

# Full wwPDB X-ray Structure Validation Report (i)

### Sep 24, 2023 – 04:08 AM EDT

| PDB ID       | : | 5SWZ                                                               |
|--------------|---|--------------------------------------------------------------------|
| Title        | : | Crystal Structure of NP1-B17 TCR-H2Db-NP complex                   |
| Authors      | : | Gras, S.; Del Campo, C.M.; Farenc, C.; Josephs, T.M.; Rossjohn, J. |
| Deposited on | : | 2016-08-09                                                         |
| Resolution   | : | 2.65  Å(reported)                                                  |

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| Xtriage (Phenix)               | : | 1.13                                                               |
| EDS                            | : | 2.35.1                                                             |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| Refmac                         | : | 5.8.0158                                                           |
| CCP4                           | : | 7.0.044 (Gargrove)                                                 |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.35.1                                                             |

## 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $X\text{-}RAY \, DIFFRACTION$ 

The reported resolution of this entry is 2.65 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | Whole archive       | Similar resolution                                          |
|-----------------------|---------------------|-------------------------------------------------------------|
|                       | $(\# { m Entries})$ | $(\# { m Entries},  { m resolution}  { m range}({ m \AA}))$ |
| $R_{free}$            | 130704              | 1332 (2.68-2.64)                                            |
| Clashscore            | 141614              | 1374(2.68-2.64)                                             |
| Ramachandran outliers | 138981              | 1349 (2.68-2.64)                                            |
| Sidechain outliers    | 138945              | 1349 (2.68-2.64)                                            |
| RSRZ outliers         | 127900              | 1318 (2.68-2.64)                                            |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain        | Length | Quality of chain | Quality of chain |    |  |  |  |  |  |  |  |
|-----|--------------|--------|------------------|------------------|----|--|--|--|--|--|--|--|
|     |              | 200    | 2%               |                  |    |  |  |  |  |  |  |  |
| 1   | А            | 280    | 86%              | 12%              | •• |  |  |  |  |  |  |  |
|     |              |        | 8%               |                  |    |  |  |  |  |  |  |  |
| 1   | $\mathbf{F}$ | 280    | 82%              | 16%              | •• |  |  |  |  |  |  |  |
|     |              |        | 8%               |                  |    |  |  |  |  |  |  |  |
| 1   | Κ            | 280    | 84%              | 14%              | •• |  |  |  |  |  |  |  |
|     |              |        | 14%              |                  |    |  |  |  |  |  |  |  |
| 1   | Р            | 280    | 72% 12%          | 15%              |    |  |  |  |  |  |  |  |
|     |              |        | .%<br>•          |                  |    |  |  |  |  |  |  |  |
| 2   | В            | 99     | 86%              | 12%              | •  |  |  |  |  |  |  |  |



| Mol | Chain | Length | Quality of chain  |           |
|-----|-------|--------|-------------------|-----------|
| 2   | G     | 99     | 8%                | 16% ·     |
| 2   | L     | 99     | 83%               | 13% ·     |
| 2   | Q     | 99     | 80%               | 16% ••    |
| 3   | С     | 9      | 89%               | 11%       |
| 3   | Н     | 9      | 78%               | 22%       |
| 3   | М     | 9      | 78%               | 22%       |
| 3   | R     | 9      | 78%               | 22%       |
| 4   | D     | 207    | 84%               | 10% • •   |
| 4   | Ι     | 207    | 76%               | 13% • 10% |
| 4   | N     | 207    | <u>6%</u><br>85%  | 10% ••    |
| 4   | S     | 207    | 9%                | 9% ••     |
| 5   | Е     | 243    | 2%<br><b>8</b> 6% | 12% ••    |
| 5   | J     | 243    | 8%                | 15% ••    |
| 5   | 0     | 243    | 2%<br><b>8</b> 5% | 12% ••    |
| 5   | Т     | 243    | 3%                | 14% ••    |



## 2 Entry composition (i)

There are 8 unique types of molecules in this entry. The entry contains 27034 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues |       | Ate  | oms |     |   | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|------|-----|-----|---|---------|---------|-------|
| 1 A | 277   | Total    | С     | Ν    | 0   | S   | 0 | Б       | 0       |       |
|     |       | 2317     | 1460  | 415  | 433 | 9   | 0 | 0       | 0       |       |
| 1   | 1 F   | 077      | Total | С    | Ν   | 0   | S | 0       | Б       | 0     |
|     | Г     | 211      | 2317  | 1460 | 415 | 433 | 9 |         |         | 0     |
| 1   | K     | 277      | Total | С    | Ν   | 0   | S | 0       | F       | 0     |
|     | 211   | 2317     | 1460  | 415  | 433 | 9   | 0 | 0       | 0       |       |
| 1 P | 238   | Total    | С     | Ν    | 0   | S   | 0 | 4       | 0       |       |
|     |       | 1983     | 1250  | 353  | 371 | 9   | 0 | 4       | 0       |       |

• Molecule 1 is a protein called H-2 class I histocompatibility antigen, D-B alpha chain.

• Molecule 2 is a protein called Beta-2-microglobulin.

| Mol | Chain | Residues |       | At  | oms |     |              | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|-----|-----|-----|--------------|---------|---------|-------|
| 9 D | D     | 00       | Total | С   | Ν   | 0   | $\mathbf{S}$ | 0       | 0       | 0     |
|     |       | 99       | 818   | 523 | 138 | 150 | 7            | 0       | 0       | 0     |
| 0   | 2 G   | 00       | Total | С   | Ν   | 0   | $\mathbf{S}$ | 0       | 1       | 0     |
|     |       | 99       | 826   | 528 | 139 | 151 | 8            |         | 1       |       |
| 9   | т     | 00       | Total | С   | Ν   | 0   | S            | 0       | 1       | 0     |
|     | 99    | 826      | 528   | 139 | 151 | 8   | 0            |         | 0       |       |
| 2 Q | 98    | Total    | С     | Ν   | 0   | S   | 0            | 1       | 0       |       |
|     |       | 818      | 522   | 138 | 150 | 8   | 0            |         | U       |       |

• Molecule 3 is a protein called influenza NP366 epitope.

| Mol   | Chain | Residues |       | Ate | oms |   |   | ZeroOcc | AltConf | Trace |
|-------|-------|----------|-------|-----|-----|---|---|---------|---------|-------|
| 2     | С     | 0        | Total | С   | Ν   | Ο | S | 0       | 0       | 0     |
| 3 0   | 9     | 68       | 38    | 10  | 18  | 2 | 0 | 0       | 0       |       |
| 3     | 2 Ц   | 0        | Total | С   | Ν   | Ο | S | 0       | 0       | 0     |
| 3 П   | 9     | 68       | 38    | 10  | 18  | 2 | 0 | 0       | 0       |       |
| 2     | М     | 0        | Total | С   | Ν   | Ο | S | 0       | 0       | 0     |
| 5 IVI | 9     | 68       | 38    | 10  | 18  | 2 | 0 | 0       | U       |       |
| 3 R   | 9     | Total    | С     | Ν   | Ο   | S | 0 | 0       | 0       |       |
|       |       | 68       | 38    | 10  | 18  | 2 | 0 | 0       | U       |       |





| Mol  | Chain | Residues | Atoms |              |     |                |              | ZeroOcc | AltConf | Trace |
|------|-------|----------|-------|--------------|-----|----------------|--------------|---------|---------|-------|
| 4 D  | л     | 109      | Total | $\mathbf{C}$ | Ν   | 0              | $\mathbf{S}$ | 0       | 0       | 0     |
|      | 190   | 1557     | 977   | 256          | 318 | 6              | 0            | 0       | 0       |       |
| 4    | 4 I   | 186      | Total | С            | Ν   | 0              | S            | 0       | 0       | 0     |
| 4    |       | 100      | 1461  | 916          | 241 | 299            | 5            |         | 0       |       |
| 4    | N     | 201      | Total | С            | Ν   | 0              | S            | 0       | 0       | 0     |
| 4 IN | 201   | 1586     | 996   | 260          | 323 | 7              | 0            | 0       | 0       |       |
| 4 S  | 203   | Total    | С     | Ν            | 0   | S              | 0            | 0       | 0       |       |
|      |       | 1598     | 1002  | 262          | 327 | $\overline{7}$ | 0            | 0       |         |       |

• Molecule 4 is a protein called NP1-B17 TCR alpha chain.

• Molecule 5 is a protein called NP1-B17 TCR beta chain.

| Mol | Chain | Residues |       | Ate  | oms |     |   | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|------|-----|-----|---|---------|---------|-------|
| K D | Б     | 240      | Total | С    | Ν   | Ο   | S | 0       | 0       | 0     |
| 0   | D E   | 240      | 1940  | 1231 | 338 | 362 | 9 | 0       | 0       | 0     |
| F   | 5 J   | 240      | Total | С    | Ν   | Ο   | S | 0       | 0       | 0     |
| 0   |       | 240      | 1940  | 1231 | 338 | 362 | 9 |         | 0       | 0     |
| E E | 0     | 941      | Total | С    | Ν   | 0   | S | 0       | 1       | 0     |
| 5 0 | 241   | 1960     | 1241  | 343  | 367 | 9   | 0 | 1       | 0       |       |
| 5   | F T   | 220      | Total | С    | Ν   | Ο   | S | 0       | 0       | 0     |
| 1 6 |       | 239      | 1935  | 1228 | 337 | 361 | 9 |         | U       | 0     |

• Molecule 6 is SULFATE ION (three-letter code: SO4) (formula:  $O_4S$ ).



| Mol | Chain | Residues | Atoms      |        |        | ZeroOcc | AltConf |
|-----|-------|----------|------------|--------|--------|---------|---------|
| 6   | D     | 1        | Total<br>5 | 0<br>4 | S<br>1 | 0       | 0       |



Continued from previous page...

| Mol | Chain | Residues | Atoms                                                                            | ZeroOcc | AltConf |
|-----|-------|----------|----------------------------------------------------------------------------------|---------|---------|
| 6   | Е     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 6   | K     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 6   | О     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 6   | Т     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |

• Molecule 7 is SODIUM ION (three-letter code: NA) (formula: Na).

| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 7   | Е     | 1        | Total Na<br>1 1 | 0       | 0       |
| 7   | Ι     | 1        | Total Na<br>1 1 | 0       | 0       |
| 7   | J     | 1        | Total Na<br>1 1 | 0       | 0       |
| 7   | K     | 1        | Total Na<br>1 1 | 0       | 0       |
| 7   | Т     | 2        | Total Na<br>2 2 | 0       | 0       |

• Molecule 8 is water.

| Mol | Chain | Residues | Atoms                                                              | ZeroOcc | AltConf |
|-----|-------|----------|--------------------------------------------------------------------|---------|---------|
| 8   | А     | 55       | $\begin{array}{cc} \text{Total} & \text{O} \\ 55 & 55 \end{array}$ | 0       | 0       |
| 8   | В     | 15       | Total O<br>15 15                                                   | 0       | 0       |
| 8   | С     | 4        | Total O<br>4 4                                                     | 0       | 0       |
| 8   | D     | 30       | Total O<br>30 30                                                   | 0       | 0       |
| 8   | Ε     | 50       | $\begin{array}{cc} {\rm Total} & {\rm O} \\ 50 & 50 \end{array}$   | 0       | 0       |
| 8   | F     | 31       | Total O<br>31 31                                                   | 0       | 0       |
| 8   | G     | 18       | Total         O           18         18                            | 0       | 0       |
| 8   | Н     | 2        | Total O<br>2 2                                                     | 0       | 0       |



Continued from previous page...

| Mol | Chain | Residues | Atoms                                                               | ZeroOcc | AltConf |
|-----|-------|----------|---------------------------------------------------------------------|---------|---------|
| 8   | Ι     | 23       | Total         O           23         23                             | 0       | 0       |
| 8   | J     | 33       | Total         O           33         33                             | 0       | 0       |
| 8   | К     | 40       | Total         O           40         40                             | 0       | 0       |
| 8   | L     | 19       | Total O<br>19 19                                                    | 0       | 0       |
| 8   | М     | 1        | Total O<br>1 1                                                      | 0       | 0       |
| 8   | Ν     | 32       | Total O<br>32 32                                                    | 0       | 0       |
| 8   | О     | 57       | Total         O           57         57                             | 0       | 0       |
| 8   | Р     | 40       | Total         O           40         40                             | 0       | 0       |
| 8   | Q     | 14       | Total         O           14         14                             | 0       | 0       |
| 8   | R     | 2        | Total O<br>2 2                                                      | 0       | 0       |
| 8   | S     | 22       | Total O<br>22 22                                                    | 0       | 0       |
| 8   | Т     | 44       | $\begin{array}{ccc} \text{Total} & \text{O} \\ 44 & 44 \end{array}$ | 0       | 0       |



## 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: H-2 class I histocompatibility antigen, D-B alpha chain





• Molecule 3: influenza NP366 epitope



| Chain H:                                                                             | 78%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22%                                                                              |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| A1<br>M6<br>E7<br>T8<br>M9                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |
| • Molecule                                                                           | e 3: influenza NP366 epitope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                  |
| Chain M:                                                                             | 78%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22%                                                                              |
| A1<br>S2<br>M6<br>M9                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |
| • Molecule                                                                           | e 3: influenza NP366 epitope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                  |
| Chain R:                                                                             | 78%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22%                                                                              |
| A1<br>M6<br>T8<br>M9                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |
| • Molecule                                                                           | e 4: NP1-B17 TCR alpha chain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                  |
| Chain D:                                                                             | 84%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10% • •                                                                          |
| q1<br>q2<br>q3<br>v4<br>v1<br>3<br>b27                                               | 44<br>44<br>858<br>858<br>867<br>8111<br>116<br>1116<br>1116<br>1116<br>1133<br>1133<br>1140<br>1133<br>1140<br>1133<br>1140<br>1133<br>1171<br>1171<br>1171<br>1171<br>1171<br>1171<br>117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ASP<br>PHE<br>ALA<br>ALA<br>F200<br>F201<br>F204<br>N206<br>N206<br>S207<br>T208 |
| P210<br>E211<br>D212<br>T213<br>F214<br>F214<br>F215<br>F216<br>SER                  | PRO<br>SER<br>SER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  |
| • Molecule                                                                           | e 4: NP1-B17 TCR alpha chain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                  |
| Chain I:                                                                             | 19%<br>76% 13%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • 10%                                                                            |
| q1<br>q2<br>q3<br>c15<br>c15<br>c15<br>c15<br>c15<br>c15<br>c15<br>c15<br>c15<br>c15 | P127           D27           D27           D27           VB5           E67           E66           E67           E66           E67           E703           E7103           E7103           E7103           E7135           E7135           E7135           E7135           E7145           E7145 | 11 15<br>11 15<br>11 15<br>15 15<br>16 15<br>16 16<br>16 16                      |
| Y170<br>1171<br>1172<br>1172<br>1173<br>C175<br>D178                                 | MET<br>MET<br>MET<br>MET<br>MET<br>MET<br>MER<br>MER<br>MER<br>MER<br>MER<br>MI94<br>M194<br>M194<br>M194<br>M194<br>M194<br>M194<br>M194<br>M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |
| • Molecule                                                                           | e 4: NP1-B17 TCR alpha chain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                  |
| Chain N:                                                                             | <u>6%</u><br>85%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10% • •                                                                          |
| q1<br>q2<br>q3<br>A19<br>D27                                                         | K62<br>K66<br>191<br>191<br>191<br>191<br>191<br>193<br>1128<br>1128<br>1128<br>1128<br>1128<br>1128<br>1128<br>112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F204<br>F204<br>S207<br>I208<br>P210<br>F211<br>F213<br>F214                     |









P216

<mark>R254</mark> ALA ASP

#### 



## 4 Data and refinement statistics (i)

| Property                                       | Value                                           | Source    |
|------------------------------------------------|-------------------------------------------------|-----------|
| Space group                                    | P 21 21 21                                      | Depositor |
| Cell constants                                 | 92.23Å 100.19Å 469.46Å                          | Depositor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$         | $90.00^{\circ}$ $90.00^{\circ}$ $90.00^{\circ}$ | Depositor |
| Bosolution (Å)                                 | 38.80 - 2.65                                    | Depositor |
| Resolution (A)                                 | 47.71 - 2.65                                    | EDS       |
| % Data completeness                            | 100.0 (38.80-2.65)                              | Depositor |
| (in resolution range)                          | $100.0 \ (47.71-2.65)$                          | EDS       |
| $R_{merge}$                                    | (Not available)                                 | Depositor |
| $R_{sym}$                                      | (Not available)                                 | Depositor |
| $< I/\sigma(I) > 1$                            | $2.62 (at 2.65 \text{\AA})$                     | Xtriage   |
| Refinement program                             | BUSTER 2.10.1                                   | Depositor |
| B B.                                           | 0.226 , $0.249$                                 | Depositor |
| $\mathbf{n}, \mathbf{n}_{free}$                | 0.259 , $0.283$                                 | DCC       |
| $R_{free}$ test set                            | 6523 reflections $(5.12%)$                      | wwPDB-VP  |
| Wilson B-factor $(Å^2)$                        | 55.7                                            | Xtriage   |
| Anisotropy                                     | 0.432                                           | Xtriage   |
| Bulk solvent $k_{sol}(e/Å^3)$ , $B_{sol}(Å^2)$ | 0.28 , $50.4$                                   | EDS       |
| L-test for $twinning^2$                        | $ < L >=0.42, < L^2>=0.25$                      | Xtriage   |
| Estimated twinning fraction                    | No twinning to report.                          | Xtriage   |
| $F_o, F_c$ correlation                         | 0.90                                            | EDS       |
| Total number of atoms                          | 27034                                           | wwPDB-VP  |
| Average B, all atoms $(Å^2)$                   | 72.0                                            | wwPDB-VP  |

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.16% of the height of the origin peak. No significant pseudotranslation is detected.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

## 5 Model quality (i)

## 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: SO4, NA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal Chain |     | Bond lengths |          | Bond angles |                 |  |
|-----------|-----|--------------|----------|-------------|-----------------|--|
|           |     | RMSZ         | # Z  > 5 | RMSZ        | # Z  > 5        |  |
| 1         | А   | 0.35         | 0/2385   | 0.56        | 0/3240          |  |
| 1         | F   | 0.37         | 0/2385   | 0.59        | 2/3240~(0.1%)   |  |
| 1         | Κ   | 0.38         | 0/2385   | 0.60        | 2/3240~(0.1%)   |  |
| 1         | Р   | 0.36         | 0/2037   | 0.56        | 0/2759          |  |
| 2         | В   | 0.39         | 0/844    | 0.61        | 1/1144~(0.1%)   |  |
| 2         | G   | 0.39         | 0/852    | 0.64        | 2/1154~(0.2%)   |  |
| 2         | L   | 0.38         | 0/852    | 0.61        | 0/1154          |  |
| 2         | Q   | 0.39         | 0/844    | 0.60        | 0/1143          |  |
| 3         | С   | 0.29         | 0/67     | 0.48        | 0/86            |  |
| 3         | Н   | 0.30         | 0/67     | 0.48        | 0/86            |  |
| 3         | М   | 0.30         | 0/67     | 0.47        | 0/86            |  |
| 3         | R   | 0.30         | 0/67     | 0.50        | 0/86            |  |
| 4         | D   | 0.38         | 0/1594   | 0.61        | 1/2164~(0.0%)   |  |
| 4         | Ι   | 0.42         | 0/1495   | 0.66        | 2/2028~(0.1%)   |  |
| 4         | Ν   | 0.36         | 0/1624   | 0.56        | 0/2203          |  |
| 4         | S   | 0.37         | 0/1637   | 0.56        | 0/2222          |  |
| 5         | Е   | 0.34         | 0/1994   | 0.58        | 0/2711          |  |
| 5         | J   | 0.37         | 0/1994   | 0.63        | 1/2711~(0.0%)   |  |
| 5         | 0   | 0.35         | 0/2014   | 0.65        | 4/2736~(0.1%)   |  |
| 5         | Т   | 0.35         | 0/1989   | 0.62        | 0/2704          |  |
| All       | All | 0.37         | 0/27193  | 0.60        | 15/36897~(0.0%) |  |

There are no bond length outliers.

All (15) bond angle outliers are listed below:

| Mol | Chain | $\operatorname{Res}$ | Type | Atoms    | Z    | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|----------------------|------|----------|------|------------------|---------------|
| 5   | 0     | 142                  | PRO  | C-N-CA   | 6.40 | 137.70           | 121.70        |
| 5   | 0     | 197                  | ASP  | C-N-CA   | 6.00 | 136.69           | 121.70        |
| 1   | F     | 164                  | CYS  | C-N-CA   | 5.93 | 136.51           | 121.70        |
| 5   | J     | 104                  | CYS  | CA-CB-SG | 5.74 | 124.33           | 114.00        |



| Mol | Chain | Res    | Type | Atoms  | Z    | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|--------|------|--------|------|------------------|---------------|
| 2   | G     | 40     | LEU  | C-N-CA | 5.65 | 135.83           | 121.70        |
| 4   | D     | 192    | TRP  | C-N-CA | 5.63 | 135.78           | 121.70        |
| 4   | Ι     | 133    | ASP  | C-N-CD | 5.58 | 140.13           | 128.40        |
| 4   | Ι     | 192    | TRP  | C-N-CA | 5.32 | 134.99           | 121.70        |
| 1   | F     | 85     | TYR  | C-N-CA | 5.31 | 134.98           | 121.70        |
| 2   | В     | 1      | ILE  | C-N-CA | 5.29 | 134.93           | 121.70        |
| 1   | K     | 217    | TRP  | C-N-CA | 5.29 | 134.93           | 121.70        |
| 2   | G     | 59     | ASP  | C-N-CA | 5.19 | 134.67           | 121.70        |
| 5   | 0     | 221[A] | ARG  | C-N-CA | 5.14 | 134.54           | 121.70        |
| 5   | 0     | 221[B] | ARG  | C-N-CA | 5.14 | 134.54           | 121.70        |
| 1   | K     | 252    | GLY  | C-N-CA | 5.04 | 134.29           | 121.70        |

There are no chirality outliers.

There are no planarity outliers.

### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 2317  | 0        | 2193     | 11      | 0            |
| 1   | F     | 2317  | 0        | 2193     | 11      | 0            |
| 1   | K     | 2317  | 0        | 2193     | 17      | 0            |
| 1   | Р     | 1983  | 0        | 1872     | 10      | 0            |
| 2   | В     | 818   | 0        | 797      | 5       | 0            |
| 2   | G     | 826   | 0        | 807      | 9       | 0            |
| 2   | L     | 826   | 0        | 805      | 6       | 0            |
| 2   | Q     | 818   | 0        | 793      | 6       | 0            |
| 3   | С     | 68    | 0        | 54       | 0       | 0            |
| 3   | Н     | 68    | 0        | 54       | 1       | 0            |
| 3   | М     | 68    | 0        | 54       | 0       | 0            |
| 3   | R     | 68    | 0        | 54       | 2       | 0            |
| 4   | D     | 1557  | 0        | 1458     | 7       | 0            |
| 4   | Ι     | 1461  | 0        | 1373     | 11      | 0            |
| 4   | N     | 1586  | 0        | 1491     | 8       | 0            |
| 4   | S     | 1598  | 0        | 1502     | 5       | 0            |
| 5   | Е     | 1940  | 0        | 1867     | 7       | 0            |
| 5   | J     | 1940  | 0        | 1869     | 14      | 0            |



| 5SWZ |
|------|
|------|

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 5   | 0     | 1960  | 0        | 1885     | 10      | 0            |
| 5   | Т     | 1935  | 0        | 1863     | 9       | 0            |
| 6   | D     | 5     | 0        | 0        | 0       | 0            |
| 6   | Е     | 5     | 0        | 0        | 0       | 0            |
| 6   | K     | 5     | 0        | 0        | 0       | 0            |
| 6   | 0     | 5     | 0        | 0        | 0       | 0            |
| 6   | Т     | 5     | 0        | 0        | 0       | 0            |
| 7   | Е     | 1     | 0        | 0        | 0       | 0            |
| 7   | Ι     | 1     | 0        | 0        | 0       | 0            |
| 7   | J     | 1     | 0        | 0        | 0       | 0            |
| 7   | K     | 1     | 0        | 0        | 0       | 0            |
| 7   | Т     | 2     | 0        | 0        | 0       | 0            |
| 8   | А     | 55    | 0        | 0        | 0       | 0            |
| 8   | В     | 15    | 0        | 0        | 0       | 0            |
| 8   | С     | 4     | 0        | 0        | 0       | 0            |
| 8   | D     | 30    | 0        | 0        | 0       | 0            |
| 8   | Е     | 50    | 0        | 0        | 0       | 0            |
| 8   | F     | 31    | 0        | 0        | 0       | 0            |
| 8   | G     | 18    | 0        | 0        | 0       | 0            |
| 8   | Н     | 2     | 0        | 0        | 0       | 0            |
| 8   | Ι     | 23    | 0        | 0        | 0       | 0            |
| 8   | J     | 33    | 0        | 0        | 0       | 0            |
| 8   | K     | 40    | 0        | 0        | 0       | 0            |
| 8   | L     | 19    | 0        | 0        | 0       | 0            |
| 8   | М     | 1     | 0        | 0        | 0       | 0            |
| 8   | N     | 32    | 0        | 0        | 0       | 0            |
| 8   | 0     | 57    | 0        | 0        | 0       | 0            |
| 8   | Р     | 40    | 0        | 0        | 0       | 0            |
| 8   | Q     | 14    | 0        | 0        | 0       | 0            |
| 8   | R     | 2     | 0        | 0        | 0       | 0            |
| 8   | S     | 22    | 0        | 0        | 0       | 0            |
| 8   | Т     | 44    | 0        | 0        | 0       | 0            |
| All | All   | 27034 | 0        | 25177    | 142     | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

All (142) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom-1        | Atom-2        | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|---------------|---------------|-----------------------------|----------------------|
| 2:G:25:CYS:HG | 2:G:80:CYS:HG | 1.03                        | 0.96                 |



|                  | A h o            | Interatomic             | Clash       |  |
|------------------|------------------|-------------------------|-------------|--|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |  |
| 5:J:109:ASP:OD2  | 5:J:113:ASP:HB2  | 1.67                    | 0.94        |  |
| 5:J:108:ARG:NH2  | 5:J:113:ASP:OD1  | 2.06                    | 0.85        |  |
| 5:J:145:ALA:HB1  | 5:J:146:GLU:HA   | 1.57                    | 0.84        |  |
| 4:D:3:GLN:H      | 4:D:4:VAL:HA     | 1.44                    | 0.83        |  |
| 2:Q:29:GLN:HA    | 2:Q:61:SER:HB3   | 1.67                    | 0.75        |  |
| 1:K:185:PRO:HB3  | 1:K:208:PHE:HB3  | 1.72                    | 0.70        |  |
| 1:K:252:GLY:HA3  | 1:K:253:LYS:HB2  | 1.73                    | 0.70        |  |
| 2:L:36:GLU:HB2   | 2:L:83:LYS:HB3   | 1.75                    | 0.69        |  |
| 1:P:187:ALA:HB1  | 1:P:188:HIS:HB3  | 1.75                    | 0.69        |  |
| 5:T:237:GLN:H    | 5:T:238:ASP:HA   | 1.57                    | 0.69        |  |
| 4:I:133:ASP:N    | 4:I:133:ASP:OD1  | 2.25                    | 0.67        |  |
| 4:I:136:VAL:O    | 4:I:137:TYR:HB2  | 1.94                    | 0.66        |  |
| 2:L:35:ILE:HG12  | 2:L:37:ILE:HD11  | 1.78                    | 0.65        |  |
| 4:N:175:CYS:HB3  | 5:0:183:CYS:SG   | 2.37                    | 0.63        |  |
| 5:E:25:GLN:HB3   | 5:E:85:SER:HA    | 1.81                    | 0.63        |  |
| 5:T:215:ASN:HB2  | 5:T:216:PRO:O    | 1.99                    | 0.63        |  |
| 2:B:1:ILE:HA     | 2:B:2:GLN:CB     | 2.29                    | 0.63        |  |
| 1:P:259:CYS:N    | 1:P:271:THR:HG1  | 1.99                    | 0.61        |  |
| 1:P:76:VAL:HG13  | 3:R:8:THR:HG21   | 1.82                    | 0.60        |  |
| 5:T:6:GLN:HB2    | 5:T:119:PRO:HD2  | 1.83                    | 0.59        |  |
| 5:0:174:ASN:HD21 | 5:O:218:ASN:HA   | 1.67                    | 0.59        |  |
| 5:T:166:HIS:HB3  | 5:T:227:TYR:HB2  | 1.85                    | 0.59        |  |
| 1:A:5:MET:HB2    | 1:A:168:LEU:HD13 | 1.85                    | 0.57        |  |
| 1:K:275:GLU:HB2  | 1:K:276:PRO:HA   | 1.85                    | 0.57        |  |
| 5:E:40:TYR:HB2   | 5:E:105:ALA:HB3  | 1.87                    | 0.57        |  |
| 1:P:5:MET:HB2    | 1:P:168:LEU:HD13 | 1.86                    | 0.57        |  |
| 5:T:40:TYR:HB2   | 5:T:105:ALA:HB3  | 1.87                    | 0.57        |  |
| 5:E:15:VAL:HG12  | 5:E:95:GLY:HA2   | 1.87                    | 0.57        |  |
| 5:O:40:TYR:HB2   | 5:O:105:ALA:HB3  | 1.86                    | 0.56        |  |
| 2:L:29:GLN:HA    | 2:L:61:SER:HB3   | 1.89                    | 0.55        |  |
| 4:D:192:TRP:HA   | 4:D:193:SER:HB3  | 1.89                    | 0.54        |  |
| 4:S:21:LEU:HB2   | 4:S:89:LEU:HB3   | 1.88                    | 0.54        |  |
| 5:T:216:PRO:HB2  | 5:T:218:ASN:H    | 1.72                    | 0.54        |  |
| 4:D:140:ARG:HB2  | 4:D:141:ASP:HB2  | 1.90                    | 0.54        |  |
| 4:N:209:ILE:HG23 | 4:N:212:ASP:HB2  | 1.89                    | 0.53        |  |
| 1:K:252:GLY:CA   | 1:K:253:LYS:HB2  | 2.38                    | 0.53        |  |
| 1:A:194:ARG:HB3  | 1:A:198:GLU:HG3  | 1.89                    | 0.53        |  |
| 4:N:19:ALA:HB3   | 4:N:91:ILE:HG23  | 1.90                    | 0.53        |  |
| 4:D:204:PHE:HA   | 4:D:205:ASN:O    | 2.08                    | 0.53        |  |
| 1:K:220:ASN:HD21 | 1:K:273:ARG:HH22 | 1.57                    | 0.52        |  |
| 5:O:6:GLN:HB2    | 5:O:119:PRO:HD2  | 1.91                    | 0.52        |  |



|                  |                    | Interatomic  | Clash       |  |
|------------------|--------------------|--------------|-------------|--|
| Atom-1           | Atom-2             | distance (Å) | overlap (Å) |  |
| 2:B:1:ILE:HA     | 2:B:2:GLN:HB2      | 1.90         | 0.52        |  |
| 2:G:59:ASP:H     | 2:G:60:TRP:HA      | 1.74         | 0.52        |  |
| 4:S:127:PRO:HG2  | 4:S:176:VAL:HG11   | 1.91         | 0.52        |  |
| 1:A:52:MET:HA    | 1:A:52:MET:HE2     | 1.91         | 0.52        |  |
| 5:J:166:HIS:HB3  | 5:J:227:TYR:HB2    | 1.91         | 0.52        |  |
| 5:J:220:PHE:HB2  | 5:J:251:ALA:HB2    | 1.92         | 0.51        |  |
| 2:L:27:VAL:HG21  | 2:L:37:ILE:HD12    | 1.92         | 0.51        |  |
| 1:F:214:THR:HB   | 1:F:262:TYR:HB2    | 1.92         | 0.51        |  |
| 1:P:52:MET:HA    | 1:P:52:MET:HE2     | 1.92         | 0.51        |  |
| 1:K:183:ASP:HA   | 1:K:184[B]:SER:HB2 | 1.93         | 0.50        |  |
| 5:O:197:ASP:HA   | 5:O:198:SER:CB     | 2.41         | 0.50        |  |
| 1:K:5:MET:HB2    | 1:K:168:LEU:HD13   | 1.94         | 0.50        |  |
| 5:O:197:ASP:HA   | 5:O:198:SER:HB3    | 1.93         | 0.50        |  |
| 1:F:202:ARG:HH12 | 2:G:99:MET:HA      | 1.76         | 0.50        |  |
| 5:J:172:TRP:HB2  | 5:J:221:ARG:HG2    | 1.93         | 0.50        |  |
| 4:N:211:GLU:HB2  | 4:N:212:ASP:HA     | 1.94         | 0.50        |  |
| 1:F:76:VAL:HG13  | 3:H:8:THR:HG21     | 1.93         | 0.50        |  |
| 2:G:51:MET:HE1   | 2:G:64:ILE:HG12    | 1.94         | 0.50        |  |
| 1:K:217:TRP:HA   | 1:K:218:GLN:HB2    | 1.94         | 0.49        |  |
| 1:K:183:ASP:HB2  | 1:K:209:TYR:H      | 1.77         | 0.49        |  |
| 4:I:1:GLN:HB2    | 4:I:3:GLN:HB2      | 1.94         | 0.49        |  |
| 1:K:81:LEU:HD23  | 1:K:118:TYR:CD1    | 2.47         | 0.49        |  |
| 2:Q:44:LYS:HD2   | 2:Q:45:LYS:H       | 1.78         | 0.49        |  |
| 5:J:5:LYS:HB3    | 5:J:24:SER:HB2     | 1.95         | 0.49        |  |
| 4:D:4:VAL:HG23   | 4:D:116:ILE:HG22   | 1.95         | 0.48        |  |
| 5:E:6:GLN:HB2    | 5:E:119:PRO:HD2    | 1.94         | 0.48        |  |
| 2:B:29:GLN:HA    | 2:B:61:SER:HB2     | 1.95         | 0.48        |  |
| 5:J:6:GLN:HB2    | 5:J:119:PRO:HD2    | 1.94         | 0.48        |  |
| 2:L:96:ASP:HB3   | 2:L:99:MET:HB2     | 1.95         | 0.48        |  |
| 1:A:133:TRP:HB2  | 1:A:144:ARG:HG3    | 1.96         | 0.48        |  |
| 1:A:201:LEU:HD11 | 1:A:254:GLU:HB2    | 1.95         | 0.48        |  |
| 1:K:133:TRP:HB2  | 1:K:144:ARG:HG3    | 1.96         | 0.48        |  |
| 1:K:183:ASP:HA   | 1:K:184[A]:SER:HB3 | 1.97         | 0.47        |  |
| 1:A:81:LEU:HD23  | 1:A:118:TYR:CD1    | 2.49         | 0.47        |  |
| 4:D:2:GLN:HB2    | 4:D:3:GLN:HA       | 1.97         | 0.47        |  |
| 4:I:15:GLU:HB3   | 4:I:128:ASN:HB2    | 1.97         | 0.47        |  |
| 4:D:192:TRP:HA   | 4:D:193:SER:CB     | 2.45         | 0.47        |  |
| 1:F:133:TRP:HB2  | 1:F:144:ARG:HG3    | 1.96         | 0.46        |  |
| 5:T:216:PRO:HB2  | 5:T:218:ASN:N      | 2.29         | 0.46        |  |
| 5:J:21:LEU:HD23  | 5:J:89:LEU:HD23    | 1.97         | 0.46        |  |
| 5:E:92:GLY:HA2   | 5:E:93:SER:HA      | 1.79         | 0.46        |  |



|                  | A h o            | Interatomic             | Clash       |
|------------------|------------------|-------------------------|-------------|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |
| 2:G:59:ASP:N     | 2:G:60:TRP:HA    | 2.31                    | 0.46        |
| 4:N:211:GLU:OE1  | 4:N:213:THR:OG1  | 2.33                    | 0.46        |
| 1:F:72:GLN:O     | 1:F:76:VAL:HG12  | 2.16                    | 0.45        |
| 1:P:72:GLN:O     | 1:P:76:VAL:HG12  | 2.15                    | 0.45        |
| 1:F:81:LEU:HD23  | 1:F:118:TYR:CD1  | 2.51                    | 0.45        |
| 1:A:185:PRO:HD2  | 1:A:266:LEU:HD13 | 1.98                    | 0.45        |
| 4:I:138:GLN:O    | 4:I:139:LEU:HG   | 2.15                    | 0.45        |
| 4:N:164:SER:HB2  | 4:N:171:ILE:HD12 | 1.98                    | 0.45        |
| 1:F:5:MET:HB2    | 1:F:168:LEU:HD22 | 1.98                    | 0.45        |
| 1:F:202:ARG:HD3  | 1:F:246:SER:HB3  | 1.99                    | 0.45        |
| 2:G:36:GLU:HB2   | 2:G:83:LYS:HB3   | 1.99                    | 0.45        |
| 5:J:145:ALA:CB   | 5:J:146:GLU:HA   | 2.39                    | 0.45        |
| 1:F:103:LEU:HD11 | 1:F:165:VAL:HG23 | 1.98                    | 0.45        |
| 2:G:15:PRO:HG2   | 2:G:97:ARG:HB2   | 1.98                    | 0.44        |
| 2:G:40:LEU:HB3   | 2:G:41:LYS:O     | 2.17                    | 0.44        |
| 1:K:220:ASN:HA   | 1:K:221:GLY:HA2  | 1.78                    | 0.44        |
| 4:I:132:PRO:C    | 4:I:133:ASP:OD1  | 2.56                    | 0.44        |
| 1:F:9:GLU:HG2    | 1:F:97:GLN:HB3   | 1.99                    | 0.44        |
| 5:E:166:HIS:HB3  | 5:E:227:TYR:HB2  | 2.00                    | 0.44        |
| 2:Q:36:GLU:HB2   | 2:Q:83:LYS:HB3   | 2.00                    | 0.44        |
| 1:P:141:GLN:HA   | 1:P:144:ARG:HG2  | 2.00                    | 0.43        |
| 5:0:142:PRO:HA   | 5:O:143:SER:CB   | 2.47                    | 0.43        |
| 2:Q:37:ILE:HG12  | 2:Q:82:VAL:HG22  | 2.00                    | 0.43        |
| 1:P:190:THR:HG23 | 1:P:202:ARG:HE   | 1.84                    | 0.43        |
| 5:T:92:GLY:HA2   | 5:T:93:SER:HA    | 1.79                    | 0.43        |
| 1:P:76:VAL:CG1   | 3:R:8:THR:HG21   | 2.47                    | 0.43        |
| 4:S:147:LYS:HE2  | 4:S:194:ASN:HA   | 2.01                    | 0.43        |
| 4:I:161:VAL:HG21 | 4:I:173:ASP:HA   | 2.01                    | 0.42        |
| 2:B:36:GLU:HB2   | 2:B:83:LYS:HB3   | 2.00                    | 0.42        |
| 2:Q:49:VAL:HG23  | 2:Q:68:THR:HB    | 2.00                    | 0.42        |
| 5:J:14:ARG:HB3   | 5:J:17:LYS:HG3   | 2.01                    | 0.42        |
| 5:O:157:CYS:HB2  | 5:O:171:TRP:CZ2  | 2.54                    | 0.42        |
| 2:B:35:ILE:HG23  | 2:B:37:ILE:HD11  | 2.01                    | 0.42        |
| 5:J:29:HIS:HB3   | 5:J:107:SER:O    | 2.19                    | 0.42        |
| 4:I:1:GLN:HA     | 4:I:2:GLN:HB2    | 2.02                    | 0.42        |
| 4:I:166:ASP:HB3  | 4:I:169:VAL:HG22 | 2.01                    | 0.42        |
| 1:A:266:LEU:HD21 | 1:A:270:LEU:HG   | 2.01                    | 0.42        |
| 4:I:103:PHE:CZ   | 5:J:44:LYS:HE2   | 2.55                    | 0.42        |
| 4:N:62:LYS:HG2   | 4:N:66:LYS:N     | 2.35                    | 0.42        |
| 1:K:218:GLN:HA   | 1:K:219:LEU:C    | 2.39                    | 0.42        |
| 4:I:138:GLN:OE1  | 4:I:199:ALA:HB2  | 2.20                    | 0.42        |



| Atom 1           | Atom 2           | Interatomic             | Clash       |
|------------------|------------------|-------------------------|-------------|
| Atom-1           | Atom-2           | $distance ( { m \AA} )$ | overlap (Å) |
| 1:K:103:LEU:HD13 | 1:K:168:LEU:HD23 | 2.01                    | 0.42        |
| 1:K:74:PHE:O     | 1:K:78:LEU:HB2   | 2.20                    | 0.41        |
| 1:P:5:MET:HE2    | 1:P:7:TYR:HE1    | 1.85                    | 0.41        |
| 5:O:241:LYS:H    | 5:O:241:LYS:HG2  | 1.64                    | 0.41        |
| 2:Q:40:LEU:HD11  | 2:Q:81:ARG:HB2   | 2.02                    | 0.41        |
| 1:A:74:PHE:O     | 1:A:78:LEU:HB2   | 2.21                    | 0.41        |
| 2:G:14:PRO:HA    | 2:G:15:PRO:HD3   | 1.96                    | 0.41        |
| 5:J:135:PRO:HB3  | 5:J:162:PHE:HB3  | 2.03                    | 0.41        |
| 1:A:79:ARG:HA    | 1:A:82:LEU:HD12  | 2.03                    | 0.41        |
| 1:A:193:PRO:HA   | 1:A:199:VAL:HG23 | 2.03                    | 0.41        |
| 2:L:12:ARG:HH21  | 2:L:22:ILE:HD13  | 1.85                    | 0.41        |
| 5:E:21:LEU:HD22  | 5:E:121:THR:HG21 | 2.03                    | 0.41        |
| 1:K:189:VAL:HG21 | 1:K:274:TRP:H    | 1.86                    | 0.41        |
| 4:N:141:ASP:HB2  | 5:O:141:GLU:HG2  | 2.01                    | 0.41        |
| 4:S:209:ILE:H    | 4:S:209:ILE:HD13 | 1.85                    | 0.41        |
| 5:T:214:GLN:O    | 5:T:215:ASN:HB2  | 2.20                    | 0.40        |
| 1:F:13:SER:HB3   | 1:F:93:HIS:H     | 1.86                    | 0.40        |
| 4:S:164:SER:HB3  | 4:S:171:ILE:HD12 | 2.03                    | 0.40        |

There are no symmetry-related clashes.

### 5.3 Torsion angles (i)

### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed       | Favoured  | Allowed | Outliers | Percer | ntiles |
|-----|-------|----------------|-----------|---------|----------|--------|--------|
| 1   | А     | 280/280~(100%) | 262 (94%) | 14 (5%) | 4 (1%)   | 11     | 16     |
| 1   | F     | 280/280~(100%) | 264 (94%) | 15 (5%) | 1 (0%)   | 34     | 48     |
| 1   | Κ     | 280/280~(100%) | 250~(89%) | 25 (9%) | 5 (2%)   | 8      | 12     |
| 1   | Р     | 234/280~(84%)  | 221 (94%) | 11 (5%) | 2(1%)    | 17     | 26     |
| 2   | В     | 97/99~(98%)    | 94 (97%)  | 2 (2%)  | 1 (1%)   | 15     | 23     |
| 2   | G     | 98/99~(99%)    | 93~(95%)  | 5(5%)   | 0        | 100    | 100    |



| 5SWZ |  |
|------|--|
|------|--|

| Mol | Chain | Analysed                      | Favoured   | Allowed  | Outliers | Perce | entiles |
|-----|-------|-------------------------------|------------|----------|----------|-------|---------|
| 2   | L     | 98/99~(99%)                   | 94~(96%)   | 4 (4%)   | 0        | 100   | 100     |
| 2   | Q     | 97/99~(98%)                   | 94 (97%)   | 3(3%)    | 0        | 100   | 100     |
| 3   | С     | 7/9~(78%)                     | 6 (86%)    | 0        | 1 (14%)  | 0     | 0       |
| 3   | Н     | 7/9~(78%)                     | 6 (86%)    | 0        | 1 (14%)  | 0     | 0       |
| 3   | М     | 7/9~(78%)                     | 6 (86%)    | 0        | 1 (14%)  | 0     | 0       |
| 3   | R     | 7/9~(78%)                     | 6 (86%)    | 0        | 1 (14%)  | 0     | 0       |
| 4   | D     | 194/207~(94%)                 | 175 (90%)  | 15 (8%)  | 4 (2%)   | 7     | 10      |
| 4   | Ι     | 182/207~(88%)                 | 160 (88%)  | 18 (10%) | 4 (2%)   | 6     | 9       |
| 4   | Ν     | 197/207~(95%)                 | 185 (94%)  | 8 (4%)   | 4 (2%)   | 7     | 10      |
| 4   | S     | 201/207~(97%)                 | 178 (89%)  | 19 (10%) | 4 (2%)   | 7     | 10      |
| 5   | Е     | 238/243~(98%)                 | 224 (94%)  | 11 (5%)  | 3(1%)    | 12    | 18      |
| 5   | J     | 238/243~(98%)                 | 221 (93%)  | 15~(6%)  | 2(1%)    | 19    | 29      |
| 5   | Ο     | 240/243~(99%)                 | 221 (92%)  | 14 (6%)  | 5 (2%)   | 7     | 10      |
| 5   | Т     | 237/243~(98%)                 | 212 (90%)  | 20 (8%)  | 5 (2%)   | 7     | 10      |
| All | All   | $321\overline{9/3352}~(96\%)$ | 2972 (92%) | 199 (6%) | 48 (2%)  | 10    | 15      |

Continued from previous page...

All (48) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | F     | 196 | LYS  |
| 4   | Ι     | 137 | TYR  |
| 4   | Ι     | 140 | ARG  |
| 1   | Κ     | 195 | SER  |
| 1   | Κ     | 275 | GLU  |
| 4   | N     | 214 | PHE  |
| 5   | 0     | 143 | SER  |
| 5   | 0     | 198 | SER  |
| 5   | Т     | 215 | ASN  |
| 5   | Т     | 216 | PRO  |
| 1   | А     | 196 | LYS  |
| 2   | В     | 2   | GLN  |
| 5   | Е     | 74  | GLU  |
| 5   | Е     | 96  | LEU  |
| 4   | Ι     | 144 | SER  |
| 5   | J     | 73  | PHE  |
| 5   | J     | 251 | ALA  |
| 1   | K     | 226 | GLN  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 5   | 0     | 73  | PHE  |
| 1   | Р     | 269 | PRO  |
| 5   | Т     | 173 | VAL  |
| 4   | D     | 193 | SER  |
| 4   | D     | 205 | ASN  |
| 4   | S     | 147 | LYS  |
| 3   | С     | 6   | MET  |
| 3   | Н     | 6   | MET  |
| 3   | М     | 6   | MET  |
| 4   | N     | 66  | LYS  |
| 3   | R     | 6   | MET  |
| 4   | S     | 66  | LYS  |
| 4   | S     | 141 | ASP  |
| 5   | Т     | 73  | PHE  |
| 5   | Т     | 149 | HIS  |
| 1   | А     | 177 | ALA  |
| 4   | D     | 66  | LYS  |
| 4   | Ι     | 66  | LYS  |
| 1   | А     | 229 | GLU  |
| 1   | А     | 275 | GLU  |
| 1   | K     | 175 | GLY  |
| 4   | Ν     | 99  | SER  |
| 4   | N     | 142 | SER  |
| 5   | 0     | 99  | SER  |
| 4   | S     | 216 | PRO  |
| 1   | Р     | 265 | GLY  |
| 4   | D     | 111 | GLY  |
| 1   | K     | 265 | GLY  |
| 5   | Е     | 95  | GLY  |
| 5   | 0     | 192 | GLN  |

| $\alpha$ $\cdots$ $1$ | c      |           |       |
|-----------------------|--------|-----------|-------|
| Continued             | trom   | premous   | naae  |
| contentaca            | 110110 | proceedao | pagem |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed       | Rotameric | Outliers | Percentiles |
|-----|-------|----------------|-----------|----------|-------------|
| 1   | А     | 240/238~(101%) | 223~(93%) | 17 (7%)  | 14 22       |



| 5SWZ |  |
|------|--|
|------|--|

| Mol | Chain | Analysed                     | Rotameric  | Outliers | Percentiles |     |  |
|-----|-------|------------------------------|------------|----------|-------------|-----|--|
| 1   | F     | 240/238~(101%)               | 211 (88%)  | 29 (12%) | 5           | 6   |  |
| 1   | Κ     | 240/238~(101%)               | 225~(94%)  | 15 (6%)  | 18          | 28  |  |
| 1   | Р     | 203/238~(85%)                | 182 (90%)  | 21 (10%) | 7           | 10  |  |
| 2   | В     | 93/93~(100%)                 | 87~(94%)   | 6~(6%)   | 17          | 26  |  |
| 2   | G     | 94/93~(101%)                 | 88 (94%)   | 6~(6%)   | 17          | 27  |  |
| 2   | L     | 94/93~(101%)                 | 84 (89%)   | 10 (11%) | 6           | 10  |  |
| 2   | Q     | 93/93~(100%)                 | 83~(89%)   | 10 (11%) | 6           | 9   |  |
| 3   | С     | 8/8~(100%)                   | 8 (100%)   | 0        | 100         | 100 |  |
| 3   | Н     | 8/8~(100%)                   | 8 (100%)   | 0        | 100         | 100 |  |
| 3   | М     | 8/8~(100%)                   | 7~(88%)    | 1 (12%)  | 4           | 6   |  |
| 3   | R     | 8/8~(100%)                   | 8 (100%)   | 0        | 100         | 100 |  |
| 4   | D     | 178/188~(95%)                | 164 (92%)  | 14 (8%)  | 12          | 19  |  |
| 4   | Ι     | 167/188~(89%)                | 157~(94%)  | 10 (6%)  | 19          | 30  |  |
| 4   | Ν     | 182/188~(97%)                | 166 (91%)  | 16 (9%)  | 10          | 14  |  |
| 4   | S     | 184/188~(98%)                | 175~(95%)  | 9~(5%)   | 25          | 38  |  |
| 5   | Ε     | 212/215~(99%)                | 196~(92%)  | 16 (8%)  | 13          | 21  |  |
| 5   | J     | 212/215~(99%)                | 192 (91%)  | 20 (9%)  | 8           | 13  |  |
| 5   | Ο     | $2\overline{14/215}~(100\%)$ | 197 (92%)  | 17 (8%)  | 12          | 19  |  |
| 5   | Т     | $\overline{212/215}~(99\%)$  | 194 (92%)  | 18 (8%)  | 10          | 15  |  |
| All | All   | 2890/2968~(97%)              | 2655 (92%) | 235 (8%) | 11          | 17  |  |

Continued from previous page...

All (235) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 39  | ASP  |
| 1   | А     | 61  | GLU  |
| 1   | А     | 78  | LEU  |
| 1   | А     | 79  | ARG  |
| 1   | А     | 137 | ASP  |
| 1   | А     | 141 | GLN  |
| 1   | А     | 160 | LEU  |
| 1   | А     | 173 | LYS  |
| 1   | А     | 179 | LEU  |
| 1   | А     | 181 | ARG  |
| 1   | А     | 206 | LEU  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 240 | THR  |
| 1   | А     | 251 | LEU  |
| 1   | А     | 254 | GLU  |
| 1   | А     | 264 | GLU  |
| 1   | А     | 272 | LEU  |
| 1   | А     | 275 | GLU  |
| 2   | В     | 39  | MET  |
| 2   | В     | 51  | MET  |
| 2   | В     | 58  | LYS  |
| 2   | В     | 64  | ILE  |
| 2   | В     | 70  | PHE  |
| 2   | В     | 74  | GLU  |
| 4   | D     | 1   | GLN  |
| 4   | D     | 13  | VAL  |
| 4   | D     | 27  | ASP  |
| 4   | D     | 44  | GLN  |
| 4   | D     | 58  | SER  |
| 4   | D     | 87  | LEU  |
| 4   | D     | 123 | VAL  |
| 4   | D     | 133 | ASP  |
| 4   | D     | 139 | LEU  |
| 4   | D     | 171 | ILE  |
| 4   | D     | 177 | LEU  |
| 4   | D     | 180 | ARG  |
| 4   | D     | 182 | MET  |
| 4   | D     | 204 | PHE  |
| 5   | Е     | 3   | THR  |
| 5   | Е     | 12  | LEU  |
| 5   | Е     | 22  | ILE  |
| 5   | Е     | 53  | LEU  |
| 5   | Е     | 56  | TYR  |
| 5   | E     | 73  | PHE  |
| 5   | Е     | 151 | GLN  |
| 5   | Ε     | 158 | LEU  |
| 5   | E     | 166 | HIS  |
| 5   | Е     | 183 | CYS  |
| 5   | Е     | 189 | LEU  |
| 5   | Е     | 191 | GLU  |
| 5   | Е     | 205 | ARG  |
| 5   | Е     | 217 | ARG  |
| 5   | Е     | 248 | SER  |
| 5   | Е     | 252 | TRP  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | F     | 5   | MET  |
| 1   | F     | 9   | GLU  |
| 1   | F     | 39  | ASP  |
| 1   | F     | 45  | TYR  |
| 1   | F     | 52  | MET  |
| 1   | F     | 54  | GLN  |
| 1   | F     | 55  | GLU  |
| 1   | F     | 70  | GLN  |
| 1   | F     | 82  | LEU  |
| 1   | F     | 110 | LEU  |
| 1   | F     | 111 | ARG  |
| 1   | F     | 137 | ASP  |
| 1   | F     | 141 | GLN  |
| 1   | F     | 160 | LEU  |
| 1   | F     | 166 | GLU  |
| 1   | F     | 172 | LEU  |
| 1   | F     | 179 | LEU  |
| 1   | F     | 181 | ARG  |
| 1   | F     | 191 | HIS  |
| 1   | F     | 199 | VAL  |
| 1   | F     | 201 | LEU  |
| 1   | F     | 206 | LEU  |
| 1   | F     | 230 | LEU  |
| 1   | F     | 232 | GLU  |
| 1   | F     | 251 | LEU  |
| 1   | F     | 255 | GLN  |
| 1   | F     | 258 | THR  |
| 1   | F     | 272 | LEU  |
| 1   | F     | 273 | ARG  |
| 2   | G     | 4   | THR  |
| 2   | G     | 48  | LYS  |
| 2   | G     | 58  | LYS  |
| 2   | G     | 64  | ILE  |
| 2   | G     | 87  | MET  |
| 2   | G     | 89  | GLU  |
| 4   | Ι     | 27  | ASP  |
| 4   | Ι     | 123 | VAL  |
| 4   | Ι     | 133 | ASP  |
| 4   | Ι     | 137 | TYR  |
| 4   | Ι     | 151 | LEU  |
| 4   | Ι     | 171 | ILE  |
| 4   | Ι     | 174 | LYS  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 4   | Ι     | 175 | CYS  |
| 4   | Ι     | 193 | SER  |
| 4   | Ι     | 194 | ASN  |
| 5   | J     | 12  | LEU  |
| 5   | J     | 21  | LEU  |
| 5   | J     | 25  | GLN  |
| 5   | J     | 53  | LEU  |
| 5   | J     | 56  | TYR  |
| 5   | J     | 107 | SER  |
| 5   | J     | 112 | ARG  |
| 5   | J     | 113 | ASP  |
| 5   | J     | 128 | ASP  |
| 5   | J     | 158 | LEU  |
| 5   | J     | 160 | THR  |
| 5   | J     | 167 | VAL  |
| 5   | J     | 176 | LYS  |
| 5   | J     | 178 | VAL  |
| 5   | J     | 183 | CYS  |
| 5   | J     | 189 | LEU  |
| 5   | J     | 205 | ARG  |
| 5   | J     | 218 | ASN  |
| 5   | J     | 221 | ARG  |
| 5   | J     | 254 | ARG  |
| 1   | K     | 39  | ASP  |
| 1   | K     | 45  | TYR  |
| 1   | K     | 78  | LEU  |
| 1   | К     | 109 | LEU  |
| 1   | K     | 110 | LEU  |
| 1   | K     | 111 | ARG  |
| 1   | K     | 134 | THR  |
| 1   | К     | 137 | ASP  |
| 1   | K     | 141 | GLN  |
| 1   | К     | 189 | VAL  |
| 1   | K     | 201 | LEU  |
| 1   | K     | 202 | ARG  |
| 1   | K     | 206 | LEU  |
| 1   | K     | 224 | LEU  |
| 1   | K     | 266 | LEU  |
| 2   | L     | 19  | LYS  |
| 2   | L     | 29  | GLN  |
| 2   | L     | 48  | LYS  |
| 2   | L     | 64  | ILE  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | L     | 70  | PHE  |
| 2   | L     | 83  | LYS  |
| 2   | L     | 87  | MET  |
| 2   | L     | 96  | ASP  |
| 2   | L     | 98  | ASP  |
| 2   | L     | 99  | MET  |
| 3   | М     | 2   | SER  |
| 4   | N     | 2   | GLN  |
| 4   | Ν     | 3   | GLN  |
| 4   | Ν     | 27  | ASP  |
| 4   | Ν     | 62  | LYS  |
| 4   | Ν     | 66  | LYS  |
| 4   | N     | 87  | LEU  |
| 4   | N     | 91  | ILE  |
| 4   | N     | 123 | VAL  |
| 4   | N     | 125 | VAL  |
| 4   | Ν     | 130 | GLN  |
| 4   | Ν     | 133 | ASP  |
| 4   | Ν     | 174 | LYS  |
| 4   | Ν     | 175 | CYS  |
| 4   | Ν     | 180 | ARG  |
| 4   | Ν     | 183 | ASP  |
| 4   | Ν     | 214 | PHE  |
| 5   | 0     | 53  | LEU  |
| 5   | 0     | 56  | TYR  |
| 5   | 0     | 88  | SER  |
| 5   | 0     | 97  | GLU  |
| 5   | 0     | 126 | LEU  |
| 5   | 0     | 127 | GLU  |
| 5   | Ο     | 128 | ASP  |
| 5   | 0     | 139 | VAL  |
| 5   | Ο     | 158 | LEU  |
| 5   | Ο     | 176 | LYS  |
| 5   | Ο     | 187 | GLN  |
| 5   | О     | 189 | LEU  |
| 5   | Ο     | 193 | PRO  |
| 5   | Ο     | 199 | ARG  |
| 5   | Ο     | 236 | THR  |
| 5   | О     | 241 | LYS  |
| 5   | О     | 256 | ASP  |
| 1   | Р     | 35  | ARG  |
| 1   | Р     | 39  | ASP  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | Р     | 45  | TYR  |
| 1   | Р     | 78  | LEU  |
| 1   | Р     | 81  | LEU  |
| 1   | Р     | 106 | ASP  |
| 1   | Р     | 134 | THR  |
| 1   | Р     | 137 | ASP  |
| 1   | Р     | 160 | LEU  |
| 1   | Р     | 172 | LEU  |
| 1   | Р     | 176 | ASN  |
| 1   | Р     | 179 | LEU  |
| 1   | Р     | 201 | LEU  |
| 1   | Р     | 204 | TRP  |
| 1   | Р     | 206 | LEU  |
| 1   | Р     | 230 | LEU  |
| 1   | Р     | 240 | THR  |
| 1   | Р     | 259 | CYS  |
| 1   | Р     | 260 | ARG  |
| 1   | Р     | 262 | TYR  |
| 1   | Р     | 266 | LEU  |
| 2   | Q     | 2   | GLN  |
| 2   | Q     | 29  | GLN  |
| 2   | Q     | 37  | ILE  |
| 2   | Q     | 44  | LYS  |
| 2   | Q     | 58  | LYS  |
| 2   | Q     | 70  | PHE  |
| 2   | Q     | 87  | MET  |
| 2   | Q     | 97  | ARG  |
| 2   | Q     | 98  | ASP  |
| 2   | Q     | 99  | MET  |
| 4   | S     | 9   | GLN  |
| 4   | S     | 14  | TRP  |
| 4   | S     | 27  | ASP  |
| 4   | S     | 58  | SER  |
| 4   | S     | 123 | VAL  |
| 4   | S     | 180 | ARG  |
| 4   | S     | 182 | MET  |
| 4   | S     | 188 | SER  |
| 4   | S     | 209 | ILE  |
| 5   | Т     | 12  | LEU  |
| 5   | Т     | 25  | GLN  |
| 5   | Т     | 26  | THR  |
| 5   | Т     | 28  | ASN  |



| $\mathbf{Mol}$ | Chain | $\mathbf{Res}$ | Type |
|----------------|-------|----------------|------|
| 5              | Т     | 53             | LEU  |
| 5              | Т     | 56             | TYR  |
| 5              | Т     | 127            | GLU  |
| 5              | Т     | 152            | LYS  |
| 5              | Т     | 155            | LEU  |
| 5              | Т     | 158            | LEU  |
| 5              | Т     | 176            | LYS  |
| 5              | Т     | 183            | CYS  |
| 5              | Т     | 189            | LEU  |
| 5              | Т     | 192            | GLN  |
| 5              | Т     | 205            | ARG  |
| 5              | Т     | 232            | ASN  |
| 5              | Т     | 241            | LYS  |
| 5              | Т     | 254            | ARG  |

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (10) such side chains are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type |
|-----|-------|----------------|------|
| 4   | D     | 131            | ASN  |
| 5   | Е     | 219            | HIS  |
| 1   | F     | 54             | GLN  |
| 5   | J     | 7              | ASN  |
| 5   | J     | 82             | ASN  |
| 5   | J     | 83             | ASN  |
| 5   | 0     | 174            | ASN  |
| 4   | S     | 202            | ASN  |
| 5   | Т     | 7              | ASN  |
| 5   | Т     | 83             | ASN  |

### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.



### 5.6 Ligand geometry (i)

Of 11 ligands modelled in this entry, 6 are monoatomic - leaving 5 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal Trma |                | Chain | Dog    | Link Bond lengths |        |        | E    | Bond angles |      |   |
|----------|----------------|-------|--------|-------------------|--------|--------|------|-------------|------|---|
| IVIOI    | Type Chain Res |       | Counts | RMSZ              | # Z >2 | Counts | RMSZ | # Z >2      |      |   |
| 6        | SO4            | D     | 301    | -                 | 4,4,4  | 0.14   | 0    | $6,\!6,\!6$ | 0.06 | 0 |
| 6        | SO4            | K     | 301    | -                 | 4,4,4  | 0.15   | 0    | $6,\!6,\!6$ | 0.04 | 0 |
| 6        | SO4            | Т     | 301    | -                 | 4,4,4  | 0.14   | 0    | $6,\!6,\!6$ | 0.06 | 0 |
| 6        | SO4            | Е     | 301    | -                 | 4,4,4  | 0.13   | 0    | $6,\!6,\!6$ | 0.06 | 0 |
| 6        | SO4            | 0     | 301    | -                 | 4,4,4  | 0.14   | 0    | $6,\!6,\!6$ | 0.06 | 0 |

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

### 5.7 Other polymers (i)

There are no such residues in this entry.

### 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



## 6 Fit of model and data (i)

## 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed        | $\langle RSRZ \rangle$ | #RSRZ>2        | $\mathbf{OWAB}(\mathbf{\mathring{A}}^2)$ | Q<0.9   |
|-----|-------|-----------------|------------------------|----------------|------------------------------------------|---------|
| 1   | А     | 277/280~(98%)   | 0.30                   | 7 (2%) 57 53   | 33, 61, 99, 120                          | 7(2%)   |
| 1   | F     | 277/280~(98%)   | 0.66                   | 21 (7%) 13 11  | 40, 84, 117, 143                         | 7 (2%)  |
| 1   | K     | 277/280~(98%)   | 0.49                   | 22 (7%) 12 10  | 34, 67, 109, 123                         | 7(2%)   |
| 1   | Р     | 238/280~(85%)   | 0.81                   | 38 (15%) 1 1   | 37, 66, 159, 198                         | 5(2%)   |
| 2   | В     | 99/99~(100%)    | 0.32                   | 1 (1%) 82 81   | 41, 59, 79, 88                           | 2(2%)   |
| 2   | G     | 99/99~(100%)    | 0.77                   | 8 (8%) 12 9    | 54, 75, 103, 111                         | 0       |
| 2   | L     | 99/99~(100%)    | 0.33                   | 3 (3%) 50 47   | 43, 63, 91, 102                          | 0       |
| 2   | Q     | 98/99~(98%)     | 0.88                   | 16 (16%) 1 1   | 48, 85, 108, 115                         | 0       |
| 3   | С     | 9/9~(100%)      | -0.05                  | 0 100 100      | 40, 42, 48, 51                           | 0       |
| 3   | Н     | 9/9~(100%)      | 0.07                   | 0 100 100      | 50, 60, 68, 72                           | 0       |
| 3   | М     | 9/9~(100%)      | -0.17                  | 0 100 100      | 42, 49, 59, 60                           | 0       |
| 3   | R     | 9/9~(100%)      | 0.19                   | 0 100 100      | 41, 49, 56, 59                           | 0       |
| 4   | D     | 198/207~(95%)   | 0.42                   | 14 (7%) 16 12  | 39, 64, 115, 129                         | 1 (0%)  |
| 4   | Ι     | 186/207~(89%)   | 1.15                   | 40 (21%) 0 0   | 52, 84, 162, 187                         | 1 (0%)  |
| 4   | Ν     | 201/207~(97%)   | 0.61                   | 13 (6%) 18 16  | 46, 72, 109, 144                         | 1 (0%)  |
| 4   | S     | 203/207~(98%)   | 0.68                   | 19 (9%) 8 6    | 43, 79, 122, 140                         | 1 (0%)  |
| 5   | Е     | 240/243~(98%)   | 0.18                   | 4 (1%) 70 67   | 32, 56, 92, 106                          | 1 (0%)  |
| 5   | J     | 240/243~(98%)   | 0.58                   | 19 (7%) 12 10  | 40, 74, 138, 163                         | 0       |
| 5   | Ο     | 241/243~(99%)   | 0.22                   | 4 (1%) 70 67   | 34, 57, 87, 108                          | 2(0%)   |
| 5   | Т     | 239/243~(98%)   | 0.39                   | 8 (3%) 46 43   | 34, 64, 100, 124                         | 1 (0%)  |
| All | All   | 3248/3352 (96%) | 0.53                   | 237 (7%) 15 12 | 32, 68, 117, 198                         | 36 (1%) |

All (237) RSRZ outliers are listed below:



| Mol | Chain | Res   | Type | RSRZ |
|-----|-------|-------|------|------|
| 1   | Р     | 187   | ALA  | 11.1 |
| 4   | Ι     | 138   | GLN  | 10.0 |
| 4   | Ι     | 139   | LEU  | 9.2  |
| 4   | Ι     | 140   | ARG  | 8.6  |
| 1   | Р     | 268   | GLU  | 8.2  |
| 1   | Р     | 267   | PRO  | 6.8  |
| 5   | J     | 195   | LEU  | 6.7  |
| 1   | F     | 225   | THR  | 6.5  |
| 1   | Р     | 188   | HIS  | 6.5  |
| 5   | J     | 143   | SER  | 6.2  |
| 4   | Ι     | 137   | TYR  | 6.2  |
| 1   | Р     | 262   | TYR  | 6.1  |
| 1   | K     | 177   | ALA  | 6.0  |
| 1   | К     | 178   | THR  | 5.9  |
| 5   | J     | 194   | ALA  | 5.9  |
| 4   | S     | 184   | PHE  | 5.8  |
| 1   | Р     | 228   | MET  | 5.5  |
| 1   | K     | 220   | ASN  | 5.5  |
| 1   | Р     | 269   | PRO  | 5.5  |
| 5   | J     | 252   | TRP  | 5.3  |
| 2   | Q     | 54[A] | MET  | 5.3  |
| 4   | Ι     | 202   | ASN  | 5.3  |
| 1   | Р     | 186   | LYS  | 5.1  |
| 1   | К     | 179   | LEU  | 5.1  |
| 4   | Ι     | 201   | ALA  | 5.1  |
| 4   | S     | 145   | SER  | 5.0  |
| 4   | Ι     | 146   | ASP  | 5.0  |
| 1   | Р     | 190   | THR  | 4.8  |
| 1   | Р     | 189   | VAL  | 4.8  |
| 4   | Ι     | 148   | SER  | 4.8  |
| 4   | N     | 146   | ASP  | 4.7  |
| 5   | Т     | 238   | ASP  | 4.6  |
| 4   | D     | 214   | PHE  | 4.5  |
| 4   | N     | 2     | GLN  | 4.5  |
| 5   | J     | 255   | ALA  | 4.5  |
| 2   | Q     | 23    | LEU  | 4.5  |
| 2   | Q     | 15    | PRO  | 4.4  |
| 1   | Р     | 179   | LEU  | 4.4  |
| 2   | Q     | 99    | MET  | 4.3  |
| 4   | S     | 214   | PHE  | 4.3  |
| 4   | N     | 196   | SER  | 4.3  |
| 1   | Р     | 215   | LEU  | 4.2  |
| 4   | Ι     | 204   | PHE  | 4.2  |



| Mol | Chain | Res   | Type | RSRZ |
|-----|-------|-------|------|------|
| 1   | Р     | 264   | GLU  | 4.1  |
| 4   | N     | 209   | ILE  | 4.1  |
| 4   | Ν     | 216   | PRO  | 4.0  |
| 1   | Р     | 261   | VAL  | 4.0  |
| 1   | Р     | 266   | LEU  | 4.0  |
| 1   | Р     | 230   | LEU  | 3.9  |
| 4   | D     | 211   | GLU  | 3.9  |
| 4   | D     | 164   | SER  | 3.9  |
| 2   | Q     | 94    | TYR  | 3.9  |
| 5   | J     | 144   | GLU  | 3.8  |
| 4   | S     | 183   | ASP  | 3.8  |
| 1   | Р     | 270   | LEU  | 3.8  |
| 2   | G     | 48    | LYS  | 3.8  |
| 4   | N     | 214   | PHE  | 3.7  |
| 2   | Q     | 14    | PRO  | 3.6  |
| 4   | Ι     | 145   | SER  | 3.6  |
| 5   | J     | 220   | PHE  | 3.6  |
| 1   | Р     | 178   | THR  | 3.6  |
| 1   | F     | 223   | GLU  | 3.6  |
| 2   | Q     | 97    | ARG  | 3.5  |
| 4   | D     | 213   | THR  | 3.5  |
| 5   | J     | 251   | ALA  | 3.5  |
| 5   | J     | 148   | SER  | 3.5  |
| 4   | Ι     | 69    | GLY  | 3.5  |
| 2   | G     | 68    | THR  | 3.5  |
| 1   | Р     | 246   | SER  | 3.4  |
| 1   | F     | 160   | LEU  | 3.4  |
| 4   | I     | 152   | PHE  | 3.4  |
| 1   | K     | 105   | SER  | 3.4  |
| 1   | Р     | 202   | ARG  | 3.3  |
| 1   | Р     | 204   | TRP  | 3.3  |
| 1   | P     | 201   | LEU  | 3.3  |
| 4   | S     | 202   | ASN  | 3.3  |
| 4   | I     | 151   | LEU  | 3.2  |
| 2   | G     | 54[A] | MET  | 3.2  |
| 1   | F     | 201   | LEU  | 3.2  |
| 4   | D     | 136   | VAL  | 3.2  |
| 1   | P     | 211   | ALA  | 3.2  |
| 4   | N     | 165   | LYS  | 3.2  |
| 1   | K     | 198   | GLU  | 3.1  |
| 4   | S     | 185   | LYS  | 3.1  |
| 1   | K     | 270   | LEU  | 3.1  |



4

Mol Chain

 $\mathbf{S}$ 

|   |   |       | 1   |     |
|---|---|-------|-----|-----|
| 5 | 0 | 194   | ALA | 3.1 |
| 1 | F | 238   | ASP | 3.1 |
| 2 | Q | 79    | ALA | 3.1 |
| 1 | А | 196   | LYS | 3.1 |
| 1 | К | 222   | GLU | 3.1 |
| 4 | S | 198   | PHE | 3.0 |
| 4 | Ι | 142   | SER | 3.0 |
| 1 | F | 226   | GLN | 3.0 |
| 5 | J | 214   | GLN | 3.0 |
| 4 | Ι | 197   | ASP | 3.0 |
| 5 | J | 254   | ARG | 3.0 |
| 4 | Ι | 150   | CYS | 3.0 |
| 1 | Р | 240   | THR | 2.9 |
| 5 | 0 | 197   | ASP | 2.9 |
| 4 | Ι | 189   | ALA | 2.9 |
| 2 | L | 54[A] | MET | 2.9 |
| 1 | К | 273   | ARG | 2.9 |
| 2 | Q | 98    | ASP | 2.9 |
| 4 | S | 137   | TYR | 2.9 |
| 5 | Т | 151   | GLN | 2.8 |
| 5 | Т | 215   | ASN | 2.8 |
| 1 | К | 106   | ASP | 2.8 |
| 5 | Е | 194   | ALA | 2.8 |
| 4 | S | 211   | GLU | 2.8 |
| 1 | F | 50    | PRO | 2.8 |
| 4 | S | 200   | CYS | 2.8 |
| 1 | К | 268   | GLU | 2.7 |
| 4 | Ι | 200   | CYS | 2.7 |
| 2 | Q | 80    | CYS | 2.7 |
| 4 | Ι | 193   | SER | 2.7 |
| 2 | L | 69    | GLU | 2.7 |
| 4 | Ι | 141   | ASP | 2.7 |
| 4 | Ι | 154   | ASP | 2.7 |
| 2 | G | 39    | MET | 2.7 |
| 4 | Ι | 163   | GLN | 2.7 |
| 2 | Q | 78    | TYR | 2.7 |

Continued from previous page...

 $\operatorname{Res}$ 

144

Type

SER

RSRZ

3.1

ARG Continued on next page...

ASP

PRO

ASP

SER

2.7

2.7

2.7

2.7

2.7

Р

L

Q

Ν

Κ

1 2

2

4

1

238

15

96

207

108[A]



| Continued from previous page |       |       |      |      |  |  |  |
|------------------------------|-------|-------|------|------|--|--|--|
| Mol                          | Chain | Res   | Type | RSRZ |  |  |  |
| 1                            | Р     | 229   | GLU  | 2.7  |  |  |  |
| 2                            | G     | 17    | ASN  | 2.6  |  |  |  |
| 4                            | Ι     | 198   | PHE  | 2.6  |  |  |  |
| 5                            | J     | 155   | LEU  | 2.6  |  |  |  |
| 2                            | Q     | 39    | MET  | 2.6  |  |  |  |
| 5                            | J     | 152   | LYS  | 2.5  |  |  |  |
| 4                            | Ι     | 205   | ASN  | 2.5  |  |  |  |
| 2                            | Q     | 29    | GLN  | 2.5  |  |  |  |
| 4                            | Ι     | 67    | GLU  | 2.5  |  |  |  |
| 4                            | D     | 209   | ILE  | 2.5  |  |  |  |
| 1                            | F     | 130   | LEU  | 2.5  |  |  |  |
| 4                            | N     | 212   | ASP  | 2.5  |  |  |  |
| 4                            | D     | 200   | CYS  | 2.5  |  |  |  |
| 1                            | K     | 201   | LEU  | 2.5  |  |  |  |
| 1                            | Α     | 275   | GLU  | 2.5  |  |  |  |
| 1                            | F     | 52    | MET  | 2.5  |  |  |  |
| 4                            | Ι     | 149   | VAL  | 2.5  |  |  |  |
| 4                            | D     | 204   | PHE  | 2.5  |  |  |  |
| 4                            | N     | 143   | LYS  | 2.5  |  |  |  |
| 2                            | Q     | 46    | ILE  | 2.4  |  |  |  |
| 5                            | 0     | 189   | LEU  | 2.4  |  |  |  |
| 1                            | K     | 107   | TRP  | 2.4  |  |  |  |
| 1                            | А     | 175   | GLY  | 2.4  |  |  |  |
| 4                            | D     | 140   | ARG  | 2.4  |  |  |  |
| 4                            | Ι     | 162   | SER  | 2.4  |  |  |  |
| 4                            | D     | 67    | GLU  | 2.4  |  |  |  |
| 4                            | S     | 147   | LYS  | 2.4  |  |  |  |
| 1                            | F     | 34    | VAL  | 2.4  |  |  |  |
| 5                            | Т     | 232   | ASN  | 2.4  |  |  |  |
| 1                            | F     | 257   | TYR  | 2.4  |  |  |  |
| 4                            | D     | 165   | LYS  | 2.4  |  |  |  |
| 5                            | Е     | 96    | LEU  | 2.4  |  |  |  |
| 5                            | Т     | 194   | ALA  | 2.4  |  |  |  |
| 5                            | J     | 140   | PHE  | 2.4  |  |  |  |
| 1                            | K     | 62[A] | ARG  | 2.4  |  |  |  |
| 1                            | P     | 244   | TRP  | 2.3  |  |  |  |
| 1                            | Р     | 212   | ASP  | 2.3  |  |  |  |
| 1                            | A     | 221   | GLY  | 2.3  |  |  |  |
| 5                            | .I    | 211   | THR  | 2.3  |  |  |  |
| 5                            | J     | 213   | TRP  | 2.3  |  |  |  |
| 4                            | S     | 133   | ASP  | 2.3  |  |  |  |
| <u> </u>                     | F     | 163   | GLU  | 2.0  |  |  |  |
| T                            | Т,    | 100   |      | 4.0  |  |  |  |

.....  $\alpha$ Jf n tin



| Mol | Chain | Res    | Type   RSR2 |     |
|-----|-------|--------|-------------|-----|
| 1   | Р     | 50     | PRO         | 2.3 |
| 2   | Q     | 16     | GLU         | 2.3 |
| 4   | D     | 183    | ASP         | 2.3 |
| 1   | F     | 45     | TYR         | 2.3 |
| 1   | А     | 225    | THR         | 2.3 |
| 5   | Т     | 254    | ARG         | 2.3 |
| 1   | F     | 126    | LEU         | 2.3 |
| 1   | Р     | 182    | THR         | 2.3 |
| 2   | В     | 85     | ALA         | 2.3 |
| 1   | F     | 60     | TRP         | 2.3 |
| 1   | А     | 220    | ASN         | 2.3 |
| 4   | S     | 131    | ASN         | 2.3 |
| 1   | F     | 194    | ARG         | 2.3 |
| 4   | Ι     | 59     | VAL         | 2.3 |
| 1   | K     | 183    | ASP         | 2.2 |
| 1   | K     | 189    | VAL         | 2.2 |
| 4   | S     | 216    | PRO         | 2.2 |
| 5   | Т     | 148    | SER         | 2.2 |
| 4   | Ι     | 186    | SER         | 2.2 |
| 2   | G     | 51     | MET         | 2.2 |
| 1   | Р     | 209    | TYR         | 2.2 |
| 5   | J     | 156    | VAL         | 2.2 |
| 5   | J     | 129    | LEU         | 2.2 |
| 1   | Р     | 177    | ALA         | 2.2 |
| 1   | F     | 156    | TYR         | 2.2 |
| 4   | Ι     | 143    | LYS         | 2.2 |
| 1   | F     | 108[A] | ARG         | 2.2 |
| 4   | S     | 80     | PHE         | 2.2 |
| 4   | Ι     | 88     | SER         | 2.2 |
| 1   | F     | 164    | CYS         | 2.2 |
| 4   | Ι     | 15     | GLU         | 2.1 |
| 4   | S     | 136    | VAL         | 2.1 |
| 1   | K     | 109    | LEU         | 2.1 |
| 2   | G     | 79     | ALA         | 2.1 |
| 2   | G     | 69     | GLU         | 2.1 |
| 4   | N     | 204    | PHE         | 2.1 |
| 1   | Κ     | 257    | TYR         | 2.1 |
| 4   | Ι     | 136    | VAL         | 2.1 |
| 1   | F     | 180    | LEU         | 2.1 |
| 1   | K     | 224    | LEU         | 2.1 |
| 4   | D     | 212    | ASP         | 2.1 |
| 1   | Р     | 260    | ARG         | 2.1 |



| Mol | Chain | Res    | Type | RSRZ |
|-----|-------|--------|------|------|
| 4   | D     | 207    | SER  | 2.1  |
| 1   | Κ     | 219    | LEU  | 2.1  |
| 4   | Ι     | 68     | ASP  | 2.1  |
| 4   | Ι     | 156    | ASP  | 2.1  |
| 4   | Ι     | 90     | HIS  | 2.1  |
| 4   | Ι     | 171    | ILE  | 2.1  |
| 4   | N     | 128    | ASN  | 2.1  |
| 1   | Р     | 62[A]  | ARG  | 2.1  |
| 4   | Ν     | 148    | SER  | 2.1  |
| 1   | F     | 241    | PHE  | 2.1  |
| 1   | Р     | 184[A] | SER  | 2.1  |
| 4   | Ι     | 89     | LEU  | 2.1  |
| 4   | S     | 152    | PHE  | 2.1  |
| 5   | Е     | 195    | LEU  | 2.0  |
| 1   | Р     | 235    | PRO  | 2.0  |
| 5   | 0     | 221[A] | ARG  | 2.0  |
| 4   | S     | 91     | ILE  | 2.0  |
| 4   | Ι     | 17     | GLU  | 2.0  |
| 5   | Т     | 210    | ALA  | 2.0  |
| 5   | J     | 92     | GLY  | 2.0  |
| 4   | Ι     | 14     | TRP  | 2.0  |
| 1   | А     | 224    | LEU  | 2.0  |
| 5   | Е     | 229    | LEU  | 2.0  |
| 1   | Κ     | 181    | ARG  | 2.0  |
| 1   | Р     | 206    | LEU  | 2.0  |
| 1   | Р     | 263    | HIS  | 2.0  |

Continued from previous page...

## 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

## 6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

## 6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.



| Mol | Type | Chain | Res | Atoms | RSCC | RSR  | $B-factors(Å^2)$    | Q<0.9 |
|-----|------|-------|-----|-------|------|------|---------------------|-------|
| 6   | SO4  | D     | 301 | 5/5   | 0.72 | 0.25 | 118,118,119,119     | 0     |
| 6   | SO4  | Т     | 301 | 5/5   | 0.73 | 0.35 | 115,115,115,115     | 0     |
| 6   | SO4  | Е     | 301 | 5/5   | 0.79 | 0.17 | 115,116,116,116     | 0     |
| 7   | NA   | Е     | 302 | 1/1   | 0.85 | 0.17 | $50,\!50,\!50,\!50$ | 0     |
| 7   | NA   | J     | 301 | 1/1   | 0.86 | 0.16 | 38,38,38,38         | 0     |
| 6   | SO4  | K     | 301 | 5/5   | 0.88 | 0.12 | 114,114,114,115     | 0     |
| 7   | NA   | Т     | 303 | 1/1   | 0.88 | 0.10 | 49,49,49,49         | 0     |
| 7   | NA   | Т     | 302 | 1/1   | 0.91 | 0.11 | 42,42,42,42         | 0     |
| 7   | NA   | Ι     | 301 | 1/1   | 0.92 | 0.23 | 48,48,48,48         | 0     |
| 6   | SO4  | 0     | 301 | 5/5   | 0.92 | 0.13 | 102,102,102,102     | 0     |
| 7   | NA   | K     | 302 | 1/1   | 0.95 | 0.07 | 79,79,79,79         | 0     |

## 6.5 Other polymers (i)

There are no such residues in this entry.

