

Full wwPDB X-ray Structure Validation Report (i)

Aug 7, 2023 – 04:17 PM EDT

PDB ID : $5T32$	K
Title : $3.9 A$	Angstrom Crystal Structure of a Fully and Natively Glycosylated BG505
SOS	P.664 HIV-1 Env Trimer in Complex with the Broadly Neutralizing An-
tiboo	lies IOMA and 10-1074.
Authors : Grist	ick, H.B.; Bjorkman, P.J.
Deposited on : 2016	-08-26
Resolution : 3.90	Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	$1002 \ (4.14-3.66)$
Clashscore	141614	$1004 \ (4.12-3.68)$
Ramachandran outliers	138981	1021 (4.14-3.66)
Sidechain outliers	138945	1014 (4.14-3.66)
RSRZ outliers	127900	1275 (4.20-3.60)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain							
1	Л	150	10%							
1	В	153	49%	32% · 18%						
_			8%							
2	G	481	58%	34% • 7%						
			29%							
3	Н	238	67%	29% ••						
			20%							
4	L	214	67%	29% ••						
			29%							
5	D	232	59%	37% ••						

Mol	Chain	Length		Quality of chai	n
6	Е	214	42%	67%	29% ••
7	А	2		100%	
8	С	4	50%		50%
9	F	3		67%	33%
10	Ι	3	33%	33%	33%
11	J	13	38%	31%	31%
12	K	10	40%	40%	20%
13	М	9	22%	56%	22%
14	Ν	2	50%		50%
14	Q	2		100%	
14	Т	2		100%	
15	0	7	14%	86%	
16	Р	16	19%	56%	25%
17	R	7	29%	29%	43%
18	S	10	20%	30%	50%
19	U	7	29%	7	71%
20	V	5	20%	40%	40%
21	W	6	33%	50%	17%
22	Х	5	40%	20%	40%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
12	GAL	K	6	-	-	-	Х
13	SIA	М	7	-	-	-	Х
13	NAG	М	9	-	-	-	Х
15	MAN	0	5	-	-	-	Х
15	MAN	0	6	-	-	-	Х

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
15	MAN	0	7	-	-	-	Х
16	SIA	Р	12	-	-	-	Х
16	NAG	Р	13	-	-	-	Х
16	GAL	Р	14	-	-	-	Х
16	NAG	Р	15	-	-	-	Х
16	FUC	Р	16	-	-	-	Х
17	NAG	R	1	-	-	-	Х
17	NAG	R	2	-	-	-	Х
17	NAG	R	5	-	-	-	Х
18	MAN	S	9	-	-	-	Х
19	NAG	U	1	-	-	-	Х
19	NAG	U	2	-	-	-	Х
20	MAN	V	4	-	-	-	Х
21	MAN	W	5	-	-	-	Х
22	NAG	Х	1	-	-	-	Х
22	MAN	Х	4	-	-	-	Х
22	MAN	Х	5	-	-	-	Х
7	FUC	А	2	-	-	-	Х
9	FUC	F	3	-	-	-	Х

2 Entry composition (i)

There are 23 unique types of molecules in this entry. The entry contains 12620 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Envelope glycoprotein gp160.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
1	В	126	Total 1001	C 633	N 172	O 190	S 6	0	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
В	559	PRO	ILE	engineered mutation	UNP Q2N0S6
В	605	CYS	THR	engineered mutation	UNP Q2N0S6

• Molecule 2 is a protein called Envelope glycoprotein gp160.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
2	G	449	Total 3532	C 2217	N 623	O 665	$\frac{\mathrm{S}}{27}$	0	0	0

There are 6 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual Comment		Reference
G	332	ASN	THR	engineered mutation	UNP Q2N0S6
G	501	CYS	ALA	engineered mutation	UNP Q2N0S6
G	509	ARG	-	expression tag	UNP Q2N0S6
G	510	ARG	-	expression tag	UNP Q2N0S6
G	512	ARG	-	expression tag	UNP Q2N0S6
G	513	ARG	-	expression tag	UNP Q2N0S6

• Molecule 3 is a protein called 10-1074 Heavy Chain.

Mol	Chain	Residues		Atoms				ZeroOcc	AltConf	Trace
3	Н	230	Total 1753	C 1108	N 293	O 345	S 7	0	0	0

• Molecule 4 is a protein called 10-1074 Light Chain.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
4	т	911	Total	С	Ν	0	\mathbf{S}	0	0	0
<u>+</u>		211	1607	1006	281	314	6		0	0

• Molecule 5 is a protein called IOMA Heavy Chain.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
5	D	229	Total 1742	C 1100	N 298	O 332	S 12	0	0	0

• Molecule 6 is a protein called IOMA Light Chain.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
6	Е	210	Total 1558	C 976	N 261	O 317	${S \atop 4}$	0	0	0

• Molecule 7 is an oligosaccharide called alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-bet a-D-glucopyranose.

Mol	Chain	Residues	A	ton	ıs		ZeroOcc	AltConf	Trace
7	А	2	Total 24	C 14	N 1	O 9	0	0	0

• Molecule 8 is an oligosaccharide called beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-b eta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopy ranose.

Mol	Chain	Residues	I	Aton	ns		ZeroOcc	AltConf	Trace
8	С	4	Total 49	C 28	N 2	O 19	0	0	0

• Molecule 9 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[al pha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues		Aton	ns		ZeroOcc	AltConf	Trace
9	F	3	Total 38	C 22	N 2	O 14	0	0	0

• Molecule 10 is an oligosaccharide called beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxybeta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues		Aton	ns		ZeroOcc	AltConf	Trace
10	Ι	3	Total 39	C 22	N 2	O 15	0	0	0

• Molecule 11 is an oligosaccharide called beta-D-galactopyranose-(1-4)-2-acetamido-2-deoxybeta-D-glucopyranose-(1-4)-[2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)]alpha-D-man nopyranose-(1-3)-[beta-D-galactopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose -(1-2)-[beta-D-galactopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)]alpha -D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopy ranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	I	Aton	ns		ZeroOcc	AltConf	Trace
11	J	13	Total 160	C 90	N 6	0 64	0	0	0

• Molecule 12 is an oligosaccharide called beta-D-galactopyranose-(1-4)-2-acetamido-2-deoxybeta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[beta-D-galactopyranose-(1-4)-2acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-6)]beta-D-mann opyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	I	Aton	ns		ZeroOcc	AltConf	Trace
12	K	10	Total 121	C 68	N 4	O 49	0	0	0

• Molecule 13 is an oligosaccharide called N-acetyl-alpha-neuraminic acid-(2-6)-beta-D-galact opyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy

Mol	Chain	Residues	A	Aton	ns		ZeroOcc	AltConf	Trace
13	М	9	Total 120	С 67	N 5	0 48	0	0	0

• Molecule 14 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
14	N	2	Total C N O 28 16 2 10	0	0	0
14	Q	2	Total C N O 28 16 2 10	0	0	0
14	Т	2	Total C N O 28 16 2 10	0	0	0

• Molecule 15 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyra nose-(1-3)-[alpha-D-mannopyranose-(1-6)-alpha-D-mannopyranose-(1-6)]beta-D-mannopyra nose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	I	Aton	ns		ZeroOcc	AltConf	Trace
15	0	7	Total 83	C 46	N 2	O 35	0	0	0

• Molecule 16 is an oligosaccharide called N-acetyl-alpha-neuraminic acid-(2-6)-beta-D-galact opyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-[2-acetamido-2-deoxy-bet a-D-glucopyranose-(1-4)]alpha-D-mannopyranose-(1-3)-[N-acetyl-alpha-neuraminic acid-(2-6)-beta-D-galactopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-[beta-D-g alactopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)]alpha-D-mannopyran ose-(1-6)][2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)]beta-D-mannopyran ose-(1-6)][2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)]beta-D-mannopyran ose-(1-6)][2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)]beta-D-mannopyran ose-(1-6)][2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace		
16	Р	16	Total 214	C 120	N 9	O 85	0	0	0

• Molecule 17 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-al pha-D-mannopyranose-(1-3)-[2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-ma nnopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose -(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace		
17	R	7	Total 89	C 50	N 4	O 35	0	0	0

• Molecule 18 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyra nose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyr anose-(1-6)-[alpha-D-mannopyranose-(1-3)]alpha-D-mannopyranose-(1-6)]beta-D-mannopyr anose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace		
18	S	10	Total 116	С 64	N 2	O 50	0	0	0

• Molecule 19 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyra nose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyra nose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace		
19	U	7	Total 83	C 46	N 2	O 35	0	0	0

• Molecule 20 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyra nose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace		
20	V	5	Total 61	С 34	N 2	O 25	0	0	0

• Molecule 21 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyra nose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[a lpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace		
21	W	6	Total 71	C 40	N 2	O 29	0	0	0

• Molecule 22 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-

acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace		
22	Х	5	Total 61	С 34	N 2	O 25	0	0	0

• Molecule 23 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf		
23	G	1	Total 14	C 8	N 1	O 5	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Envelope glycoprotein gp160

 \bullet Molecule 3: 10-1074 Heavy Chain

• Molecule 7: alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain A:	100%	
MACI		

 $\bullet \ {\rm Molecule \ 8: \ beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alp ha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose}$

Chain C:	50%	50%
AG2 MA3 UC4		

 • Molecule 9: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)] 2-acetamido-2-deoxy-beta-D-glucopyranose

Chain F:	67%	33%
NAG1 FUC3 FUC3		

• Molecule 10: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain I:	33%	33%	33%
NAG1 NAG2 BMA3			

 $\label{eq:constraint} \bullet \mbox{Molecule 11: beta-D-galactopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)]alpha-D-mannopyranose-(1-3)-[beta-D-galactopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-[beta-D-galactopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)]alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deo$

```
Chain J: 38% 31% 31%
```


NAG1 NAG2 BMA3 MAN4 MAN4 NAG5 GAL6 GAL10 NAG7 NAG11 GAL12 GAL12 GAL12 FUC13

 \bullet Molecule 12: beta-D-galactopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-al pha-D-mannopyranose-(1-3)-[beta-D-galactopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose e

Chain K:	40%	40%	20%
NAG1 NAG2 BMA3 MAN4 NAG5 GAL6 MAN7 NAG8 GAL9 GAL9 FUC10			

 $\label{eq:solution} \bullet \mbox{Molecule 13: N-acetyl-alpha-neuraminic acid-(2-6)-beta-D-galactopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-$

Chain M:	22%	56%	22%
NAG1 NAG2 BMA3 BMA4 NAN4 NAG5 SIA7 SIA7 MAG9			

• Molecule 14: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain N:	50%	50%	
NAG1 NAG2			
• Molecule 14:	2-acetamido-2-deoxy-be	eta-D-glucopyranose-(1-4)-2-acetamido	o-2-deoxy-beta-D-glu

copyranose

Chain Q:

100%

NAG1 NAG2

• Molecule 14: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain T:

100%

NAG1 NAG2

 $\label{eq:mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)-alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose [1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose [1-4)-2-acetamido-2-deoxy-beta-D-glucopyranoy$

86%

5T3X

Chain O: 14%

NAG 1 NAG 2 BMA 3 MAN 4 MAN 5 MAN 5 MAN 7 MAN 7

• Molecule 16: N-acetyl-alpha-neuraminic acid-(2-6)-beta-D-galactopyranose-(1-4)-2-acetamido-2 -deoxy-beta-D-glucopyranose-(1-2)-[2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)]alpha-D-ma nnopyranose-(1-3)-[N-acetyl-alpha-neuraminic acid-(2-6)-beta-D-galactopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-[beta-D-galactopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)]alpha-D-mannopyranose-(1-6)][2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fuc opyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranos

 $\label{eq:constraint} \bullet \mbox{Molecule 17: } 2\mbox{-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[2 -acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-$

Chain R:	29%	29%	43%
NAG1 NAG2 BMA3 MAN4 NAG5 MAN6 NAG5 NAG7			

 $\label{eq:solution} \bullet \mbox{Molecule 18: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose$

 $\label{eq:mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-b$

Chain U:	29%	71%
NAG1 NAG2 Sma3 Sma3 Aan5 Aan5 Aan5 Aan7		

 \bullet Molecule 20: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose nose

Chain V: 20% 40% 40%

 $\label{eq:constraint} \bullet \mbox{Molecule 21: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamid$

Chain W:	33%	50%	17%
NAG1 NAG2 BMA3 MAN4 FUC6			

 \bullet Molecule 22: alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deox

Chain X:	40%	20%	40%
VAG1 VAG2 SMA3 SMA3 VAN5 VAN5			

4 Data and refinement statistics (i)

Property	Value	Source
Space group	Н 3	Depositor
Cell constants	217.51Å 217.51Å 156.01Å	Deperitor
a, b, c, α , β , γ	90.00° 90.00° 120.00°	Depositor
$\mathbf{Posolution}(\mathbf{\hat{A}})$	80.63 - 3.90	Depositor
Resolution (A)	80.63 - 3.90	EDS
% Data completeness	$99.9 \ (80.63 - 3.90)$	Depositor
(in resolution range)	$95.7 \ (80.63 - 3.90)$	EDS
R _{merge}	0.35	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.02 (at 3.89 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.10.1_2155	Depositor
B B.	0.296 , 0.331	Depositor
Π, Π_{free}	0.317 , 0.353	DCC
R_{free} test set	1276 reflections $(5.09%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	134.0	Xtriage
Anisotropy	0.071	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.30 , 326.4	EDS
L-test for twinning ²	$< L >=0.42, < L^2>=0.25$	Xtriage
Estimated twinning fraction	0.075 for h,-h-k,-l	Xtriage
Reported twinning fraction	0.160 for k,h,-l	Depositor
Outliers	0 of 25075 reflections	Xtriage
F_o, F_c correlation	0.85	EDS
Total number of atoms	12620	wwPDB-VP
Average B, all atoms $(Å^2)$	302.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.61% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: GAL, NAG, BMA, FUC, SIA, MAN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal Chain		Bond	lengths	Bond angles		
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	В	0.25	0/1019	0.45	0/1382	
2	G	0.28	0/3605	0.53	2/4895~(0.0%)	
3	Н	0.25	0/1796	0.48	0/2450	
4	L	0.26	0/1649	0.47	0/2250	
5	D	0.27	0/1790	0.55	2/2437~(0.1%)	
6	Е	0.26	0/1596	0.50	0/2175	
All	All	0.26	0/11455	0.51	4/15589~(0.0%)	

There are no bond length outliers.

All (4) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	D	100(D)	SER	C-N-CD	-8.05	102.89	120.60
2	G	458	GLY	O-C-N	-8.00	109.61	123.20
5	D	100(D)	SER	C-N-CA	6.31	148.50	122.00
2	G	458	GLY	CA-C-N	5.83	127.86	116.20

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	В	1001	0	976	51	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	G	3532	0	3462	132	0
3	Н	1753	0	1719	52	0
4	L	1607	0	1550	52	0
5	D	1742	0	1698	72	0
6	Е	1558	0	1511	52	0
7	А	24	0	22	0	0
8	С	49	0	43	0	0
9	F	38	0	34	0	0
10	Ι	39	0	34	1	0
11	J	160	0	136	2	0
12	Κ	121	0	103	1	0
13	М	120	0	101	1	0
14	Ν	28	0	25	0	0
14	Q	28	0	25	0	0
14	Т	28	0	25	0	0
15	0	83	0	70	2	0
16	Р	214	0	180	5	0
17	R	89	0	76	3	0
18	S	116	0	97	4	0
19	U	83	0	70	0	0
20	V	61	0	52	1	0
21	W	71	0	61	1	0
22	Х	61	0	52	1	0
23	G	14	0	13	1	0
All	All	12620	0	12135	378	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 15.

All (378) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:G:55:ALA:HB3	2:G:216:HIS:HB2	1.57	0.87
6:E:47:ILE:HG22	6:E:48:ILE:HG12	1.61	0.82
2:G:119:CYS:SG	2:G:205:CYS:N	2.50	0.81
5:D:199:ASN:OD1	5:D:206:LYS:NZ	2.13	0.80
2:G:297:THR:HG22	2:G:444:ARG:HG3	1.63	0.78
5:D:119:PRO:HB3	5:D:145:TYR:HB3	1.66	0.77
2:G:51:THR:HA	2:G:103:GLN:HE22	1.52	0.75
2:G:175:LEU:O	2:G:320:THR:OG1	2.06	0.73
5:D:119:PRO:HD2	5:D:205:THR:HB	1.70	0.72

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:642:ILE:HG21	2:G:496:VAL:HG11	1.72	0.72
3:H:100:ARG:NH2	4:L:66(A):ASP:OD2	2.22	0.72
1:B:606:THR:HG21	1:B:646:LEU:HD22	1.71	0.72
5:D:52(A):PRO:HG3	5:D:78:PHE:HZ	1.54	0.71
4:L:13:VAL:HG23	4:L:104:LEU:HD11	1.75	0.69
5:D:35:HIS:HD2	5:D:50:TRP:HB3	1.55	0.69
2:G:65:LYS:HB2	2:G:68:VAL:HG23	1.75	0.69
5:D:51:ILE:HG23	5:D:57:VAL:HG12	1.74	0.69
5:D:150:VAL:HG11	5:D:198:VAL:HG13	1.75	0.68
16:P:3:BMA:H2	16:P:4:MAN:H5	1.75	0.68
2:G:279:ASN:HD22	2:G:282:LYS:HG2	1.58	0.68
11:J:5:NAG:H81	11:J:9:NAG:H82	1.76	0.67
1:B:606:THR:OG1	2:G:36:VAL:O	2.11	0.67
2:G:69:TRP:HE1	2:G:253:PRO:HG2	1.60	0.67
4:L:39:ARG:NH1	4:L:83:GLU:O	2.27	0.67
2:G:303:THR:HB	2:G:321:GLY:HA3	1.75	0.67
2:G:131:CYS:HB3	2:G:155:LYS:HB3	1.77	0.66
2:G:92:GLU:HA	2:G:238:PRO:HA	1.77	0.66
4:L:25:ARG:HH21	4:L:90:MET:H	1.42	0.66
3:H:38:ARG:HG3	3:H:48:ILE:HD11	1.79	0.65
3:H:16:GLU:H	3:H:82(C):VAL:HG22	1.61	0.65
2:G:258:GLN:NE2	2:G:371:VAL:O	2.29	0.65
2:G:424:ILE:HG22	2:G:426:MET:H	1.63	0.64
6:E:48:ILE:HG21	6:E:64:ALA:HB3	1.78	0.64
3:H:195:ILE:HG12	3:H:210:ARG:HG2	1.79	0.64
3:H:11:LEU:HD13	3:H:147:PRO:HG3	1.80	0.64
5:D:37:VAL:HG22	5:D:47:TRP:HA	1.81	0.63
3:H:100(B):TYR:CE2	4:L:93:SER:HB2	2.34	0.63
4:L:159:GLY:O	4:L:180:SER:N	2.27	0.63
2:G:456:ARG:NH2	6:E:93:ASP:OD1	2.25	0.62
4:L:83:GLU:HG2	4:L:106:VAL:H	1.64	0.62
6:E:66:LYS:HA	6:E:71:ALA:HA	1.81	0.62
4:L:23:CYS:HB2	4:L:71:ALA:HB3	1.81	0.62
1:B:596:TRP:O	1:B:651:ASN:ND2	2.32	0.62
1:B:526:ALA:HA	2:G:43:PRO:HB2	1.82	0.62
4:L:61:ARG:NH1	4:L:76:SER:O	2.29	0.61
4:L:35:TRP:HB2	4:L:48:ILE:HB	1.81	0.61
3:H:3:GLN:HG3	3:H:25:SER:HB2	1.82	0.61
2:G:439:ILE:HB	2:G:443:ILE:HD11	1.81	0.61
1:B:654:GLU:OE1	2:G:503:ARG:NH1	2.32	0.61
5:D:123:PRO:HD3	5:D:209:LYS:HE2	1.82	0.60

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:G:251:ILE:HG23	2:G:482:GLU:HG3	1.83	0.60
5:D:27:TYR:HE2	5:D:32:TYR:HB2	1.65	0.60
2:G:266:ALA:N	2:G:288:PHE:O	2.31	0.60
6:E:23:CYS:HB3	6:E:71:ALA:HB3	1.81	0.60
2:G:477:ASP:OD1	2:G:480:ARG:NH1	2.34	0.60
1:B:540:GLN:HE22	2:G:43:PRO:HG3	1.66	0.60
1:B:537:LEU:HD13	1:B:602:LEU:O	2.02	0.60
4:L:137:ILE:HD13	4:L:145:VAL:HG11	1.83	0.60
3:H:47:TRP:HE3	4:L:96:TRP:HA	1.67	0.60
4:L:25:ARG:NH2	4:L:90:MET:H	2.00	0.59
5:D:95:GLU:HA	5:D:100(H):GLY:O	2.03	0.59
4:L:28:LEU:HB3	4:L:94:ARG:HB2	1.84	0.59
2:G:274:SER:HB3	2:G:277:ILE:HG12	1.85	0.59
1:B:533:ALA:HB1	2:G:43:PRO:HG2	1.85	0.58
5:D:35:HIS:CD2	5:D:50:TRP:HB3	2.37	0.58
5:D:142:VAL:HG11	5:D:150:VAL:HG21	1.85	0.58
20:V:1:NAG:O3	20:V:2:NAG:N2	2.35	0.58
6:E:34:SER:N	6:E:89:TYR:O	2.31	0.58
2:G:195:ASN:ND2	2:G:199:SER:O	2.34	0.58
5:D:2:VAL:HG11	5:D:94:ARG:HH12	1.67	0.58
5:D:141:LEU:HD12	5:D:178:LEU:O	2.03	0.58
1:B:598:CYS:C	1:B:600:GLY:H	2.08	0.58
1:B:638:TYR:HA	1:B:641:ILE:HD12	1.86	0.58
5:D:195:ILE:HG12	5:D:210:ARG:HG2	1.86	0.57
4:L:179:LEU:HG	4:L:181:LEU:HD13	1.86	0.57
5:D:150:VAL:HB	5:D:178:LEU:HD21	1.86	0.57
5:D:10:GLN:HB3	5:D:12:LYS:HE2	1.86	0.57
5:D:116:THR:HG23	5:D:203:SER:HA	1.86	0.57
5:D:145:TYR:HE1	5:D:148:GLU:HA	1.70	0.57
6:E:92:ALA:C	6:E:94:GLY:H	2.07	0.57
1:B:650:GLN:O	1:B:654:GLU:N	2.32	0.57
5:D:47:TRP:HZ2	5:D:50:TRP:HD1	1.52	0.57
1:B:647:GLU:HG3	1:B:648:GLU:HG3	1.87	0.57
3:H:100:ARG:NH1	3:H:100(A):ILE:O	2.37	0.57
6:E:109:GLN:HE22	6:E:172:LYS:HG2	1.68	0.57
2:G:370:GLU:OE1	2:G:428:GLN:NE2	2.38	0.56
22:X:1:NAG:O3	22:X:2:NAG:N2	2.38	0.56
2:G:182:VAL:HG13	2:G:192:ARG:HD3	1.87	0.56
1:B:606:THR:OG1	2:G:36:VAL:HG23	2.06	0.56
2:G:34:LEU:HB3	2:G:498:PRO:HB2	1.86	0.56
2:G:285:LEU:HD22	2:G:453:ILE:HG12	1.87	0.56

Atom-1	Atom-2	Interatomic	Clash
	1100m 2	distance $(Å)$	overlap (Å)
3:H:147:PRO:O	3:H:200:HIS:NE2	2.38	0.56
2:G:441:GLY:HA3	17:R:1:NAG:H82	1.88	0.56
5:D:68:SER:HB3	5:D:81:GLU:HB3	1.87	0.56
5:D:18:VAL:HG23	5:D:82(C):LEU:HD11	1.88	0.56
3:H:193:THR:HG21	3:H:210:ARG:CZ	2.36	0.56
2:G:155:LYS:O	2:G:175:LEU:HA	2.05	0.56
5:D:52(A):PRO:HG3	5:D:78:PHE:CZ	2.39	0.56
2:G:369:LEU:O	2:G:373:THR:OG1	2.23	0.55
5:D:159:LEU:HD21	5:D:182:VAL:HG21	1.88	0.55
4:L:32:ALA:N	4:L:91:TRP:O	2.32	0.55
2:G:385:CYS:HA	2:G:418:CYS:HA	1.87	0.55
6:E:21:ILE:HD12	6:E:73:LEU:HD23	1.88	0.55
2:G:380:GLY:HA3	2:G:439:ILE:HG13	1.89	0.54
4:L:117:THR:HA	4:L:205:LYS:HG3	1.89	0.54
4:L:186:TRP:CD1	4:L:187:LYS:HG3	2.42	0.54
5:D:142:VAL:O	5:D:177:SER:HA	2.06	0.54
6:E:15:PRO:HD3	6:E:106:VAL:HG13	1.88	0.54
2:G:193:LEU:HB2	2:G:196:CYS:SG	2.47	0.54
2:G:69:TRP:CG	2:G:70:ALA:N	2.75	0.54
2:G:325:ASP:OD1	4:L:30:SER:N	2.25	0.54
12:K:1:NAG:H62	12:K:2:NAG:H82	1.89	0.54
5:D:52:ASN:HB3	5:D:56:ALA:HB3	1.90	0.54
1:B:628:TRP:CD1	2:G:43:PRO:HD2	2.42	0.54
1:B:530:MET:HG2	1:B:628:TRP:CG	2.43	0.54
2:G:100:MET:HB2	2:G:483:LEU:HD13	1.90	0.54
5:D:69:MET:HG2	5:D:80:MET:HG2	1.90	0.54
2:G:119:CYS:HB3	2:G:203:GLN:O	2.08	0.53
1:B:545:LEU:HD11	1:B:583:VAL:HG12	1.89	0.53
6:E:92:ALA:O	6:E:94:GLY:N	2.34	0.53
4:L:50:ASN:O	18:S:5:MAN:O3	2.24	0.53
3:H:166:PHE:HB3	4:L:176:SER:HB3	1.90	0.53
2:G:98:ASN:ND2	2:G:486:TYR:O	2.42	0.53
6:E:50:GLU:OE1	6:E:53:LYS:NZ	2.29	0.53
2:G:320:THR:HG22	2:G:438:PRO:HG3	1.91	0.52
3:H:142:VAL:HB	3:H:178:LEU:HG	1.92	0.52
6:E:121:PRO:HD2	6:E:186:TRP:CZ2	2.44	0.52
2:G:252:LYS:HE3	2:G:262:ASN:HB3	1.91	0.52
5:D:22:CYS:O	5:D:78:PHE:N	2.40	0.52
2:G:183:GLN:HA	2:G:191:TYR:HA	1.92	0.52
2:G:430:ILE:HG22	2:G:431:GLY:H	1.75	0.52
3:H:123:PRO:HD2	4:L:124:GLU:HB2	1.90	0.52

	A +	a Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
3:H:166:PHE:CZ	4:L:136:LEU:HB3	2.44	0.52
2:G:499:THR:HG23	2:G:501:CYS:H	1.75	0.52
3:H:169:VAL:HG21	4:L:161:GLU:HB3	1.90	0.52
11:J:4:MAN:O3	11:J:7:NAG:O5	2.20	0.52
1:B:610:TRP:NE1	1:B:614:TRP:O	2.42	0.52
2:G:358:ILE:HG12	2:G:396:ILE:HG23	1.91	0.52
2:G:473:GLY:O	5:D:54:ARG:NH1	2.40	0.51
3:H:100(A):ILE:HG12	3:H:100(J):PHE:HB3	1.92	0.51
5:D:52:ASN:N	5:D:56:ALA:O	2.38	0.51
6:E:145:VAL:HG12	6:E:146:THR:N	2.25	0.51
1:B:523:LEU:HA	1:B:540:GLN:NE2	2.25	0.51
4:L:208:ALA:HB3	4:L:211:GLU:HG3	1.93	0.51
6:E:89:TYR:CE1	6:E:96:VAL:HG13	2.46	0.51
10:I:1:NAG:O6	10:I:2:NAG:N2	2.43	0.51
16:P:9:MAN:O5	16:P:15:NAG:H82	2.11	0.51
1:B:572:GLY:O	1:B:575:GLN:NE2	2.43	0.51
2:G:55:ALA:O	2:G:216:HIS:N	2.36	0.51
2:G:153:GLU:HG3	2:G:419:ARG:HH21	1.75	0.51
3:H:100(D):VAL:HA	18:S:2:NAG:H2	1.92	0.51
4:L:34:GLN:HE21	4:L:91:TRP:HD1	1.59	0.51
5:D:35:HIS:N	5:D:93:ALA:O	2.38	0.51
3:H:99:GLN:HG3	3:H:100(J):PHE:CD2	2.45	0.51
6:E:12:SER:HB2	6:E:107:LEU:HD13	1.91	0.51
4:L:31:ARG:NH2	4:L:66:PRO:O	2.43	0.51
1:B:523:LEU:HA	1:B:540:GLN:HE21	1.74	0.51
3:H:101:ASP:OD1	3:H:101:ASP:N	2.44	0.51
4:L:31:ARG:O	4:L:51:ASN:ND2	2.43	0.51
4:L:82:ASP:HB2	4:L:106:VAL:HG21	1.93	0.51
5:D:126:PRO:HA	6:E:119:PHE:CE1	2.46	0.51
2:G:263:GLY:O	2:G:450:THR:HG21	2.12	0.50
2:G:55:ALA:N	2:G:216:HIS:O	2.44	0.50
4:L:28:LEU:O	4:L:92:ASP:HB2	2.11	0.50
2:G:274:SER:HB2	2:G:284:ILE:HG23	1.94	0.50
1:B:610:TRP:CD2	2:G:498:PRO:HB3	2.47	0.50
2:G:266:ALA:HB2	2:G:287:GLN:HB3	1.92	0.50
3:H:6:GLU:N	3:H:6:GLU:OE1	2.44	0.50
3:H:126:PRO:HD2	3:H:213:PRO:HA	1.94	0.50
5:D:31:GLY:O	5:D:98:ASP:HB3	2.12	0.50
1:B:610:TRP:CE3	2:G:36:VAL:HG12	2.47	0.50
5:D:186:SER:HA	5:D:189:LEU:HG	1.92	0.50
2:G:335:LYS:H	2:G:413:SER:HA	1.76	0.50

5T3X

Atom-1	Atom 2	Interatomic	Clash
	Atom-2	distance (Å)	overlap (Å)
3:H:12:VAL:HG21	3:H:18:LEU:HD12	1.94	0.49
5:D:30:THR:HA	5:D:52(A):PRO:HB2	1.94	0.49
5:D:100(G):ARG:HA	6:E:89:TYR:CE2	2.47	0.49
2:G:164:GLU:HA	2:G:312:GLY:O	2.12	0.49
2:G:55:ALA:HA	2:G:75:VAL:O	2.13	0.49
5:D:144:ASP:HA	5:D:175:LEU:HB3	1.94	0.49
6:E:37:GLN:N	6:E:45:LYS:O	2.45	0.49
2:G:109:ILE:HG12	2:G:427:TRP:CD2	2.48	0.49
5:D:200:HIS:CE1	5:D:203:SER:HG	2.26	0.49
2:G:215:ILE:N	2:G:251:ILE:O	2.39	0.49
21:W:2:NAG:H4	21:W:3:BMA:O2	2.12	0.49
1:B:522:PHE:CD1	1:B:523:LEU:HG	2.47	0.48
3:H:29:MET:HA	3:H:34:TRP:HZ2	1.78	0.48
5:D:100(G):ARG:HE	6:E:49:TYR:HD2	1.61	0.48
1:B:522:PHE:CE2	1:B:540:GLN:HA	2.47	0.48
2:G:326:ILE:HG12	4:L:94:ARG:NE	2.28	0.48
5:D:100(C):TRP:O	5:D:100(D):SER:HB2	2.13	0.48
2:G:393:SER:HB3	2:G:395:TRP:HE1	1.77	0.48
4:L:35:TRP:CZ3	4:L:88:CYS:HB2	2.48	0.48
5:D:166:PHE:HE2	5:D:181:VAL:HG13	1.78	0.48
4:L:92:ASP:OD1	4:L:95:SER:OG	2.28	0.48
5:D:50:TRP:CE2	5:D:58:LYS:HB3	2.49	0.48
2:G:46:LYS:HG3	2:G:492:GLU:HG3	1.95	0.48
3:H:100(C):GLY:HA3	3:H:100(I):GLU:OE1	2.13	0.48
6:E:121:PRO:HD3	6:E:133:LEU:HD21	1.95	0.48
2:G:378:CYS:HB3	2:G:383:PHE:CE1	2.48	0.48
3:H:159:LEU:HG	3:H:182:VAL:HG21	1.96	0.48
5:D:167:PRO:HD2	6:E:163:THR:HB	1.95	0.48
5:D:59:TYR:O	5:D:64:ARG:NH2	2.47	0.48
6:E:36:TYR:HE1	6:E:89:TYR:HB3	1.79	0.48
2:G:279:ASN:HB2	16:P:16:FUC:H61	1.96	0.47
3:H:100(K):PHE:HE2	4:L:91:TRP:HB3	1.79	0.47
2:G:474:ASP:OD1	2:G:476:ARG:NH1	2.47	0.47
5:D:99:SER:OG	5:D:100(B):ASP:O	2.32	0.47
1:B:635:ILE:O	1:B:639:THR:HG23	2.14	0.47
3:H:121:VAL:HA	3:H:141:LEU:O	2.14	0.47
4:L:122:SER:OG	4:L:125:GLU:N	2.33	0.47
2:G:104:MET:HG2	2:G:217:TYR:CZ	2.50	0.47
17:R:2:NAG:O3	17:R:3:BMA:O2	2.19	0.47
4:L:55:PRO:HD2	4:L:58:ILE:HG13	1.97	0.47
1:B:605:CYS:HA	2:G:37:THR:HG22	1.95	$0.\overline{47}$

 0.47

 Continued on next page...

		Interatomic	Clash overlap (Å)	
Atom-1	Atom-2	distance (Å)		
1:B:607:ASN:OD1	1:B:607:ASN:N	2.47	0.47	
2:G:107:ASP:OD2	2:G:217:TYR:OH	2.32	0.47	
6:E:27(B):ASP:O	6:E:30:PHE:HB2	2.14	0.47	
6:E:185:GLN:O	6:E:192:TYR:OH	2.33	0.47	
1:B:522:PHE:CE2	1:B:543:ASN:HB2	2.50	0.47	
5:D:67:VAL:HG11	5:D:69:MET:HE3	1.97	0.46	
1:B:571:TRP:CH2	2:G:74:CYS:HB2	2.50	0.46	
2:G:279:ASN:ND2	2:G:282:LYS:HG2	2.25	0.46	
2:G:298:ARG:HB2	2:G:383:PHE:HZ	1.79	0.46	
2:G:338:TRP:O	2:G:342:LEU:HG	2.15	0.46	
2:G:175:LEU:HD22	2:G:321(A):ASP:HA	1.97	0.46	
3:H:38:ARG:HH12	3:H:82:LEU:HD22	1.79	0.46	
3:H:124:LEU:HD23	4:L:122:SER:HB3	1.97	0.46	
2:G:37:THR:OG1	2:G:497:ALA:O	2.33	0.46	
2:G:206:PRO:HD3	2:G:318:TYR:CE2	2.51	0.46	
1:B:645:LEU:HD12	1:B:649:SER:HB3	1.98	0.46	
4:L:151:ALA:HB1	4:L:189:HIS:CD2	2.51	0.46	
5:D:51:ILE:HD11	5:D:69:MET:HB3	1.98	0.46	
6:E:27(B):ASP:OD1	6:E:27(C):VAL:N	2.43	0.46	
13:M:4:MAN:H4	13:M:5:NAG:H83	1.97	0.46	
5:D:168:ALA:HA	5:D:178:LEU:HB3	1.98	0.46	
6:E:145:VAL:HG12	6:E:146:THR:H	1.80	0.46	
2:G:192:ARG:NH2	2:G:193:LEU:O	2.44	0.46	
4:L:8:VAL:HG12	4:L:101:ALA:HB3	1.98	0.45	
1:B:651:ASN:O	1:B:655:LYS:HB2	2.15	0.45	
3:H:166:PHE:CG	4:L:136:LEU:HD22	2.51	0.45	
4:L:34:GLN:HB2	4:L:89:HIS:HB3	1.98	0.45	
6:E:48:ILE:HA	6:E:53:LYS:O	2.16	0.45	
2:G:122:LEU:O	2:G:125:LEU:HB2	2.16	0.45	
5:D:138:LEU:HB2	5:D:211:VAL:HG11	1.98	0.45	
4:L:49:TYR:O	4:L:53:ASP:HB2	2.16	0.45	
4:L:66(A):ASP:O	18:S:4:MAN:O3	2.29	0.45	
3:H:135:THR:N	3:H:186:SER:HG	2.14	0.45	
5:D:38:ARG:HH22	5:D:86:ASP:HA	1.81	0.45	
2:G:384:TYR:CE1	2:G:421:LYS:HB3	2.51	0.45	
1:B:658:GLN:O	1:B:662:ALA:N	2.50	0.45	
2:G:44:VAL:HG12	2:G:492:GLU:HB2	1.98	0.45	
5:D:96:MET:HG2	5:D:101:VAL:HG23	1.97	0.45	
1:B:623:TRP:HH2	2:G:39:TYR:CE1	2.35	0.45	
5:D:121:VAL:HG21	5:D:198:VAL:HG11	1.99	0.45	
6:E:35:TRP:CZ3	6:E:88:CYS:HB3	2.52	0.44	

5T3X	
------	--

		Interatomic	Clash overlap (Å)	
Atom-1	Atom-2	distance (\AA)		
2:G:80:ASN:O 2:G:82:GLN:N		2.49	0.44	
3:H:142:VAL:HG11	3:H:150:VAL:HG11	1.99	0.44	
1:B:571:TRP:HZ3	2:G:72:HIS:H	1.65	0.44	
2:G:339:ASN:OD1	23:G:3390:NAG:N2	2.51	0.44	
2:G:434:MET:HG2	2:G:435:TYR:N	2.33	0.44	
2:G:35:TRP:O	2:G:498:PRO:HA	2.18	0.44	
2:G:384:TYR:O	2:G:419:ARG:N	2.46	0.44	
16:P:4:MAN:H2	16:P:15:NAG:H61	1.99	0.44	
5:D:170:LEU:HD11	5:D:174:GLY:HA2	1.98	0.44	
5:D:171:GLN:HG2	6:E:161:GLU:OE1	2.18	0.44	
6:E:185:GLN:O	6:E:189:HIS:ND1	2.48	0.44	
1:B:610:TRP:HE3	2:G:36:VAL:HG12	1.83	0.44	
1:B:618:ASN:HB2	1:B:621:GLU:HG3	1.98	0.44	
2:G:120:VAL:HG11	2:G:316:ALA:O	2.17	0.44	
3:H:10:GLY:HA3	3:H:202:PRO:HG3	2.00	0.44	
4:L:66(B):ILE:O	4:L:66(C):ASN:HB2	2.18	0.44	
5:D:122:PHE:CE2	5:D:141:LEU:HD23	2.53	0.44	
2:G:198:THR:OG1	2:G:199:SER:N	2.51	0.43	
18:S:8:MAN:H2	18:S:9:MAN:H2	1.78	0.43	
2:G:298:ARG:HB2	2:G:383:PHE:CZ	2.53	0.43	
2:G:350:ARG:NH2	2:G:396:ILE:O	2.48	0.43	
6:E:16:GLY:H	6:E:78:LEU:HB2	1.82	0.43	
2:G:312:GLY:HA2	2:G:315:GLN:HB2	1.98	0.43	
2:G:393:SER:HB3	2:G:395:TRP:NE1	2.32	0.43	
3:H:139:GLY:HA2	3:H:154:TRP:CZ2	2.53	0.43	
4:L:139:ASP:OD1	4:L:170:ASN:ND2	2.52	0.43	
3:H:164:HIS:NE2	4:L:168:GLN:OE1	2.51	0.43	
5:D:16:ALA:O	5:D:82(C):LEU:HG	2.18	0.43	
5:D:92:CYS:O	5:D:104:GLY:N	2.48	0.43	
5:D:124:LEU:HB3	6:E:119:PHE:CD2	2.53	0.43	
2:G:69:TRP:CH2	2:G:108:ILE:HG23	2.54	0.43	
5:D:122:PHE:HE2	5:D:141:LEU:HD23	1.83	0.43	
6:E:170:ASN:OD1	6:E:170:ASN:N	2.39	0.43	
2:G:112:TRP:O	2:G:115:SER:OG	2.31	0.43	
2:G:279:ASN:OD1	5:D:100(F):TRP:NE1	2.48	0.43	
2:G:321(A):ASP:OD1	2:G:322:ILE:N	2.51	0.43	
3:H:87:THR:HG23	3:H:110:THR:HA	2.00	0.43	
3:H:107:THR:OG1	3:H:108:THR:N	2.50	0.43	
5:D:100(G):ARG:HA	6:E:89:TYR:HE2	1.83	0.43	
3:H:209:LYS:HE2	3:H:209:LYS:HB2	1.78	0.43	
6:E:30:PHE:HB3	6:E:32:LEU:HG	2.00	0.43	

	1 + 0	Interatomic	Clash overlap (Å)	
Atom-1	Atom-2	distance (\AA)		
6:E:50:GLU:HB2 6:E:53:LYS:HG2		1.99	0.43	
6:E:83:GLU:HG3	6:E:104:LEU:O	2.19	0.43	
17:R:2:NAG:H61	17:R:6:MAN:H3	2.01	0.43	
2:G:96:TRP:CG	2:G:275:GLU:HB2	2.54	0.43	
2:G:157:CYS:O	2:G:173:TYR:HA	2.18	0.43	
2:G:231:LYS:HD2	2:G:267:GLU:HG3	2.01	0.43	
2:G:380:GLY:HA3	2:G:439:ILE:CG1	2.48	0.43	
2:G:462:ASN:OD1	6:E:27(A):ARG:NH1	2.52	0.43	
6:E:89:TYR:HB2	6:E:98:PHE:CD1	2.53	0.43	
2:G:93:PHE:HZ	2:G:226:LEU:HB2	1.84	0.42	
2:G:252:LYS:O	2:G:254:VAL:N	2.52	0.42	
2:G:300:ASN:HB3	2:G:322:ILE:HD13	2.01	0.42	
5:D:141:LEU:HD11	5:D:177:SER:OG	2.19	0.42	
3:H:100(G):PHE:HB2	3:H:100(I):GLU:HG3	2.01	0.42	
5:D:145:TYR:HD1	5:D:200:HIS:NE2	2.17	0.42	
5:D:200:HIS:CD2	5:D:202:PRO:HD2	2.54	0.42	
6:E:25:GLY:O	6:E:69:ASN:HB3	2.19	0.42	
1:B:610:TRP:CH2	2:G:498:PRO:HD3	2.53	0.42	
1:B:614:TRP:CD1	1:B:638:TYR:CG	3.08	0.42	
1:B:622:ILE:O	1:B:626:MET:HB2	2.20	0.42	
6:E:32:LEU:HD12	6:E:91:TYR:HB3	2.02	0.42	
1:B:607:ASN:HA	2:G:502:LYS:HG3	2.02	0.42	
5:D:145:TYR:CE1	5:D:150:VAL:HG23	2.55	0.42	
1:B:597:GLY:HA3	2:G:503:ARG:CZ	2.50	0.42	
1:B:608:VAL:HB	2:G:36:VAL:CG2	2.50	0.42	
2:G:226:LEU:O	2:G:486:TYR:HA	2.20	0.42	
6:E:115:SER:O	6:E:137:ILE:HA	2.20	0.42	
1:B:614:TRP:CZ3	1:B:642:ILE:HG12	2.55	0.42	
2:G:427:TRP:O	2:G:429:ARG:N	2.53	0.42	
4:L:32:ALA:HA	4:L:51:ASN:ND2	2.35	0.42	
2:G:376:PHE:O	2:G:382:PHE:HA	2.19	0.42	
3:H:138:LEU:HD13	3:H:211:VAL:HG11	2.02	0.42	
4:L:38:HIS:O	4:L:84:ALA:HB1	2.19	0.42	
4:L:161:GLU:HB2	4:L:178:TYR:HB2	2.01	0.42	
5:D:100(G):ARG:HG3	5:D:100(H):GLY:N	2.35	0.42	
5:D:139:GLY:HA2	5:D:154:TRP:CH2	2.55	0.42	
1:B:596:TRP:CD1	1:B:646:LEU:HB2	2.54	0.41	
2:G:116:LEU:HD22	2:G:434:MET:HG3	2.02	0.41	
3:H:197:ASN:ND2	3:H:208:ASP:OD2	2.53	0.41	
2:G:134:VAL:HB	2:G:154:LEU:O	2.20	0.41	
3:H:15:SER:N	3:H:82(C):VAL:O	2.37	0.41	

5T3X

A + 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
3:H:143:LYS:HZ3	4:L:130:LYS:HB3	1.85	0.41
5:D:145:TYR:CE1	5:D:148:GLU:HA	2.52	0.41
6:E:35:TRP:CD1	6:E:48:ILE:HB	2.56	0.41
1:B:523:LEU:HD11	2:G:491:ILE:HD11	2.02	0.41
1:B:540:GLN:HE22	2:G:43:PRO:CG	2.33	0.41
3:H:126:PRO:HB3	3:H:138:LEU:HB3	2.01	0.41
2:G:59:LYS:HA	2:G:59:LYS:HD2	1.84	0.41
3:H:72:ASP:HB3	3:H:75:LYS:HB2	2.02	0.41
3:H:150:VAL:HB	3:H:178:LEU:HD21	2.02	0.41
4:L:121:PRO:HD2	4:L:186:TRP:CE2	2.56	0.41
2:G:164:GLU:HG3	2:G:308:ARG:HB3	2.02	0.41
3:H:200:HIS:CD2	3:H:202:PRO:HD2	2.56	0.41
2:G:461:THR:HB	2:G:464:THR:HG21	2.02	0.41
3:H:33:TYR:HE2	3:H:97:ARG:HD3	1.86	0.41
3:H:100(D):VAL:HG13	3:H:100(G):PHE:HB2	2.01	0.41
1:B:646:LEU:O	1:B:650:GLN:HB2	2.19	0.41
2:G:346:VAL:O	2:G:350:ARG:HG3	2.20	0.41
6:E:23:CYS:O	6:E:71:ALA:N	2.32	0.41
1:B:585:ARG:NE	2:G:491:ILE:O	2.41	0.41
1:B:648:GLU:O	1:B:652:GLN:HB3	2.20	0.41
2:G:282:LYS:HA	2:G:282:LYS:HD3	1.84	0.41
2:G:295:ASN:O	2:G:331:CYS:HA	2.21	0.41
3:H:145:TYR:CZ	3:H:176:TYR:HB2	2.55	0.41
5:D:12:LYS:HG3	5:D:18:VAL:CG2	2.51	0.41
5:D:122:PHE:HB2	6:E:122:SER:OG	2.21	0.41
6:E:159:GLY:O	6:E:179:LEU:HA	2.21	0.41
16:P:15:NAG:HO3	16:P:15:NAG:C7	2.33	0.41
1:B:642:ILE:HD13	2:G:496:VAL:HG11	2.03	0.41
2:G:446:VAL:O	15:O:1:NAG:H5	2.21	0.41
3:H:29:MET:O	3:H:71:ARG:NH1	2.54	0.40
6:E:67:SER:N	6:E:70:THR:O	2.44	0.40
4:L:31:ARG:HA	4:L:92:ASP:HA	2.03	0.40
6:E:23:CYS:HB2	6:E:35:TRP:CH2	2.57	0.40
6:E:38:GLN:O	6:E:84:ALA:HB1	2.20	0.40
2:G:96:TRP:HH2	2:G:285:LEU:HG	1.86	0.40
6:E:82:ASP:O	6:E:104:LEU:HD23	2.22	0.40
15:O:4:MAN:H2	15:O:5:MAN:H2	1.65	0.40
2:G:213:ILE:O	2:G:215:ILE:HG13	2.22	0.40
5:D:114:ALA:HB3	5:D:146:PHE:CD1	2.57	0.40
2:G:152:GLY:C	2:G:154:LEU:H	2.25	0.40
6:E:132:THR:HA	6:E:179:LEU:O	2.22	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	В	122/153~(80%)	106 (87%)	15 (12%)	1 (1%)	19 57
2	G	441/481 (92%)	407 (92%)	32 (7%)	2(0%)	29 67
3	Н	226/238~(95%)	216 (96%)	10 (4%)	0	100 100
4	L	209/214~(98%)	199~(95%)	10 (5%)	0	100 100
5	D	227/232~(98%)	216 (95%)	10 (4%)	1 (0%)	34 71
6	Ε	208/214~(97%)	193~(93%)	13~(6%)	2(1%)	15 52
All	All	1433/1532~(94%)	1337 (93%)	90 (6%)	6 (0%)	34 71

All (6) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	В	599	SER
2	G	138	ILE
5	D	100(D)	SER
6	Ε	93	ASP
2	G	457	ASP
6	Е	51	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	В	108/129~(84%)	104 (96%)	4 (4%)	34 60
2	G	401/428~(94%)	395~(98%)	6 (2%)	65 80
3	Н	202/208~(97%)	197~(98%)	5 (2%)	47 69
4	L	175/178~(98%)	169~(97%)	6 (3%)	37 62
5	D	194/197~(98%)	189~(97%)	5(3%)	46 68
6	Ε	173/177~(98%)	170~(98%)	3(2%)	60 78
All	All	1253/1317~(95%)	1224 (98%)	29 (2%)	50 71

All (29) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	В	606	THR
1	В	607	ASN
1	В	619	LEU
1	В	627	THR
2	G	57	ASP
2	G	192	ARG
2	G	195	ASN
2	G	205	CYS
2	G	322	ILE
2	G	396	ILE
3	Н	37	ILE
3	Н	100(F)	SER
3	Н	100(L)	TYR
3	Н	164	HIS
3	Н	208	ASP
4	L	66(B)	ILE
4	L	93	SER
4	L	94	ARG
4	L	95(B)	PHE
4	L	122	SER
4	L	186	TRP
5	D	27	TYR
5	D	54	ARG
5	D	71	ARG
5	D	138	LEU
5	D	178	LEU
6	Е	47	ILE
6	Е	52	ASN
6	Е	66	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (8) such sidechains are listed below:

Mol	Chain	Res	Type
1	В	540	GLN
2	G	428	GLN
3	Н	60	ASN
3	Н	171	GLN
4	L	52	GLN
5	D	35	HIS
5	D	155	ASN
6	Е	109	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

113 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Res Link	Bo	Bond lengths			Bond angles		
WIOI	туре	Unain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
7	NAG	А	1	7,1	$14,\!14,\!15$	0.28	0	17,19,21	0.81	0	
7	FUC	А	2	7	10,10,11	0.75	0	14,14,16	0.89	0	
8	NAG	С	1	8,1	14,14,15	0.34	0	17,19,21	1.51	2 (11%)	
8	NAG	С	2	8	14,14,15	0.31	0	17,19,21	1.03	1 (5%)	
8	BMA	С	3	8	11,11,12	0.26	0	$15,\!15,\!17$	0.74	0	
8	FUC	С	4	8	10,10,11	0.68	0	14,14,16	0.84	0	
9	NAG	F	1	9,2	14,14,15	0.31	0	17,19,21	0.95	1 (5%)	
9	NAG	F	2	9	14,14,15	0.28	0	17,19,21	0.66	0	

Mal	Trune	Chain	Dec	Timle	Bond lengths		Bond angles			
WIOI	Moi Type	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
9	FUC	F	3	9	10,10,11	0.73	0	14,14,16	0.93	0
10	NAG	Ι	1	2,10	14, 14, 15	0.43	0	$17,\!19,\!21$	1.41	4 (23%)
10	NAG	Ι	2	10	14,14,15	0.32	0	17,19,21	0.94	0
10	BMA	Ι	3	10	11,11,12	0.25	0	15, 15, 17	0.84	0
11	NAG	J	1	2,11	14,14,15	0.38	0	17,19,21	0.85	1 (5%)
11	GAL	J	10	11	11,11,12	0.24	0	15,15,17	0.77	0
11	NAG	J	11	11	14,14,15	0.33	0	17,19,21	0.85	0
	GAL	J	12		11,11,12 10.10.11	0.26	0	15,15,17 14,14,16	0.79	0
11	TUC NAC	J	10	11	10,10,11 14 14 15	0.70	0	14,14,10 17,10,21	1.09	$\frac{1107}{2}$
11	NAG	J		11	14,14,10	0.30	0	17,19,21	1.00	$\frac{2(11/0)}{2}$
11	BMA	J	3	11	11,11,12	0.46	0	15,15,17	1.38	3 (20%)
11	MAN	J	4	11	11,11,12	0.40	0	15,15,17	1.92	3 (20%)
11	NAG	J	5	11	14,14,15	0.47	0	17,19,21	1.30	1 (5%)
11	GAL	J	6	11	11,11,12	0.25	0	15, 15, 17	0.79	0
11	NAG	J	7	11	14,14,15	0.31	0	17,19,21	1.08	1 (5%)
11	MAN	J	8	11	11,11,12	0.50	0	$15,\!15,\!17$	1.89	2 (13%)
11	NAG	J	9	11	14,14,15	0.35	0	17,19,21	1.10	2 (11%)
12	NAG	K	1	2,12	14,14,15	0.47	0	17,19,21	1.35	2 (11%)
12	FUC	K	10	12	10,10,11	0.71	0	14,14,16	0.93	0
12	NAG	Κ	2	12	14,14,15	0.57	0	$17,\!19,\!21$	2.21	4 (23%)
12	BMA	K	3	12	11,11,12	0.36	0	$15,\!15,\!17$	1.64	3 (20%)
12	MAN	K	4	12	11,11,12	0.39	0	$15,\!15,\!17$	1.08	2 (13%)
12	NAG	K	5	12	14,14,15	0.34	0	17,19,21	1.01	1 (5%)
12	GAL	K	6	12	11,11,12	0.28	0	$15,\!15,\!17$	0.78	0
12	MAN	Κ	7	12	$11,\!11,\!12$	0.25	0	$15,\!15,\!17$	1.05	1 (6%)
12	NAG	Κ	8	12	14,14,15	0.25	0	17,19,21	0.63	0
12	GAL	K	9	12	11,11,12	0.25	0	$15,\!15,\!17$	0.79	0
13	NAG	М	1	2,13	14,14,15	0.56	0	$17,\!19,\!21$	2.53	7 (41%)
13	NAG	М	2	13	$14,\!14,\!15$	0.69	0	$17,\!19,\!21$	1.96	5 (29%)
13	BMA	М	3	13	11,11,12	0.54	0	$15,\!15,\!17$	1.54	3 (20%)
13	MAN	М	4	13	11,11,12	0.40	0	$15,\!15,\!17$	1.50	3 (20%)
13	NAG	М	5	13	14,14,15	0.33	0	17, 19, 21	0.84	1 (5%)
13	GAL	М	6	13	11,11,12	0.26	0	$15,\!15,\!17$	0.89	0
13	SIA	Μ	7	13	$20,\!20,\!21$	2.01	2 (10%)	$24,\!28,\!31$	1.60	4 (16%)
13	MAN	М	8	13	11,11,12	0.26	0	$15,\!15,\!17$	1.09	1(6%)
13	NAG	М	9	13	14,14,15	0.26	0	17,19,21	0.69	0
14	NAG	N	1	2,14	14,14,15	0.33	0	17,19,21	1.38	2 (11%)
14	NAG	Ν	2	14	14,14,15	0.25	0	17,19,21	0.79	0

	T	Chain	Dag	T : 1-	Bond lengths		Bond angles			
IVIOI	Tybe	Chain	Res	LINK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
15	NAG	0	1	2,15	14,14,15	0.37	0	17,19,21	0.85	0
15	NAG	О	2	15	14,14,15	0.30	0	$17,\!19,\!21$	1.23	2(11%)
15	BMA	0	3	15	11,11,12	0.32	0	$15,\!15,\!17$	0.87	0
15	MAN	0	4	15	11,11,12	0.25	0	$15,\!15,\!17$	0.91	0
15	MAN	0	5	15	11,11,12	0.29	0	$15,\!15,\!17$	0.84	0
15	MAN	О	6	15	11,11,12	0.28	0	$15,\!15,\!17$	0.85	1 (6%)
15	MAN	Ο	7	15	11,11,12	0.34	0	$15,\!15,\!17$	0.92	1 (6%)
16	NAG	Р	1	2,16	14,14,15	0.48	0	$17,\!19,\!21$	1.23	2 (11%)
16	NAG	Р	10	16	14,14,15	0.39	0	17,19,21	1.43	4 (23%)
16	GAL	Р	11	16	11,11,12	0.29	0	$15,\!15,\!17$	1.12	1 (6%)
16	SIA	Р	12	16	20,20,21	1.99	2 (10%)	24,28,31	1.65	4 (16%)
16	NAG	Р	13	16	14,14,15	0.45	0	17,19,21	1.10	2 (11%)
16	GAL	Р	14	16	11,11,12	0.25	0	$15,\!15,\!17$	0.93	1 (6%)
16	NAG	Р	15	16	14,14,15	0.54	0	17,19,21	1.22	2 (11%)
16	FUC	Р	16	16	10,10,11	0.62	0	14,14,16	0.92	0
16	NAG	Р	2	16	14,14,15	0.30	0	17,19,21	1.08	3 (17%)
16	BMA	Р	3	16	11,11,12	0.43	0	15,15,17	1.84	7 (46%)
16	MAN	Р	4	16	11,11,12	0.36	0	$15,\!15,\!17$	1.66	5 (33%)
16	NAG	Р	5	16	14,14,15	0.28	0	17,19,21	0.58	0
16	GAL	Р	6	16	11,11,12	0.26	0	$15,\!15,\!17$	0.78	0
16	SIA	Р	7	16	20,20,21	1.99	2 (10%)	24,28,31	1.61	4 (16%)
16	NAG	Р	8	16	14,14,15	0.28	0	17,19,21	0.68	0
16	MAN	Р	9	16	11,11,12	0.93	0	$15,\!15,\!17$	3.01	10 (66%)
14	NAG	Q	1	2,14	14,14,15	0.36	0	17,19,21	0.77	0
14	NAG	Q	2	14	14,14,15	0.29	0	17,19,21	0.71	0
17	NAG	R	1	2,17	14,14,15	0.48	0	$17,\!19,\!21$	1.80	<mark>5 (29%)</mark>
17	NAG	R	2	17	14,14,15	0.36	0	17,19,21	0.91	2 (11%)
17	BMA	R	3	17	11,11,12	0.30	0	$15,\!15,\!17$	1.03	1 (6%)
17	MAN	R	4	17	11,11,12	0.28	0	15, 15, 17	1.12	1 (6%)
17	NAG	R	5	17	14,14,15	0.30	0	17,19,21	0.45	0
17	MAN	R	6	17	11,11,12	0.26	0	$15,\!15,\!17$	0.89	0
17	NAG	R	7	17	14,14,15	0.27	0	17,19,21	0.70	0
18	NAG	S	1	$18,\overline{2}$	14,14,15	0.30	0	17,19,21	0.75	0
18	MAN	S	10	18	11,11,12	0.27	0	15,15,17	0.80	0
18	NAG	S	2	18	14,14,15	0.25	0	17,19,21	1.33	2 (11%)
18	BMA	S	3	18	11,11,12	0.32	0	$15,\!15,\!17$	0.98	1 (6%)
18	MAN	S	4	18	11,11,12	0.35	0	$15,\!15,\!17$	1.49	2 (13%)
18	MAN	S	5	18	11,11,12	0.34	0	$15,\!15,\!17$	1.38	2 (13%)

Mal	Type	Chain	Dog	Link	Bo	Bond lengths		Bond angles							
WIOI	Type	Ullalli	Ullaili	Cham	Cham	nes		Counts	RMSZ	# Z >2	Counts	Counts RMSZ $\# Z >$			
18	MAN	S	6	18	$11,\!11,\!12$	0.22	0	$15,\!15,\!17$	1.02	1 (6%)					
18	MAN	S	7	18	11,11,12	0.25	0	$15,\!15,\!17$	1.28	2 (13%)					
18	MAN	S	8	18	11,11,12	0.46	0	$15,\!15,\!17$	1.34	1 (6%)					
18	MAN	S	9	18	11,11,12	0.23	0	$15,\!15,\!17$	0.88	1 (6%)					
14	NAG	Т	1	2,14	14,14,15	0.35	0	17,19,21	0.67	0					
14	NAG	Т	2	14	14,14,15	0.31	0	$17,\!19,\!21$	0.65	0					
19	NAG	U	1	2,19	14,14,15	0.53	0	$17,\!19,\!21$	2.17	4 (23%)					
19	NAG	U	2	19	14,14,15	0.45	0	17,19,21	1.83	3 (17%)					
19	BMA	U	3	19	11,11,12	0.40	0	$15,\!15,\!17$	1.27	2 (13%)					
19	MAN	U	4	19	11,11,12	0.39	0	$15,\!15,\!17$	0.99	1 (6%)					
19	MAN	U	5	19	$11,\!11,\!12$	0.27	0	$15,\!15,\!17$	0.88	0					
19	MAN	U	6	19	$11,\!11,\!12$	0.28	0	$15,\!15,\!17$	0.87	0					
19	MAN	U	7	19	11,11,12	0.32	0	$15,\!15,\!17$	0.86	1 (6%)					
20	NAG	V	1	20,2	14,14,15	0.32	0	$17,\!19,\!21$	1.27	3 (17%)					
20	NAG	V	2	20	14,14,15	0.61	0	$17,\!19,\!21$	1.78	5 (29%)					
20	BMA	V	3	20	$11,\!11,\!12$	0.35	0	$15,\!15,\!17$	1.17	2 (13%)					
20	MAN	V	4	20	$11,\!11,\!12$	0.28	0	$15,\!15,\!17$	0.81	1 (6%)					
20	MAN	V	5	20	$11,\!11,\!12$	0.28	0	$15,\!15,\!17$	0.77	0					
21	NAG	W	1	2,21	14,14,15	0.36	0	$17,\!19,\!21$	1.00	0					
21	NAG	W	2	21	14,14,15	0.28	0	17,19,21	0.82	0					
21	BMA	W	3	21	11,11,12	0.46	0	$15,\!15,\!17$	1.59	2 (13%)					
21	MAN	W	4	21	11,11,12	0.27	0	$15,\!15,\!17$	0.80	1 (6%)					
21	MAN	W	5	21	11,11,12	0.27	0	$15,\!15,\!17$	0.84	0					
21	FUC	W	6	21	10,10,11	0.90	0	$14,\!14,\!16$	1.07	1 (7%)					
22	NAG	Х	1	2,22	14,14,15	0.29	0	$17,\!19,\!21$	1.17	1 (5%)					
22	NAG	X	2	22	14,14,15	0.58	0	17,19,21	2.14	6(35%)					
22	BMA	X	3	22	11,11,12	0.32	0	$15,\!15,\!17$	1.15	2 (13%)					
22	MAN	Х	4	22	11,11,12	0.25	0	$15,\!15,\!17$	0.73	0					
22	MAN	Х	5	22	11,11,12	0.25	0	$15,\!15,\!17$	0.77	0					

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
7	NAG	А	1	7,1	-	0/6/23/26	0/1/1/1
7	FUC	А	2	7	-	-	0/1/1/1

5	Τ	3	X	

	Turno	Choin	$\mathbf{P}_{\mathbf{D}}$	 Tink	Chirola	Torgiong	Dinga
vioi	NAC	Chain			Unirais	101SI011S	Λ ings
8	NAG		1	8,1	-	$\frac{0/0/23/20}{1/6/22/26}$	0/1/1/1
0	RMA			0	-	$\frac{1/0/23/20}{0/2/10/22}$	0/1/1/1
8	FUC	C		8	_	0/2/13/22	0/1/1/1
9	NAG	F	1	9.2	_	$-\frac{-}{2/6/23/26}$	0/1/1/1
9	NAG	F	2	9		2/6/23/26	0/1/1/1
9	FUC	F	3	9	_	-	0/1/1/1
10	NAG	I	1	2.10	_	1/6/23/26	0/1/1/1
10	NAG	I	2	10	_	$\frac{2}{6}/\frac{23}{26}$	0/1/1/1
10	BMA	I	3	10	_	0/2/19/22	0/1/1/1
11	NAG	J	1	2.11	_	0/2/10/22 0/6/23/26	0/1/1/1
11	GAL	J	10	11	_	0/2/19/22	0/1/1/1
11	NAG	J	11	11	-	2/6/23/26	0/1/1/1
11	GAL	J	12	11	_	0/2/19/22	0/1/1/1
11	FUC	J	13	11	_	-	0/1/1/1
11	NAG	J	2	11	-	1/6/23/26	0/1/1/1
11	BMA	J	3	11	_	2/2/19/22	0/1/1/1
11	MAN	J	4	11	-	0/2/19/22	0/1/1/1
11	NAG	J	5	11	_	0/6/23/26	0/1/1/1
11	GAL	J	6	11	-	0/2/19/22	0/1/1/1
11	NAG	J	7	11	-	0/6/23/26	0/1/1/1
11	MAN	J	8	11	-	0/2/19/22	0/1/1/1
11	NAG	J	9	11	-	2/6/23/26	0/1/1/1
12	NAG	K	1	2,12	-	2/6/23/26	0/1/1/1
12	FUC	K	10	12	-	-	0/1/1/1
12	NAG	K	2	12	-	4/6/23/26	0/1/1/1
12	BMA	K	3	12	-	2/2/19/22	0/1/1/1
12	MAN	K	4	12	-	0/2/19/22	0/1/1/1
12	NAG	K	5	12	-	0/6/23/26	0/1/1/1
12	GAL	K	6	12	-	0/2/19/22	0/1/1/1
12	MAN	К	7	12	-	2/2/19/22	0/1/1/1
12	NAG	K	8	12	-	2/6/23/26	0/1/1/1
12	GAL	K	9	12	-	0/2/19/22	0/1/1/1
13	NAG	M	1	2,13	-	2/6/23/26	0/1/1/1
13	NAG	М	2	13	-	3/6/23/26	0/1/1/1
13	BMA	М	3	13	-	2/2/19/22	0/1/1/1
13	MAN	М	4	13	-	2/2/19/22	0/1/1/1
13	NAG	М	5	13	-	2/6/23/26	0/1/1/1

Cntin d fa

Conti	nueu jro	m previoi	is page	•••			
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
13	GAL	М	6	13	-	2/2/19/22	0/1/1/1
13	SIA	М	7	13	-	3/18/34/38	0/1/1/1
13	MAN	М	8	13	-	0/2/19/22	0/1/1/1
13	NAG	М	9	13	-	2/6/23/26	0/1/1/1
14	NAG	N	1	2,14	-	0/6/23/26	0/1/1/1
14	NAG	N	2	14	-	2/6/23/26	0/1/1/1
15	NAG	0	1	2,15	-	2/6/23/26	0/1/1/1
15	NAG	0	2	15	-	1/6/23/26	0/1/1/1
15	BMA	0	3	15	-	1/2/19/22	0/1/1/1
15	MAN	0	4	15	-	0/2/19/22	0/1/1/1
15	MAN	0	5	15	-	1/2/19/22	0/1/1/1
15	MAN	Ο	6	15	-	2/2/19/22	0/1/1/1
15	MAN	0	7	15	-	2/2/19/22	0/1/1/1
16	NAG	Р	1	2,16	-	2/6/23/26	0/1/1/1
16	NAG	Р	10	16	-	4/6/23/26	0/1/1/1
16	GAL	Р	11	16	-	0/2/19/22	0/1/1/1
16	SIA	Р	12	16	-	1/18/34/38	0/1/1/1
16	NAG	Р	13	16	-	2/6/23/26	0/1/1/1
16	GAL	Р	14	16	-	0/2/19/22	0/1/1/1
16	NAG	Р	15	16	-	1/6/23/26	0/1/1/1
16	FUC	Р	16	16	-	-	0/1/1/1
16	NAG	Р	2	16	-	1/6/23/26	0/1/1/1
16	BMA	Р	3	16	-	2/2/19/22	0/1/1/1
16	MAN	Р	4	16	-	2/2/19/22	0/1/1/1
16	NAG	Р	5	16	-	2/6/23/26	0/1/1/1
16	GAL	Р	6	16	-	2/2/19/22	0/1/1/1
16	SIA	Р	7	16	-	4/18/34/38	0/1/1/1
16	NAG	Р	8	16	-	0/6/23/26	0/1/1/1
16	MAN	Р	9	16	-	0/2/19/22	0/1/1/1
14	NAG	Q	1	2,14	-	1/6/23/26	0/1/1/1
14	NAG	Q	2	14	-	0/6/23/26	0/1/1/1
17	NAG	R	1	2,17	-	0/6/23/26	0/1/1/1
17	NAG	R	2	17	-	2/6/23/26	0/1/1/1
17	BMA	R	3	17	-	0/2/19/22	0/1/1/1
17	MAN	R	4	17	-	0/2/19/22	0/1/1/1
17	NAG	R	5	17	-	2/6/23/26	0/1/1/1
17	MAN	R	6	17	-	2/2/19/22	0/1/1/1
17	NAG	R	7	17	-	4/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
18	NAG	S	1	18,2	-	0/6/23/26	0/1/1/1
18	MAN	S	10	18	-	0/2/19/22	0/1/1/1
18	NAG	S	2	18	-	1/6/23/26	0/1/1/1
18	BMA	S	3	18	-	0/2/19/22	0/1/1/1
18	MAN	S	4	18	-	0/2/19/22	0/1/1/1
18	MAN	S	5	18	-	1/2/19/22	0/1/1/1
18	MAN	S	6	18	-	0/2/19/22	0/1/1/1
18	MAN	S	7	18	-	0/2/19/22	0/1/1/1
18	MAN	S	8	18	-	2/2/19/22	0/1/1/1
18	MAN	S	9	18	-	0/2/19/22	0/1/1/1
14	NAG	Т	1	2,14	-	0/6/23/26	0/1/1/1
14	NAG	Т	2	14	-	2/6/23/26	0/1/1/1
19	NAG	U	1	2,19	-	0/6/23/26	0/1/1/1
19	NAG	U	2	19	-	2/6/23/26	0/1/1/1
19	BMA	U	3	19	-	0/2/19/22	0/1/1/1
19	MAN	U	4	19	-	1/2/19/22	0/1/1/1
19	MAN	U	5	19	-	1/2/19/22	0/1/1/1
19	MAN	U	6	19	-	0/2/19/22	0/1/1/1
19	MAN	U	7	19	-	1/2/19/22	0/1/1/1
20	NAG	V	1	20,2	-	2/6/23/26	0/1/1/1
20	NAG	V	2	20	-	1/6/23/26	0/1/1/1
20	BMA	V	3	20	-	0/2/19/22	0/1/1/1
20	MAN	V	4	20	-	0/2/19/22	0/1/1/1
20	MAN	V	5	20	-	0/2/19/22	0/1/1/1
21	NAG	W	1	2,21	-	0/6/23/26	0/1/1/1
21	NAG	W	2	21	-	1/6/23/26	0/1/1/1
21	BMA	W	3	21	-	0/2/19/22	0/1/1/1
21	MAN	W	4	21	-	0/2/19/22	0/1/1/1
21	MAN	W	5	21	-	0/2/19/22	0/1/1/1
21	FUC	W	6	21	-	-	0/1/1/1
22	NAG	Х	1	2,22	-	2/6/23/26	0/1/1/1
22	NAG	X	2	22	-	2/6/23/26	0/1/1/1
22	BMA	X	3	22	-	0/2/19/22	0/1/1/1
22	MAN	X	4	22	-	2/2/19/22	0/1/1/1
22	MAN	X	5	22	-	0/2/19/22	0/1/1/1

All (6) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
13	М	7	SIA	C2-C1	7.60	1.59	1.52
16	Р	12	SIA	C2-C1	7.53	1.59	1.52

	3	1	1 5				
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
16	Р	7	SIA	C2-C1	7.51	1.59	1.52
13	М	7	SIA	O6-C2	2.76	1.47	1.43
16	Р	7	SIA	O6-C2	2.72	1.47	1.43
16	Р	12	SIA	O6-C2	2.61	1.47	1.43

All (167) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
12	K	2	NAG	C2-N2-C7	6.75	132.51	122.90
19	U	1	NAG	O4-C4-C5	6.20	124.69	109.30
13	М	1	NAG	O3-C3-C2	-5.98	97.10	109.47
22	Х	2	NAG	O4-C4-C3	-5.64	97.31	110.35
11	J	8	MAN	O2-C2-C3	5.51	121.17	110.14
16	Р	9	MAN	O4-C4-C5	5.22	122.26	109.30
11	J	4	MAN	C1-C2-C3	-5.21	103.26	109.67
16	Р	9	MAN	O2-C2-C3	5.07	120.30	110.14
16	Р	7	SIA	O1A-C1-C2	-4.38	112.22	122.57
22	Х	2	NAG	O5-C1-C2	-4.35	104.42	111.29
16	Р	12	SIA	O1A-C1-C2	-4.34	112.33	122.57
16	Р	9	MAN	O5-C5-C6	-4.32	100.42	107.20
16	Р	4	MAN	O5-C1-C2	-4.27	104.18	110.77
19	U	2	NAG	O4-C4-C5	4.22	119.77	109.30
13	М	7	SIA	O1A-C1-C2	-4.13	112.80	122.57
13	М	1	NAG	O4-C4-C3	-4.13	100.79	110.35
13	М	1	NAG	O4-C4-C5	-4.10	99.11	109.30
13	М	2	NAG	O4-C4-C3	-4.00	101.09	110.35
13	М	2	NAG	C4-C3-C2	3.99	116.87	111.02
18	S	8	MAN	C1-O5-C5	-3.92	106.89	112.19
17	R	1	NAG	O5-C5-C6	-3.89	101.10	107.20
8	С	1	NAG	O5-C5-C6	3.87	113.27	107.20
20	V	2	NAG	O5-C1-C2	-3.86	105.20	111.29
16	Р	9	MAN	O2-C2-C1	3.81	116.95	109.15
12	K	1	NAG	C1-O5-C5	3.73	117.25	112.19
19	U	2	NAG	C1-O5-C5	3.69	117.19	112.19
19	U	1	NAG	C1-O5-C5	3.68	117.18	112.19
19	U	2	NAG	O4-C4-C3	3.67	118.84	110.35
14	N	1	NAG	O4-C4-C3	3.65	118.79	110.35
18	S	4	MAN	C1-C2-C3	3.64	114.14	109.67
13	М	7	SIA	C6-O6-C2	3.64	119.12	111.34
17	R	1	NAG	O4-C4-C3	-3.62	101.98	110.35
11	J	4	MAN	O4-C4-C5	3.50	118.00	109.30
13	М	2	NAG	O5-C1-C2	-3.45	105.84	111.29

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
16	Р	9	MAN	O5-C1-C2	-3.44	105.46	110.77
11	J	8	MAN	O3-C3-C2	3.41	116.53	109.99
16	Р	7	SIA	C6-O6-C2	3.41	118.63	111.34
21	W	3	BMA	O5-C1-C2	-3.33	105.62	110.77
17	R	1	NAG	O5-C1-C2	-3.31	106.06	111.29
13	М	1	NAG	O5-C1-C2	-3.31	106.07	111.29
20	V	2	NAG	O4-C4-C3	-3.30	102.72	110.35
16	Р	1	NAG	O4-C4-C5	-3.26	101.21	109.30
16	Р	10	NAG	C1-O5-C5	3.24	116.58	112.19
18	S	5	MAN	O5-C1-C2	-3.23	105.79	110.77
13	М	4	MAN	C1-C2-C3	-3.22	105.71	109.67
21	W	3	BMA	O2-C2-C3	-3.20	103.74	110.14
16	Р	9	MAN	C1-C2-C3	3.19	113.58	109.67
16	Р	12	SIA	C6-O6-C2	3.18	118.13	111.34
12	K	2	NAG	C8-C7-N2	3.17	121.46	116.10
18	S	4	MAN	O2-C2-C3	3.17	116.48	110.14
12	K	1	NAG	O5-C1-C2	-3.16	106.30	111.29
16	Р	3	BMA	C1-C2-C3	3.14	113.53	109.67
13	М	2	NAG	O4-C4-C5	-3.14	101.50	109.30
12	K	3	BMA	O5-C5-C6	3.14	112.13	107.20
16	Р	13	NAG	C1-O5-C5	3.13	116.44	112.19
13	М	3	BMA	O5-C1-C2	-3.11	105.97	110.77
11	J	5	NAG	C8-C7-N2	-3.06	110.91	116.10
12	K	2	NAG	O5-C1-C2	-3.04	106.49	111.29
13	М	1	NAG	C1-O5-C5	-3.01	108.11	112.19
12	K	3	BMA	C1-C2-C3	3.00	113.35	109.67
10	Ι	1	NAG	O5-C1-C2	-2.95	106.63	111.29
11	J	7	NAG	C1-O5-C5	2.94	116.18	112.19
22	Х	1	NAG	O4-C4-C3	-2.93	103.56	110.35
20	V	2	NAG	O4-C4-C5	-2.92	102.03	109.30
20	V	3	BMA	C1-C2-C3	2.91	113.24	109.67
11	J	9	NAG	C1-O5-C5	2.88	116.10	112.19
19	U	3	BMA	C1-C2-C3	2.87	113.19	109.67
12	K	4	MAN	C1-O5-C5	-2.83	108.35	112.19
16	Р	2	NAG	O4-C4-C5	-2.79	102.36	109.30
14	N	1	NAG	C4-C3-C2	-2.79	106.93	111.02
13	М	3	BMA	C1-O5-C5	-2.78	108.43	112.19
19	U	1	NAG	C4-C3-C2	-2.75	106.98	111.02
20	V	1	NAG	C3-C4-C5	-2.74	105.36	110.24
12	K	7	MAN	O5-C1-C2	-2.73	106.56	110.77
16	Р	12	SIA	O6-C2-C3	-2.69	106.75	110.46
10	Ι	1	NAG	C2-N2-C7	-2.67	119.10	122.90

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
16	Р	15	NAG	O5-C1-C2	-2.64	107.11	111.29
18	S	6	MAN	O5-C1-C2	-2.63	106.71	110.77
16	Р	3	BMA	O5-C5-C6	2.62	111.32	107.20
12	Κ	2	NAG	C1-C2-N2	2.62	114.97	110.49
17	R	4	MAN	O5-C1-C2	-2.62	106.72	110.77
16	Р	3	BMA	O3-C3-C2	-2.62	104.97	109.99
19	U	1	NAG	O5-C1-C2	-2.61	107.17	111.29
16	Р	10	NAG	O5-C5-C6	-2.60	103.13	107.20
16	Р	10	NAG	O4-C4-C5	2.60	115.75	109.30
22	Х	3	BMA	O5-C1-C2	-2.59	106.77	110.77
19	U	3	BMA	O5-C1-C2	-2.57	106.80	110.77
22	Х	3	BMA	C1-O5-C5	-2.57	108.71	112.19
11	J	3	BMA	C1-C2-C3	2.57	112.82	109.67
13	М	1	NAG	C4-C3-C2	2.56	114.77	111.02
18	S	7	MAN	C1-C2-C3	-2.55	106.53	109.67
16	Р	9	MAN	O4-C4-C3	-2.53	104.49	110.35
22	Х	2	NAG	C1-C2-N2	2.53	114.81	110.49
13	М	4	MAN	O5-C1-C2	-2.51	106.90	110.77
16	Р	4	MAN	C1-O5-C5	2.50	115.57	112.19
10	Ι	1	NAG	O4-C4-C5	-2.49	103.10	109.30
16	Р	7	SIA	O1B-C1-O1A	2.49	129.74	124.09
18	S	2	NAG	C1-C2-N2	2.46	114.69	110.49
21	W	6	FUC	O2-C2-C1	2.46	114.18	109.15
19	U	4	MAN	O5-C1-C2	-2.45	106.99	110.77
15	0	7	MAN	C1-O5-C5	-2.44	108.89	112.19
16	Р	3	BMA	O4-C4-C3	2.43	115.96	110.35
18	S	3	BMA	O3-C3-C2	-2.43	105.34	109.99
16	Р	3	BMA	C2-C3-C4	-2.42	106.70	110.89
16	Р	12	SIA	O1B-C1-O1A	2.42	129.59	124.09
16	Р	9	MAN	C3-C4-C5	-2.42	105.92	110.24
11	J	4	MAN	O5-C1-C2	-2.42	107.04	110.77
20	V	1	NAG	O5-C1-C2	-2.41	107.48	111.29
13	М	8	MAN	O5-C1-C2	-2.41	107.06	110.77
13	М	5	NAG	O5-C1-C2	-2.39	107.51	111.29
12	Κ	5	NAG	O5-C1-C2	-2.39	107.51	111.29
17	R	2	NAG	O5-C1-C2	-2.38	107.52	111.29
13	М	4	MAN	O2-C2-C3	-2.38	105.37	110.14
11	J	9	NAG	C2-N2-C7	-2.38	119.52	122.90
13	М	7	SIA	01B-C1-01A	2.36	129.45	124.09
19	U	7	MAN	O5-C1-C2	-2.34	107.15	110.77
13	М	3	BMA	O3-C3-C4	-2.34	104.94	110.35
11	J	3	BMA	O3-C3-C2	-2.34	105.52	109.99

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
15	0	2	NAG	O5-C1-C2	-2.33	107.61	111.29
22	Х	2	NAG	C2-N2-C7	2.32	126.21	122.90
16	Р	3	BMA	C3-C4-C5	-2.32	106.10	110.24
12	Κ	3	BMA	O3-C3-C4	-2.31	105.01	110.35
16	Р	3	BMA	O3-C3-C4	2.28	115.63	110.35
16	Р	15	NAG	O5-C5-C6	2.28	110.78	107.20
16	Р	9	MAN	C1-O5-C5	2.27	115.26	112.19
11	J	2	NAG	O5-C1-C2	-2.26	107.71	111.29
15	0	2	NAG	O4-C4-C5	-2.24	103.72	109.30
11	J	1	NAG	O5-C1-C2	-2.23	107.77	111.29
17	R	1	NAG	C4-C3-C2	2.20	114.25	111.02
16	Р	10	NAG	C6-C5-C4	-2.20	107.84	113.00
8	С	1	NAG	O4-C4-C5	-2.19	103.85	109.30
20	V	2	NAG	C1-C2-N2	2.19	114.22	110.49
18	S	9	MAN	O5-C1-C2	-2.18	107.40	110.77
16	Р	11	GAL	O5-C1-C2	-2.18	107.41	110.77
16	Р	7	SIA	C4-C3-C2	2.18	113.71	109.81
16	Р	1	NAG	O3-C3-C2	-2.17	104.97	109.47
22	Х	2	NAG	C4-C3-C2	2.16	114.19	111.02
13	М	7	SIA	O6-C2-C3	-2.16	107.48	110.46
15	0	6	MAN	O5-C1-C2	-2.15	107.44	110.77
16	Р	13	NAG	O5-C5-C6	-2.15	103.83	107.20
13	М	2	NAG	C1-O5-C5	-2.15	109.28	112.19
16	Р	14	GAL	O5-C1-C2	-2.14	107.47	110.77
16	Р	4	MAN	O2-C2-C1	-2.12	104.81	109.15
18	S	2	NAG	O4-C4-C5	-2.12	104.04	109.30
12	Κ	4	MAN	O5-C5-C6	2.12	110.52	107.20
20	V	1	NAG	O5-C5-C6	2.11	110.52	107.20
13	М	1	NAG	O3-C3-C4	-2.07	105.56	110.35
9	F	1	NAG	O5-C1-C2	-2.07	108.02	111.29
20	V	3	BMA	O3-C3-C2	-2.07	106.04	109.99
8	С	2	NAG	C1-O5-C5	2.06	114.98	112.19
18	S	7	MAN	O3-C3-C4	2.06	115.11	110.35
16	Р	9	MAN	C6-C5-C4	2.06	117.82	113.00
10	Ι	1	NAG	O4-C4-C3	-2.06	105.59	110.35
17	R	2	NAG	O4-C4-C3	-2.06	105.60	110.35
16	Р	2	NAG	O4-C4-C3	-2.05	105.62	110.35
18	S	5	MAN	O2-C2-C1	-2.04	104.97	109.15
16	Р	4	MAN	O4-C4-C5	-2.04	104.23	109.30
17	R	3	BMA	O5-C1-C2	-2.04	107.63	110.77
11	J	2	NAG	O5-C5-C6	2.03	110.39	107.20
11	J	3	BMA	C6-C5-C4	-2.03	108.24	113.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
17	R	1	NAG	C1-C2-N2	2.02	113.94	110.49
16	Р	4	MAN	C3-C4-C5	-2.02	106.64	110.24
22	Х	2	NAG	O4-C4-C5	-2.02	104.29	109.30
21	W	4	MAN	O5-C1-C2	-2.01	107.67	110.77
16	Р	2	NAG	O5-C1-C2	-2.01	108.11	111.29
20	V	2	NAG	C2-N2-C7	2.00	125.75	122.90
20	V	4	MAN	O5-C1-C2	-2.00	107.68	110.77

There are no chirality outliers.

	Б			
16	Р	7	SIA	O1A-C1-C2-O6
16	Р	3	BMA	O5-C5-C6-O6
13	М	3	BMA	O5-C5-C6-O6
13	М	4	MAN	O5-C5-C6-O6
16	Р	6	GAL	O5-C5-C6-O6
12	Κ	3	BMA	O5-C5-C6-O6
14	Ν	2	NAG	O5-C5-C6-O6
11	J	11	NAG	O5-C5-C6-O6
18	S	8	MAN	O5-C5-C6-O6
13	М	3	BMA	C4-C5-C6-O6
16	Р	1	NAG	O5-C5-C6-O6
16	Р	10	NAG	O5-C5-C6-O6
16	Р	6	GAL	C4-C5-C6-O6
12	Κ	7	MAN	O5-C5-C6-O6
13	М	2	NAG	O5-C5-C6-O6
17	R	7	NAG	O5-C5-C6-O6
16	Р	3	BMA	C4-C5-C6-O6
17	R	6	MAN	C4-C5-C6-O6
12	Κ	3	BMA	C4-C5-C6-O6
17	R	6	MAN	O5-C5-C6-O6
13	М	4	MAN	C4-C5-C6-O6
17	R	7	NAG	C4-C5-C6-O6
14	Ν	2	NAG	C4-C5-C6-O6
16	Р	1	NAG	C4-C5-C6-O6
16	Р	4	MAN	O5-C5-C6-O6
11	J	11	NAG	C4-C5-C6-O6
17	R	5	NAG	O5-C5-C6-O6
12	Κ	7	MAN	C4-C5-C6-O6
12	Κ	1	NAG	C8-C7-N2-C2
12	Κ	1	NAG	O7-C7-N2-C2

All (111) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
12	K	2	NAG	C8-C7-N2-C2
12	K	2	NAG	O7-C7-N2-C2
12	K	8	NAG	C8-C7-N2-C2
12	Κ	8	NAG	O7-C7-N2-C2
13	М	5	NAG	C8-C7-N2-C2
13	М	5	NAG	O7-C7-N2-C2
13	М	9	NAG	C8-C7-N2-C2
13	М	9	NAG	O7-C7-N2-C2
16	Р	5	NAG	C8-C7-N2-C2
16	Р	5	NAG	O7-C7-N2-C2
16	Р	10	NAG	C8-C7-N2-C2
16	Р	10	NAG	O7-C7-N2-C2
17	R	7	NAG	C8-C7-N2-C2
17	R	7	NAG	O7-C7-N2-C2
13	М	2	NAG	C4-C5-C6-O6
16	Р	10	NAG	C4-C5-C6-O6
18	S	8	MAN	C4-C5-C6-O6
15	0	6	MAN	O5-C5-C6-O6
9	F	1	NAG	O5-C5-C6-O6
15	0	7	MAN	O5-C5-C6-O6
22	Х	4	MAN	O5-C5-C6-O6
13	М	6	GAL	C4-C5-C6-O6
17	R	5	NAG	C4-C5-C6-O6
15	Ο	7	MAN	C4-C5-C6-O6
19	U	2	NAG	O5-C5-C6-O6
22	Х	4	MAN	C4-C5-C6-O6
15	0	6	MAN	C4-C5-C6-O6
11	J	3	BMA	C4-C5-C6-O6
22	Х	1	NAG	C4-C5-C6-O6
16	Р	4	MAN	C4-C5-C6-O6
20	V	1	NAG	C4-C5-C6-O6
9	F	2	NAG	O5-C5-C6-O6
10	Ι	2	NAG	C4-C5-C6-O6
9	F	2	NAG	C4-C5-C6-O6
13	М	1	NAG	C4-C5-C6-O6
22	Х	1	NAG	O5-C5-C6-O6
13	М	6	GAL	O5-C5-C6-O6
15	0	1	NAG	C4-C5-C6-O6
10	Ι	1	NAG	O5-C5-C6-O6
17	R	2	NAG	O5-C5-C6-O6
18	S	5	MAN	O5-C5-C6-O6
19	U	5	MAN	O5-C5-C6-O6

Continued from previous page...

Mol	Chain	Res	Type	Atoms
15	0	1	NAG	O5-C5-C6-O6
9	F	1	NAG	C4-C5-C6-O6
12	Κ	2	NAG	O5-C5-C6-O6
11	J	2	NAG	O5-C5-C6-O6
13	М	7	SIA	C6-C7-C8-O8
16	Р	15	NAG	O5-C5-C6-O6
11	J	9	NAG	O5-C5-C6-O6
13	М	1	NAG	O5-C5-C6-O6
15	0	5	MAN	O5-C5-C6-O6
16	Р	12	SIA	O1A-C1-C2-O6
11	J	9	NAG	C4-C5-C6-O6
19	U	2	NAG	C4-C5-C6-O6
10	Ι	2	NAG	O5-C5-C6-O6
20	V	1	NAG	O5-C5-C6-O6
16	Р	7	SIA	O1A-C1-C2-C3
16	Р	7	SIA	O1B-C1-C2-C3
14	Т	2	NAG	C4-C5-C6-O6
15	0	3	BMA	C4-C5-C6-O6
16	Р	13	NAG	C1-C2-N2-C7
8	С	2	NAG	C3-C2-N2-C7
15	0	2	NAG	C3-C2-N2-C7
18	S	2	NAG	C3-C2-N2-C7
20	V	2	NAG	C3-C2-N2-C7
16	Р	13	NAG	O5-C5-C6-O6
21	W	2	NAG	O5-C5-C6-O6
22	Х	2	NAG	C1-C2-N2-C7
19	U	4	MAN	O5-C5-C6-O6
11	J	3	BMA	O5-C5-C6-O6
14	Q	1	NAG	O5-C5-C6-O6
14	Т	2	NAG	O5-C5-C6-O6
13	М	2	NAG	C1-C2-N2-C7
13	М	7	SIA	O7-C7-C8-O8
16	Р	7	SIA	O1B-C1-C2-O6
16	Р	2	NAG	C4-C5-C6-O6
13	М	7	SIA	O1A-C1-C2-O6
12	K	2	NAG	C3-C2-N2-C7
22	Х	2	NAG	C3-C2-N2-C7
19	U	7	MAN	C4-C5-C6-O6
17	R	2	NAG	C4-C5-C6-O6

Continued from previous page...

There are no ring outliers.

33 monomers are involved in 22 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
11	J	5	NAG	1	0
17	R	1	NAG	1	0
16	Р	16	FUC	1	0
11	J	4	MAN	1	0
13	М	5	NAG	1	0
11	J	7	NAG	1	0
17	R	3	BMA	1	0
18	S	9	MAN	1	0
16	Р	15	NAG	3	0
12	Κ	1	NAG	1	0
16	Р	3	BMA	1	0
22	Х	1	NAG	1	0
17	R	2	NAG	2	0
17	R	6	MAN	1	0
13	М	4	MAN	1	0
20	V	1	NAG	1	0
15	0	5	MAN	1	0
18	S	2	NAG	1	0
20	V	2	NAG	1	0
15	0	4	MAN	1	0
21	W	2	NAG	1	0
22	Х	2	NAG	1	0
18	S	4	MAN	1	0
16	Р	4	MAN	2	0
18	S	8	MAN	1	0
11	J	9	NAG	1	0
16	Р	9	MAN	1	0
12	Κ	2	NAG	1	0
15	0	1	NAG	1	0
10	Ι	2	NAG	1	0
18	S	5	MAN	1	0
21	W	3	BMA	1	0
10	Ι	1	NAG	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

1 ligand is modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Dog	Link	Bo	ond leng	\mathbf{ths}	В	ond ang	les
	туре	Ullaili	nes	LINK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
23	NAG	G	3390	2	$14,\!14,\!15$	0.32	0	17,19,21	0.64	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
23	NAG	G	3390	2	-	0/6/23/26	0/1/1/1

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
23	G	3390	NAG	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	В	126/153~(82%)	0.66	15 (11%) 4 4	163, 268, 331, 391	0
2	G	449/481 (93%)	0.59	37 (8%) 11 9	45, 199, 352, 455	0
3	Н	230/238~(96%)	1.69	69 (30%) 0 0	154, 314, 444, 501	0
4	L	211/214 (98%)	0.98	43 (20%) 1 1	147, 347, 430, 482	0
5	D	229/232~(98%)	1.91	68~(29%) 0 0	109, 244, 640, 874	0
6	Е	210/214~(98%)	3.39	89 (42%) 0 0	23, 310, 886, 970	0
All	All	1455/1532~(94%)	1.44	321 (22%) 0 0	23, 266, 631, 970	0

All (321) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
5	D	133	GLY	24.0
6	Е	206	THR	21.3
6	Ε	155	PRO	21.3
6	Ε	148	ALA	20.8
5	D	216	CYS	20.1
6	Ε	146	THR	19.6
5	D	126	PRO	19.5
6	Е	143	GLY	16.9
6	Е	149	TRP	15.6
5	D	127	SER	15.5
6	Ε	190	ARG	15.3
6	Ε	188	SER	15.0
6	Ε	144	ALA	15.0
6	Е	108	GLY	14.6
5	D	128	SER	14.4
5	D	134	GLY	14.4
5	D	135	THR	14.3
6	Е	147	VAL	13.4
6	Е	145	VAL	13.4

Mol	Chain	Res	Type	RSRZ
6	Е	210	THR	13.3
6	Е	151	ALA	13.2
6	Е	191	SER	12.9
5	D	161	SER	12.8
6	Е	175	ALA	12.8
4	L	145	VAL	12.7
6	Е	156	VAL	12.4
3	Н	181	VAL	12.1
6	Е	189	HIS	12.0
3	Н	180	SER	11.9
3	Н	152	VAL	11.8
3	Н	135	THR	11.6
6	Ε	205	LYS	11.6
6	Е	135	CYS	11.4
5	D	173	SER	11.2
5	D	160	THR	11.0
6	Ε	133	LEU	11.0
3	Н	138	LEU	11.0
3	Н	179	SER	10.9
6	E	117	THR	10.3
5	D	132	SER	10.3
5	D	162	GLY	10.2
6	E	193	SER	10.2
6	E	136	LEU	10.2
6	E	128	ALA	10.1
6	E	194	CYS	9.9
6	Е	207	VAL	9.5
6	E	158	ALA	9.3
2	G	187	SER	9.3
6	E	157	LYS	9.1
6	E	118	LEU	9.0
3	H	10	GLY	8.8
3	H	212	GLU	8.8
6	E	107	LEU	8.7
3	H	184	VAL	8.5
6		195	GLN	8.5
5	D	192	GLN	8.3
6	E	111	LYS	8.2
3	H	11	LEU	8.1
4	L	144	ALA	8.1
3	H	151	THR	7.9
3	Н	215	SER	7.9

Mol	Chain	Res	Type	RSRZ
6	Е	152	ASP	7.7
6	Е	208	ALA	7.7
1	В	547	GLY	7.7
4	L	154	SER	7.6
6	Е	176	SER	7.6
6	Е	129	ASN	7.4
5	D	125	ALA	7.4
3	Н	194	TYR	7.4
5	D	129	LYS	7.4
6	Е	181	LEU	7.0
6	Е	137	ILE	6.9
3	Н	192	GLN	6.9
4	L	118	LEU	6.8
3	Н	127	SER	6.8
3	Н	186	SER	6.5
3	Н	150	VAL	6.5
6	Е	196	VAL	6.4
6	Е	150	LYS	6.3
6	Е	187	LYS	6.3
5	D	172	SER	6.2
3	Н	136	ALA	6.1
2	G	188	ASN	6.1
6	Е	209	PRO	6.1
6	Е	204	GLU	6.1
5	D	208	ASP	6.1
5	D	151	THR	6.0
6	Е	127	GLN	5.9
6	Ε	183	PRO	5.9
3	Н	141	LEU	5.9
5	D	185	PRO	5.8
1	В	602	LEU	5.8
6	E	180	SER	5.8
5	D	165	THR	5.8
3	Н	198	VAL	5.8
3	Н	182	VAL	5.7
6	E	179	LEU	5.7
6	E	142	PRO	5.6
1	B	545	LEU	5.5
6	E	162	THR	5.5
6	E	124	GLU	5.4
3	H	9	PRO	5.4
6	Е	120	PRO	5.4

Mol	Chain	Res	Type	RSRZ
3	Н	183	THR	5.4
6	Е	134	VAL	5.3
2	G	465	THR	5.3
6	Е	116	VAL	5.2
4	L	117	THR	5.2
6	Е	192	TYR	5.1
1	В	520	LEU	5.1
5	D	140	CYS	5.1
5	D	152	VAL	5.1
6	Е	3	ALA	5.1
3	Н	190	GLY	5.0
5	D	174	GLY	5.0
4	L	104	LEU	4.9
6	Е	182	THR	4.8
5	D	214	LYS	4.8
3	Н	90	TYR	4.8
5	D	189	LEU	4.7
4	L	86	TYR	4.7
5	D	191	THR	4.7
5	D	137	ALA	4.6
6	Е	201	SER	4.6
4	L	209	PRO	4.6
5	D	186	SER	4.6
2	G	236	THR	4.6
3	Н	153	SER	4.5
6	Е	112	ALA	4.5
5	D	136	ALA	4.5
6	Е	197	THR	4.5
5	D	180	SER	4.5
3	Н	81	LYS	4.4
4	L	132	THR	4.4
4	L	114	PRO	4.4
6	Е	109	GLN	4.4
5	D	141	LEU	4.4
5	D	12	LYS	4.4
6	Ε	174	ALA	4.4
3	Н	155	ASN	4.3
3	Н	207	VAL	4.3
4	L	37	GLN	4.2
1	В	599	SER	4.2
3	Н	178	LEU	4.2
6	Е	122	SER	4.2

Continued from previous page							
\mathbf{Mol}	Chain	Res	Type	RSRZ			
4	L	119	PHE	4.2			
3	Н	142	VAL	4.2			
2	G	496	VAL	4.1			
6	Е	132	THR	4.1			
6	Е	154	SER	4.1			
3	Н	140	CYS	4.1			
5	D	149	PRO	4.0			
5	D	138	LEU	4.0			
3	Н	185	PRO	4.0			
2	G	33	ASN	4.0			
3	Н	38	ARG	3.9			
5	D	179	SER	3.9			
5	D	130	SER	3.9			
6	Е	4	LEU	3.9			
3	Н	191	THR	3.8			
3	Н	193	THR	3.8			
5	D	199	ASN	3.8			
3	Н	189	LEU	3.8			
3	Н	137	ALA	3.8			
4	L	39	ARG	3.8			
3	Н	4	LEU	3.7			
3	Н	163	VAL	3.7			
6	Е	131	ALA	3.7			
3	Н	80	LEU	3.6			
5	D	193	THR	3.6			
6	Е	159	GLY	3.6			
6	Е	113	ALA	3.5			
4	L	139	ASP	3.5			
4	L	176	SER	3.5			
5	D	122	PHE	3.5			
1	В	544	LEU	3.4			
5	D	188	SER	3.5			
3	Н	69	ILE	3.4			
4	L	38	HIS	3.4			
4	L	203	VAL	3.4			
4	L	208	ALA	3.4			
3	Н	214	LYS	3.3			
5	D	120	SER	3.3			
2	G	505	VAL	3.3			
3	Н	7	SER	3.3			
5	D	131	THR	3.3			
4	L	109	GLN	3.3			

Mol	Chain	Res	Type	RSRZ
3	Н	47	TRP	3.2
2	G	500	ARG	3.2
2	G	411	ASN	3.2
4	L	162	THR	3.2
3	Н	12	VAL	3.2
6	Е	184	GLU	3.2
1	В	578	ALA	3.2
2	G	93	PHE	3.2
4	L	135	CYS	3.2
3	Н	113	SER	3.2
2	G	504	ARG	3.2
4	L	136	LEU	3.2
1	В	656	ASN	3.1
2	G	499	THR	3.1
2	G	494	LEU	3.1
4	L	155	PRO	3.1
3	Н	49	GLY	3.1
5	D	202	PRO	3.1
6	Е	185	GLN	3.0
4	L	207	VAL	3.0
6	Е	200	GLY	3.0
1	В	546	SER	3.0
2	G	466	GLU	3.0
1	В	518	VAL	3.0
6	Е	161	GLU	3.0
6	Е	114	PRO	3.0
6	Е	92	ALA	3.0
2	G	95	MET	3.0
2	G	498	PRO	3.0
4	L	140	PHE	3.0
5	D	100(G)	ARG	3.0
2	G	468	PHE	2.9
5	D	215	SER	2.9
3	H	129	LYS	2.9
3	Н	110	THR	2.9
4	L	175	ALA	2.9
2	G	40	TYR	2.9
5	D	187	SER	2.9
6	Е	198	HIS	2.9
1	В	569	THR	2.9
5	D	170	LEU	2.9
5	D	197	ASN	2.9

Mol	Chain	Res	Type	RSRZ	
5	D	148	148 GLU		
4	L	153	SER	2.8	
6	Е	123	123 SER		
4	L	131	ALA	2.8	
5	D	13	LYS	2.8	
1	В	593	LEU	2.8	
4	L	147	VAL	2.8	
5	D	155	ASN	2.8	
4	L	47	LEU	2.8	
3	Н	68	VAL	2.7	
5	D	24	ALA	2.7	
2	G	237	237 GLY		
2	G	358	ILE	2.7	
1	В	600	GLY	2.7	
3	Н	139	GLY	2.7	
2	G	38	VAL	2.7	
1	В	595	ILE	2.7	
3	Н	199	ASN	2.7	
6	Ε	121	PRO	2.6	
5	D	142	VAL	2.6	
2	G	293	GLN	2.6	
6	Ε	98	PHE	2.6	
2	G	141	ASP	2.6	
2	G	356	ASN	2.6	
4	L	105	THR	2.6	
4	L	13	VAL	2.6	
2	G	467	THR	2.6	
3	Н	92	CYS	2.6	
4	L	107	LEU	2.6	
5	D	212	GLU	2.6	
5	D	171	GLN	2.5	
5	D	1	GLU	2.5	
5	D	213	PRO	2.5	
5	D	147	PRO	2.5	
2	G	235	GLY	2.5	
5	D	190	GLY	2.5	
3	Н	109	VAL	2.5	
3	Н	126	PRO	2.5	
6	Е	186	TRP	2.5	
2	G	86	LEU	2.4	
3	Н	159	LEU	2.4	
2	G	73	ALA	2.4	

Mol	Chain	Res	Res Type		
6	Е	165	PRO	2.4	
3	Н	13	LYS	2.4	
3	Н	156	SER	2.4	
5	D	153	153 SER		
4	L	120 PRO		2.4	
6	Е	177	SER	2.3	
3	Н	8	GLY	2.3	
5	D	183	THR	2.3	
4	L	134	VAL	2.3	
4	L	36	TYR	2.3	
3	Н	147	PRO	2.3	
3	Н	128	SER	2.3	
3	Н	211	VAL	2.3	
2	G	72	HIS	2.3	
6	Е	160	VAL	2.3	
3	Н	84	PRO	2.3	
4	L	158	ALA	2.2	
3	Н	162	GLY	2.2	
3	Н	34	TRP	2.2	
4	L	106	VAL	2.2	
5	D	163	VAL	2.2	
5	D	33	HIS	2.2	
3	Н	28	SER	2.2	
4	L	146	THR	2.2	
6	E	163	THR	2.2	
6	E	119	PHE	2.1	
5	D	164	HIS	2.1	
5	D	182	VAL	2.1	
3	Н	79	SER	2.1	
4	L	137	ILE	2.1	
6	E	178	TYR	2.1	
4	L	64	GLY	2.1	
2	G	463	SER	2.1	
2	G	360	ARG	2.1	
5	D	168	ALA	2.1	
6	E	138	SER	2.1	
3	H	78	LEU	2.1	
2	G	85	HIS	2.1	
4	L	12	SER	2.1	
5	D	121	VAL	2.1	
4	L	14	ALA	2.1	
2	G	139	\mid THR	2.0	

Mol	Chain	Res	Type	RSRZ	
2	G	217	TYR	2.0	
1	В	628	TRP	2.0	
2	G	455	THR	2.0	
2	G	69	TRP	2.0	
6	Е	110	PRO	2.0	
2	G	225	ILE	2.0	
6	Е	19	ILE	2.0	
5	D	178	LEU	2.0	

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
16	MAN	Р	9	11/12	0.42	0.34	390,390,390,390	0
16	NAG	Р	13	14/15	0.43	0.44	394,394,394,394	0
16	NAG	Р	10	14/15	0.44	0.39	404,417,422,424	0
16	NAG	Р	2	14/15	0.46	0.29	297,317,320,320	0
16	FUC	Р	16	10/11	0.48	0.59	309,309,309,309	0
17	BMA	R	3	11/12	0.48	0.20	350,357,361,366	0
12	NAG	K	5	14/15	0.49	0.25	363,363,363,363	0
15	MAN	0	6	11/12	0.49	0.50	318,335,341,351	0
19	BMA	U	3	11/12	0.49	0.36	397,414,429,431	0
16	GAL	Р	11	11/12	0.56	0.20	435,435,435,435	0
11	MAN	J	8	11/12	0.57	0.19	330,330,330,330	0
18	MAN	S	9	11/12	0.58	0.46	280,280,280,280	0
7	FUC	А	2	10/11	0.58	0.55	312,312,312,312	0
20	MAN	V	4	11/12	0.58	0.42	313,318,336,356	0
15	BMA	0	3	11/12	0.59	0.38	287,304,319,321	0
15	MAN	0	7	11/12	0.59	0.51	399,413,420,421	0
13	NAG	М	5	14/15	0.60	0.35	355,368,372,374	0
19	MAN	U	5	11/12	0.61	0.32	342,342,342,342	0
11	MAN	J	4	11/12	0.62	0.18	340,340,340,340	0
22	MAN	Х	5	11/12	0.62	0.71	408,410,419,425	0

Untinuea from previous page									
Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors(A^2)	Q<0.9	
11	NAG	J	9	14/15	0.65	0.20	315,315,315,315	0	
16	GAL	P	14	11/12	0.65	0.50	367,367,367,367	0	
15	MAN	0	5	11/12	0.65	0.43	311,311,311,311	0	
12	MAN	K	4	11/12	0.66	0.25	338,338,338,338	0	
17	NAG	R	2	14/15	0.66	0.43	338,352,362,366	0	
16	SIA	P	12	20/21	0.66	0.48	456,456,456,456	0	
21	MAN	W	4	11/12	0.66	0.38	294,294,294,294	0	
16	NAG	P	15	14/15	0.66	0.47	376,376,376,376	0	
16	NAG	Р	1	14/15	0.67	0.32	289,299,317,320	0	
21	MAN	W	5	11/12	0.67	0.58	400,400,400,400	0	
9	FUC	F	3	10/11	0.67	0.50	318,324,334,342	0	
12	GAL	K	6	11/12	0.68	0.42	411,411,411,411	0	
12	NAG	K	2	14/15	0.69	0.23	277,290,302,308	0	
11	NAG	J	11	14/15	0.69	0.35	383,383,383,383	0	
12	MAN	K	7	11/12	0.69	0.23	350,350,350,350	0	
16	NAG	Р	8	14/15	0.70	0.24	371,371,371,371	0	
9	NAG	F	2	14/15	0.70	0.33	336,357,359,360	0	
20	BMA	V	3	11/12	0.71	0.24	318,336,351,352	0	
13	NAG	М	9	14/15	0.71	0.45	307,320,324,326	0	
20	MAN	V	5	11/12	0.71	0.38	314,331,337,347	0	
19	NAG	U	2	14/15	0.71	0.74	431,431,431,431	0	
13	GAL	М	6	11/12	0.71	0.22	358,363,372,375	0	
22	MAN	Х	4	11/12	0.71	0.42	380,397,403,413	0	
17	NAG	R	7	14/15	0.71	0.35	332,345,349,351	0	
14	NAG	Т	1	14/15	0.72	0.18	385,385,385,385	0	
21	NAG	W	2	14/15	0.72	0.22	300,321,323,323	0	
16	BMA	Р	3	11/12	0.72	0.24	355,362,366,371	0	
19	MAN	U	7	11/12	0.72	0.38	370,375,393,413	0	
13	SIA	М	7	20/21	0.72	0.42	371,371,371,371	0	
11	NAG	J	7	14/15	0.72	0.27	340,340,340,340	0	
9	NAG	F	1	14/15	0.73	0.27	331,341,358,361	0	
17	MAN	R	4	11/12	0.74	0.28	317,323,334,335	0	
17	NAG	R	5	14/15	0.74	0.52	347,356,371,376	0	
19	MAN	U	6	11/12	0.74	0.36	355,370,377,378	0	
15	MAN	0	4	11/12	0.74	0.35	281,286,304,324	0	
14	NAG	Т	2	14/15	0.74	0.22	369,369,369,369	0	
11	GAL	J	6	11/12	0.74	0.27	350,350,350,350	0	
12	BMA	K	3	11/12	0.75	0.10	330,330,330,330	0	
11	NAG	J	5	14/15	0.76	0.18	346,346,346,346	0	
7	NAG	А	1	14/15	0.76	0.22	$285,\!298,\!351,\!352$	0	
17	NAG	R	1	14/15	0.77	0.45	258,258,258,258	0	
13	MAN	М	8	11/12	0.77	0.26	283,291,296,297	0	
				-		-	Continued on net	rt page	

Jf α . . . :

Conti	nued fro	m previoi	is page.	 A toma	DSCC	DCD	D footong $\begin{pmatrix} \lambda \\ 2 \end{pmatrix}$	O < 0.0
	Type	Unain	Res		RSCC	RSR	$\mathbf{B-Iactors}(\mathbf{A}^{-})$	Q<0.9
22	NAG	X	1	14/15	0.77	0.42	215,226,243,248	0
10	NAG		2	$\frac{14}{15}$	0.77	0.22	271,271,271,271	0
10	NAG	P	5	14/15	0.77	0.15	352,366,370,372	0
16	SIA	P	7	$\frac{20/21}{14/15}$	0.78	0.21	397,397,397,397	0
14	NAG	N	2	14/15	0.78	0.37	270,272,275,276	0
19	NAG	U	1	14/15	0.78	0.43	290,299,323,342	0
11	BMA	J	3	11/12	0.78	0.15	313,313,313,313	0
21	BMA	W	3	11/12	0.78	0.19	314,321,325,329	0
13	NAG	M	2	14/15	0.79	0.34	221,241,244,244	0
11	FUC	J	13	10/11	0.79	0.35	294,294,294,294	0
21	FUC	W	6	10/11	0.79	0.39	308,313,323,331	0
8	FUC	С	4	10/11	0.80	0.26	351,351,351,351	0
11	GAL	J	10	11/12	0.80	0.22	336,336,336,336	0
12	NAG	K	8	14/15	0.80	0.19	339,352,356,358	0
12	GAL	K	9	11/12	0.80	0.19	350,355,364,366	0
11	GAL	J	12	11/12	0.81	0.39	401,401,401,401	0
18	MAN	S	7	11/12	0.81	0.27	208,225,231,240	0
18	MAN	S	8	11/12	0.81	0.26	261,274,297,307	0
19	MAN	U	4	11/12	0.82	0.21	350,368,374,383	0
11	NAG	J	2	14/15	0.82	0.27	254,274,287,287	0
8	BMA	С	3	11/12	0.82	0.38	311,311,311,311	0
10	BMA	Ι	3	11/12	0.83	0.23	$274,\!274,\!274,\!274$	0
14	NAG	Q	1	14/15	0.83	0.31	204,220,246,255	0
22	BMA	Х	3	11/12	0.83	0.33	307,324,340,341	0
18	MAN	S	6	11/12	0.83	0.33	203,208,213,213	0
16	MAN	Р	4	11/12	0.83	0.44	393,393,393,393	0
10	NAG	Ι	1	14/15	0.84	0.37	251,251,251,251	0
13	MAN	М	4	11/12	0.84	0.22	337,337,337,337	0
20	NAG	V	1	14/15	0.85	0.37	245,256,273,279	0
14	NAG	Q	2	14/15	0.85	0.35	283,298,308,317	0
21	NAG	W	1	14/15	0.85	0.25	296,306,324,327	0
16	GAL	Р	6	11/12	0.86	0.12	351,351,351,351	0
22	NAG	Х	2	14/15	0.86	0.42	241,258,278,284	0
12	FUC	K	10	10/11	0.86	0.57	329,329,329,329	0
18	MAN	S	5	11/12	0.86	0.16	180,183,196,204	0
13	NAG	М	1	14/15	0.86	0.39	198,208,226,229	0
20	NAG	V	2	14/15	0.87	0.34	326,343,363,369	0
14	NAG	N	1	14/15	0.87	0.29	232,246,263,271	0
12	NAG	K	1	14/15	0.87	0.34	236,260,269,281	0
18	MAN	S	10	11/12	0.88	0.35	250,252,261,267	0
18	MAN	S	4	11/12	0.88	0.19	195,200,218,238	0
15	NAG	0	2	14/15	0.88	0.33	203,219,240,245	0

Continued for . .

Continued on next page...

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
13	BMA	М	3	11/12	0.89	0.23	$254,\!261,\!265,\!270$	0
18	NAG	S	1	14/15	0.89	0.31	200,211,228,234	0
8	NAG	С	1	14/15	0.89	0.16	333,351,364,365	0
17	MAN	R	6	11/12	0.89	0.20	360,369,374,374	0
18	BMA	S	3	11/12	0.92	0.22	136,153,169,170	0
15	NAG	0	1	14/15	0.93	0.32	169,179,197,202	0
11	NAG	J	1	14/15	0.93	0.24	211,224,277,278	0
18	NAG	S	2	14/15	0.94	0.27	162,179,199,205	0
8	NAG	С	2	14/15	0.95	0.18	318,318,318,318	0

Continued from previous page...

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
23	NAG	G	3390	14/15	0.61	0.36	288,306,313,318	0

6.5 Other polymers (i)

There are no such residues in this entry.

