

Full wwPDB X-ray Structure Validation Report (i)

Sep 23, 2023 – 11:49 PM EDT

PDB ID	:	5SXU
Title	:	X-ray structure of 2-bromoethanol bound to a pentameric ligand gated ion
		channel (ELIC) in a desensitized state
Authors	:	Chen, Q.; Kinde, M.; Cohen, A.; Xu, Y.; Tang, P.
Deposited on	:	2016-08-10
Resolution	:	3.10 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35.1
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	1094 (3.10-3.10)
Clashscore	141614	1184 (3.10-3.10)
Ramachandran outliers	138981	1141 (3.10-3.10)
Sidechain outliers	138945	1141 (3.10-3.10)
RSRZ outliers	127900	1067 (3.10-3.10)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	322	5% 84%	11%	•••
1	D	200	3%		
	В	322	3%	18%	• •
1	С	322	81%	14%	• •
1	D	322	77%	17%	•••
1	Е	322	6%	18%	•••

Contr	nueu jron	i previous	page		
Mol	Chain	Length	Quality of chain		
1	F	322	80%	15%	•••
1	G	322	6% 80%	16%	·
1	Н	322	7% 81%	14%	
1	Ι	322	5% 81%	13%	••
1	J	322	6%	16%	•••

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
2	BRJ	А	401	-	-	Х	Х
2	BRJ	А	403	-	-	-	Х
2	BRJ	В	401	-	-	-	Х
2	BRJ	В	403	-	-	-	Х
2	BRJ	С	401	-	-	Х	Х
2	BRJ	С	402	-	-	-	Х
2	BRJ	С	403	-	-	-	Х
2	BRJ	D	401	-	-	_	Х
2	BRJ	D	402	-	-	_	Х
2	BRJ	D	403	-	-	-	Х
2	BRJ	Е	502	-	-	_	Х
2	BRJ	Е	504	-	-	-	Х
2	BRJ	F	401	-	-	Х	Х
2	BRJ	F	402	-	-	_	Х
2	BRJ	F	403	-	-	_	Х
2	BRJ	G	401	-	-	_	Х
2	BRJ	Н	401	-	-	Х	Х
2	BRJ	Н	402	-	-	_	Х
2	BRJ	Н	403	-	-	-	Х
2	BRJ	Ι	401	-	-	_	Х
2	BRJ	Ι	402	-	-	_	Х
2	BRJ	Ι	403	-	-	Х	Х
2	BRJ	J	502	-	-	-	Х
2	BRJ	J	503	-	-	-	Х
2	BRJ	J	504	-	-	-	Х
3	3CN	А	405	-	-	-	Х
3	3CN	Н	404	-	-	-	Х

2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 25453 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace	
1	Δ	308	Total	С	Ν	Ο	\mathbf{S}	0	0	0	
1	Л	500	2516	1639	420	451	6	0	0	0	
1	В	308	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0	
-		000	2516	1639	420	451	6	0	0	0	
1	C	308	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0	
	0	000	2516	1639	420	451	6	0	0	0	
1	О	308	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0	
-		000	2516	1639	420	451	6	0	0	0	
1	E	308	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0	
-		300	2516	1639	420	451	6	0	0	0	
1	F	308	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0	
-	1	300	2516	1639	420	451	6	0	0	0	
1	G	308	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0	
-	<u> </u>	300	2516	1639	420	451	6	0	0	0	
1	н	308	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0	
-	11	300	2516	1639	420	451	6	0	0	0	
1	т	308	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0	
	1	000	2516	1639	420	451	6		U	0	
1	T	308	Total	\mathbf{C}	N	Ο	S	0	0	0	
	5	500	2516	1639	420	451	6		0		

• Molecule 1 is a protein called Gamma-aminobutyric-acid receptor subunit beta-1.

• Molecule 2 is 2-BROMOETHANOL (three-letter code: BRJ) (formula: C_2H_5BrO).

Mol	Chain	Residues	A	Aton	ıs		ZeroOcc	AltConf
0	٨	1	Total	Br	С	0	0	0
	А	1	4	1	2	1	0	0
0	Λ	1	Total	Br	С	0	0	0
	A	1	4	1	2	1	0	0
2	Δ	1	Total	Br	С	0	0	0
	11	1	4	1	2	1	0	0
2	Δ	1	Total	Br	С	Ο	0	0
	11	1	4	1	2	1	0	0
2	В	1	Total	Br	С	Ο	0	0
	Ъ	1	4	1	2	1	0	0
2	В	1	Total	Br	С	Ο	0	0
	D	1	4	1	2	1	Ŭ	
2	В	1	Total	Br	С	Ο	0	0
		-	4	1	2	1		
2	С	1	Total	Br	С	0	0	0
		_	4	1	2	1		
2	С	1	Total	Br	С	0	0	0
		_	4	1	2	1		
2	С	1	Total	Br	С	0	0	0
		_	4	1	2	1		
2	D	1	Total	Br	С	0	0	0
		_	4	1	2	1		
2	D	1	Total	Br	С	0	0	0
		_	4	1	2	1		
2	D	1	Total	Br	C	0	0	0
			4	1	2	1		-
2	Е	1	Total	Br	C	U 1	0	0
			4	1	2	1	-	~

Mol	Chain	Residues	J A	Aton	ıs		ZeroOcc	AltConf
0	Б	1	Total	Br	С	0	0	0
	E	1	4	1	2	1	0	0
2	F	1	Total	Br	С	0	0	0
	Ľ	I	4	1	2	1	0	0
2	F	1	Total	Br	С	Ο	0	0
	1	1	4	1	2	1	0	0
2	F	1	Total	Br	С	Ο	0	0
	-	-	4	1	2	1		
2	F	1	Total	Br	С	0	0	0
			4	1	2	1		_
2	F	1	Total	Br	C	0	0	0
			4		$\frac{2}{2}$	1		
2	G	1	Total	Br	C	0	0	0
			4	1 	$\frac{2}{C}$	1		
2	G	1		Br 1	C o		0	0
			4 Total	 	$\frac{2}{C}$	1		
2	G	1		DI 1	$\frac{0}{2}$	1	0	0
			Total	Br	$\frac{2}{C}$	0		
2	Н	1	100a1 4	1	$\frac{0}{2}$	1	0	0
			Total	Br	$\frac{1}{C}$	$\overline{0}$		
2	Н	1	4	1	2	1	0	0
			Total	Br		0		
2	Н	1	4	1	2	1	0	0
	т		Total	Br	С	0	0	0
2	1	1	4	1	2	1	0	0
0	т	1	Total	Br	С	0	0	0
	1	1	4	1	2	1	0	0
0	т	1	Total	Br	С	0	0	0
	1	1	4	1	2	1	0	0
2	т	1	Total	Br	С	0	0	0
	J	1	4	1	2	1	0	0
2	T	1	Total	Br	С	0	0	0
	บ	T	4	1	2	1	0	0
2	Ţ	1	Total	Br	С	Ο	0	0
	J	L L	4	1	2	1		U

Continued from previous page...

• Molecule 3 is 3-AMINOPROPANE (three-letter code: 3CN) (formula: C_3H_9N).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	Total C N 4 3 1	0	0
3	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{N} \\ 4 3 1 \end{array}$	0	0
3	С	1	Total C N 4 3 1	0	0
3	D	1	Total C N 4 3 1	0	0
3	Е	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{N} \\ 4 & 3 & 1 \end{array}$	0	0
3	F	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{N} \\ 4 & 3 & 1 \end{array}$	0	0
3	G	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{N} \\ 4 & 3 & 1 \end{array}$	0	0
3	Н	1	$\begin{array}{ccc} \text{Total} \text{C} \text{N} \\ 4 3 1 \end{array}$	0	0
3	Ι	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{N} \\ 4 & 3 & 1 \end{array}$	0	0
3	J	1	Total C N 4 3 1	0	0

• Molecule 4 is 2-(N-MORPHOLINO)-ETHANESULFONIC ACID (three-letter code: MES) (formula: $C_6H_{13}NO_4S$).

Mol	Chain	Residues		Ato	oms			ZeroOcc	AltConf
4	Λ	1	Total	С	Ν	0	S	0	0
4	A	1	12	6	1	4	1	0	0
4	В	1	Total	С	Ν	Ο	\mathbf{S}	0	0
-1	D	T	12	6	1	4	1	0	0
4	С	1	Total	С	Ν	Ο	\mathbf{S}	0	0
- T	0	1	12	6	1	4	1	0	0
	Л	1	Total	С	Ν	Ο	\mathbf{S}	0	0
	D	I	12	6	1	4	1	0	0
4	E	1	Total	С	Ν	Ο	\mathbf{S}	0	0
1		1	12	6	1	4	1	0	0
4	F	1	Total	С	Ν	Ο	\mathbf{S}	0	0
	-	Ĩ	12	6	1	4	1	Ŭ	0
4	G	1	Total	С	Ν	Ο	\mathbf{S}	0	0
		I.	12	6	1	4	1	Ŭ	0
4	Н	1	Total	С	Ν	Ο	\mathbf{S}	0	0
		1	12	6	1	4	1	Ŭ	0
4	T	1	Total	С	Ν	Ο	\mathbf{S}	0	0
	1	1	12	6	1	4	1		V
4	I	1	Total	С	Ν	0	\mathbf{S}	0	0
т	5		12	6	1	4	1		0

• Molecule 5 is CHLORIDE ION (three-letter code: CL) (formula: Cl).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	С	1	Total Cl 1 1	0	0
5	J	1	Total Cl 1 1	0	0

• Molecule 6 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	С	1	Total O 1 1	0	0
6	Ι	1	Total O 1 1	0	0
6	J	1	Total O 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Gamma-aminobutyric-acid receptor subunit beta-1

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	105.90Å 266.79 Å 111.11 Å	Deperitor
a, b, c, α , β , γ	90.00° 107.13° 90.00°	Depositor
$\mathbf{Posolution} \left(\overset{\circ}{\mathbf{A}} \right)$	29.93 - 3.10	Depositor
Resolution (A)	39.61 - 3.10	EDS
% Data completeness	99.8 (29.93-3.10)	Depositor
(in resolution range)	99.9(39.61-3.10)	EDS
R _{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.34 (at 3.12 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.9_1692	Depositor
P. P.	0.200 , 0.239	Depositor
n, n_{free}	0.209 , 0.243	DCC
R_{free} test set	5202 reflections $(4.90%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	108.7	Xtriage
Anisotropy	0.344	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.29, 81.7	EDS
L-test for $twinning^2$	$< L >=0.48, < L^2>=0.31$	Xtriage
Estimated twinning fraction	0.022 for l,-k,h	Xtriage
F_o, F_c correlation	0.92	EDS
Total number of atoms	25453	wwPDB-VP
Average B, all atoms $(Å^2)$	118.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.22% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: BRJ, CL, MES, 3CN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.31	0/2584	0.60	1/3522~(0.0%)	
1	В	0.32	0/2584	0.66	2/3522~(0.1%)	
1	С	0.33	0/2584	0.61	0/3522	
1	D	0.35	0/2584	0.66	1/3522~(0.0%)	
1	Е	0.31	0/2584	0.62	0/3522	
1	F	0.35	0/2584	0.63	0/3522	
1	G	0.32	0/2584	0.61	0/3522	
1	Н	0.32	0/2584	0.62	1/3522~(0.0%)	
1	Ι	0.31	0/2584	0.63	0/3522	
1	J	0.34	0/2584	0.64	0/3522	
All	All	0.33	0/25840	0.63	5/35220~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	В	0	1

There are no bond length outliers.

All (5) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	304	PHE	CB-CG-CD1	6.58	125.41	120.80
1	А	178	LEU	CA-CB-CG	6.10	129.33	115.30
1	В	304	PHE	CB-CG-CD2	-5.78	116.75	120.80
1	D	309	LEU	CA-CB-CG	5.58	128.14	115.30
1	Н	178	LEU	CA-CB-CG	5.45	127.82	115.30

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Group
1	В	304	PHE	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2516	0	2490	28	0
1	В	2516	0	2490	45	0
1	С	2516	0	2490	33	0
1	D	2516	0	2490	51	0
1	Е	2516	0	2490	38	0
1	F	2516	0	2490	38	0
1	G	2516	0	2490	35	0
1	Н	2516	0	2490	37	0
1	Ι	2516	0	2490	45	0
1	J	2516	0	2490	41	0
2	А	16	0	12	3	0
2	В	12	0	9	1	0
2	С	12	0	9	3	0
2	D	12	0	9	1	0
2	Е	12	0	9	2	0
2	F	16	0	12	2	0
2	G	12	0	9	1	0
2	Н	12	0	9	2	0
2	Ι	12	0	9	4	0
2	J	12	0	9	1	0
3	А	4	0	9	0	0
3	В	4	0	9	0	0
3	С	4	0	9	0	0
3	D	4	0	9	0	0
3	Е	4	0	9	0	0
3	F	4	0	9	0	0
3	G	4	0	9	0	0
3	Н	4	0	9	1	0
3	Ι	4	0	9	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	J	4	0	9	0	0
4	А	12	0	13	0	0
4	В	12	0	13	0	0
4	С	12	0	13	0	0
4	D	12	0	12	0	0
4	Ε	12	0	13	0	0
4	F	12	0	12	0	0
4	G	12	0	13	0	0
4	Н	12	0	13	0	0
4	Ι	12	0	13	0	0
4	J	12	0	13	0	0
5	С	1	0	0	0	0
5	J	1	0	0	0	0
6	С	1	0	0	0	0
6	Ι	1	0	0	0	0
6	J	1	0	0	0	0
All	All	25453	0	25214	359	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 7.

All (359) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:231:ARG:NH2	1:C:292:GLU:OE2	2.12	0.82
1:F:138:GLN:OE1	1:F:185:GLN:NE2	2.15	0.80
1:B:168:THR:O	1:B:169:HIS:ND1	2.15	0.78
1:B:168:THR:C	1:B:169:HIS:HD1	1.88	0.75
1:D:112:ASN:OD1	1:D:113:ASP:N	2.20	0.74
1:C:178:LEU:HD11	1:C:181:VAL:HG22	1.71	0.73
1:J:112:ASN:OD1	1:J:113:ASP:N	2.23	0.72
1:G:112:ASN:OD1	1:G:113:ASP:N	2.24	0.70
1:I:195:ILE:HD13	2:I:403:BRJ:BR1	2.48	0.68
1:F:13:ASP:OD1	1:F:141:ARG:NH1	2.27	0.68
1:C:112:ASN:OD1	1:C:113:ASP:N	2.27	0.67
1:D:304:PHE:HB2	1:D:305:PRO:HD3	1.76	0.66
1:H:224:TRP:CG	1:I:281:ILE:HD11	2.30	0.66
1:H:112:ASN:OD1	1:H:113:ASP:N	2.28	0.66
1:D:289:ASN:OD1	1:D:291:VAL:HB	1.96	0.65
1:D:304:PHE:CB	1:D:305:PRO:HD3	2.27	0.64
1:D:182:GLN:O	1:D:184:ASN:N	2.32	0.61

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:99:ARG:O	1:C:100:VAL:HB	2.00	0.61
1:D:304:PHE:O	1:D:308:PHE:N	2.31	0.61
1:E:112:ASN:OD1	1:E:113:ASP:N	2.33	0.61
1:B:182:GLN:O	1:B:184:ASN:N	2.31	0.61
1:A:281:ILE:HD11	1:E:224:TRP:CG	2.36	0.60
1:G:168:THR:O	1:G:169:HIS:ND1	2.35	0.60
1:D:302:LEU:HD23	1:D:305:PRO:HG2	1.82	0.60
1:F:302:LEU:HA	1:F:305:PRO:HD2	1.84	0.59
1:A:156:GLU:OE1	1:A:200:ASN:ND2	2.37	0.58
1:C:224:TRP:CD2	1:D:281:ILE:HD11	2.38	0.58
1:F:289:ASN:OD1	1:F:291:VAL:N	2.24	0.58
1:G:231:ARG:NH2	1:G:292:GLU:OE2	2.37	0.58
1:G:284:HIS:ND1	1:G:292:GLU:OE1	2.32	0.58
1:B:304:PHE:HA	1:B:307:GLY:H	1.69	0.58
1:D:156:GLU:OE1	1:D:200:ASN:ND2	2.35	0.58
1:G:224:TRP:CG	1:H:281:ILE:HD11	2.39	0.58
1:E:152:ILE:HD11	1:E:155:GLU:HG2	1.85	0.57
1:J:186:ASN:OD1	1:J:187:GLU:N	2.33	0.57
2:A:401:BRJ:BR1	2:A:402:BRJ:HB11	2.60	0.57
1:G:168:THR:C	1:G:169:HIS:ND1	2.59	0.57
1:I:137:ASN:HD22	1:I:187:GLU:HB3	1.69	0.56
1:J:76:LEU:HD12	2:J:502:BRJ:BR1	2.59	0.56
1:J:44:THR:HA	1:J:99:ARG:HA	1.88	0.56
1:F:288:ALA:O	1:F:289:ASN:CG	2.44	0.56
1:E:306:LEU:O	1:E:310:ALA:N	2.38	0.56
1:I:186:ASN:O	1:I:186:ASN:OD1	2.23	0.56
1:F:224:TRP:CG	1:G:281:ILE:HD11	2.41	0.55
1:I:76:LEU:HD12	2:I:401:BRJ:BR1	2.62	0.55
1:D:289:ASN:O	1:D:291:VAL:N	2.40	0.55
1:D:286:ARG:HH11	1:D:296:LEU:HD21	1.72	0.55
1:H:224:TRP:CE2	1:H:301:ARG:HD3	2.43	0.54
1:B:300:CYS:HA	1:B:303:ALA:HB3	1.90	0.54
1:A:297:ILE:O	1:A:298:GLN:CB	2.56	0.54
1:I:302:LEU:HD23	1:I:305:PRO:HG2	1.89	0.54
1:A:297:ILE:O	1:A:298:GLN:HB3	2.07	0.54
1:B:296:LEU:HA	1:B:299:ARG:HH11	1.71	0.54
1:F:182:GLN:N	1:F:183:PRO:HD3	2.23	0.54
1:F:304:PHE:O	1:F:308:PHE:N	2.33	0.54
1:D:47:PRO:HA	1:D:98:GLY:HA2	1.89	0.53
1:G:297:ILE:O	1:G:298:GLN:HB3	2.07	0.53
1:J:173:ILE:O	1:J:187:GLU:HA	2.08	0.53

A 4 1	A 4 arra 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:G:10:ARG:N	1:G:11:PRO:CD	2.72	0.53
1:B:62:GLN:NE2	1:C:68:ASN:OD1	2.36	0.53
1:J:283:ALA:CA	1:J:296:LEU:HD23	2.39	0.53
1:D:285:HIS:O	1:D:285:HIS:ND1	2.42	0.52
1:H:302:LEU:HD12	1:H:305:PRO:HB2	1.90	0.52
1:J:231:ARG:CZ	1:J:297:ILE:HD11	2.40	0.52
1:D:44:THR:HA	1:D:99:ARG:HA	1.90	0.52
1:D:279:LEU:O	1:D:282:PHE:N	2.43	0.52
1:D:314:VAL:HG23	1:D:315:LEU:N	2.23	0.52
1:A:208:PHE:CD1	1:A:249:THR:HG22	2.45	0.52
1:C:289:ASN:OD1	1:C:291:VAL:HB	2.10	0.52
1:E:152:ILE:HD11	1:E:155:GLU:CG	2.39	0.52
1:F:307:GLY:O	1:F:311:ILE:HG12	2.10	0.52
1:B:279:LEU:O	1:B:282:PHE:N	2.40	0.52
1:E:295:LEU:HB3	1:E:299:ARG:HH12	1.74	0.52
1:E:10:ARG:N	1:E:11:PRO:CD	2.72	0.52
1:E:10:ARG:N	1:E:11:PRO:HD2	2.25	0.52
1:B:238:LEU:HD21	1:C:236:PHE:CD1	2.45	0.51
1:A:300:CYS:HA	1:A:303:ALA:HB3	1.93	0.51
1:F:150:GLU:HG3	1:F:151:ASN:H	1.76	0.51
1:H:297:ILE:HG22	1:H:298:GLN:N	2.26	0.51
1:F:231:ARG:NH2	1:F:292:GLU:OE2	2.44	0.50
1:B:47:PRO:HA	1:B:98:GLY:HA2	1.92	0.50
1:H:19:PHE:N	1:H:19:PHE:CD1	2.79	0.50
1:H:300:CYS:HA	1:H:303:ALA:HB3	1.92	0.50
1:D:304:PHE:CB	1:D:305:PRO:CD	2.89	0.50
1:G:304:PHE:HB2	1:G:305:PRO:HD3	1.92	0.50
1:I:10:ARG:N	1:I:11:PRO:HD2	2.25	0.50
1:C:182:GLN:O	1:C:184:ASN:N	2.45	0.50
1:J:43:TRP:CH2	1:J:74:PRO:HD2	2.47	0.50
1:G:309:LEU:O	1:G:313:CYS:HB2	2.12	0.50
1:I:195:ILE:CD1	2:I:403:BRJ:BR1	3.15	0.49
1:D:210:LEU:HB3	1:D:211:PRO:HD3	1.93	0.49
1:D:297:ILE:O	1:D:300:CYS:N	2.44	0.49
1:H:224:TRP:CD2	1:I:281:ILE:HD11	2.46	0.49
1:C:224:TRP:CG	1:D:281:ILE:HD11	2.48	0.49
1:E:46:LYS:HE3	1:E:48:ARG:HH21	1.77	0.49
1:I:137:ASN:OD1	1:I:138:GLN:HG3	2.13	0.49
1:A:281:ILE:HD11	1:E:224:TRP:CD2	2.46	0.49
1:B:286:ARG:HD2	1:B:296:LEU:HD11	1.94	0.49
1:I:210:LEU:HB3	1:I:211:PRO:HD3	1.94	0.49

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:J:75:ALA:CB	1:J:133:PHE:HB3	2.43	0.49
1:F:152:ILE:O	1:F:152:ILE:HG13	2.13	0.49
1:H:102:TYR:CE1	2:H:401:BRJ:BR1	3.21	0.49
1:F:288:ALA:O	1:F:289:ASN:ND2	2.45	0.49
1:B:289:ASN:OD1	1:B:291:VAL:HB	2.13	0.49
1:G:44:THR:HA	1:G:99:ARG:HA	1.94	0.48
1:G:302:LEU:HD23	1:G:305:PRO:HG2	1.95	0.48
1:D:178:LEU:HG	1:D:179:SER:N	2.28	0.48
1:J:283:ALA:HA	1:J:296:LEU:HD23	1.95	0.48
1:B:210:LEU:HB3	1:B:211:PRO:HD3	1.94	0.48
1:F:224:TRP:CE2	1:F:301:ARG:HD3	2.49	0.48
1:G:137:ASN:ND2	1:G:187:GLU:HB3	2.28	0.48
1:D:23:ILE:HD12	2:D:403:BRJ:BR1	2.69	0.48
1:B:44:THR:HG22	1:B:99:ARG:HB3	1.95	0.48
1:I:175:TYR:N	1:I:186:ASN:OD1	2.46	0.48
1:D:224:TRP:CB	1:E:281:ILE:HD11	2.43	0.48
1:H:10:ARG:N	1:H:11:PRO:HD2	2.28	0.48
1:A:47:PRO:HA	1:A:98:GLY:HA2	1.96	0.48
1:D:10:ARG:N	1:D:11:PRO:HD2	2.29	0.48
2:G:401:BRJ:BR1	2:G:402:BRJ:HB11	2.68	0.48
1:A:248:TYR:CD1	1:B:247:PHE:HA	2.48	0.48
1:C:10:ARG:N	1:C:11:PRO:CD	2.77	0.48
1:A:279:LEU:HD23	1:A:300:CYS:SG	2.54	0.47
1:B:55:PRO:HB3	1:B:95:PHE:CD1	2.49	0.47
1:B:304:PHE:HA	1:B:307:GLY:N	2.28	0.47
1:C:241:THR:HA	1:D:240:LEU:HD12	1.96	0.47
1:D:224:TRP:CG	1:E:281:ILE:HD11	2.49	0.47
1:H:298:GLN:HG2	1:H:301:ARG:CZ	2.44	0.47
1:I:137:ASN:HD22	1:I:187:GLU:CB	2.27	0.47
1:J:153:ASP:O	1:J:155:GLU:HG3	2.14	0.47
1:B:291:VAL:O	1:B:293:ASP:N	2.45	0.47
1:E:62:GLN:OE1	1:E:65:ARG:NH1	2.44	0.47
1:A:210:LEU:HB3	1:A:211:PRO:HD3	1.96	0.47
1:C:253:LEU:HB3	1:C:254:PRO:HD2	1.95	0.47
1:B:298:GLN:HG2	1:B:301:ARG:CZ	2.45	0.47
1:H:224:TRP:CD2	1:H:301:ARG:HD3	2.50	0.47
1:C:210:LEU:HB3	1:C:211:PRO:HD3	1.95	0.47
1:C:288:ALA:O	1:C:289:ASN:CG	2.53	0.47
1:E:95:PHE:HB2	1:E:99:ARG:HG2	1.95	0.47
1:F:210:LEU:HB3	1:F:211:PRO:HD3	1.96	0.47
1:H:210:LEU:HB3	1:H:211:PRO:HD3	1.96	0.47

	loub page	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:H:217:ALA:HA	1:H:220:TRP:CE3	2.50	0.47	
1:I:300:CYS:HA	1:I:303:ALA:HB3	1.95	0.47	
1:J:210:LEU:HB3	1:J:211:PRO:HD3	1.97	0.47	
1:A:295:LEU:O	1:A:299:ARG:HG3	2.14	0.47	
1:C:10:ARG:N	1:C:11:PRO:HD2	2.29	0.47	
1:C:94:LEU:CD2	1:C:100:VAL:HG22	2.45	0.47	
1:C:302:LEU:HD23	1:C:305:PRO:HG2	1.97	0.47	
1:H:47:PRO:HA	1:H:98:GLY:HA2	1.97	0.47	
1:I:224:TRP:CB	1:J:281:ILE:HD11	2.45	0.47	
1:B:293:ASP:C	1:B:295:LEU:H	2.18	0.47	
1:C:47:PRO:HA	1:C:98:GLY:HA2	1.97	0.47	
1:F:220:TRP:CE3	1:F:305:PRO:HG3	2.50	0.47	
1:H:304:PHE:CB	1:H:305:PRO:HD3	2.45	0.47	
1:I:304:PHE:HB2	1:I:305:PRO:HD3	1.97	0.47	
1:B:10:ARG:N	1:B:11:PRO:CD	2.78	0.46	
1:A:65:ARG:HH12	1:B:68:ASN:HA	1.80	0.46	
1:B:97:ASP:OD1	1:B:99:ARG:HG2	2.16	0.46	
1:F:304:PHE:HB2	1:F:305:PRO:HD3	1.98	0.46	
1:I:304:PHE:CB	1:I:305:PRO:HD3	2.46	0.46	
1:D:300:CYS:HA	1:D:303:ALA:HB3	1.97	0.46	
1:J:231:ARG:CZ	1:J:297:ILE:CD1	2.94	0.46	
1:F:44:THR:HA	1:F:99:ARG:HA	1.96	0.46	
1:G:300:CYS:HA	1:G:303:ALA:HB3	1.98	0.46	
1:C:44:THR:HA	1:C:99:ARG:HA	1.96	0.46	
1:I:44:THR:HG22	1:I:99:ARG:HB3	1.97	0.46	
1:J:132:PRO:HD3	1:J:142:PHE:CE2	2.51	0.46	
1:I:291:VAL:HG22	1:I:292:GLU:N	2.30	0.46	
1:G:224:TRP:CD2	1:H:281:ILE:HD11	2.51	0.46	
1:A:62:GLN:OE1	1:A:65:ARG:NH1	2.48	0.46	
1:D:153:ASP:OD1	1:D:154:ASN:N	2.49	0.46	
1:F:231:ARG:CZ	1:F:297:ILE:CD1	2.94	0.46	
1:G:297:ILE:O	1:G:298:GLN:CB	2.63	0.46	
1:A:23:ILE:HG21	1:A:126:PHE:CD2	2.51	0.45	
1:H:102:TYR:CD1	2:H:401:BRJ:HB11	2.52	0.45	
1:I:44:THR:HA	1:I:99:ARG:HA	1.97	0.45	
1:J:304:PHE:HB2	1:J:305:PRO:HD3	1.98	0.45	
1:B:304:PHE:CD1	1:B:304:PHE:C	2.90	0.45	
1:A:208:PHE:CE1	1:A:248:TYR:CE2	3.05	0.45	
1:B:79:ILE:HB	1:B:129:GLU:HB2	1.98	0.45	
1:C:76:LEU:HD12	2:C:401:BRJ:BR1	2.72	0.45	
1:F:304:PHE:CB	1:F:305:PRO:HD3	2.47	0.45	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:G:210:LEU:HB3	1:G:211:PRO:HD3	1.98	0.45	
1:A:181:VAL:HG12	1:A:182:GLN:H	1.82	0.45	
1:B:44:THR:HA	1:B:99:ARG:HA	1.97	0.45	
1:F:231:ARG:CZ	1:F:297:ILE:HD13	2.47	0.45	
1:C:178:LEU:CD1	1:C:181:VAL:HG22	2.43	0.45	
1:C:304:PHE:HB2	1:C:305:PRO:HD3	1.98	0.45	
1:D:151:ASN:OD1	1:D:165:LYS:NZ	2.44	0.45	
1:B:246:ALA:HA	1:B:266:ILE:HD13	1.98	0.45	
1:C:297:ILE:O	1:C:300:CYS:N	2.50	0.45	
1:H:220:TRP:CE3	1:H:305:PRO:HG3	2.52	0.45	
1:I:175:TYR:O	1:I:186:ASN:OD1	2.34	0.45	
1:J:289:ASN:O	1:J:291:VAL:N	2.49	0.45	
1:B:161:TRP:HB2	1:B:198:VAL:CG2	2.46	0.45	
1:J:150:GLU:HG3	1:J:151:ASN:H	1.82	0.45	
1:G:288:ALA:O	1:G:289:ASN:CG	2.55	0.45	
1:I:95:PHE:CD2	1:I:99:ARG:HG3	2.51	0.45	
1:I:224:TRP:CG	1:J:281:ILE:HD11	2.51	0.45	
1:J:95:PHE:HB2	1:J:99:ARG:HG2	1.99	0.45	
1:A:182:GLN:O	1:A:184:ASN:N	2.46	0.44	
1:E:150:GLU:HG3	1:E:151:ASN:O	2.17	0.44	
1:I:155:GLU:HG3	1:I:156:GLU:N	2.31	0.44	
1:J:302:LEU:HA	1:J:305:PRO:HD2	1.98	0.44	
1:F:293:ASP:O	1:F:296:LEU:N	2.50	0.44	
1:I:155:GLU:HG3	1:I:157:ILE:H	1.82	0.44	
1:A:102:TYR:CD2	2:A:401:BRJ:HB11	2.52	0.44	
1:G:95:PHE:CD2	1:G:99:ARG:HG3	2.52	0.44	
1:J:296:LEU:HA	1:J:299:ARG:NE	2.33	0.44	
1:G:246:ALA:HA	1:G:266:ILE:HD13	1.98	0.44	
1:I:10:ARG:N	1:I:11:PRO:CD	2.80	0.44	
1:B:136:ASN:HB2	1:B:187:GLU:O	2.17	0.44	
1:B:304:PHE:C	1:B:304:PHE:HD1	2.20	0.44	
1:I:238:LEU:HD21	1:J:236:PHE:CD1	2.53	0.44	
1:J:295:LEU:O	1:J:299:ARG:HG3	2.17	0.44	
1:J:295:LEU:CG	1:J:299:ARG:HH21	2.31	0.44	
1:G:224:TRP:CB	1:H:281:ILE:HD11	2.48	0.43	
1:D:277:ILE:O	1:D:281:ILE:HG22	2.17	0.43	
1:F:58:VAL:HB	1:F:92:LEU:HB2	2.00	0.43	
1:J:10:ARG:N	1:J:11:PRO:CD	2.82	0.43	
1:B:231:ARG:CZ	1:B:297:ILE:CD1	2.96	0.43	
1:D:150:GLU:CG	1:D:152:ILE:HG23	2.49	0.43	
1:D:285:HIS:O	1:D:285:HIS:CG	2.71	0.43	

	A h o	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:F:102:TYR:CD1	2:F:401:BRJ:BR1	3.27	0.43	
1:I:224:TRP:HB2	1:J:281:ILE:HD11	1.99	0.43	
1:A:65:ARG:NH1	1:B:68:ASN:HA	2.34	0.43	
1:D:163:ARG:HD2	1:D:198:VAL:HG13	2.00	0.43	
1:H:285:HIS:O	1:H:285:HIS:ND1	2.52	0.43	
1:D:220:TRP:CE3	1:D:305:PRO:HG3	2.54	0.43	
1:E:173:ILE:O	1:E:187:GLU:HA	2.18	0.43	
1:H:19:PHE:CD2	3:H:404:3CN:HA2	2.54	0.43	
1:H:241:THR:HA	1:I:240:LEU:HD12	2.01	0.43	
1:I:152:ILE:O	1:I:153:ASP:CB	2.66	0.43	
1:A:155:GLU:HG2	1:A:161:TRP:CD1	2.53	0.43	
1:B:154:ASN:HB3	1:B:157:ILE:HD12	2.01	0.43	
1:E:79:ILE:HD11	1:E:131:GLU:HB3	2.00	0.43	
1:F:76:LEU:HD12	2:F:401:BRJ:BR1	2.74	0.43	
1:C:38:TYR:CE1	1:C:105:ARG:HD2	2.54	0.43	
1:D:177:HIS:O	1:D:178:LEU:HB2	2.18	0.43	
1:E:313:CYS:O	1:E:315:LEU:N	2.52	0.43	
1:J:44:THR:HG22	1:J:99:ARG:HB3	1.99	0.43	
1:J:175:TYR:O	1:J:186:ASN:ND2	2.52	0.43	
1:G:10:ARG:N	1:G:11:PRO:HD2	2.33	0.43	
1:C:224:TRP:CE3	1:D:281:ILE:HD11	2.54	0.43	
1:D:150:GLU:HG3	1:D:152:ILE:HG23	2.01	0.43	
1:E:224:TRP:CD2	1:E:301:ARG:HD3	2.54	0.43	
1:I:19:PHE:CD1	1:I:19:PHE:N	2.87	0.43	
1:A:44:THR:HG22	1:A:99:ARG:CB	2.49	0.42	
1:B:123:ARG:HG2	1:B:198:VAL:HG12	2.01	0.42	
1:E:180:SER:OG	1:E:182:GLN:HB2	2.19	0.42	
1:D:291:VAL:HG22	1:D:292:GLU:O	2.18	0.42	
1:D:304:PHE:HB2	1:D:305:PRO:CD	2.48	0.42	
1:I:123:ARG:HG2	1:I:198:VAL:HG12	2.00	0.42	
1:D:44:THR:HG22	1:D:99:ARG:HB3	2.01	0.42	
1:A:231:ARG:NH2	1:A:292:GLU:OE2	2.52	0.42	
1:B:220:TRP:HZ2	1:B:308:PHE:CD1	2.37	0.42	
1:D:247:PHE:CD2	1:E:247:PHE:HE2	2.38	0.42	
1:E:43:TRP:CH2	1:E:74:PRO:HD2	2.55	0.42	
1:E:279:LEU:O	1:E:282:PHE:N	2.47	0.42	
1:F:247:PHE:CD2	1:G:247:PHE:HE2	2.38	0.42	
1:A:162:ILE:HG13	2:A:403:BRJ:BR1	2.74	0.42	
1:E:152:ILE:CD1	1:E:155:GLU:HG2	2.49	0.42	
1:I:175:TYR:O	1:I:186:ASN:ND2	2.52	0.42	
1:C:102:TYR:CG	2:C:401:BRJ:HB11	2.54	0.42	

	h h = 0	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:D:10:ARG:N	1:D:11:PRO:CD	2.82	0.42	
1:H:44:THR:HA	1:H:99:ARG:HA	2.01	0.42	
1:D:311:ILE:O	1:D:314:VAL:HG22	2.19	0.42	
1:F:28:THR:HB	1:F:256:LEU:HD21	2.02	0.42	
1:F:242:VAL:HG12	1:F:270:TYR:CZ	2.54	0.42	
1:G:21:ASN:HD21	1:G:38:TYR:HE1	1.66	0.42	
1:I:137:ASN:ND2	1:I:187:GLU:CB	2.83	0.42	
1:D:28:THR:HG21	1:D:254:PRO:HB2	2.02	0.42	
1:D:253:LEU:HB3	1:D:254:PRO:HD2	2.01	0.42	
1:F:131:GLU:OE1	1:F:190:ARG:NE	2.48	0.42	
1:H:90:LYS:HE3	1:H:102:TYR:OH	2.19	0.42	
1:A:304:PHE:HB2	1:A:305:PRO:HD3	2.02	0.42	
1:D:224:TRP:CD2	1:E:281:ILE:HD11	2.55	0.42	
1:E:102:TYR:CG	2:E:502:BRJ:HB11	2.55	0.42	
1:E:210:LEU:HB3	1:E:211:PRO:HD3	2.01	0.42	
1:E:313:CYS:C	1:E:315:LEU:H	2.22	0.42	
1:G:157:ILE:HG22	1:H:31:GLN:HE22	1.85	0.42	
1:I:23:ILE:HD12	2:I:403:BRJ:BR1	2.75	0.42	
1:J:283:ALA:HB2	1:J:296:LEU:HD23	2.01	0.42	
1:D:305:PRO:O	1:D:309:LEU:HB3	2.20	0.42	
1:G:212:LEU:HD13	1:G:245:TYR:CD2	2.55	0.42	
1:H:248:TYR:CD1	1:I:247:PHE:HA	2.55	0.42	
1:D:150:GLU:HG3	1:D:152:ILE:H	1.85	0.41	
1:H:10:ARG:N	1:H:11:PRO:CD	2.83	0.41	
1:I:11:PRO:HB3	1:I:138:GLN:C	2.40	0.41	
1:I:24:TYR:CE2	1:I:34:LYS:HD2	2.55	0.41	
1:E:208:PHE:CD1	1:E:249:THR:HG22	2.55	0.41	
1:A:44:THR:HA	1:A:99:ARG:HA	2.03	0.41	
1:B:299:ARG:O	1:B:303:ALA:HB2	2.20	0.41	
1:B:308:PHE:CD1	1:B:308:PHE:C	2.93	0.41	
1:E:212:LEU:HD13	1:E:245:TYR:CD2	2.55	0.41	
1:F:47:PRO:HA	1:F:98:GLY:HA2	2.02	0.41	
1:F:122:ASP:OD2	1:F:199:ARG:NH1	2.53	0.41	
1:G:44:THR:HG22	1:G:99:ARG:HB3	2.02	0.41	
1:J:10:ARG:N	1:J:11:PRO:HD2	2.35	0.41	
1:C:268:ALA:HB1	1:C:308:PHE:CZ	2.55	0.41	
1:E:44:THR:HG22	1:E:99:ARG:HB3	2.03	0.41	
1:F:247:PHE:CZ	1:J:247:PHE:CD1	3.08	0.41	
1:I:155:GLU:HG2	1:I:157:ILE:HB	2.02	0.41	
1:A:217:ALA:HA	1:A:220:TRP:CE3	2.56	0.41	
1:F:208:PHE:HE1	1:F:248:TYR:CZ	2.38	0.41	

	i agem	Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)		
1:F:307:GLY:O	1:F:311:ILE:HG23	2.21	0.41		
1:G:279:LEU:O	1:G:282:PHE:N	2.52	0.41		
1:H:155:GLU:HG2	1:H:161:TRP:CD1	2.55	0.41		
1:H:174:ARG:NH1	1:H:186:ASN:OD1	2.53	0.41		
1:I:137:ASN:OD1	1:I:137:ASN:C	2.58	0.41		
1:J:75:ALA:HB3	1:J:133:PHE:H	1.85	0.41		
1:D:181:VAL:HG12	1:D:182:GLN:H	1.86	0.41		
1:D:314:VAL:O	1:D:316:VAL:HG23	2.20	0.41		
1:G:314:VAL:O	1:G:314:VAL:HG23	2.20	0.41		
1:I:231:ARG:CZ	1:I:297:ILE:HD13	2.50	0.41		
1:J:47:PRO:HA	1:J:98:GLY:HA2	2.02	0.41		
1:J:227:SER:O	1:J:231:ARG:NH1	2.53	0.41		
1:J:303:ALA:O	1:J:307:GLY:N	2.53	0.41		
1:E:23:ILE:HG13	2:E:504:BRJ:BR1	2.76	0.41		
1:F:315:LEU:N	1:F:315:LEU:HD23	2.36	0.41		
1:G:43:TRP:CZ2	1:G:100:VAL:HG11	2.56	0.41		
1:B:295:LEU:HG	1:B:299:ARG:NH1	2.36	0.41		
1:F:279:LEU:HD23	1:F:300:CYS:SG	2.61	0.41		
1:B:165:LYS:HE2	1:I:163:ARG:HE	1.85	0.41		
1:C:20:ILE:HD12	1:C:195:ILE:HD11	2.03	0.41		
1:C:162:ILE:HG13	2:C:403:BRJ:BR1	2.75	0.41		
1:E:300:CYS:HA	1:E:303:ALA:HB3	2.02	0.41		
1:F:217:ALA:HA	1:F:220:TRP:CE3	2.55	0.41		
1:G:47:PRO:HA	1:G:98:GLY:HA2	2.01	0.41		
1:H:208:PHE:CE1	1:H:248:TYR:CE2	3.08	0.41		
1:J:43:TRP:CE2	1:J:100:VAL:HG11	2.56	0.41		
1:J:220:TRP:CE2	1:J:304:PHE:HB3	2.56	0.41		
1:E:301:ARG:O	1:E:302:LEU:HD12	2.21	0.41		
1:D:152:ILE:C	1:D:152:ILE:HD12	2.42	0.40		
1:E:173:ILE:CD1	1:E:190:ARG:HB3	2.51	0.40		
1:E:289:ASN:O	1:E:291:VAL:N	2.54	0.40		
1:H:208:PHE:CD1	1:H:249:THR:HG22	2.56	0.40		
1:C:289:ASN:O	1:C:291:VAL:N	2.55	0.40		
1:F:224:TRP:CB	1:G:281:ILE:HD11	2.51	0.40		
1:G:295:LEU:HD12	1:G:295:LEU:N	2.35	0.40		
1:H:79:ILE:HB	1:H:129:GLU:HB2	2.02	0.40		
1:J:181:VAL:O	1:J:182:GLN:HB3	2.21	0.40		
1:B:155:GLU:OE2	1:B:163:ARG:NH1	2.53	0.40		
1:B:161:TRP:HB2	1:B:198:VAL:HG23	2.02	0.40		
1:H:142:PHE:CD2	1:H:191:ILE:HG13	2.57	0.40		
1:A:148:TYR:CE1	1:B:177:HIS:ND1	2.89	0.40		

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:152:ILE:O	1:C:152:ILE:HG13	2.22	0.40
1:E:28:THR:HG21	1:E:254:PRO:HB2	2.03	0.40
1:E:123:ARG:HG2	1:E:198:VAL:HG12	2.02	0.40
1:H:253:LEU:HB3	1:H:254:PRO:HD2	2.02	0.40
1:H:257:PRO:HG2	1:H:258:TYR:CD2	2.56	0.40
1:I:55:PRO:HB3	1:I:95:PHE:CD1	2.56	0.40
1:B:102:TYR:CG	2:B:401:BRJ:HB11	2.56	0.40
1:B:165:LYS:CE	1:I:163:ARG:HE	2.35	0.40
1:B:225:LEU:HB2	1:B:231:ARG:HG2	2.03	0.40
1:C:304:PHE:CB	1:C:305:PRO:HD3	2.50	0.40
1:G:24:TYR:CE2	1:G:34:LYS:HD2	2.56	0.40
1:I:122:ASP:OD1	1:I:199:ARG:NH1	2.54	0.40
1:J:82:VAL:N	1:J:109:SER:O	2.52	0.40
1:J:296:LEU:HA	1:J:299:ARG:CD	2.52	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perc	entiles
1	А	306/322~(95%)	278 (91%)	25 (8%)	3 (1%)	15	49
1	В	306/322~(95%)	270 (88%)	28 (9%)	8 (3%)	5	26
1	С	306/322~(95%)	274 (90%)	27 (9%)	5 (2%)	9	37
1	D	306/322~(95%)	274 (90%)	28 (9%)	4 (1%)	12	42
1	Е	306/322~(95%)	275 (90%)	26 (8%)	5 (2%)	9	37
1	F	306/322~(95%)	278 (91%)	26 (8%)	2 (1%)	22	57
1	G	306/322~(95%)	273 (89%)	30 (10%)	3 (1%)	15	49
1	Н	306/322~(95%)	273 (89%)	30 (10%)	3 (1%)	15	49
1	Ι	306/322~(95%)	274 (90%)	28 (9%)	4 (1%)	12	42

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	J	306/322~(95%)	273~(89%)	27 (9%)	6 (2%)	7	31
All	All	3060/3220~(95%)	2742 (90%)	275 (9%)	43 (1%)	11	40

All (43) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	181	VAL
1	В	181	VAL
1	В	286	ARG
1	В	292	GLU
1	С	99	ARG
1	С	183	PRO
1	D	178	LEU
1	D	181	VAL
1	D	290	GLY
1	F	152	ILE
1	F	181	VAL
1	G	181	VAL
1	G	316	VAL
1	Н	178	LEU
1	Ι	152	ILE
1	А	298	GLN
1	В	290	GLY
1	В	293	ASP
1	С	100	VAL
1	С	290	GLY
1	Е	187	GLU
1	Е	290	GLY
1	Е	314	VAL
1	Н	290	GLY
1	Ι	153	ASP
1	J	75	ALA
1	J	187	GLU
1	J	290	GLY
1	Е	153	ASP
1	Ι	75	ALA
1	В	75	ALA
1	С	179	SER
1	G	290	GLY
1	J	76	LEU
1	В	287	GLN
1	Ι	76	LEU

Continued from previous page...

Mol	Chain	Res	Type
1	J	150	GLU
1	А	316	VAL
1	Е	200	ASN
1	В	304	PHE
1	Н	200	ASN
1	D	297	ILE
1	J	183	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	276/284~(97%)	276 (100%)	0	100	100
1	В	276/284~(97%)	273~(99%)	3 (1%)	73	89
1	С	276/284~(97%)	272 (99%)	4 (1%)	67	86
1	D	276/284~(97%)	273~(99%)	3 (1%)	73	89
1	Е	276/284~(97%)	273~(99%)	3 (1%)	73	89
1	F	276/284~(97%)	274 (99%)	2(1%)	84	93
1	G	276/284~(97%)	274 (99%)	2 (1%)	84	93
1	Н	276/284~(97%)	274 (99%)	2 (1%)	84	93
1	Ι	276/284~(97%)	272~(99%)	4 (1%)	67	86
1	J	276/284~(97%)	270 (98%)	6 (2%)	52	78
All	All	2760/2840~(97%)	2731 (99%)	29 (1%)	73	89

All (29) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	В	19	PHE
1	В	247	PHE
1	В	304	PHE
1	С	10	ARG
1	С	239	MET
1	С	258	TYR

Mol	Chain	Res	Type
1	С	317	ILE
1	D	19	PHE
1	D	169	HIS
1	D	239	MET
1	Е	228	PHE
1	Е	239	MET
1	Е	313	CYS
1	F	291	VAL
1	F	315	LEU
1	G	19	PHE
1	G	143	SER
1	Н	19	PHE
1	Н	171	SER
1	Ι	19	PHE
1	Ι	156	GLU
1	Ι	169	HIS
1	Ι	239	MET
1	J	19	PHE
1	J	46	LYS
1	J	194	ARG
1	J	239	MET
1	J	247	PHE
1	J	293	ASP

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (4) such side chains are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	103	ASN
1	А	177	HIS
1	D	233	GLN
1	F	185	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 54 ligands modelled in this entry, 2 are monoatomic - leaving 52 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type Cha		Chain	Bog	Link	Bo	ond leng	$_{\rm ths}$	B	ond ang	les
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	BRJ	Е	503	-	3, 3, 3	0.37	0	2,2,2	0.55	0
4	MES	А	406	-	$12,\!12,\!12$	2.18	1 (8%)	14,16,16	1.56	3 (21%)
2	BRJ	J	503	-	3,3,3	0.38	0	2,2,2	0.46	0
2	BRJ	J	504	-	$3,\!3,\!3$	0.33	0	2,2,2	1.91	1 (50%)
3	3CN	А	405	-	3,3,3	0.75	0	2,2,2	0.25	0
3	3CN	G	404	-	3,3,3	0.86	0	2,2,2	0.07	0
2	BRJ	D	402	-	3,3,3	0.35	0	2,2,2	0.56	0
4	MES	G	405	-	$12,\!12,\!12$	2.20	1 (8%)	14,16,16	1.72	6 (42%)
2	BRJ	J	502	-	3,3,3	0.33	0	2,2,2	0.89	0
3	3CN	Ι	404	-	3,3,3	0.73	0	2,2,2	0.16	0
2	BRJ	В	402	-	$3,\!3,\!3$	0.36	0	2,2,2	0.41	0
2	BRJ	В	403	-	3, 3, 3	0.42	0	2,2,2	0.11	0
2	BRJ	D	401	-	3, 3, 3	0.40	0	2,2,2	0.47	0
4	MES	В	405	-	$12,\!12,\!12$	2.22	1 (8%)	14,16,16	1.50	3 (21%)
4	MES	Н	405	-	12,12,12	2.22	1 (8%)	14,16,16	1.51	3 (21%)
2	BRJ	F	404	-	3,3,3	0.37	0	2,2,2	0.77	0
2	BRJ	D	403	-	3, 3, 3	0.42	0	2,2,2	0.24	0
2	BRJ	Н	403	-	3, 3, 3	0.37	0	2,2,2	0.40	0
3	3CN	В	404	-	3, 3, 3	0.69	0	2,2,2	0.23	0
2	BRJ	А	403	-	3, 3, 3	0.39	0	2,2,2	0.44	0
4	MES	F	406	-	$12,\!12,\!12$	2.18	1 (8%)	14,16,16	1.62	3 (21%)
2	BRJ	В	401	-	3,3,3	0.33	0	2,2,2	0.62	0
2	BRJ	F	401	-	$3,\!3,\!3$	0.35	0	2,2,2	0.36	0
3	3CN	Н	404	-	3,3,3	0.83	0	2,2,2	0.10	0
3	3CN	Е	501	-	3,3,3	0.69	0	2,2,2	0.16	0
2	BRJ	G	403	-	$3,\!3,\!3$	0.36	0	2,2,2	0.83	0

Mal	Mol Type C		Chain Bog	Ros Link	Bo	ond leng	$_{\rm sths}$	B	ond ang	les
IVIOI	туре	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	BRJ	G	402	-	3,3,3	0.30	0	2,2,2	1.55	1 (50%)
4	MES	D	405	-	12,12,12	2.22	1 (8%)	14,16,16	1.58	5 (35%)
2	BRJ	Е	504	-	3,3,3	0.41	0	2,2,2	0.26	0
2	BRJ	С	401	-	3,3,3	0.41	0	2,2,2	0.51	0
2	BRJ	G	401	-	3,3,3	0.40	0	2,2,2	0.42	0
2	BRJ	С	403	-	3,3,3	0.38	0	2,2,2	0.58	0
2	BRJ	Ι	403	-	3,3,3	0.38	0	2,2,2	0.61	0
4	MES	J	505	-	12,12,12	2.19	1 (8%)	14,16,16	1.66	3 (21%)
3	3CN	J	501	-	3,3,3	0.82	0	2,2,2	0.12	0
2	BRJ	Е	502	-	3,3,3	0.41	0	2,2,2	0.59	0
4	MES	С	405	-	12,12,12	2.14	1 (8%)	14,16,16	1.89	4 (28%)
2	BRJ	С	402	-	3,3,3	0.41	0	2,2,2	0.17	0
2	BRJ	Ι	402	-	3,3,3	0.36	0	2,2,2	0.56	0
2	BRJ	А	402	-	3,3,3	0.35	0	2,2,2	1.84	1 (50%)
4	MES	Ι	405	-	12,12,12	2.26	1 (8%)	14,16,16	1.43	2 (14%)
2	BRJ	Н	401	-	3,3,3	0.37	0	2,2,2	1.03	0
2	BRJ	А	404	-	3,3,3	0.38	0	2,2,2	0.57	0
2	BRJ	F	402	-	3,3,3	0.38	0	2,2,2	0.53	0
2	BRJ	Ι	401	-	3,3,3	0.41	0	2,2,2	0.44	0
2	BRJ	А	401	-	3,3,3	0.44	0	2,2,2	0.97	0
2	BRJ	Н	402	-	3,3,3	0.34	0	2,2,2	0.82	0
3	3CN	F	405	-	3,3,3	0.72	0	2,2,2	0.20	0
3	3CN	D	404	-	3,3,3	0.70	0	2,2,2	0.18	0
4	MES	E	505	-	12,12,12	2.26	1 (8%)	14,16,16	1.55	3 (21%)
2	BRJ	F	403	-	3,3,3	0.38	0	2,2,2	0.81	0
3	3CN	С	404	-	3,3,3	0.70	0	2,2,2	0.18	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	BRJ	Е	503	-	-	0/1/1/1	-
4	MES	А	406	-	-	5/6/14/14	0/1/1/1
2	BRJ	J	503	-	-	0/1/1/1	-
2	BRJ	J	504	-	-	0/1/1/1	-
3	3CN	А	405	-	-	0/1/1/1	-
3	3CN	G	404	-	-	1/1/1/1	-
2	BRJ	D	402	-	-	0/1/1/1	-
4	MES	G	405	-	-	5/6/14/14	0/1/1/1

5SXU

	nuea jro	m previoi	is page	 T • 1		— •	D '
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	BRJ	J	502	-	-	0/1/1/1	-
3	3CN	I	404	-	-	0/1/1/1	-
2	BRJ	В	402	-	-	0/1/1/1	-
2	BRJ	B	403	-	-	0/1/1/1	-
2	BRJ	D	401	-	-	0/1/1/1	-
4	MES	В	405	-	-	3/6/14/14	0/1/1/1
4	MES	Н	405	-	-	4/6/14/14	0/1/1/1
2	BRJ	F	404	-	-	0/1/1/1	-
2	BRJ	D	403	-	-	0/1/1/1	-
2	BRJ	Н	403	-	-	0/1/1/1	-
3	3CN	В	404	-	-	1/1/1/1	-
2	BRJ	А	403	-	-	0/1/1/1	-
4	MES	F	406	-	-	4/6/14/14	0/1/1/1
2	BRJ	В	401	-	-	0/1/1/1	-
2	BRJ	F	401	-	-	0/1/1/1	-
3	3CN	Н	404	-	-	0/1/1/1	-
3	3CN	Е	501	-	-	0/1/1/1	-
2	BRJ	G	403	-	-	0/1/1/1	-
2	BRJ	G	402	-	-	0/1/1/1	-
4	MES	D	405	-	-	1/6/14/14	0/1/1/1
2	BRJ	Е	504	-	-	0/1/1/1	-
2	BRJ	С	401	-	-	0/1/1/1	-
2	BRJ	G	401	-	-	0/1/1/1	-
2	BRJ	С	403	-	-	0/1/1/1	-
2	BRJ	Ι	403	-	-	0/1/1/1	-
4	MES	J	505	-	-	4/6/14/14	0/1/1/1
3	3CN	J	501	-	-	1/1/1/1	-
2	BRJ	Е	502	-	-	0/1/1/1	-
4	MES	С	405	-	-	4/6/14/14	0/1/1/1
2	BRJ	С	402	-	-	0/1/1/1	-
2	BRJ	Ι	402	-	-	0/1/1/1	-
2	BRJ	А	402	-	-	0/1/1/1	-
4	MES	Ι	405	-	-	2/6/14/14	0/1/1/1
2	BRJ	Н	401	-	-	0/1/1/1	-
2	BRJ	А	404	-	-	0/1/1/1	-
2	BRJ	F	402	-	-	0/1/1/1	-
2	BRJ	Ι	401	-	-	0/1/1/1	-
2	BRJ	А	401	-	-	0/1/1/1	-
2	BRJ	Н	402	-	-	0/1/1/1	-
3	3CN	F	405	-	-	0/1/1/1	-
3	3CN	D	404	-	-	1/1/1/1	-

ntin α d fa ÷

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	MES	Е	505	-	-	1/6/14/14	0/1/1/1
2	BRJ	F	403	-	-	0/1/1/1	-
3	3CN	С	404	-	-	1/1/1/1	-

Continued from previous page...

All (10) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
4	Ι	405	MES	C8-S	-7.58	1.66	1.77
4	Ε	505	MES	C8-S	-7.56	1.66	1.77
4	D	405	MES	C8-S	-7.45	1.66	1.77
4	Η	405	MES	C8-S	-7.43	1.66	1.77
4	В	405	MES	C8-S	-7.42	1.67	1.77
4	G	405	MES	C8-S	-7.34	1.67	1.77
4	J	505	MES	C8-S	-7.31	1.67	1.77
4	А	406	MES	C8-S	-7.29	1.67	1.77
4	F	406	MES	C8-S	-7.26	1.67	1.77
4	С	405	MES	C8-S	-7.12	1.67	1.77

All (38) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	J	505	MES	O2S-S-C8	4.16	111.93	106.92
4	С	405	MES	O1S-S-C8	3.95	111.67	106.92
4	F	406	MES	O3S-S-C8	3.37	111.22	105.77
4	А	406	MES	O1S-S-C8	3.26	110.84	106.92
4	С	405	MES	C6-C5-N4	-3.03	105.51	110.10
4	D	405	MES	O1S-S-C8	2.87	110.37	106.92
4	Ι	405	MES	O3S-S-C8	2.78	110.26	105.77
4	Н	405	MES	O3S-S-C8	2.75	110.21	105.77
4	В	405	MES	C5-N4-C3	2.75	115.01	108.83
4	В	405	MES	O3S-S-C8	2.72	110.16	105.77
4	Е	505	MES	C5-N4-C3	2.72	114.94	108.83
4	Ι	405	MES	C5-N4-C3	2.72	114.94	108.83
4	G	405	MES	O1S-S-C8	2.60	110.05	106.92
4	С	405	MES	O2S-S-C8	2.59	110.04	106.92
4	Н	405	MES	O2S-S-C8	2.57	110.01	106.92
4	F	406	MES	C7-N4-C5	2.55	117.76	111.23
2	J	504	BRJ	BR1-CB-CB1	-2.53	104.27	111.49
4	G	405	MES	O3S-S-C8	2.52	109.85	105.77
2	А	402	BRJ	BR1-CB-CB1	-2.52	104.29	111.49
4	D	405	MES	C5-N4-C3	2.45	114.34	108.83
4	Е	505	MES	O3S-S-C8	2.42	109.68	105.77

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	Ε	505	MES	O1S-S-C8	2.42	109.83	106.92
4	G	405	MES	O2S-S-C8	2.40	109.81	106.92
4	D	405	MES	C7-N4-C5	2.38	117.33	111.23
4	В	405	MES	O1S-S-C8	2.33	109.72	106.92
4	F	406	MES	O1S-S-C8	2.33	109.72	106.92
4	G	405	MES	C6-C5-N4	-2.31	106.60	110.10
4	А	406	MES	C5-N4-C3	2.30	114.00	108.83
4	А	406	MES	O3S-S-C8	2.29	109.47	105.77
4	D	405	MES	O2S-S-C8	2.25	109.62	106.92
4	J	505	MES	C5-N4-C3	2.25	113.89	108.83
4	G	405	MES	C5-N4-C3	2.23	113.85	108.83
4	G	405	MES	C2-C3-N4	-2.10	106.91	110.10
4	Н	405	MES	C5-N4-C3	2.08	113.50	108.83
2	G	402	BRJ	BR1-CB-CB1	-2.07	105.58	111.49
4	D	405	MES	O3S-S-C8	2.04	109.07	105.77
4	С	405	MES	C7-N4-C5	2.03	116.43	111.23
4	J	505	MES	O1S-S-C8	2.02	109.35	106.92

There are no chirality outliers.

All (38) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	А	406	MES	N4-C7-C8-S
4	В	405	MES	N4-C7-C8-S
4	С	405	MES	N4-C7-C8-S
4	С	405	MES	C7-C8-S-O2S
4	С	405	MES	C7-C8-S-O3S
4	D	405	MES	C8-C7-N4-C5
4	F	406	MES	C8-C7-N4-C5
4	F	406	MES	C7-C8-S-O1S
4	F	406	MES	C7-C8-S-O3S
4	G	405	MES	C7-C8-S-O2S
4	Н	405	MES	C7-C8-S-O2S
4	Н	405	MES	C7-C8-S-O3S
4	J	505	MES	N4-C7-C8-S
4	J	505	MES	C7-C8-S-O1S
4	J	505	MES	C7-C8-S-O3S
3	G	404	3CN	CA-CB-CC-ND
4	А	406	MES	C7-C8-S-O3S
4	G	405	MES	C7-C8-S-O3S
3	J	501	3CN	CA-CB-CC-ND
4	G	405	MES	C8-C7-N4-C3

Continued from previous page							
Mol	Chain	Res	Type	Atoms			
4	Ι	405	MES	C8-C7-N4-C3			
3	В	404	3CN	CA-CB-CC-ND			
4	А	406	MES	C7-C8-S-O1S			
4	А	406	MES	C7-C8-S-O2S			
4	С	405	MES	C7-C8-S-O1S			
4	F	406	MES	C7-C8-S-O2S			
4	G	405	MES	C7-C8-S-O1S			
4	Н	405	MES	C7-C8-S-O1S			
4	J	505	MES	C7-C8-S-O2S			
3	С	404	3CN	CA-CB-CC-ND			
4	В	405	MES	C8-C7-N4-C3			
4	Е	505	MES	C8-C7-N4-C3			
4	G	405	MES	C8-C7-N4-C5			
4	В	405	MES	C7-C8-S-O3S			
3	D	404	3CN	CA-CB-CC-ND			
4	Ι	405	MES	N4-C7-C8-S			
4	А	406	MES	C8-C7-N4-C3			
4	Н	405	MES	C8-C7-N4-C3			

There are no ring outliers.

17 monomers are involved in 21 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	J	502	BRJ	1	0
2	D	403	BRJ	1	0
2	А	403	BRJ	1	0
2	В	401	BRJ	1	0
2	F	401	BRJ	2	0
3	Н	404	3CN	1	0
2	G	402	BRJ	1	0
2	Е	504	BRJ	1	0
2	С	401	BRJ	2	0
2	G	401	BRJ	1	0
2	С	403	BRJ	1	0
2	Ι	403	BRJ	3	0
2	Е	502	BRJ	1	0
2	А	402	BRJ	1	0
2	Н	401	BRJ	2	0
2	Ι	401	BRJ	1	0
2	А	401	BRJ	2	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	308/322~(95%)	0.07	17 (5%) 25 11	72, 115, 167, 209	0
1	В	308/322~(95%)	-0.03	11 (3%) 42 22	69, 107, 178, 227	0
1	C	308/322~(95%)	0.02	10 (3%) 47 25	71, 110, 181, 204	0
1	D	308/322~(95%)	0.03	15 (4%) 29 14	63, 102, 174, 222	0
1	Е	308/322~(95%)	0.15	19 (6%) 20 9	73, 113, 168, 198	0
1	F	308/322~(95%)	-0.01	11 (3%) 42 22	71, 121, 177, 209	0
1	G	308/322~(95%)	0.02	18 (5%) 23 10	57, 106, 163, 204	0
1	Н	308/322~(95%)	0.15	22 (7%) 16 6	70, 113, 185, 215	0
1	Ι	308/322~(95%)	-0.01	15 (4%) 29 14	70, 110, 173, 210	0
1	J	$30\overline{8/322}~(95\%)$	0.14	19 (6%) 20 9	84, 123, 187, 207	0
All	All	3080/3220~(95%)	0.05	157 (5%) 28 13	57, 112, 177, 227	0

All (157) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	Е	289	ASN	15.3
1	D	179	SER	7.4
1	Н	289	ASN	6.7
1	Н	288	ALA	6.0
1	Е	157	ILE	5.9
1	F	287	GLN	5.8
1	Е	290	GLY	5.6
1	J	287	GLN	5.5
1	D	157	ILE	5.5
1	А	53	ASP	5.4
1	J	157	ILE	5.3
1	Н	317	ILE	5.2
1	G	311	ILE	5.2

Mol	Chain	Res	Type	RSRZ
1	G	314	VAL	5.1
1	J	306	LEU	5.0
1	Н	183	PRO	4.9
1	В	288	ALA	4.8
1	D	178	LEU	4.8
1	А	153	ASP	4.7
1	Ι	157	ILE	4.7
1	Е	288	ALA	4.6
1	D	180	SER	4.6
1	J	294	ASP	4.4
1	G	157	ILE	4.4
1	J	289	ASN	4.3
1	А	287	GLN	4.3
1	Ι	289	ASN	4.2
1	J	154	ASN	4.2
1	А	299	ARG	4.2
1	Е	179	SER	4.1
1	J	237	THR	4.0
1	J	288	ALA	4.0
1	Ι	287	GLN	4.0
1	D	183	PRO	4.0
1	Н	185	GLN	4.0
1	Н	181	VAL	3.9
1	G	154	ASN	3.9
1	В	294	ASP	3.9
1	F	288	ALA	3.9
1	G	315	LEU	3.9
1	С	294	ASP	3.8
1	J	292	GLU	3.8
1	G	312	GLY	3.5
1	D	289	ASN	3.5
1	J	290	GLY	3.5
1	Е	156	GLU	3.5
1	E	49	LYS	3.5
1	A	116	PHE	3.5
1	F	237	THR	3.5
1	Н	311	ILE	3.4
1	A	115	ASP	3.4
1	G	156	GLU	3.4
1	Ι	179	SER	3.4
1	I	237	THR	3.4
1	D	181	VAL	3.3

Mol	Chain	Res	Type	RSRZ
1	Н	174	ARG	3.2
1	С	317	ILE	3.2
1	J	156	GLU	3.2
1	В	312	GLY	3.2
1	Н	241	THR	3.2
1	В	241	THR	3.2
1	С	289	ASN	3.2
1	J	305	PRO	3.2
1	F	157	ILE	3.1
1	А	237	THR	3.0
1	J	153	ASP	3.0
1	J	240	LEU	3.0
1	J	241	THR	3.0
1	Е	158	ASP	2.9
1	Н	180	SER	2.9
1	С	156	GLU	2.9
1	Н	186	ASN	2.8
1	Е	123	ARG	2.8
1	D	182	GLN	2.8
1	С	299	ARG	2.8
1	А	286	ARG	2.7
1	А	244	ALA	2.7
1	G	161	TRP	2.7
1	Ι	285	HIS	2.7
1	С	187	GLU	2.7
1	Е	311	ILE	2.7
1	G	155	GLU	2.6
1	J	138	GLN	2.6
1	Н	49	LYS	2.6
1	Ι	292	GLU	2.6
1	Ι	317	ILE	2.6
1	F	240	LEU	2.5
1	В	237	THR	2.5
1	F	241	THR	2.5
1	G	290	GLY	2.5
1	G	183	PRO	2.5
1	Ι	286	ARG	2.5
1	Ι	293	ASP	2.5
1	А	157	ILE	2.5
1	Е	291	VAL	2.5
1	Е	287	GLN	2.5
1	В	157	ILE	2.5

Mol	Chain	Res	Type	RSRZ
1	J	234	THR	2.5
1	А	179	SER	2.5
1	G	313	CYS	2.4
1	Ι	290	GLY	2.4
1	D	186	ASN	2.4
1	F	244	ALA	2.4
1	Н	187	GLU	2.4
1	Е	237	THR	2.4
1	Н	292	GLU	2.4
1	Ι	180	SER	2.4
1	В	287	GLN	2.4
1	D	158	ASP	2.4
1	Н	244	ALA	2.4
1	G	116	PHE	2.4
1	Н	182	GLN	2.3
1	В	299	ARG	2.3
1	Н	291	VAL	2.3
1	G	287	GLN	2.3
1	Н	316	VAL	2.3
1	А	296	LEU	2.3
1	В	293	ASP	2.3
1	С	239	MET	2.3
1	G	241	THR	2.3
1	А	117	ARG	2.3
1	В	289	ASN	2.2
1	А	258	TYR	2.2
1	F	114	MET	2.2
1	Е	138	GLN	2.2
1	Е	286	ARG	2.2
1	J	303	ALA	2.2
1	F	289	ASN	2.2
1	А	114	MET	2.2
1	D	285	HIS	2.2
1	Н	156	GLU	2.2
1	Ι	241	THR	2.2
1	F	178	LEU	2.2
1	J	238	LEU	2.2
1	С	237	THR	2.2
1	G	240	LEU	2.1
1	А	241	THR	2.1
1	В	156	GLU	2.1
1	D	188	PHE	2.1

Mol	Chain	Res	Type	RSRZ
1	С	295	LEU	2.1
1	Е	180	SER	2.1
1	G	306	LEU	2.1
1	Н	315	LEU	2.1
1	Н	294	ASP	2.1
1	F	316	VAL	2.1
1	Н	240	LEU	2.1
1	D	287	GLN	2.0
1	Ι	181	VAL	2.0
1	D	185	GLN	2.0
1	С	172	ASP	2.0
1	Ι	240	LEU	2.0
1	Е	241	THR	2.0
1	Е	240	LEU	2.0
1	Е	244	ALA	2.0
1	А	54	LYS	2.0
1	D	316	VAL	2.0
1	G	299	ARG	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
2	BRJ	D	403	4/4	0.25	0.59	$93,\!99,\!105,\!145$	0
2	BRJ	Ι	401	4/4	0.31	0.89	103,131,137,169	0
2	BRJ	Ι	403	4/4	0.32	0.67	95,99,111,142	0
2	BRJ	В	401	4/4	0.42	1.21	106,132,136,192	0
2	BRJ	С	401	4/4	0.45	0.61	86,91,113,146	0

5	S	Х	T	J
\sim	\sim			·

Continued from previous page								
Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\operatorname{B-factors}(\operatorname{\AA}^2)$	Q<0.9
2	BRJ	Е	502	4/4	0.50	0.70	102,126,131,160	0
2	BRJ	Е	504	4/4	0.50	0.68	118,126,142,147	0
2	BRJ	Ι	402	4/4	0.54	0.74	98,114,121,125	0
2	BRJ	А	401	4/4	0.54	0.87	124,131,154,183	0
2	BRJ	С	402	4/4	0.55	0.43	104,106,110,139	0
2	BRJ	Н	403	4/4	0.56	0.65	142,145,149,152	0
2	BRJ	G	401	4/4	0.58	1.00	111,117,133,164	0
2	BRJ	В	403	4/4	0.59	0.48	118,141,150,163	0
2	BRJ	Н	401	4/4	0.59	1.00	98,101,128,154	0
2	BRJ	D	401	4/4	0.60	0.72	94,127,129,141	0
2	BRJ	J	502	4/4	0.60	0.86	109,116,118,139	0
2	BRJ	A	403	4/4	0.61	0.49	125,129,136,146	0
2	BRJ	F	402	4/4	0.63	0.46	101,108,121,128	0
2	BRJ	F	401	4/4	0.65	0.45	99.117.132.135	0
2	BRJ	C	403	4/4	0.66	0.43	121.147.151.177	0
2	BRJ	F	403	4/4	0.68	0.55	118.146.156.160	0
3	3CN	A	405	4/4	0.70	0.42	86,98,102,115	0
2	BRJ	D	402	4/4	0.71	0.59	112,112,120,122	0
3	3CN	Н	404	4/4	0.74	0.53	83,94,100,122	0
2	BRJ	J	504	4/4	0.76	0.54	145,148,153,158	0
2	BRJ	J	503	4/4	0.78	1.01	131,142,143,153	0
2	BRJ	Н	402	4/4	0.78	0.64	93,117,125,131	0
5	CL	J	506	1/1	0.78	0.36	166,166,166,166	0
4	MES	D	405	12/12	0.80	0.17	126,147,174,178	0
2	BRJ	F	404	4/4	0.81	0.76	149,152,155,157	0
2	BRJ	Е	503	4/4	0.83	0.54	130,130,148,165	0
2	BRJ	В	402	4/4	0.84	0.79	125,130,137,151	0
4	MES	А	406	12/12	0.84	0.18	132,154,185,186	0
3	3CN	С	404	4/4	0.84	0.36	84,92,119,127	0
3	3CN	F	405	4/4	0.84	0.37	91,93,98,112	0
4	MES	Ι	405	12/12	0.85	0.27	141,175,183,195	0
2	BRJ	G	402	4/4	0.86	0.82	122,125,135,135	0
2	BRJ	А	404	4/4	0.88	0.66	$137,\!154,\!169,\!175$	0
3	3CN	D	404	4/4	0.88	0.33	96,102,109,113	0
4	MES	E	505	12/12	0.88	0.13	$136,\!156,\!168,\!171$	0
2	BRJ	G	403	4/4	0.88	0.35	$105,\!115,\!119,\!129$	0
4	MES	J	505	12/12	0.88	0.16	$158,\!170,\!183,\!18\overline{4}$	0
2	BRJ	A	402	4/4	0.88	0.66	102,110,127,154	0
4	MES	В	405	12/12	0.89	0.11	129,148,167,179	0
3	3CN	J	501	4/4	0.89	0.22	97,121,130,132	0
3	3CN	B	404	4/4	0.89	0.33	$79,\!96,\!99,\!105$	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
4	MES	С	405	12/12	0.90	0.19	$115,\!134,\!160,\!166$	0
3	3CN	Ι	404	4/4	0.91	0.38	96,98,103,109	0
3	3CN	G	404	4/4	0.92	0.36	$85,\!87,\!97,\!99$	0
4	MES	G	405	12/12	0.92	0.17	128,151,170,173	0
4	MES	Н	405	12/12	0.92	0.13	$113,\!135,\!158,\!179$	0
4	MES	F	406	12/12	0.93	0.14	131,155,168,187	0
3	3CN	Е	501	4/4	0.93	0.28	91,95,102,114	0
5	CL	С	406	1/1	0.97	0.24	107,107,107,107	0

Continued from previous page...

6.5 Other polymers (i)

There are no such residues in this entry.

