    | -                                  | -    | -        |

\*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.



## 9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-41039 and PDB model 8T4S. Per-residue inclusion information can be found in section 3 on page 12.

## 9.1 Map-model overlay (i)



The images above show the 3D surface view of the map at the recommended contour level 0.14 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



#### 9.2 Q-score mapped to coordinate model (i)



The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

#### 9.3 Atom inclusion mapped to coordinate model (i)



The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.14).



#### 9.4 Atom inclusion (i)



At the recommended contour level, 95% of all backbone atoms, 96% of all non-hydrogen atoms, are inside the map.



1.0

0.0 <0.0

#### 9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.14) and Q-score for the entire model and for each chain.

| $\mathbf{Chain}$ | Atom inclusion | $\mathbf{Q}	extsf{-score}$ |
|------------------|----------------|----------------------------|
| All              | 0.9640         | 0.5900                     |
| 2                | 0.9880         | 0.5930                     |
| А                | 0.9560         | 0.5880                     |
| В                | 0.9130         | 0.5600                     |
| С                | 0.9840         | 0.6260                     |
| D                | 0.9610         | 0.5890                     |
| Е                | 0.9830         | 0.6260                     |
| F                | 0.9820         | 0.6110                     |
| G                | 0.9690         | 0.5790                     |
| Н                | 0.7250         | 0.4640                     |
| Ι                | 0.9720         | 0.6090                     |
| J                | 0.9760         | 0.6220                     |
| K                | 0.9850         | 0.6190                     |
| L                | 0.9620         | 0.6240                     |
| М                | 0.7820         | 0.4390                     |
| Ν                | 0.9360         | 0.5760                     |
| 0                | 0.9130         | 0.5350                     |
| Р                | 0.9550         | 0.6060                     |
| Q                | 0.9980         | 0.6410                     |
| R                | 0.8580         | 0.5380                     |
| S                | 0.9640         | 0.5910                     |
| Т                | 0.9840         | 0.6230                     |
| U                | 0.9540         | 0.5830                     |
| V                | 0.9710         | 0.5890                     |
| W                | 0.9810         | 0.6230                     |
| X                | 0.9800         | 0.6220                     |
| <u>Y</u>         | 0.9750         | 0.6110                     |
| Z                | 0.9720         | 0.6090                     |
| a                | 0.9230         | 0.5890                     |
| b                | 0.8380         | 0.5630                     |
| <u> </u>         | 0.9470         | 0.5570                     |
| d                | 0.9840         | 0.6520                     |
| e                | 0.9180         | 0.5820                     |
| t                | 0.8490         | 0.5060                     |
| g                | 0.9520         | 0.5840                     |



| Chain | Atom inclusion | Q-score |
|-------|----------------|---------|
| h     | 0.9170         | 0.5610  |
| n     | 0.9360         | 0.5800  |

