

Full wwPDB NMR Structure Validation Report (i)

May 28, 2020 – 09:05 pm BST

PDB ID	:	1SV1
Title	:	NMR structure of the ThKaiA180C-CIIABD complex (25-structure ensemble)
Authors	:	Vakonakis, I.; LiWang, A.C.
Deposited on	:	2004-03-26

This is a Full wwPDB NMR Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/NMRValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

Cyrange	:	Kirchner and Güntert (2011)
$\operatorname{NmrClust}$:	Kelley et al. (1996)
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
RCI	:	v_1n_11_5_13_A (Berjanski et al., 2005)
PANAV	:	Wang et al. (2010)
${ m ShiftChecker}$:	2.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.11

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $SOLUTION \ NMR$

The overall completeness of chemical shifts assignment was not calculated.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	(#Entries)	(#Entries)
Clashscore	158937	12864
Ramachandran outliers	154571	11451
Sidechain outliers	154315	11428

The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain				
1	А	107	41%	44%	6% 9%		
1	В	107	43%	42%	6% 9%		
2	С	34	• 44%	18%	35%		
2	D	34	• 44%	18%	35%		

2 Ensemble composition and analysis (i)

This entry contains 25 models. Model 10 is the overall representative, medoid model (most similar to other models). The authors have identified model 11 as representative, based on the following criterion: *lowest energy*.

The following residues are included in the computation of the global validation metrics.

Well-defined (core) protein residues								
Well-defined core	Residue range (total)	Backbone RMSD (Å)	Medoid model					
1	A:8-A:104, B:208-B:304,	0.33	10					
	C:409-C:430, D:509-D:530							
	(238)							

Ill-defined regions of proteins are excluded from the global statistics.

Ligands and non-protein polymers are included in the analysis.

The models can be grouped into 4 clusters and 12 single-model clusters were found.

Cluster number	Models
1	6, 10, 11, 12, 14, 23, 25
2	16, 21
3	5, 19
4	7, 20
Single-model clusters	1; 2; 3; 4; 8; 9; 13; 15; 17; 18; 22; 24

3 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 4596 atoms, of which 2328 are hydrogens and 0 are deuteriums.

• Molecule 1 is a protein called Circadian clock protein KaiA.

Mol	Chain	Residues			Aton	ıs			Trace
1	Λ	107	Total	С	Η	Ν	Ο	S	0
	107	1788	561	905	151	166	5	0	
1 B	107	Total	С	Η	Ν	Ο	S	0	
	107	1788	561	905	151	166	5	0	

There are 6 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	1	ALA	-	CLONING ARTIFACT	UNP Q79V62
A	2	MET	-	CLONING ARTIFACT	UNP Q79V62
А	3	ALA	-	CLONING ARTIFACT	UNP Q79V62
В	201	ALA	-	CLONING ARTIFACT	UNP Q79V62
В	202	MET	-	CLONING ARTIFACT	UNP Q79V62
В	203	ALA	-	CLONING ARTIFACT	UNP Q79V62

• Molecule 2 is a protein called Circadian clock protein KaiC.

Mol	Chain	Residues		A	Atom	s			Trace
0	C	24	Total	С	Η	Ν	Ο	S	0
	04	510	152	259	43	54	2	0	
0	9 D	D 24	Total	С	Η	Ν	Ο	S	0
	04	510	152	259	43	54	2	0	

There are 6 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
С	401	ALA	-	CLONING ARTIFACT	UNP Q8RR33
С	402	MET	-	CLONING ARTIFACT	UNP Q8RR33
С	403	ALA	-	CLONING ARTIFACT	UNP Q8RR33
D	501	ALA	-	CLONING ARTIFACT	UNP Q8RR33
D	502	MET	-	CLONING ARTIFACT	UNP Q8RR33
D	503	ALA	-	CLONING ARTIFACT	UNP Q8RR33

4 Residue-property plots (i)

4.1 Average score per residue in the NMR ensemble

These plots are provided for all protein, RNA and DNA chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.

• Molecule 1: Circadian clock protein KaiA

4.2 Scores per residue for each member of the ensemble

Colouring as in section 4.1 above.

4.2.1 Score per residue for model 1

• Molecule 1: Circadian clock protein KaiA

Chain A:	47%	36%	7%	9%	•
A1 A3 A3 A3 A3 A5 A5 P7	R11 K12 L13 L13 L13 L14 L13 L14 L13 R21 R21 R22 R33 R34 N36 R33 R38 R38 R38 R38 R38 R38 R38 R38 R38	V43 V43 S54 V53 V56 V56 V56 V56 L57 L57 L58 L58 N61 V61 V61	LG3 MG4	F67 L71	180 L81 L82 D83 Y84 R85
186 187 188 188 199 191	195 096 199 110 110 110 110 110 110 110				

• Molecule 1: Circadian clock protein KaiA

Chain B:	49%	35%	7% 9%	•
A201 M202 A203 R204 M205 S206 P207	R211 1213 1214 1213 1224 1224 1224 1224 1	V243 P248 P248 V253 V253 V253 P262 P266 P266 P266 P266	F267 L271 E278 D279 1280	<mark>1281</mark> 1282 1283 7284 7285
L286 T287 L288 V291 1292	L295 C296 E297 M298 N296 1303 F306 R306 R305 R305 R305			

• Molecule 2: Circadian clock protein KaiC

Cha	ain	С	: •	9	1%	•					29	%									15	5%					120	6	_			3	5%			
A401 M402 A403	6404 1405	1406	S407 6408	T409	P410 T411	R412 T413	S414	V415	D416	E417	01710	E420	L421	A422	R423	1424	A425	K426	G427	M428	0429	D430	L431	E432	S433	E434										
• N	Iole	ecı	ıl∈	e 2	2: (Cin	rca	ad	.iŧ	ın	1 (clo	oc	k	þ	or	0	t€	eiı	n	ł	ζŧ	ai	С	ļ											
Cha	ain	D	: •	ç	9%	•					29	%									15	5%	1				12	6				3	5%			

MAC MARCON MARCON

4.2.2 Score per residue for model 2

 \bullet Molecule 1: Circadian clock protein KaiA

• Molecule 1: Circadian clock protein KaiA

4.2.3 Score per residue for model 3

• Molecule 1: Circadian clock protein KaiA

Chain C:	15%	29%	15%	6%	35%				
A401 M402 A403 G404 G404 I1405 S407 G408 G408	P410 P410 T411 I413 S414 V415 D416 D416 B417	K418 T419 E420 L421 A422 R423 T424 A425 K426 K426	6427 L431 E432 S433 E434 E434						
• Molecule	2: Circadia	n clock prote	ein KaiC						
Chain D:	15%	29%	15%	6%	35%				
A501 M502 A503 G504 1505 S507 G507 G508	1009 1510 1511 1511 1512 1513 1514 1515 1515 1515	K518 K518 T519 E520 L521 A522 R523 A525 A525 K526	(527 1531 1532 1533 1533 1533 1534						
4.2.4 ScoMolecule	pre per res 1: Circadia	idue for m n clock prote	odel 4 ein KaiA						
Chain A:	36%	,		48%		7% 9'	%		
A3 A3 P7 P7 P7 P7	111 113 113 113 113 113 113 113 113 113	124 V25 126 126 127 131 131 133 133	K3 4 V35 N36 139 139 V43	F47 F48 A49 D50	V53 S54 Q55 L57 L57 L57 H60 V61	M64 D65 T66 F67	S68 K69 N70	K72	R76
S77 E78 D79 180 181 L81 L81 D83 Y84 Y84	L86 187 187 187 188 190 190 192	L95 C96 B97 M98 N100 R101 S102 S102 S103	P104 R105 E106 V107						
• Molecule	1: Circadia	n clock prote	ein KaiA						
Chain B:	36%			49%		7% 9	9%		
A201 M202 A203 R204 M205 S206 S206 P207	K212 L213 L217 R218 R218 Y221	1224 V225 L226 E227 N230 T231 D232 A233	K234 V235 N236 I239 V243	F247 F248 A249 D250	V253 S254 Q255 L257 E258 H260 V261	M264 D265 T266 F267	S268 K269 N270	4270 L271 K272	R276
S277 E278 D279 1280 1281 1282 D283 Y284	1286 1286 1288 1288 1289 1289 1299	1295 C296 R297 R300 R301 S302 I303	P304 R305 E306 V307						
• Molecule	2: Circadia	n clock prote	ein KaiC						
Chain C:	12%	26%	21%	6%	35%		_		
A401 M402 A403 6404 1405 1405 S407 6408 6408	1403 P410 T411 1413 S414 V415 V415 D416 D416 B417	K418 T419 E420 L421 A422 R423 T424 A425 A425 K426	6427 M428 0429 0430 1431 E431 E432 S433 S433 S433						
• Molecule	2: Circadia	n clock prote	ein KaiC						
Chain D:	12%	26%	21%	6%	35%				
A501 M502 A503 G504 1505 1506 S507 G508 G508	1503 1511 1511 1513 1513 1513 V515 D516 D516 B517	K518 T519 E520 L521 A522 R523 T524 A525 K526	G527 M528 Q529 D530 L531 E532 S533 F534						

4.2.5 Score per residue for model 5

• Molecule 1: Circadian clock protein KaiA

• Molecule 1: Circadian clock protein KaiA

• Molecule 1: Circadian clock protein KaiA

• Molecule 2: Circadian clock protein KaiC

Chain C: 6% 26% 24% 9% 35%

• Molecule 2: Circadian clock protein KaiC

4.2.8 Score per residue for model 8

• Molecule 1: Circadian clock protein KaiA

Chain A:	36%	48%	7%	9%
A1 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3	R22 126 131 131 133 133 133 133 133 133 133 13	V43 S44 S44 D50 D50 D50 D50 D50 D50 C53 S54 V53 S54 V55 V56	L57 E58 H60 H60 L63 L63 N64 N64	F67 E75 E75 E75 E75 E75 E75 S77
E78 179 180 180 181 181 183 188 188 188 188 188 188 188	192 192 194 194 194 194 194 194 194 194 104 104 104 104 104 104 104 104 104 10	20TA		
• Molecule 1: Circ	adian clock protein	KaiA		
Chain B:	33%	51%	7%	9%
A201 N202 N203 N205 N205 N205 2206 1200 1200 1213	1220 1221 1220 1222 1226 1233 1233 1233 1233 1233 1233	1253 1254 1254 1254 1254 1254 1254 1255 1255	V253 2254 2255 7255 V256 V256 1259 1259 1259 1259	1263 12665 12665 7266 7266 7368 1271
E274 E275 G275 S277 E276 E278 D279 1280 1281 L281 D283 Y284 Y284 T285	L288 L289 L289 L289 L289 L289 L286 C296 R291 R300 R301	5002 1303 1305 1305 1305 1305 1305 1305 1305		
• Molecule 2: Circ	adian clock protein	KaiC		
Chain C: 15%	24%	18% 9%	35%	
A401 M402 M402 A403 1405 1406 S407 S407 S407 S406 T406 P410 P411 T411 T411	D416 E417 E417 T418 E420 E420 E420 E420 E422 E422 E425 E425 E425 E425 E425	L431 8432 8433 8434		
• Molecule 2: Circ	adian clock protein	KaiC		
Chain D: 15%	24%	18% 9%	35%	
A501 M502 A503 G504 G505 T505 G505 G508 F510 F511 F511 F512 F512	D516 D516 E517 E517 K518 K518 E520 E520 L521 L521 1524 L522 R523 R523 R525 L522 R523 R523 D530 D530	1531 1533 1533 1534		

4.2.9 Score per residue for model 9

• Molecule 1: Circadian clock protein KaiA

Chain C: 18% 24% 24% 35%

• Molecule 2: Circadian clock protein KaiC

Chain D: 18% 24% 24% 35%

4.2.10 Score per residue for model 10 (medoid)

• Molecule 1: Circadian clock protein KaiA

• Molecule 1: Circadian clock protein KaiA

Chain B:	38%			46%		7% 9%	
A201 M202 A203 A203 R204 R206 S206 P207	K210 L213 L214 L214 Y221	1225 1225 1226 1226 1230 4233 K234	E237 R238 1239 D240 E241 F242 V243 S244 K245	A246 F247 F248 A249 D250 T251	S252 V253 S254 Q255 U256 L257 E258	1259 H260 V261 E262 L263 M264	F267 S268 K269 Q270 L271
S277 E278 D279 D279 L280 L281 L281 L282 D283	Y284 R285 1286 1287 1287 1288 1289 1290 1290	H294 H294 C296 C296 M298 Y299 R300 R301	5302 1303 1304 1305 1305 1305 1305 1305				
• Molecule	e 2: Circadian	. clock prote	in KaiC				
Chain C:	9%	32%	18%	6%	35%		•
A401 M402 A403 G404 I405 I405 S407 S407 G408	T409 P410 T411 R412 P416 B417 K418 K418 T419	L421 L421 R422 L423 L425 K426 G427 G427 M428	0429 1431 1431 1431 8432 8433 1434				
• Molecule	e 2: Circadian	clock prote	in KaiC				
Chain D:	9%	32%	18%	6%	35%		•
A501 M502 A503 G504 I505 I505 S507 S507	1509 1511 1511 1511 1511 1513 1516 1518 1519 1519 1519	4521 4521 1524 1523 1524 4525 1526 1527 1528 1528	0529 1531 1531 1533 1533 1533 1533				
4.2.11 S	core per re	sidue for m	nodel 11				

• Molecule 1: Circadian clock protein KaiA

Chain A	:	11%	41%	8% 9%					
A1 M2 R4 M5 S6	P7 K10 L13 120 Y21 Y21 Y21 Y22	124 125 126 131 131 131 131 131 133 133 133 133 13	R38 R36 D40 D40 F42 K445 K445 F44 F445 F445 F445 F445 F445	S54 V55 L57 L57 L57 L57 L57 L53 H60 H64 F67 F67 F67 F67 C75 C75 C75 C75 C75 C75 C75 C75 C75 C7					
R76 S77 I80 181 L81 L82	283 784 187 188 189 192 192	H94 1965 1965 1998 1999 1100 1100 1100 1100 1100	K106						
• Molecule 1: Circadian clock protein KaiA									

• Molecule 2: Circadian clock protein KaiC

\mathbf{Q}					
Unam U:	9%	38%	12%	6%	35%

• Molecule 2: Circadian clock protein KaiC

4.2.12 Score per residue for model 12

• Molecule 1: Circadian clock protein KaiA

A501 M502 A503 A503 A503 S505 S507 S507 S507 S507 S514 S513 S514 V515 V515 K518 T519 E520 E521 A522 R523 R523 R523 A525 A525 K526 K526 C527 C527

Chain A:	46%	38%	7%	9%
A1 M2 M5 M5 M5 M5 M5 M10 M5	L13 L14 Y21 Y21 Y26 U26 U26 V35 V33 V36 V33 V36 V36 V36 V36 V36 V36 V36	V43 844 846 846 846 846 849 849 852 852 852 854 855 854 855 855 855 855 855 855 855	E58 V61 L63 L63 M64 F67	L71 E74 G75 877 E78 E78 E78 D79
180 1.81 1.82 1.82 1.83 1.83 1.84 1.85 1.86 1.86 1.86 1.86 1.87 1.890	V91 193 194 194 196 196 196 108 108 108 108 108 108 108 108 108 108			
• Molecule 1:	Circadian clock protein I	KaiA		
Chain B:	48%	36%	7%	9%
A201 M202 A203 M205 M205 S206 F206 K210	1213 1214 1214 1225 1226 1226 1226 1228 1233 1233 1239 1239	V243 2244 2244 2245 7245 7245 7248 7248 7248 7248 7248 7255 7254 7255 7254 7255 7254 7255	E258 1.263 1.263 1.264 1.271	E274 6275 8276 8277 8277 1279 1279 1280
L282 D283 Y284 L286 L286 L286 T287 V291 V291 1292	H294 H294 1296 E297 M299 H299 H305 H305 H305 H305 H305 H305			
• Molecule 2:	Circadian clock protein H	KaiC		
Chain C:	18% 29%	18%	35%	_
A401 M402 A403 1405 1405 S407 S407 G408 7409 P410	T411 R412 1412 1413 1415 8414 8414 1419 8428 1420 1421 1422 1422 1422 1422 1422 1422	E432 5433 E434		
• Molecule 2:	Circadian clock protein H	KaiC		
Chain D:	18% 29%	18%	35%	

4.2.13 Score per residue for model 13

• Molecule 1: Circadian clock protein KaiA

• Molecule 1: Circadian clock protein KaiA

Chain B:	39%	45%	7% 9%	
A201 M202 A203 A203 N205 N205 S206 S206 Y210	1213 1214 1214 1220 1220 1224 1224 1224 1223 1224 1223 1223 1223	226 2237 1239 1239 1239 1239 1239 2394 1246 1246 1246 1246 1246 1246 1246 124	S555 10255 12555 12557 1257 1259 1259 1259 1256 1256 1256 1256 1256 1256 1256 1256	S268 K269 Q270 L271
E278 D279 1280 1281 1281 1282 D283 Y284 Y284 R285	1287 1288 1288 1289 1291 1292 1295 1295 1295 1295 1295 129	R305 B306 V307		
• Molecule 2	2: Circadian clock prot	ein KaiC		
Chain C:	26%	24% 6%	35%	
A401 M402 A403 G404 I405 I406 S407 G408 T409 T409	P410 7411 7411 1413 1415 7416 7415 7419 7418 7418 7418 7428 1422 1422 1422 7426 7426 7426 7426	6427 6427 6429 1431 1431 1433 1433 1433 1433 1433 143		
• Molecule 2	2: Circadian clock prot	ein KaiC		
Chain D:	9% 26%	24% 6%	35%	
A501 M502 A503 A503 A503 C504 1505 1506 S507 G508 T509	P510 T511 R511 R511 R513 P514 D515 D516 D516 D518 T518 T518 T518 T518 T521 L521 L521 L521 L522 R525 R525 K525	522 (522 (523) 1531 1531 1533 1533 2533 2533 2533 2533		
4.2.15 Sc	ore per residue for r	model 15		
• Molecule 1	l: Circadian clock prote	ein KaiA		
Chain A:	48%	37%	6% 9%	
A1 M2 A3 A3 A5 S6 P7 L13	L17 Y21 124 126 126 126 126 126 126 128 128 128 128 133 133 133	100 100 100 100 100 100 100 100 100 100	V61 V61 M64 M64 L71 L71 L71 E76 E75 S77 S77 S77 S77 S77 S77 S77 S77 S77 S	180 L81 L82 D83 Y84
R85 137 187 187 190 190 190 195	C96 B97 N99 N100 N100 E103 E103 E103 V107			
• Molecule 1	l: Circadian clock prote	ein KaiA		

 \bullet Molecule 2: Circadian clock protein KaiC

Chain C.	100/	0.00/	100/	00/	050/
Unann U.	18%	24%	18%	6%	35%

• Molecule 2: Circadian clock protein KaiC

4.2.16 Score per residue for model 16

• Molecule 1: Circadian clock protein KaiA

Chain A:	40%	46%	5%	9%
A1 M2 A3 A3 A3 A3 A3 P7 P7 P7 811	L13 L14 L14 D15 D15 T23 T23 T23 T23 T23 T24 T25 T23 T24 T26 T26 T26 T26 T26 T26 T26 T26 T26 T26	D32 D32 K34 K34 V35 V35 V35 D10 D10 D10 E41 F42 V43 V45 K45	A46 F47 V53 V53 Q55 Q55 L57 L57 E58 E58 E58 E58 H60 V61	E62 L63 M64 F67 F67 E71 E74
675 R76 180 181 182 182 883 885 186	187 187 189 189 199 199 199 199 199 199 199 103 103	R105 E106 V107		
• Molecule 1:	: Circadian clock prot	ein KaiA		
Chain B:	39%	46%	6%	9%
A201 M202 A203 M205 M205 M205 M205 M207 M211	1211 1214 1214 1214 1214 1214 1224 1222 1224 1225 1224 1226 1226 1226	0232 0233 0234 0234 0235 0235 0235 0235 0240 0243 0244 0244 0244 0244 0244 0244	F246 2254 2255 2255 2255 1255 1255 1255 1255	E262 1263 M264 F267 L271 E274 E274
G275 R276 I280 L281 L282 D283 Y284 R285 R285	1286 1287 1286 1288 1289 1289 1292 1292 1295 1295 1295 1295 1295 1303	R305 E306 V307		
• Molecule 2:	: Circadian clock prot	ein KaiC		
Chain C: 99	6 29%	21% 6%	35%	
A401 M402 A403 G404 G404 G405 S407 G406 S407 G409 C409 P410	T411 7412 7412 8412 8415 8415 8415 8415 8416 8417 8416 8417 8416 8417 8416 8417 8416 8417 8416 8417 8416 8416 8426 8426 8426 8426	M428 0420 0430 1431 1431 1431 1433 8432 8433 8433 8433		
• Molecule 2:	: Circadian clock prot	ein KaiC		
Chain D: 99	% 29%	21% 6%	35%	
A501 M502 A503 A503 1505 S507 S507 S507 B509 P510	R512 R512 V515 D516 D516 D516 L521 L521 L521 L522 R520 A525 A525 A525 A525 A525 A525 A525 A	H H H H H H H H		

4.2.17 Score per residue for model 17

• Molecule 1: Circadian clock protein KaiA

• Molecule 1: Circadian clock protein KaiA

Chain B:	38%	49%	• 9%
A201 M202 A203 A203 R204 M205 S206 P207	K210 R211 R211 L213 L214 D215 T223 1226 1226 1226 1226 1226 1226 1226 1	2231 2232 2235 2235 2235 2235 2251 2251	1.257 E.258 1.258 1.260 V260 8.268 8.268 8.268 8.268 8.268 8.268 8.256 8.273 1.271 1.273 1.273 1.273 1.273
E278 D279 1280 1281 1281 1281 1283 7284	R285 1286 1286 1286 1286 1289 1290 1290 1295 1295 1295 1295 1296 1296 1296 1296 1296 1296 1296 1296	R305 8306 7307	
• Molecule	2: Circadian clock prot	ein KaiC	
Chain C:	15% 29%	15% 6%	35%
A401 M402 A403 G404 I405 I405 S407 S407 G408	1408 7410 7411 8412 8412 0416 0416 8428 8420 1422 1422 1422 1422 1422 1422 1422 1	0422 0429 1430 1433 1433 8433 8433 8433 8433 8433	
• Molecule	2: Circadian clock prot	ein KaiC	
Chain D:	15% 29%	15% 6%	35%
4501 M502 A503 A503 G504 1505 1506 S507 G508	1500 1511 1511 1511 1512 1512 1512 1524 1525 1525	852 852 853 853 853 853 853 853 853 853 853 853	
4.2.19 S	core per residue for 1	model 19	
• Molecule	1: Circadian clock prot	ein KaiA	
Chain A:	42%	42%	7% 9%
	2 2 3 3 2 3 2 3 2 3 2 3 3 5 5	2 7 8 8 8 8 9 - 8 7 4 9 5 8 9 0 7 7 8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

• Molecule 1: Circadian clock protein KaiA

ZHO

• Molecule 2: Circadian clock protein KaiC

Chain C: 12% 32% 21% 35%

• Molecule 2: Circadian clock protein KaiC

4.2.20 Score per residue for model 20

• Molecule 1: Circadian clock protein KaiA

 \bullet Molecule 1: Circadian clock protein Kai
A

• Molecule 2: Circadian clock protein KaiC

Chain C:	12%	29%	24%	35%
A401 M402 A403 6404 1405 1406 S407 6408 7409 7409	P410 T411 R412 V415 D416 E417 K418 T419	E420 L421 A422 R423 R423 R425 K426 K426 G427 Q429 Q429 D430 L431 L431 E433	S 433 E434	
• Molecule 2	2: Circadian	clock protein Kai	С	
Chain D:	9%	32%	24%	35%
A501 M502 A503 G504 1506 1506 S507 G508 G508	P510 T511 R512 R512 V515 D516 E517 K518 K518 K518	E320 L521 L521 R523 R523 R523 R524 A525 K526 C526 C527 C528 C529 C529 C529 C529 C529 C529 C529 C529	5533 E534	

4.2.21 Score per residue for model 21

• Molecule 1: Circadian clock protein KaiA

4.2.22 Score per residue for model 22

• Molecule 1: Circadian clock protein KaiA

• Molecule 1: Circadian clock protein KaiA

Chain B:	39%		45%		7%	9%
A201 M202 A203 M205 M205 S206 P207 P207 R211 K211 K211 K211	L217 L217 S219 1220 Y221 T223 T223 T223 V225	L226 E227 Y228 Y228 N230 T231 D232 A233 K234 K234	V255 N236 V243 S244 K245 K245 F247 F247	A249 D250 S252 V253 S254 Q255 V255	L257 E258 1259 H260	V261 M264 F267
(275 (276 (278) (281) (281) (281) (283) (283) (283) (283) (283) (283) (283) (283) (283) (283) (283) (283) (283) (283) (275) (275) (275) (275) (275) (275) (275) (275) (275) (275) (275) (276) (2	1286 1289 1290 1292 1292 1295 1295 1295 1295	1303 P304 R305 E306 V307				
• Molecule 2: C	ircadian clock	protein Kai	C			
Chain C: 12%	32%		21%	35%		
A401 M402 M403 6404 1405 1406 S407 6408 7409 7411 7411 7411	415 7415 8417 8418 8420 8420 8422 8422 8422 8423	1424 A425 K426 K426 M428 M428 Q429 Q429 D430 L431 E432 E432	7433 1434			
• Molecule 2: C	ircadian clock	protein Kai	C			
Chain D: 9%	35%		21%	35%)	
4501 M502 4503 4503 4504 1506 5507 5507 7509 7510 7511 7511 7511	1515 1516 1516 1517 1519 1521 1521 1521 1522 1523	1524 4525 K526 K526 K526 M528 M528 Q529 Q530 L531 L531 L531 L531 L532	2003 803 804 804 804 804 804 804 804 804 804 804			
4.2.23 Score	per residue	for model 2	23			
4.2.23 ScoreMolecule 1: C	per residue ircadian clock	for model 2 protein Kai <i>l</i>	23 A			
 4.2.23 Score Molecule 1: C Chain A: 	per residue ircadian clock 41%	for model 2 protein Kai <i>l</i>	2 3 A 43%		7%	9%
4.2.23 Score • Molecule 1: C Chain A: 글鼠목ጀ물용& <mark>클립플</mark>	per residue ircadian clock 41% 문 입당 일 합문을	for model 2 protein Kai <i>k</i>	23 A 43% 667 67 67 67 67 67 67 67 67 67 67 67 67	S54 Q55 V 66 L57 E58 159 160 V61	7% Feg Wet	867 868 171 171 172 172
4.2.23 Score • Molecule 1: C Chain A: 목욕욕֎֎֎֎ 문문	per residue ircadian clock 41% 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	for model 2 protein Kai ក្ន <u>និនីទីទីទីទីទីទីទីទីទីទី</u> ទីទី ទ <mark>ម្ពនិទីទីទីទីទីទីទីទីទីទីទីទីទីទីទីទីទីទីទី</mark>	23 A 43% 56 A 56 A 56 A 56 A 56 A 56 A 56 A 56 A	S54 Q55 U56 L57 E58 E58 E58 H90 H40	7% 199 199 199 199 199 199 199 199 199 19	867 868 171 171 172 172
4.2.23 Score • Molecule 1: C Chain A: 국물역출문양 물문 물문 물 8	per residue ircadian clock 41% 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	for model 2 protein Kai ក្នុងទទ្ធនិនិនិនិនិនិ ខ្លួនទួត protein Kai	23 4 43% 55 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5	864 455 159 159 169 169 160 169	7%	888 888 171 171 172 172
4.2.23 Score • Molecule 1: C Chain A: 로운영호영 문제 문제 8 편화 8 분 8 분 8 년 • Molecule 1: C Chain B:	per residue ircadian clock 41% 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	for model 2 protein Kai 문 응 응 한 응 등 등 등 말 응 등 protein Kai	23 A 43% A 5 5 5 5 5 5 5 5 5 5	864 455 157 158 158 158 158 158 158	7%	9% 880 171 171 171 171 171 171 171 171 171 17
4.2.23 Score • Molecule 1: C Chain A:	per residue ircadian clock 41% 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	for model 2 protein Kai E E E E E E E E E E E E E E E E E E E	23 4 43% 50% 50% 50% 50% 50% 50% 50% 50	2268 1269 1260 1260 1261 157 158 158 158 159 159 159 159 160	7% 500 7% 7%	1272 1667 1677 1678 1679 1679 1679 1679 1679 1679 1679 1679
4.2.23 Score • Molecule 1: C Chain A: • We see a fill of the second s	per residue ircadian clock 41% 21 21%	for model 2 protein Kai E E E E E E E E E E E E E E E E E E E	23 A 43% 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	E268 S54 1259 055 1260 055 1261 157 1262 157 1263 157 1263 157 1263 157 1263 157 1263 159 1263 159 1263 159 1263 159 1263 159 1264 160	7% 500 100 100 100 100 100 100 100	1072 100 100 100 100 100 100 100 100 100 10
4.2.23 Score • Molecule 1: C Chain A: • Molecule 1: C Chain B: • Molecule 1: C Chain B: • Molecule 1: C Chain B: • Molecule 2: C	per residue ircadian clock 41% 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	for model 2 protein Kai Protein Kai protein Kai protein Kai	23 A 43% 64 55 57 43% 65 57 57 57 57 57 57 57 57 57 5	2238 1259 1260 1260 1261 157 158 158 159 159 159 159 159 159 159 159 159 159	164 163 163 163 163 163 163 163 163	1222 867 1223 1223 1223 1223 1223 1223 1223 122

D W I D E DATA BANK

• Molecule 2: Circadian clock protein KaiC

4.2.24 Score per residue for model 24

• Molecule 1: Circadian clock protein KaiA

Chain A:	37%	45%	8%	9%
A1 A3 A3 A3 A5 P7 P7 P7	K11 L18 L18 L14 L14 T20 T22 T22 T22 T22 T23 T23 T23 A33	K34 V36 N36 R37 R38 R38 R38 R38 R46 F47 F49 F49 F49 F49 F49 F49 F49 F49 F49 F49	V55 854 157 159 159 159 159 159 159 159 159 159	M64 F67 Q70 L71 L71 G75 R76
S77 E78 D79 D79 180 L81 L82 L82 D83 Y84 Y84 Y84	187 188 188 189 192 192 192 192 192 192 193 193 193 1103	P104 R105 V107		
• Molecule 1:	: Circadian clock prote	in KaiA		
Chain B:	39%	44%	7%	9%
A201 M202 M204 M204 M204 M204 M204 M200 S206 S206 S206 S206 S206 S206 S206 S	1211 1211 1214 1214 1220 1220 1222 1223 1224 1222 1223 1223 1223 1223	234 1235 1235 1235 1235 1235 1235 1235 1235	8255 8255 8255 8255 8255 8255 8255 8255	M264 F267 Q270 L271 C275 R276
S277 E278 D279 I280 L281 L281 L282 V284 Y284 Y285	1287 1287 1289 1289 1289 1289 1289 1289 1295 1295 1295 1295 1295 1295 1295 129	R305 V307		
• Molecule 2:	: Circadian clock prote	in KaiC		
Chain C: 6%	35%	24%	35%	
A401 M402 A403 G404 I405 I406 S407 G408 T409 C1409 D410	T411 7411 R412 1413 5414 8415 8416 8417 8416 8417 8416 8417 8417 8418 8417 8418 8418 8418 8418 842	6427 (428 0430 1431 1431 1431 1431 1431 1431 1431		
• Molecule 2:	: Circadian clock prote	in KaiC		
Chain D: 6%	35%	24%	35%	

0529 0530 1531 1532 1533 1533 8533 8533

4.2.25 Score per residue for model 25

• Molecule 1: Circadian clock protein KaiA

Chain D: • 38% 21% • 35%

5 Refinement protocol and experimental data overview (i)

The models were refined using the following method: Distance geometry, Simulated annealing.

Of the 50 calculated structures, 25 were deposited, based on the following criterion: *lowest energy* structures that satisfy all experimental restraints.

The following table shows the software used for structure solution, optimisation and refinement.

Software name	Classification	Version
XPLOR-NIH	structure solution	2.9.1
XPLOR-NIH	refinement	2.9.1

No chemical shift data was provided. No validations of the models with respect to experimental NMR restraints is performed at this time.

6 Model quality (i)

6.1 Standard geometry (i)

There are no covalent bond-length or bond-angle outliers.

There are no bond-length outliers.

There are no bond-angle outliers.

There are no chirality outliers.

There are no planarity outliers.

6.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble.

Mol	Chain	Non-H	H(model)	H(added)	Clashes
1	А	805	822	820	80 ± 7
1	В	805	822	820	79 ± 8
2	С	170	177	177	40 ± 6
2	D	170	177	177	41 ± 6
All	All	48750	49950	49850	5116

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 52.

All unique clashes are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	$Clash(\lambda)$	Distance(Å)	Models	
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
1:A:82:LEU:HD23	1:A:83:ASP:N	1.06	1.64	25	20
1:B:282:LEU:HD23	1:B:283:ASP:N	1.05	1.65	24	20
1:A:58:GLU:OE2	2:C:425:ALA:HB2	0.94	1.62	18	13
1:B:285:ARG:HH12	2:D:521:LEU:HD11	0.93	1.23	10	1
2:C:417:GLU:O	2:C:419:THR:HG22	0.93	1.63	16	2
1:B:282:LEU:HD23	1:B:283:ASP:H	0.93	1.24	2	21
1:A:82:LEU:HD23	1:A:83:ASP:H	0.92	1.23	2	20
1:A:85:ARG:HH12	2:C:421:LEU:HD11	0.92	1.23	10	1
1:B:258:GLU:OE2	2:D:525:ALA:HB2	0.91	1.66	18	14
2:D:517:GLU:O	2:D:519:THR:HG22	0.91	1.63	16	3
2:D:521:LEU:HD13	2:D:522:ALA:N	0.91	1.79	1	6

				Mod	lels
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
2:C:421:LEU:HD13	2:C:422:ALA:N	0.91	1.79	1	7
1:A:85:ARG:NH1	2:C:421:LEU:HD11	0.90	1.81	10	1
1:B:285:ARG:NH1	2:D:521:LEU:HD11	0.89	1.82	10	1
1:B:286:LEU:HD21	2:C:420:GLU:O	0.87	1.69	1	1
1:A:43:VAL:HG21	1:A:94:HIS:ND1	0.87	1.85	7	11
1:A:86:LEU:HD21	2:D:520:GLU:O	0.86	1.70	1	2
1:B:243:VAL:HG21	1:B:294:HIS:ND1	0.85	1.85	7	10
2:C:422:ALA:O	2:C:424:ILE:N	0.85	2.09	8	18
2:D:522:ALA:O	2:D:524:ILE:N	0.84	2.09	8	18
1:B:261:VAL:HG21	2:D:523:ARG:H	0.84	1.32	13	3
1:A:80:ILE:HD11	2:D:512:ARG:NH1	0.84	1.88	15	1
1:A:77:SER:O	1:A:80:ILE:HG22	0.83	1.74	4	6
1:B:282:LEU:HD12	2:C:419:THR:OG1	0.82	1.74	6	10
1:B:264:MET:SD	1:B:264:MET:N	0.82	2.52	25	2
1:A:80:ILE:HD11	2:D:512:ARG:CZ	0.81	2.04	15	1
1:A:87:THR:O	1:A:91:VAL:HG23	0.81	1.75	7	24
1:B:277:SER:O	1:B:280:ILE:HG22	0.81	1.74	4	6
1:B:260:HIS:CE1	1:B:264:MET:SD	0.81	2.73	1	6
1:A:64:MET:N	1:A:64:MET:SD	0.81	2.52	25	4
1:A:88:LEU:C	1:A:88:LEU:HD13	0.81	1.96	22	10
1:A:60:HIS:CE1	1:A:64:MET:SD	0.81	2.73	1	6
1:B:264:MET:SD	1:B:284:TYR:CD2	0.81	2.74	20	15
1:B:288:LEU:HD13	1:B:288:LEU:C	0.81	1.96	22	9
1:B:287:THR:O	1:B:291:VAL:HG23	0.80	1.75	20	25
1:A:61:VAL:HG21	2:C:423:ARG:H	0.80	1.36	13	3
1:B:280:ILE:HD11	2:C:412:ARG:CZ	0.80	2.06	15	1
1:A:30:ASN:ND2	1:A:33:ALA:N	0.80	2.29	3	23
1:A:64:MET:SD	1:A:84:TYR:CD2	0.80	2.74	20	15
1:B:230:ASN:ND2	1:B:233:ALA:N	0.80	2.30	18	23
2:C:412:ARG:HE	2:C:412:ARG:N	0.80	1.74	13	1
1:A:47:PHE:CD1	1:A:98:MET:SD	0.80	2.75	12	5
1:B:247:PHE:CD1	1:B:298:MET:SD	0.80	2.75	12	5
1:B:264:MET:N	1:B:264:MET:SD	0.80	2.54	13	5
1:B:280:ILE:HD11	2:C:412:ARG:NH1	0.80	1.91	15	1
1:B:288:LEU:C	1:B:288:LEU:HD13	0.79	1.98	1	10
1:A:82:LEU:CD1	2:D:515:VAL:HG11	0.79	2.06	21	4
1:A:82:LEU:HD12	2:D:519:THR:OG1	0.79	1.77	6	11
1:B:282:LEU:CD1	2:C:415:VAL:HG11	0.79	2.06	21	4
1:B:247:PHE:CD2	1:B:298:MET:SD	0.79	2.76	2	9
1:A:64:MET:SD	1:A:64:MET:N	0.79	2.55	24	3
1:A:47:PHE:CD2	1:A:98:MET:SD	0.79	2.76	23	9

A 4 1	A 4 0	(1 - 1)	\mathbf{D}	Mod	lels
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
2:C:409:THR:H	2:C:412:ARG:NH2	0.79	1.75	15	1
2:D:509:THR:H	2:D:512:ARG:NH2	0.79	1.75	15	1
1:B:264:MET:SD	1:B:284:TYR:CG	0.79	2.76	4	11
2:D:512:ARG:HE	2:D:512:ARG:N	0.79	1.74	13	1
1:A:60:HIS:CD2	1:A:64:MET:SD	0.78	2.76	22	4
1:A:64:MET:SD	1:A:84:TYR:CG	0.78	2.76	4	12
1:B:278:GLU:O	1:B:281:LEU:HD23	0.78	1.79	25	2
1:B:221:TYR:HH	1:B:260:HIS:HD1	0.78	1.21	22	3
1:A:82:LEU:HD13	2:D:519:THR:OG1	0.78	1.79	18	4
1:B:258:GLU:CD	2:D:525:ALA:HB2	0.78	1.99	21	6
1:A:47:PHE:CG	1:A:98:MET:SD	0.78	2.77	14	8
1:B:247:PHE:CG	1:B:298:MET:SD	0.78	2.77	14	8
1:B:243:VAL:HG21	1:B:294:HIS:CD2	0.78	2.14	11	4
2:C:419:THR:O	2:C:419:THR:HG23	0.78	1.77	13	4
1:B:260:HIS:CD2	1:B:264:MET:SD	0.77	2.76	22	4
1:B:292:ILE:O	1:B:295:LEU:HD23	0.77	1.79	2	17
1:A:30:ASN:CG	1:A:33:ALA:HB3	0.77	1.99	14	12
2:D:519:THR:HG23	2:D:519:THR:O	0.77	1.77	13	4
1:B:282:LEU:HD13	2:C:419:THR:OG1	0.77	1.80	18	4
1:A:92:ILE:O	1:A:95:LEU:HD23	0.77	1.80	6	17
1:A:78:GLU:O	1:A:81:LEU:HD23	0.77	1.79	25	2
1:A:95:LEU:HD12	1:A:99:TYR:OH	0.77	1.79	24	1
1:B:230:ASN:HD22	1:B:233:ALA:N	0.77	1.77	15	18
1:B:295:LEU:HD12	1:B:299:TYR:OH	0.77	1.79	24	1
1:A:30:ASN:HD22	1:A:33:ALA:N	0.77	1.77	15	18
1:B:230:ASN:CG	1:B:233:ALA:HB3	0.77	1.99	14	12
1:A:43:VAL:HG21	1:A:94:HIS:CD2	0.77	2.14	11	4
1:A:30:ASN:ND2	1:A:33:ALA:H	0.76	1.78	4	5
1:A:64:MET:HE2	1:A:84:TYR:CG	0.76	2.15	13	2
1:B:264:MET:HE2	1:B:284:TYR:CG	0.75	2.15	13	2
1:A:88:LEU:HD13	1:A:88:LEU:C	0.75	2.00	7	9
1:B:239:ILE:O	1:B:243:VAL:HG23	0.75	1.81	4	24
1:A:85:ARG:NE	2:C:421:LEU:HD11	0.75	1.97	16	2
1:B:230:ASN:ND2	1:B:233:ALA:H	0.75	1.78	4	5
1:B:214:LEU:HD22	1:B:255:GLN:OE1	0.75	1.82	10	7
1:A:82:LEU:HD13	2:D:515:VAL:HG11	0.74	1.59	25	12
1:B:267:PHE:CD2	1:B:284:TYR:OH	0.74	2.40	13	4
1:A:67:PHE:CD2	1:A:84:TYR:OH	0.74	2.40	13	4
1:A:39:ILE:O	1:A:43:VAL:HG23	0.74	1.82	21	25
1:A:14:LEU:HD22	1:A:55:GLN:OE1	0.74	1.82	10	7
1:B:283:ASP:O	1:B:287:THR:N	0.74	2.20	9	6

	to as pagein		D1 (8)	Mod	lels
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
2:D:521:LEU:O	2:D:523:ARG:N	0.74	2.21	21	9
1:B:290:ASP:OD1	1:B:291:VAL:N	0.74	2.21	15	3
2:C:409:THR:H	2:C:412:ARG:HH21	0.74	1.24	15	1
2:C:421:LEU:O	2:C:423:ARG:N	0.73	2.21	21	9
2:D:509:THR:N	2:D:510:PRO:CD	0.73	2.52	23	25
1:A:30:ASN:ND2	1:A:33:ALA:O	0.73	2.21	8	22
1:B:230:ASN:ND2	1:B:233:ALA:O	0.73	2.21	8	22
1:B:260:HIS:NE2	1:B:264:MET:SD	0.73	2.61	22	4
1:A:90:ASP:OD1	1:A:91:VAL:N	0.73	2.21	15	3
1:B:283:ASP:OD1	1:B:284:TYR:N	0.73	2.21	18	22
1:A:60:HIS:NE2	1:A:64:MET:SD	0.73	2.61	22	4
1:A:67:PHE:CD1	1:A:84:TYR:OH	0.73	2.42	5	7
1:A:77:SER:O	1:A:79:ASP:N	0.73	2.22	21	1
1:A:83:ASP:OD1	1:A:84:TYR:N	0.73	2.21	18	22
1:A:82:LEU:HD22	2:D:515:VAL:CG1	0.73	2.14	13	2
2:D:512:ARG:NH1	2:D:513:ILE:CG2	0.73	2.51	13	1
2:C:411:THR:O	2:C:411:THR:HG23	0.73	1.82	14	2
2:C:417:GLU:O	2:C:419:THR:N	0.73	2.22	8	7
2:C:412:ARG:NH1	2:C:413:ILE:CG2	0.73	2.51	13	1
2:D:509:THR:H	2:D:512:ARG:HH21	0.73	1.24	15	1
2:D:517:GLU:O	2:D:519:THR:N	0.72	2.22	8	7
1:B:277:SER:O	1:B:279:ASP:N	0.72	2.22	21	1
2:C:409:THR:N	2:C:410:PRO:CD	0.72	2.52	23	25
1:B:260:HIS:ND1	1:B:264:MET:SD	0.72	2.63	19	4
1:A:60:HIS:ND1	1:A:64:MET:SD	0.72	2.62	19	4
1:B:267:PHE:CD1	1:B:284:TYR:OH	0.72	2.42	16	7
1:B:285:ARG:NE	2:D:521:LEU:HD11	0.72	1.99	16	3
1:A:67:PHE:CD2	1:A:84:TYR:CZ	0.72	2.78	21	18
2:D:511:THR:HG23	2:D:511:THR:O	0.72	1.82	14	2
1:A:94:HIS:ND1	2:D:526:LYS:NZ	0.72	2.38	23	1
1:B:260:HIS:O	1:B:264:MET:SD	0.72	2.48	24	9
1:A:60:HIS:O	1:A:64:MET:SD	0.72	2.48	24	9
1:B:237:GLU:OE1	1:B:237:GLU:N	0.72	2.23	23	1
1:A:37:GLU:N	1:A:37:GLU:OE1	0.71	2.23	23	2
2:C:419:THR:OG1	2:C:420:GLU:N	0.71	2.20	6	3
1:B:267:PHE:CD2	1:B:284:TYR:CZ	0.71	2.78	21	18
2:D:509:THR:N	2:D:512:ARG:HH21	0.71	1.84	15	1
2:D:524:ILE:O	2:D:526:LYS:N	0.71	2.22	22	16
1:A:83:ASP:O	1:A:87:THR:N	0.71	2.22	13	5
1:B:282:LEU:HD13	2:C:415:VAL:HG11	0.71	1.61	25	12
1:A:64:MET:SD	1:A:84:TYR:CB	0.71	2.79	16	11

				Mod	lels
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
2:D:519:THR:OG1	2:D:520:GLU:N	0.71	2.21	6	3
2:C:424:ILE:O	2:C:426:LYS:N	0.71	2.24	3	16
2:C:419:THR:HG23	2:C:419:THR:O	0.71	1.85	20	2
1:A:30:ASN:HD22	1:A:33:ALA:H	0.70	1.30	4	15
2:C:427:GLY:O	2:C:429:GLN:N	0.70	2.24	25	2
1:B:283:ASP:OD2	1:B:284:TYR:CE1	0.70	2.45	16	20
1:A:83:ASP:OD1	1:A:84:TYR:CD1	0.70	2.45	10	21
1:A:83:ASP:OD2	1:A:84:TYR:CE1	0.70	2.44	16	20
1:B:264:MET:SD	1:B:284:TYR:CB	0.70	2.79	16	11
1:B:283:ASP:OD1	1:B:284:TYR:CD1	0.70	2.44	11	21
2:C:418:LYS:O	2:C:420:GLU:N	0.70	2.24	21	4
2:D:518:LYS:O	2:D:520:GLU:N	0.70	2.24	21	4
1:A:71:LEU:O	1:A:75:GLY:N	0.70	2.24	18	13
1:A:80:ILE:HD12	1:A:83:ASP:OD2	0.70	1.86	18	1
1:B:260:HIS:NE2	2:D:521:LEU:HD13	0.69	2.02	11	4
1:B:282:LEU:HD22	2:C:415:VAL:CG1	0.69	2.16	13	2
2:C:409:THR:N	2:C:412:ARG:HH21	0.69	1.84	15	1
1:A:11:ARG:NH1	1:A:18:ARG:HH22	0.69	1.85	4	1
1:B:210:LYS:NZ	1:B:249:ALA:O	0.69	2.26	14	7
1:B:280:ILE:HD12	1:B:283:ASP:OD2	0.69	1.86	18	1
1:A:95:LEU:O	1:A:99:TYR:CD1	0.69	2.45	24	1
1:B:211:ARG:NH1	1:B:218:ARG:HH22	0.69	1.85	4	1
2:D:527:GLY:O	2:D:529:GLN:N	0.69	2.24	25	2
1:A:100:ARG:NH1	1:B:252:SER:OG	0.69	2.25	10	2
2:D:516:ASP:O	2:D:519:THR:N	0.69	2.22	16	5
1:A:74:GLU:OE1	1:A:76:ARG:NH1	0.69	2.25	12	2
1:A:80:ILE:HD12	2:D:512:ARG:CZ	0.69	2.18	13	1
1:A:10:LYS:NZ	1:A:49:ALA:O	0.69	2.26	14	7
1:B:267:PHE:CG	1:B:284:TYR:OH	0.69	2.44	14	9
1:B:243:VAL:HG11	1:B:298:MET:SD	0.69	2.28	24	1
1:B:276:ARG:O	1:B:277:SER:O	0.69	2.11	17	2
2:D:509:THR:OG1	2:D:512:ARG:NE	0.69	2.25	15	3
1:B:274:GLU:OE1	1:B:276:ARG:NH1	0.69	2.25	12	2
1:B:280:ILE:HD12	2:C:412:ARG:CZ	0.69	2.18	13	1
1:B:271:LEU:O	1:B:275:GLY:N	0.69	2.24	18	13
2:D:511:THR:OG1	2:D:512:ARG:N	0.69	2.24	4	1
1:A:82:LEU:CD2	1:A:83:ASP:N	0.69	2.54	12	20
1:A:76:ARG:O	1:A:77:SER:O	0.69	2.11	17	2
1:B:220:ILE:HD11	1:B:245:LYS:NZ	0.69	2.02	3	5
1:A:43:VAL:HG11	1:A:98:MET:SD	0.69	2.28	24	1
1:B:295:LEU:O	1:B:299:TYR:CD1	0.69	2.46	24	1

	A O		D : (8)	Mod	lels
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
1:A:20:ILE:HD11	1:A:45:LYS:NZ	0.68	2.02	3	4
1:B:211:ARG:NH1	1:B:218:ARG:NH2	0.68	2.41	4	1
2:D:516:ASP:O	2:D:517:GLU:O	0.68	2.11	24	3
2:C:411:THR:OG1	2:C:412:ARG:N	0.68	2.25	4	1
1:B:294:HIS:ND1	2:C:426:LYS:NZ	0.68	2.40	23	1
1:B:221:TYR:OH	1:B:260:HIS:ND1	0.68	2.25	1	7
1:B:255:GLN:NE2	2:D:529:GLN:OE1	0.68	2.27	4	3
2:C:409:THR:OG1	2:C:412:ARG:NE	0.68	2.25	15	2
1:A:58:GLU:CD	2:C:425:ALA:HB2	0.68	2.09	21	4
1:A:60:HIS:NE2	2:C:421:LEU:HD13	0.68	2.04	11	4
1:B:267:PHE:CD2	1:B:284:TYR:CE2	0.68	2.82	17	5
2:C:412:ARG:NH1	2:C:413:ILE:HG22	0.68	2.04	13	1
1:A:97:GLU:OE2	1:A:101:ARG:NE	0.68	2.27	19	1
1:A:21:TYR:OH	1:A:60:HIS:ND1	0.67	2.27	3	7
1:A:67:PHE:CD2	1:A:84:TYR:CE2	0.67	2.82	17	6
2:C:416:ASP:O	2:C:419:THR:N	0.67	2.27	10	4
2:D:512:ARG:NE	2:D:512:ARG:N	0.67	2.42	13	1
1:A:97:GLU:OE2	2:D:528:MET:SD	0.67	2.52	20	1
1:A:11:ARG:NH1	1:A:18:ARG:NH2	0.67	2.41	4	1
2:C:412:ARG:NE	2:C:412:ARG:N	0.67	2.41	13	1
1:B:297:GLU:OE2	1:B:301:ARG:NE	0.67	2.27	19	1
2:C:416:ASP:O	2:C:417:GLU:O	0.67	2.11	24	3
1:A:85:ARG:NH1	1:B:285:ARG:NH1	0.67	2.43	23	1
1:A:30:ASN:HD22	1:A:33:ALA:HB3	0.67	1.50	4	3
2:D:528:MET:O	2:D:530:ASP:N	0.67	2.25	6	2
1:B:274:GLU:OE1	1:B:276:ARG:NH2	0.67	2.28	2	1
1:B:243:VAL:CG1	1:B:298:MET:SD	0.67	2.83	4	5
1:A:21:TYR:HH	1:A:60:HIS:HD1	0.67	1.32	22	4
1:B:297:GLU:OE2	2:C:428:MET:SD	0.67	2.53	20	1
2:D:518:LYS:O	2:D:519:THR:O	0.67	2.13	17	12
2:C:421:LEU:HD23	2:C:422:ALA:N	0.67	2.05	25	5
1:A:74:GLU:OE1	1:A:76:ARG:NH2	0.67	2.28	2	1
1:A:74:GLU:OE1	1:A:76:ARG:CZ	0.67	2.43	16	3
1:B:274:GLU:OE1	1:B:276:ARG:CZ	0.67	2.43	16	3
2:D:521:LEU:HD23	2:D:522:ALA:N	0.66	2.05	25	6
1:B:286:LEU:CD2	2:C:421:LEU:O	0.66	2.44	24	9
2:C:411:THR:O	2:C:413:ILE:N	0.66	2.29	4	1
1:A:97:GLU:OE1	2:D:528:MET:SD	0.66	2.54	12	5
1:A:77:SER:O	1:A:78:GLU:CG	0.66	2.44	15	1
1:B:282:LEU:CD2	1:B:283:ASP:N	0.66	2.57	1	20
2:C:418:LYS:O	2:C:419:THR:O	0.66	2.14	4	12

	A I O			Mod	lels
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
1:A:41:GLU:OE2	1:A:45:LYS:NZ	0.66	2.28	6	2
2:D:526:LYS:O	2:D:528:MET:SD	0.66	2.54	25	1
2:D:511:THR:O	2:D:513:ILE:N	0.66	2.29	4	1
1:B:230:ASN:HD22	1:B:233:ALA:H	0.66	1.30	4	16
1:A:43:VAL:CG1	1:A:98:MET:SD	0.66	2.83	4	5
2:D:512:ARG:NH1	2:D:513:ILE:HG22	0.66	2.04	13	1
1:B:230:ASN:OD1	1:B:233:ALA:N	0.66	2.29	17	1
1:B:282:LEU:HD22	2:C:415:VAL:HG12	0.66	1.68	13	1
1:A:86:LEU:HD23	2:D:521:LEU:O	0.66	1.90	13	1
2:C:424:ILE:C	2:C:426:LYS:H	0.66	1.95	9	17
1:B:254:SER:HA	1:B:257:LEU:HD12	0.66	1.68	19	15
1:B:297:GLU:OE1	2:C:428:MET:SD	0.66	2.53	16	5
2:C:426:LYS:O	2:C:428:MET:SD	0.66	2.54	25	1
1:B:230:ASN:CB	1:B:233:ALA:HB3	0.66	2.21	17	21
1:A:50:ASP:OD1	1:B:300:ARG:NH2	0.66	2.29	7	5
1:B:282:LEU:CD1	2:C:419:THR:OG1	0.66	2.44	12	17
1:A:82:LEU:HD22	2:D:515:VAL:HG12	0.65	1.67	13	1
1:B:211:ARG:NH1	1:B:215:ASP:OD1	0.65	2.29	1	4
1:A:86:LEU:CD2	2:D:521:LEU:O	0.65	2.44	24	11
1:B:277:SER:O	1:B:278:GLU:CG	0.65	2.44	15	1
2:D:516:ASP:OD1	2:D:517:GLU:N	0.65	2.27	13	5
2:C:416:ASP:OD1	2:C:417:GLU:N	0.65	2.27	13	5
1:A:80:ILE:O	1:A:82:LEU:HD23	0.65	1.91	21	3
1:B:254:SER:OG	1:B:255:GLN:N	0.65	2.30	9	8
1:A:85:ARG:HH12	2:C:421:LEU:CD1	0.65	2.03	10	1
1:A:30:ASN:CB	1:A:33:ALA:HB3	0.65	2.22	17	21
2:D:519:THR:O	2:D:520:GLU:O	0.65	2.15	21	12
1:A:82:LEU:CD1	2:D:519:THR:OG1	0.65	2.44	8	17
1:A:78:GLU:OE1	2:C:417:GLU:CG	0.65	2.44	22	2
2:C:419:THR:O	2:C:420:GLU:O	0.65	2.15	20	12
1:B:279:ASP:HB3	2:C:415:VAL:HG21	0.65	1.69	20	4
1:B:280:ILE:O	1:B:282:LEU:HD23	0.65	1.91	21	3
1:A:30:ASN:OD1	1:A:33:ALA:N	0.65	2.29	17	1
1:A:11:ARG:NH1	1:A:15:ASP:OD1	0.65	2.29	1	3
1:A:100:ARG:NH2	1:B:250:ASP:OD1	0.65	2.30	3	5
2:C:411:THR:O	2:C:411:THR:HG22	0.65	1.92	10	1
2:D:528:MET:O	2:D:529:GLN:CB	0.65	2.45	14	1
1:A:86:LEU:HD21	2:D:521:LEU:CA	0.65	2.22	3	11
1:A:54:SER:OG	1:A:55:GLN:N	0.65	2.29	9	8
2:D:511:THR:HG22	2:D:511:THR:O	0.65	1.92	10	2
1:A:67:PHE:CG	1:A:84:TYR:OH	0.65	2.45	14	8

		(1 - 1)		Models	
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
2:D:524:ILE:C	2:D:526:LYS:H	0.65	1.94	9	16
2:C:428:MET:O	2:C:430:ASP:N	0.65	2.25	6	2
1:A:78:GLU:O	1:A:81:LEU:HD13	0.64	1.92	17	8
1:B:230:ASN:HD22	1:B:233:ALA:HB3	0.64	1.50	4	3
1:A:83:ASP:O	1:A:87:THR:CB	0.64	2.45	9	2
1:A:30:ASN:OD1	1:A:35:VAL:CG2	0.64	2.46	18	15
1:A:90:ASP:OD1	2:D:526:LYS:NZ	0.64	2.27	9	2
2:D:509:THR:O	2:D:512:ARG:CG	0.64	2.45	18	1
1:B:230:ASN:OD1	1:B:235:VAL:CG2	0.64	2.46	18	15
1:B:286:LEU:HD21	2:C:421:LEU:CA	0.64	2.22	3	11
1:B:223:THR:HG21	1:B:238:ARG:CZ	0.64	2.23	1	1
2:C:428:MET:O	2:C:429:GLN:CB	0.64	2.45	14	1
2:C:409:THR:O	2:C:412:ARG:CG	0.64	2.45	18	1
1:A:57:LEU:HB3	2:C:422:ALA:HB1	0.64	1.69	2	21
2:C:419:THR:O	2:C:420:GLU:C	0.64	2.36	10	8
1:A:53:VAL:HG12	1:A:57:LEU:HG	0.64	1.68	24	24
1:B:253:VAL:HG12	1:B:257:LEU:HG	0.64	1.68	24	24
1:B:283:ASP:O	1:B:287:THR:CB	0.64	2.45	9	2
1:B:278:GLU:OE1	2:D:517:GLU:CG	0.64	2.46	22	2
1:A:54:SER:HA	1:A:57:LEU:HD12	0.64	1.70	17	16
1:A:79:ASP:HB3	2:D:515:VAL:HG21	0.64	1.68	20	3
2:C:410:PRO:C	2:C:411:THR:HG23	0.64	2.14	4	2
1:A:94:HIS:CG	2:D:526:LYS:HZ1	0.64	2.11	14	2
2:D:509:THR:OG1	2:D:509:THR:O	0.64	2.16	19	5
1:B:230:ASN:HD22	1:B:233:ALA:CB	0.64	2.06	4	2
1:A:77:SER:N	2:D:511:THR:OG1	0.64	2.30	11	4
1:A:55:GLN:NE2	2:C:429:GLN:OE1	0.63	2.32	19	3
1:B:278:GLU:O	1:B:281:LEU:N	0.63	2.31	18	1
1:A:30:ASN:HD22	1:A:33:ALA:CB	0.63	2.05	4	2
2:D:519:THR:O	2:D:520:GLU:C	0.63	2.36	10	8
1:B:260:HIS:CG	1:B:264:MET:SD	0.63	2.92	1	4
1:B:278:GLU:O	1:B:281:LEU:HD13	0.63	1.91	17	8
1:A:23:THR:HG21	1:A:38:ARG:CZ	0.63	2.23	1	2
1:A:11:ARG:CZ	1:A:15:ASP:OD1	0.63	2.47	25	4
1:B:274:GLU:CD	1:B:276:ARG:NH2	0.63	2.52	2	1
1:B:257:LEU:HB3	2:D:522:ALA:HB1	0.63	1.70	2	21
1:A:61:VAL:HG21	2:C:421:LEU:O	0.63	1.93	9	4
2:D:521:LEU:HD23	2:D:522:ALA:H	0.63	1.54	8	1
1:A:58:GLU:OE2	2:C:425:ALA:CB	0.63	2.46	8	7
1:A:87:THR:O	1:A:91:VAL:CG2	0.62	2.46	20	21
1:A:82:LEU:HD13	2:D:515:VAL:CG1	0.62	2.23	25	13

	1.5			Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
2:D:510:PRO:C	2:D:511:THR:HG23	0.62	2.14	4	2	
1:B:241:GLU:OE2	1:B:245:LYS:NZ	0.62	2.28	6	2	
1:A:60:HIS:CG	1:A:64:MET:SD	0.62	2.92	1	4	
1:A:34:LYS:NZ	1:A:37:GLU:OE2	0.62	2.31	7	2	
2:D:523:ARG:HE	2:D:524:ILE:HG22	0.62	1.55	16	3	
1:A:102:SER:OG	1:B:303:ILE:CG2	0.62	2.47	24	1	
1:A:74:GLU:CD	1:A:76:ARG:NH2	0.62	2.52	2	1	
1:B:297:GLU:OE2	1:B:300:ARG:CZ	0.62	2.48	11	1	
2:C:409:THR:OG1	2:C:409:THR:O	0.62	2.18	18	4	
2:C:409:THR:O	2:C:409:THR:OG1	0.62	2.16	19	5	
1:B:234:LYS:NZ	1:B:237:GLU:OE2	0.62	2.27	10	2	
2:C:425:ALA:O	2:C:427:GLY:N	0.62	2.33	7	6	
2:D:525:ALA:O	2:D:527:GLY:N	0.62	2.33	7	6	
1:B:230:ASN:ND2	1:B:233:ALA:HB3	0.62	2.10	4	2	
1:B:211:ARG:CZ	1:B:215:ASP:OD1	0.62	2.47	25	4	
1:B:285:ARG:HH12	2:D:521:LEU:CD1	0.62	2.04	10	1	
1:B:282:LEU:HD23	1:B:282:LEU:C	0.62	2.15	17	2	
1:A:30:ASN:ND2	1:A:33:ALA:HB3	0.62	2.10	4	2	
1:A:82:LEU:C	1:A:82:LEU:HD23	0.62	2.15	17	4	
1:A:97:GLU:OE2	1:A:100:ARG:CZ	0.62	2.48	11	1	
1:A:78:GLU:O	1:A:81:LEU:N	0.62	2.32	18	1	
1:A:82:LEU:CD1	2:D:519:THR:O	0.62	2.48	13	1	
2:C:421:LEU:HD23	2:C:422:ALA:H	0.62	1.54	8	1	
1:B:287:THR:O	1:B:291:VAL:CG2	0.62	2.46	20	20	
1:B:212:LYS:O	1:B:216:GLU:OE1	0.62	2.18	13	2	
1:B:286:LEU:HD23	2:C:421:LEU:O	0.61	1.95	13	1	
1:A:103:ILE:CG2	1:B:302:SER:OG	0.61	2.48	24	1	
1:B:282:LEU:HD13	2:C:415:VAL:CG1	0.61	2.25	17	14	
2:D:509:THR:O	2:D:509:THR:OG1	0.61	2.18	11	4	
2:D:525:ALA:C	2:D:527:GLY:H	0.61	1.99	1	8	
1:A:84:TYR:CD1	1:A:84:TYR:N	0.61	2.67	9	4	
2:C:419:THR:O	2:C:419:THR:CG2	0.61	2.48	13	1	
2:D:518:LYS:O	2:D:519:THR:C	0.61	2.39	15	15	
1:B:284:TYR:N	1:B:284:TYR:CD1	0.61	2.67	9	6	
2:D:519:THR:CG2	2:D:519:THR:O	0.61	2.48	13	1	
2:D:509:THR:OG1	2:D:512:ARG:CZ	0.61	2.49	10	3	
2:C:420:GLU:O	2:C:421:LEU:CB	0.61	2.49	17	1	
1:A:43:VAL:HG12	1:A:98:MET:SD	0.61	2.36	4	1	
1:B:243:VAL:HG12	1:B:298:MET:SD	0.61	2.36	4	1	
2:C:423:ARG:HE	2:C:424:ILE:HG22	0.61	1.55	16	3	
1:A:12:LYS:O	1:A:16:GLU:OE1	0.61	2.18	13	2	

			Distance(Å)	Models		
Atom-1	Atom-2	Clash(A)		Worst	Total	
2:C:418:LYS:O	2:C:419:THR:C	0.61	2.39	15	13	
1:A:85:ARG:CZ	1:B:285:ARG:CZ	0.61	2.79	8	1	
2:D:524:ILE:C	2:D:526:LYS:N	0.61	2.54	3	15	
1:A:83:ASP:CG	1:A:84:TYR:CE1	0.61	2.74	8	11	
1:B:287:THR:O	1:B:290:ASP:OD1	0.61	2.19	16	3	
1:B:283:ASP:CG	1:B:284:TYR:CE1	0.60	2.75	8	11	
1:A:78:GLU:OE2	2:C:417:GLU:OE2	0.60	2.19	22	2	
1:A:14:LEU:HD21	1:A:51:ILE:CD1	0.60	2.26	10	3	
1:B:258:GLU:OE2	2:D:525:ALA:CB	0.60	2.48	8	6	
1:B:282:LEU:CD1	2:C:419:THR:O	0.60	2.49	13	1	
2:D:526:LYS:O	2:D:528:MET:N	0.60	2.34	17	2	
1:B:280:ILE:HG21	2:C:410:PRO:HA	0.60	1.72	1	8	
1:B:294:HIS:CG	2:C:426:LYS:HZ1	0.60	2.14	14	2	
1:A:74:GLU:OE1	1:A:76:ARG:NE	0.60	2.35	15	2	
2:D:520:GLU:O	2:D:521:LEU:CB	0.60	2.49	17	1	
1:B:214:LEU:HD21	1:B:251:ILE:CD1	0.60	2.26	10	3	
1:A:81:LEU:N	1:A:81:LEU:HD22	0.60	2.11	13	1	
2:C:426:LYS:O	2:C:428:MET:N	0.60	2.34	17	2	
1:A:51:ILE:O	1:B:300:ARG:NH2	0.60	2.32	18	1	
2:C:424:ILE:C	2:C:426:LYS:N	0.60	2.54	3	17	
2:D:511:THR:O	2:D:511:THR:CG2	0.60	2.50	14	2	
1:B:279:ASP:O	1:B:281:LEU:N	0.60	2.35	17	3	
2:C:425:ALA:C	2:C:427:GLY:H	0.60	1.99	1	8	
1:A:52:SER:OG	1:B:300:ARG:NH1	0.60	2.33	10	2	
1:B:281:LEU:HD13	1:B:284:TYR:CE2	0.60	2.32	13	1	
2:C:422:ALA:C	2:C:424:ILE:N	0.60	2.55	10	17	
2:D:522:ALA:C	2:D:524:ILE:N	0.60	2.55	10	17	
1:A:72:LYS:NZ	1:A:78:GLU:OE1	0.60	2.35	4	1	
2:C:410:PRO:O	2:C:411:THR:OG1	0.60	2.18	4	6	
1:B:274:GLU:OE1	1:B:276:ARG:NE	0.60	2.35	15	2	
1:A:60:HIS:CD2	2:C:421:LEU:HD12	0.60	2.32	14	1	
1:B:221:TYR:HA	1:B:224:ILE:HD12	0.60	1.72	6	22	
1:B:272:LYS:NZ	1:B:278:GLU:OE1	0.60	2.35	4	1	
1:A:25:VAL:HG22	1:A:87:THR:HG21	0.60	1.74	22	8	
1:B:280:ILE:HD13	2:C:410:PRO:HA	0.60	1.73	15	6	
2:C:409:THR:OG1	2:C:412:ARG:CZ	0.60	2.49	10	3	
1:A:67:PHE:CG	1:A:84:TYR:CZ	0.60	2.90	17	5	
2:C:423:ARG:HE	2:C:424:ILE:CA	0.60	2.10	16	1	
1:A:21:TYR:HA	1:A:24:ILE:HD12	0.59	1.72	6	22	
1:A:80:ILE:O	1:A:83:ASP:OD1	0.59	2.20	18	5	
1:B:288:LEU:CD1	1:B:288:LEU:C	0.59	2.71	13	6	

A 1		$Clash(\hat{\lambda})$	\mathbf{D}	Models	
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
2:C:418:LYS:O	2:C:418:LYS:CG	0.59	2.50	7	2
2:D:518:LYS:O	2:D:518:LYS:CG	0.59	2.50	7	2
2:D:521:LEU:HD13	2:D:522:ALA:H	0.59	1.57	1	1
1:A:31:THR:O	1:A:32:ASP:OD1	0.59	2.21	13	18
1:B:268:SER:OG	2:D:517:GLU:CD	0.59	2.41	8	2
2:D:520:GLU:O	2:D:521:LEU:O	0.59	2.20	8	1
1:A:57:LEU:O	1:A:61:VAL:HG23	0.59	1.97	1	5
1:B:231:THR:O	1:B:232:ASP:OD1	0.59	2.20	13	18
2:D:510:PRO:O	2:D:511:THR:OG1	0.59	2.18	4	6
1:B:225:VAL:HG22	1:B:287:THR:HG21	0.59	1.74	22	8
1:A:54:SER:OG	2:C:425:ALA:O	0.59	2.18	6	1
1:A:78:GLU:OE1	2:C:417:GLU:OE2	0.59	2.21	22	7
2:C:427:GLY:O	2:C:428:MET:O	0.59	2.20	2	2
1:B:230:ASN:OD1	1:B:233:ALA:HB3	0.59	1.97	14	1
2:D:522:ALA:C	2:D:524:ILE:H	0.59	2.01	2	12
1:B:267:PHE:CG	1:B:284:TYR:CZ	0.59	2.90	17	4
2:D:509:THR:OG1	2:D:512:ARG:NH1	0.59	2.36	23	4
1:A:68:SER:OG	2:C:417:GLU:OE1	0.59	2.20	14	2
1:A:79:ASP:O	1:A:81:LEU:N	0.59	2.34	17	3
2:C:421:LEU:HD13	2:C:422:ALA:H	0.59	1.56	1	1
2:C:410:PRO:O	2:C:411:THR:O	0.59	2.21	14	5
2:C:422:ALA:C	2:C:424:ILE:H	0.59	2.00	14	12
2:D:527:GLY:O	2:D:528:MET:O	0.59	2.20	2	2
2:C:418:LYS:O	2:C:420:GLU:O	0.59	2.21	15	2
1:A:61:VAL:HG22	2:C:421:LEU:HB3	0.59	1.74	18	6
1:B:280:ILE:O	1:B:283:ASP:OD1	0.59	2.20	18	5
1:B:272:LYS:HZ3	1:B:278:GLU:CD	0.59	1.99	4	1
1:A:76:ARG:O	1:A:77:SER:C	0.59	2.40	2	7
2:D:518:LYS:O	2:D:520:GLU:O	0.59	2.21	15	2
1:A:72:LYS:HZ3	1:A:78:GLU:CD	0.59	1.99	4	1
1:B:261:VAL:HG21	2:D:521:LEU:O	0.59	1.97	9	4
1:A:80:ILE:C	1:A:82:LEU:H	0.59	2.01	9	2
1:A:87:THR:O	1:A:90:ASP:OD1	0.59	2.19	16	3
2:C:423:ARG:HE	2:C:424:ILE:CG2	0.59	2.10	16	2
2:D:523:ARG:HE	2:D:524:ILE:CA	0.59	2.10	16	1
1:B:257:LEU:O	1:B:261:VAL:HG23	0.59	1.97	1	5
1:B:261:VAL:HG23	2:D:522:ALA:HB3	0.59	1.75	24	15
2:C:409:THR:OG1	2:C:412:ARG:NH1	0.59	2.36	23	4
1:B:297:GLU:CD	2:C:428:MET:SD	0.59	2.81	20	2
2:C:420:GLU:O	2:C:421:LEU:O	0.59	2.20	8	1
1:A:99:TYR:O	1:A:103:ILE:CG1	0.59	2.51	1	23

			Distance(Å)	Models		
Atom-1	Atom-2	Clash(A)		Worst	Total	
2:D:510:PRO:O	2:D:511:THR:O	0.59	2.21	14	5	
1:B:292:ILE:O	1:B:296:CYS:SG	0.59	2.61	11	14	
1:B:230:ASN:HD22	1:B:233:ALA:CA	0.59	2.11	13	2	
1:A:83:ASP:OD1	1:A:84:TYR:CE1	0.59	2.55	14	10	
1:B:277:SER:N	2:C:411:THR:OG1	0.59	2.35	11	4	
1:A:100:ARG:HH11	1:A:100:ARG:CG	0.59	2.10	9	1	
1:B:300:ARG:CG	1:B:300:ARG:HH11	0.59	2.10	9	1	
2:C:409:THR:HG21	2:C:412:ARG:HH12	0.59	1.57	8	1	
2:D:509:THR:HG21	2:D:512:ARG:HH12	0.59	1.58	8	1	
2:D:517:GLU:C	2:D:519:THR:H	0.59	2.01	21	4	
2:D:523:ARG:HE	2:D:524:ILE:CG2	0.59	2.10	16	2	
1:B:276:ARG:O	1:B:277:SER:C	0.58	2.40	17	6	
1:B:254:SER:OG	2:D:525:ALA:O	0.58	2.20	6	1	
1:A:83:ASP:O	1:A:87:THR:OG1	0.58	2.20	9	3	
2:C:412:ARG:O	2:C:412:ARG:NH1	0.58	2.36	9	1	
1:A:47:PHE:CB	1:A:98:MET:SD	0.58	2.91	14	3	
1:B:299:TYR:O	1:B:303:ILE:CG1	0.58	2.51	1	23	
1:B:283:ASP:O	1:B:287:THR:OG1	0.58	2.20	9	4	
1:B:281:LEU:HD22	1:B:281:LEU:N	0.58	2.12	13	1	
1:A:100:ARG:NH2	1:B:251:ILE:O	0.58	2.32	18	1	
1:A:88:LEU:C	1:A:88:LEU:CD1	0.58	2.72	1	5	
2:D:512:ARG:NH1	2:D:512:ARG:O	0.58	2.35	9	1	
2:C:411:THR:O	2:C:411:THR:CG2	0.58	2.50	14	2	
1:B:247:PHE:CB	1:B:298:MET:SD	0.58	2.91	14	3	
1:A:67:PHE:CE1	1:A:84:TYR:OH	0.58	2.46	18	3	
2:C:411:THR:CG2	2:C:411:THR:O	0.58	2.51	20	1	
1:A:34:LYS:O	1:A:37:GLU:N	0.58	2.33	1	1	
1:B:267:PHE:CE1	1:B:284:TYR:OH	0.58	2.46	18	3	
1:B:261:VAL:HG21	2:D:523:ARG:N	0.58	2.13	15	4	
1:B:285:ARG:NH2	2:C:421:LEU:HD11	0.58	2.13	3	2	
1:A:30:ASN:HD22	1:A:33:ALA:CA	0.58	2.11	13	2	
2:D:521:LEU:C	2:D:523:ARG:H	0.58	2.02	16	3	
1:A:58:GLU:OE1	2:C:429:GLN:OE1	0.58	2.20	10	4	
1:B:283:ASP:OD1	1:B:284:TYR:CE1	0.58	2.55	14	10	
1:B:280:ILE:C	1:B:282:LEU:N	0.58	2.57	9	3	
1:A:81:LEU:HD13	1:A:84:TYR:CE2	0.58	2.32	13	1	
1:A:76:ARG:O	1:A:78:GLU:N	0.58	2.37	5	5	
2:C:412:ARG:CZ	2:C:413:ILE:H	0.58	2.12	13	1	
1:B:237:GLU:N	1:B:237:GLU:OE1	0.58	2.36	5	1	
1:A:97:GLU:OE1	1:A:100:ARG:NH1	0.58	2.37	6	1	
2:D:528:MET:C	2:D:530:ASP:H	0.58	2.02	25	2	

		(1 - 1)		Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
2:D:512:ARG:CZ	2:D:513:ILE:H	0.58	2.12	13	1	
1:A:97:GLU:CD	2:D:528:MET:SD	0.58	2.82	20	2	
1:A:58:GLU:OE2	2:C:429:GLN:OE1	0.58	2.21	2	2	
1:B:277:SER:C	1:B:279:ASP:H	0.58	2.01	21	2	
2:D:511:THR:O	2:D:511:THR:OG1	0.58	2.22	1	1	
1:B:258:GLU:OE2	2:D:529:GLN:OE1	0.58	2.22	2	2	
1:A:84:TYR:N	1:A:84:TYR:CD1	0.58	2.69	13	6	
1:B:297:GLU:OE1	1:B:300:ARG:NH1	0.58	2.37	6	1	
2:D:509:THR:CA	2:D:512:ARG:HH21	0.58	2.12	15	1	
1:B:288:LEU:C	1:B:288:LEU:CD1	0.57	2.73	14	3	
1:B:282:LEU:HD11	2:C:415:VAL:HG11	0.57	1.76	21	2	
1:A:30:ASN:OD1	1:A:33:ALA:HB3	0.57	1.97	14	1	
2:D:511:THR:CG2	2:D:511:THR:O	0.57	2.51	20	1	
1:B:276:ARG:O	1:B:278:GLU:N	0.57	2.37	5	5	
1:B:284:TYR:O	1:B:288:LEU:CB	0.57	2.53	8	9	
1:B:278:GLU:OE1	2:D:517:GLU:OE2	0.57	2.21	13	7	
1:B:286:LEU:O	1:B:290:ASP:CB	0.57	2.53	8	6	
1:B:258:GLU:OE1	2:D:529:GLN:OE1	0.57	2.21	14	4	
2:C:417:GLU:C	2:C:419:THR:H	0.57	2.01	21	4	
1:A:89:ILE:CD1	2:D:521:LEU:CD2	0.57	2.82	11	1	
1:B:277:SER:C	1:B:279:ASP:N	0.57	2.58	21	1	
1:A:80:ILE:C	1:A:82:LEU:N	0.57	2.57	9	3	
1:B:289:ILE:CD1	2:C:421:LEU:CD2	0.57	2.82	11	1	
2:D:526:LYS:C	2:D:528:MET:H	0.57	2.02	21	4	
2:C:416:ASP:OD1	2:C:417:GLU:OE1	0.57	2.22	17	1	
1:B:295:LEU:HD23	1:B:296:CYS:H	0.57	1.60	13	5	
2:C:428:MET:C	2:C:430:ASP:H	0.57	2.02	25	3	
1:A:27:GLU:CD	1:A:38:ARG:HE	0.57	2.03	14	4	
1:A:85:ARG:HH11	1:B:285:ARG:HH11	0.57	1.41	15	1	
1:B:282:LEU:CD1	2:C:415:VAL:HG21	0.57	2.30	18	1	
2:D:521:LEU:CD1	2:D:522:ALA:H	0.57	2.12	24	1	
2:C:421:LEU:C	2:C:423:ARG:H	0.57	2.02	16	3	
2:C:413:ILE:HG22	2:C:415:VAL:CG1	0.57	2.30	4	1	
1:B:230:ASN:ND2	1:B:230:ASN:C	0.57	2.57	14	2	
2:C:409:THR:CA	2:C:412:ARG:HH21	0.57	2.12	15	1	
1:A:77:SER:C	1:A:79:ASP:H	0.57	2.01	21	2	
1:A:39:ILE:O	1:A:43:VAL:CG2	0.57	2.53	21	9	
1:B:227:GLU:CD	1:B:238:ARG:HE	0.57	2.03	14	4	
2:C:425:ALA:O	2:C:426:LYS:C	0.57	2.43	7	1	
1:A:100:ARG:NH1	1:A:100:ARG:CG	0.57	2.68	9	1	
2:D:516:ASP:OD1	2:D:517:GLU:OE1	0.57	2.22	17	1	

		(1 - 1)	Distance(Å)	Models		
Atom-1	Atom-2	Clash(A)		Worst	Total	
2:D:523:ARG:NH1	2:D:524:ILE:CG2	0.57	2.68	8	1	
1:B:280:ILE:C	1:B:282:LEU:H	0.57	2.01	9	2	
1:B:278:GLU:OE2	2:D:517:GLU:OE2	0.57	2.23	22	2	
2:C:421:LEU:CD1	2:C:422:ALA:H	0.57	2.12	24	1	
2:D:522:ALA:O	2:D:525:ALA:N	0.57	2.34	3	4	
2:D:525:ALA:O	2:D:526:LYS:C	0.57	2.43	7	1	
1:B:300:ARG:NH1	1:B:300:ARG:CG	0.57	2.68	9	1	
1:A:90:ASP:OD1	2:D:524:ILE:HD12	0.57	2.00	10	1	
1:A:30:ASN:C	1:A:30:ASN:ND2	0.57	2.57	14	3	
2:C:419:THR:O	2:C:421:LEU:N	0.56	2.38	18	3	
1:A:86:LEU:O	1:A:90:ASP:CB	0.56	2.53	8	7	
1:A:83:ASP:CG	1:A:84:TYR:CD1	0.56	2.79	14	10	
1:A:80:ILE:HG21	2:D:510:PRO:HA	0.56	1.75	9	7	
2:D:519:THR:O	2:D:521:LEU:N	0.56	2.38	18	3	
1:A:80:ILE:HD13	2:D:510:PRO:HA	0.56	1.76	15	6	
1:A:88:LEU:CD1	1:A:88:LEU:C	0.56	2.74	7	5	
2:C:411:THR:OG1	2:C:411:THR:O	0.56	2.21	1	1	
1:A:27:GLU:O	1:A:30:ASN:OD1	0.56	2.23	3	10	
1:B:227:GLU:O	1:B:230:ASN:OD1	0.56	2.22	14	10	
2:D:513:ILE:HG22	2:D:515:VAL:CG1	0.56	2.30	4	1	
1:B:283:ASP:CG	1:B:284:TYR:CD1	0.56	2.79	14	10	
1:A:84:TYR:O	1:A:88:LEU:CB	0.56	2.52	8	10	
1:A:84:TYR:O	1:A:88:LEU:N	0.56	2.34	17	8	
2:D:512:ARG:HH12	2:D:513:ILE:CG2	0.56	2.11	13	1	
1:A:80:ILE:HD12	2:D:512:ARG:NH1	0.56	2.16	13	1	
1:B:260:HIS:CD2	2:D:521:LEU:HD12	0.56	2.35	14	1	
2:C:426:LYS:C	2:C:428:MET:H	0.56	2.04	17	4	
1:A:68:SER:OG	2:C:417:GLU:CD	0.56	2.43	8	2	
2:C:423:ARG:NH1	2:C:424:ILE:CG2	0.56	2.68	8	1	
1:A:77:SER:C	1:A:79:ASP:N	0.56	2.58	21	1	
1:A:95:LEU:HD23	1:A:96:CYS:H	0.56	1.60	13	6	
1:A:25:VAL:HG13	1:A:84:TYR:CD1	0.56	2.36	18	1	
1:A:61:VAL:HG23	2:C:422:ALA:HB3	0.56	1.76	24	14	
2:D:509:THR:C	2:D:512:ARG:HH21	0.56	2.04	15	1	
2:D:516:ASP:CG	2:D:517:GLU:OE1	0.56	2.44	17	2	
1:B:261:VAL:HG22	2:D:521:LEU:HB3	0.56	1.76	18	6	
1:B:230:ASN:C	1:B:230:ASN:ND2	0.56	2.59	16	4	
2:C:412:ARG:HH12	2:C:413:ILE:CG2	0.56	2.12	13	1	
2:C:409:THR:C	2:C:412:ARG:HH21	0.56	2.04	15	1	
1:B:234:LYS:O	1:B:237:GLU:N	0.56	2.33	1	1	
1:B:213:LEU:O	1:B:217:LEU:N	0.56	2.37	4	5	

		$Clash(\hat{\lambda})$	Distance(Å)	Models		
Atom-1	Atom-2	Clash(A)		Worst	Total	
1:B:288:LEU:HD13	1:B:288:LEU:O	0.56	2.01	22	5	
1:B:268:SER:OG	2:D:517:GLU:OE1	0.56	2.23	14	1	
2:C:416:ASP:CG	2:C:417:GLU:OE1	0.56	2.44	17	2	
2:D:509:THR:N	2:D:510:PRO:HD3	0.56	2.16	5	24	
2:D:521:LEU:CD2	2:D:522:ALA:N	0.56	2.69	20	10	
1:A:85:ARG:NH2	2:D:521:LEU:HD11	0.56	2.16	3	2	
1:A:61:VAL:HG21	2:C:423:ARG:N	0.56	2.15	15	3	
1:B:280:ILE:HD12	2:C:412:ARG:NH1	0.56	2.16	13	1	
2:D:529:GLN:O	2:D:530:ASP:C	0.56	2.44	22	1	
2:C:421:LEU:CD2	2:C:422:ALA:N	0.56	2.69	20	10	
1:A:27:GLU:OE2	1:A:38:ARG:NE	0.56	2.39	14	2	
2:C:412:ARG:CZ	2:C:413:ILE:N	0.56	2.69	13	1	
1:A:79:ASP:CB	2:D:515:VAL:HG21	0.56	2.31	20	1	
1:A:88:LEU:O	1:A:88:LEU:HD13	0.56	2.01	22	5	
2:C:409:THR:N	2:C:410:PRO:HD3	0.56	2.16	13	24	
2:C:412:ARG:NE	2:C:412:ARG:CA	0.56	2.68	13	1	
1:A:30:ASN:ND2	1:A:30:ASN:O	0.56	2.39	16	1	
1:A:30:ASN:HD22	1:A:35:VAL:CG2	0.55	2.14	17	1	
1:B:229:PHE:CZ	1:B:283:ASP:CG	0.55	2.80	18	1	
1:A:82:LEU:CD1	2:D:515:VAL:HG21	0.55	2.30	18	1	
1:B:271:LEU:HD23	1:B:278:GLU:HA	0.55	1.78	4	16	
1:A:65:ASP:OD2	2:C:418:LYS:NZ	0.55	2.38	4	1	
2:C:409:THR:O	2:C:412:ARG:CB	0.55	2.54	9	4	
2:D:512:ARG:CZ	2:D:513:ILE:N	0.55	2.69	13	1	
1:A:57:LEU:O	2:C:422:ALA:HB3	0.55	2.01	18	8	
2:C:417:GLU:C	2:C:419:THR:N	0.55	2.60	17	8	
1:A:82:LEU:HD11	2:D:515:VAL:HG11	0.55	1.76	21	2	
2:D:512:ARG:CA	2:D:512:ARG:NE	0.55	2.68	13	1	
1:A:86:LEU:O	1:A:90:ASP:CG	0.55	2.45	4	8	
1:B:230:ASN:O	1:B:230:ASN:ND2	0.55	2.40	16	1	
2:C:426:LYS:C	2:C:428:MET:N	0.55	2.60	21	2	
2:D:510:PRO:O	2:D:511:THR:C	0.55	2.45	20	3	
1:A:30:ASN:CG	1:A:33:ALA:O	0.55	2.44	6	11	
1:A:53:VAL:HG12	1:A:57:LEU:CG	0.55	2.32	24	25	
1:B:278:GLU:CD	2:D:517:GLU:OE2	0.55	2.45	9	8	
2:D:516:ASP:CG	2:D:517:GLU:H	0.55	2.05	2	7	
1:B:229:PHE:CD2	2:C:412:ARG:NH1	0.55	2.74	15	1	
1:B:225:VAL:HG13	1:B:284:TYR:CD1	0.55	2.35	18	1	
2:D:518:LYS:C	2:D:519:THR:HG23	0.55	2.22	1	2	
2:C:410:PRO:O	2:C:411:THR:C	0.55	2.45	20	3	
1:B:230:ASN:CG	1:B:233:ALA:O	0.55	2.44	6	11	

		$Clash(\hat{\lambda})$	Distance (&)	Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
2:C:416:ASP:CG	2:C:417:GLU:H	0.55	2.05	2	7	
1:B:272:LYS:NZ	2:D:517:GLU:OE1	0.55	2.32	18	2	
1:A:60:HIS:CD2	2:C:421:LEU:HD13	0.55	2.37	7	2	
1:B:283:ASP:OD2	1:B:284:TYR:CD1	0.55	2.60	14	1	
1:B:225:VAL:CG1	1:B:284:TYR:CE1	0.55	2.90	2	3	
1:A:29:PHE:CZ	1:A:83:ASP:CG	0.55	2.80	18	1	
1:A:85:ARG:NE	1:B:285:ARG:NE	0.55	2.55	20	2	
1:A:71:LEU:HD23	1:A:78:GLU:HA	0.55	1.78	4	16	
1:B:286:LEU:O	1:B:290:ASP:CG	0.55	2.45	4	7	
2:D:519:THR:O	2:D:519:THR:OG1	0.55	2.21	21	2	
1:A:45:LYS:O	1:A:49:ALA:N	0.55	2.30	12	2	
2:C:429:GLN:O	2:C:430:ASP:CB	0.55	2.55	17	1	
2:C:421:LEU:O	2:C:422:ALA:C	0.55	2.46	21	7	
2:C:420:GLU:OE2	2:C:423:ARG:NE	0.55	2.40	6	1	
1:A:100:ARG:HH21	1:B:250:ASP:CG	0.55	2.04	8	3	
2:C:429:GLN:O	2:C:430:ASP:CG	0.55	2.46	9	1	
1:A:83:ASP:OD2	1:A:84:TYR:CD1	0.55	2.60	14	1	
1:B:230:ASN:HD22	1:B:235:VAL:CG2	0.55	2.14	17	1	
1:B:279:ASP:CB	2:C:415:VAL:HG21	0.55	2.31	20	1	
2:C:429:GLN:O	2:C:430:ASP:C	0.55	2.44	22	1	
1:A:25:VAL:CG1	1:A:84:TYR:CE1	0.55	2.90	2	3	
2:D:509:THR:O	2:D:512:ARG:CB	0.55	2.54	9	4	
1:B:281:LEU:CD1	1:B:284:TYR:CE2	0.55	2.90	13	2	
2:C:430:ASP:OD1	2:C:430:ASP:N	0.55	2.40	15	1	
2:D:523:ARG:NE	2:D:524:ILE:HG22	0.55	2.17	16	3	
2:C:421:LEU:CD1	2:C:422:ALA:N	0.55	2.70	24	1	
2:D:521:LEU:O	2:D:522:ALA:C	0.54	2.45	21	7	
1:A:78:GLU:CD	2:C:417:GLU:OE2	0.54	2.45	4	6	
2:D:520:GLU:OE2	2:D:523:ARG:NE	0.54	2.40	6	1	
1:B:227:GLU:OE2	1:B:238:ARG:NH2	0.54	2.40	7	2	
2:D:529:GLN:O	2:D:530:ASP:CB	0.54	2.55	17	1	
1:B:261:VAL:CG2	2:D:522:ALA:HB3	0.54	2.32	17	11	
1:B:278:GLU:OE1	2:D:517:GLU:CD	0.54	2.46	9	3	
2:C:409:THR:HG21	2:C:412:ARG:NH1	0.54	2.17	8	1	
2:D:530:ASP:OD1	2:D:530:ASP:N	0.54	2.40	8	1	
1:A:83:ASP:OD1	1:A:84:TYR:CG	0.54	2.61	4	11	
1:B:284:TYR:O	1:B:288:LEU:N	0.54	2.34	17	7	
1:A:82:LEU:HD13	2:D:515:VAL:HG21	0.54	1.78	21	2	
2:D:529:GLN:O	2:D:530:ASP:CG	0.54	2.46	9	1	
1:A:81:LEU:CD1	1:A:84:TYR:CE2	0.54	2.91	13	2	
2:D:509:THR:HG21	2:D:512:ARG:NH1	0.54	2.17	8	1	

Atom 1	Atom 2	$Clash(\hat{\lambda})$	Distance (Å)	Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
1:A:94:HIS:CA	2:D:526:LYS:HZ1	0.54	2.16	2	1	
1:A:20:ILE:CD1	1:A:45:LYS:NZ	0.54	2.71	3	6	
1:A:27:GLU:OE2	1:A:38:ARG:NH2	0.54	2.40	7	2	
1:B:290:ASP:OD1	2:C:424:ILE:CD1	0.54	2.55	11	1	
1:A:78:GLU:C	1:A:80:ILE:N	0.54	2.60	18	1	
2:C:418:LYS:C	2:C:419:THR:HG23	0.54	2.23	1	2	
1:B:239:ILE:O	1:B:243:VAL:CG2	0.54	2.55	17	9	
1:A:101:ARG:CG	1:A:101:ARG:NH1	0.54	2.70	5	1	
2:C:410:PRO:C	2:C:411:THR:OG1	0.54	2.46	19	6	
1:A:94:HIS:CB	2:D:526:LYS:HZ1	0.54	2.15	14	2	
2:C:423:ARG:NE	2:C:424:ILE:HG22	0.54	2.18	16	3	
2:C:430:ASP:N	2:C:430:ASP:OD1	0.54	2.40	8	1	
1:B:253:VAL:HG12	1:B:257:LEU:CG	0.54	2.32	24	25	
2:D:521:LEU:CD2	2:D:522:ALA:H	0.54	2.15	20	10	
1:B:301:ARG:CG	1:B:301:ARG:HH11	0.54	2.14	5	1	
1:A:24:ILE:O	1:A:28:TYR:N	0.54	2.40	18	2	
1:B:224:ILE:O	1:B:228:TYR:N	0.54	2.41	18	2	
1:B:277:SER:O	1:B:278:GLU:CB	0.54	2.56	15	2	
1:B:221:TYR:HH	1:B:260:HIS:CE1	0.54	2.19	13	3	
1:A:40:ASP:O	1:A:44:SER:OG	0.54	2.22	8	4	
2:D:510:PRO:C	2:D:511:THR:OG1	0.54	2.46	19	6	
1:B:255:GLN:O	1:B:259:ILE:N	0.54	2.38	8	19	
1:B:301:ARG:CG	1:B:301:ARG:NH1	0.54	2.70	5	1	
1:B:222:ARG:NH1	1:B:226:LEU:HD11	0.54	2.18	25	1	
1:B:283:ASP:OD1	1:B:284:TYR:CG	0.54	2.61	4	12	
1:A:94:HIS:HA	2:D:526:LYS:HZ1	0.54	1.63	2	1	
1:B:260:HIS:CD2	2:D:521:LEU:HD13	0.54	2.38	7	2	
1:B:282:LEU:HD13	2:C:415:VAL:HG21	0.54	1.80	21	2	
1:A:50:ASP:CG	1:B:300:ARG:HH21	0.54	2.06	8	3	
2:D:512:ARG:CZ	2:D:513:ILE:HG22	0.54	2.33	13	1	
1:A:85:ARG:HE	1:B:285:ARG:HE	0.54	1.46	22	2	
2:D:521:LEU:CD1	2:D:522:ALA:N	0.54	2.71	24	1	
1:B:257:LEU:O	2:D:522:ALA:HB3	0.54	2.03	18	9	
2:D:517:GLU:C	2:D:519:THR:N	0.54	2.60	17	8	
1:B:230:ASN:ND2	1:B:230:ASN:O	0.54	2.41	14	2	
2:D:517:GLU:OE1	2:D:517:GLU:C	0.54	2.46	23	1	
1:B:258:GLU:OE2	2:D:529:GLN:NE2	0.54	2.41	24	1	
1:B:282:LEU:C	1:B:282:LEU:HD23	0.54	2.23	25	1	
1:B:260:HIS:CE1	1:B:284:TYR:O	0.53	2.61	22	2	
1:A:60:HIS:CE1	1:A:84:TYR:O	0.53	2.61	22	2	
2:C:411:THR:O	2:C:412:ARG:C	0.53	2.46	4	1	

	1 1 1 1 1		D . (8)	Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
2:D:510:PRO:O	2:D:511:THR:HG23	0.53	2.04	4	1	
1:B:280:ILE:HD13	2:C:409:THR:O	0.53	2.03	24	3	
2:C:412:ARG:CZ	2:C:413:ILE:HG22	0.53	2.33	13	1	
1:A:85:ARG:HE	1:B:285:ARG:NE	0.53	2.02	20	2	
2:C:417:GLU:OE1	2:C:417:GLU:C	0.53	2.47	23	1	
1:B:220:ILE:CD1	1:B:245:LYS:NZ	0.53	2.71	3	7	
1:A:101:ARG:CG	1:A:101:ARG:HH11	0.53	2.14	5	1	
1:B:300:ARG:HH22	1:B:301:ARG:CZ	0.53	2.16	6	1	
1:B:286:LEU:HD11	2:C:420:GLU:O	0.53	2.04	6	3	
1:A:77:SER:O	1:A:78:GLU:CB	0.53	2.56	15	2	
2:D:526:LYS:C	2:D:528:MET:N	0.53	2.60	21	2	
2:C:421:LEU:CD2	2:C:422:ALA:H	0.53	2.15	20	10	
1:B:282:LEU:HD11	2:C:415:VAL:HG21	0.53	1.80	18	1	
1:A:61:VAL:CG2	2:C:422:ALA:HB3	0.53	2.33	17	11	
2:D:511:THR:O	2:D:512:ARG:C	0.53	2.46	4	1	
1:B:220:ILE:CD1	1:B:245:LYS:HZ1	0.53	2.17	11	6	
1:A:100:ARG:HH22	1:A:101:ARG:CZ	0.53	2.17	6	1	
1:A:90:ASP:OD1	2:D:524:ILE:CD1	0.53	2.57	11	2	
1:A:82:LEU:HD23	1:A:82:LEU:C	0.53	2.23	25	3	
1:A:41:GLU:CG	1:A:45:LYS:NZ	0.53	2.72	21	4	
1:A:78:GLU:OE1	2:C:417:GLU:CD	0.53	2.47	20	4	
1:A:60:HIS:C	1:A:60:HIS:CD2	0.53	2.82	9	7	
1:A:58:GLU:OE2	2:C:425:ALA:HB1	0.53	2.03	12	3	
1:B:261:VAL:CG2	2:D:521:LEU:O	0.53	2.56	21	4	
1:B:227:GLU:OE2	1:B:238:ARG:NE	0.53	2.39	14	2	
1:A:30:ASN:O	1:A:30:ASN:ND2	0.53	2.41	14	2	
1:A:82:LEU:CB	2:D:519:THR:OG1	0.53	2.57	21	1	
1:B:278:GLU:C	1:B:280:ILE:N	0.53	2.60	18	1	
1:B:285:ARG:HE	2:D:521:LEU:HD11	0.53	1.63	18	1	
1:B:254:SER:OG	2:D:527:GLY:O	0.53	2.26	25	1	
1:B:254:SER:O	1:B:258:GLU:N	0.53	2.34	6	6	
1:B:241:GLU:CG	1:B:245:LYS:NZ	0.53	2.72	21	4	
1:A:72:LYS:NZ	2:C:417:GLU:OE1	0.53	2.38	18	2	
1:B:280:ILE:HD13	2:C:410:PRO:CA	0.53	2.33	9	2	
1:A:22:ARG:NH1	1:A:26:LEU:HD11	0.53	2.18	25	1	
1:A:55:GLN:O	1:A:59:ILE:N	0.53	2.39	11	19	
1:B:237:GLU:N	1:B:237:GLU:CD	0.53	2.62	5	2	
1:A:92:ILE:HG22	1:A:96:CYS:SG	0.53	2.44	12	1	
1:A:13:LEU:O	1:A:17:LEU:N	0.53	2.39	3	5	
2:C:410:PRO:O	2:C:411:THR:HG23	0.53	2.04	4	1	
1:A:85:ARG:NE	1:B:285:ARG:HE	0.53	2.02	20	2	

				Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
1:B:247:PHE:CD2	1:B:299:TYR:CE1	0.52	2.97	25	15	
1:B:260:HIS:C	1:B:260:HIS:CD2	0.52	2.82	9	4	
1:A:47:PHE:CD2	1:A:99:TYR:CE1	0.52	2.97	25	15	
1:B:282:LEU:HD12	2:C:419:THR:CG2	0.52	2.34	3	7	
1:A:54:SER:OG	2:C:427:GLY:O	0.52	2.27	25	1	
2:D:525:ALA:C	2:D:527:GLY:N	0.52	2.63	1	8	
1:A:36:ASN:O	1:A:40:ASP:N	0.52	2.38	14	8	
1:A:37:GLU:CD	1:A:37:GLU:N	0.52	2.62	5	1	
2:D:516:ASP:O	2:D:519:THR:CB	0.52	2.57	21	2	
2:C:416:ASP:O	2:C:419:THR:CB	0.52	2.57	21	2	
1:A:83:ASP:N	1:A:83:ASP:OD1	0.52	2.41	9	1	
2:D:519:THR:O	2:D:519:THR:CG2	0.52	2.57	20	1	
2:C:419:THR:O	2:C:419:THR:OG1	0.52	2.21	21	1	
2:D:525:ALA:O	2:D:526:LYS:O	0.52	2.28	17	3	
1:A:81:LEU:H	1:A:81:LEU:HD22	0.52	1.62	13	1	
1:B:230:ASN:OD1	1:B:233:ALA:O	0.52	2.27	16	1	
1:A:21:TYR:HH	1:A:60:HIS:CE1	0.52	2.21	3	3	
1:A:82:LEU:HD12	2:D:519:THR:CG2	0.52	2.34	3	8	
1:A:97:GLU:CD	1:A:97:GLU:C	0.52	2.68	19	2	
1:B:245:LYS:O	1:B:249:ALA:N	0.52	2.30	12	3	
1:A:64:MET:CE	1:A:84:TYR:CG	0.52	2.92	13	3	
1:B:230:ASN:ND2	1:B:235:VAL:CG2	0.52	2.72	17	1	
1:A:78:GLU:OE1	2:C:417:GLU:OE1	0.52	2.27	20	1	
1:B:268:SER:OG	2:D:517:GLU:OE2	0.52	2.27	8	1	
1:B:294:HIS:HA	2:C:426:LYS:HZ1	0.52	1.65	2	1	
1:A:79:ASP:C	1:A:81:LEU:N	0.52	2.62	17	5	
1:A:80:ILE:HD13	2:D:510:PRO:CA	0.52	2.34	9	1	
1:B:282:LEU:HD13	2:C:415:VAL:HG12	0.52	1.81	17	1	
2:C:412:ARG:CG	2:C:413:ILE:N	0.52	2.72	1	3	
1:B:292:ILE:HG22	1:B:296:CYS:SG	0.52	2.45	12	4	
1:A:30:ASN:OD1	1:A:33:ALA:O	0.52	2.27	16	1	
1:A:30:ASN:ND2	1:A:35:VAL:CG2	0.52	2.72	17	1	
1:A:97:GLU:CG	2:D:528:MET:SD	0.52	2.98	18	1	
1:A:85:ARG:HE	2:C:421:LEU:HD11	0.52	1.64	18	1	
2:D:523:ARG:HG3	2:D:524:ILE:N	0.52	2.20	8	1	
2:C:425:ALA:C	2:C:427:GLY:N	0.52	2.63	1	8	
1:A:68:SER:HG	2:C:417:GLU:CD	0.52	2.08	23	2	
1:B:294:HIS:CA	2:C:426:LYS:HZ1	0.51	2.18	2	1	
1:B:258:GLU:OE1	2:D:525:ALA:HB2	0.51	2.05	17	3	
1:B:264:MET:CE	1:B:284:TYR:CG	0.51	2.92	13	3	
1:A:85:ARG:N	1:A:85:ARG:CD	0.51	2.73	14	1	

Atom 1	A tom 2	$Clack(\hat{\lambda})$	${ m Distance}({ m \AA})$	Models		
Atom-1	Atom-2	Clash(A)		Worst	Total	
1:A:95:LEU:HD12	1:A:95:LEU:C	0.51	2.24	14	2	
2:C:425:ALA:O	2:C:426:LYS:O	0.51	2.28	17	3	
1:B:297:GLU:C	1:B:297:GLU:CD	0.51	2.68	19	2	
1:B:278:GLU:OE1	2:D:517:GLU:OE1	0.51	2.27	20	1	
1:B:230:ASN:HB2	1:B:233:ALA:HB3	0.51	1.82	1	7	
2:D:512:ARG:CG	2:D:513:ILE:N	0.51	2.72	1	3	
1:B:281:LEU:H	1:B:281:LEU:CD2	0.51	2.19	13	1	
1:B:295:LEU:HD12	1:B:295:LEU:C	0.51	2.25	14	2	
2:C:423:ARG:HG3	2:C:424:ILE:N	0.51	2.20	8	1	
2:C:409:THR:O	2:C:410:PRO:O	0.51	2.29	1	3	
2:C:413:ILE:HG22	2:C:415:VAL:HG13	0.51	1.83	4	1	
2:C:418:LYS:CG	2:C:419:THR:N	0.51	2.74	4	1	
2:D:518:LYS:CG	2:D:519:THR:N	0.51	2.74	4	1	
1:B:295:LEU:HD23	1:B:296:CYS:N	0.51	2.20	24	3	
1:B:260:HIS:O	1:B:264:MET:CG	0.51	2.59	25	2	
1:B:220:ILE:HD12	1:B:245:LYS:NZ	0.51	2.20	14	2	
2:D:525:ALA:O	2:D:526:LYS:CB	0.51	2.59	20	2	
1:A:34:LYS:O	1:A:36:ASN:N	0.51	2.43	16	4	
1:B:290:ASP:OD1	1:B:290:ASP:O	0.51	2.29	14	2	
1:B:267:PHE:CE2	1:B:284:TYR:CE1	0.51	2.98	12	2	
2:C:418:LYS:O	2:C:419:THR:CG2	0.51	2.59	12	2	
1:B:211:ARG:HH11	1:B:211:ARG:CG	0.51	2.19	1	1	
1:A:20:ILE:CD1	1:A:45:LYS:HZ1	0.51	2.19	11	6	
1:B:284:TYR:CD1	1:B:284:TYR:N	0.51	2.74	11	3	
2:C:417:GLU:O	2:C:418:LYS:C	0.51	2.49	5	1	
1:A:81:LEU:H	1:A:81:LEU:CD2	0.51	2.18	13	1	
1:A:60:HIS:O	1:A:64:MET:CG	0.51	2.59	25	2	
1:A:20:ILE:HD12	1:A:45:LYS:NZ	0.51	2.20	14	2	
2:D:530:ASP:N	2:D:530:ASP:OD1	0.51	2.40	15	1	
1:A:11:ARG:NH1	1:A:11:ARG:CG	0.51	2.73	1	1	
1:B:288:LEU:O	1:B:288:LEU:HD13	0.51	2.06	1	3	
2:C:427:GLY:O	2:C:428:MET:C	0.51	2.48	6	1	
2:D:518:LYS:O	2:D:519:THR:CG2	0.51	2.59	12	2	
1:A:11:ARG:HH11	1:A:11:ARG:CG	0.51	2.18	1	1	
1:B:234:LYS:O	1:B:236:ASN:N	0.51	2.43	16	4	
1:B:258:GLU:CD	2:D:529:GLN:OE1	0.51	2.48	6	1	
1:A:97:GLU:OE2	1:A:100:ARG:NH2	0.51	2.43	25	1	
1:B:282:LEU:CB	2:C:419:THR:OG1	0.51	2.59	21	1	
1:B:286:LEU:HD21	2:C:421:LEU:HA	0.51	1.81	6	11	
2:C:422:ALA:O	2:C:425:ALA:N	0.51	2.34	3	4	
1:A:61:VAL:CG2	2:C:421:LEU:O	0.51	2.59	21	5	

		$Clash(\hat{\lambda})$	Distance(Å)	Models		
Atom-1	Atom-2	Clash(A)		Worst	Total	
1:A:67:PHE:CE2	1:A:84:TYR:CE1	0.51	2.98	12	2	
1:A:80:ILE:HD13	2:D:509:THR:O	0.51	2.06	24	3	
1:B:281:LEU:HD22	1:B:281:LEU:H	0.51	1.62	13	1	
1:A:82:LEU:HD11	2:D:515:VAL:HG21	0.51	1.81	18	1	
1:A:95:LEU:C	1:A:95:LEU:HD12	0.51	2.25	20	1	
1:A:94:HIS:CD2	2:D:526:LYS:NZ	0.51	2.79	8	1	
2:D:509:THR:O	2:D:510:PRO:O	0.51	2.29	1	3	
1:B:220:ILE:CD1	1:B:245:LYS:CE	0.51	2.89	23	9	
1:A:54:SER:O	1:A:58:GLU:N	0.51	2.34	6	8	
1:A:86:LEU:HD21	2:D:521:LEU:HA	0.51	1.83	10	13	
1:B:279:ASP:C	1:B:281:LEU:N	0.51	2.62	17	3	
1:B:277:SER:N	2:C:411:THR:CG2	0.51	2.74	25	1	
1:A:86:LEU:HD21	2:D:521:LEU:N	0.50	2.21	8	4	
2:D:517:GLU:O	2:D:518:LYS:C	0.50	2.49	5	1	
1:A:60:HIS:NE2	2:C:421:LEU:CD1	0.50	2.74	7	3	
1:A:88:LEU:HD13	1:A:88:LEU:O	0.50	2.06	13	3	
1:B:285:ARG:CD	1:B:285:ARG:N	0.50	2.73	14	1	
1:A:28:TYR:CE1	1:A:90:ASP:OD2	0.50	2.64	22	1	
1:B:228:TYR:CE1	1:B:290:ASP:OD2	0.50	2.64	22	1	
2:C:409:THR:CB	2:C:412:ARG:NH1	0.50	2.74	8	1	
2:D:509:THR:CB	2:D:512:ARG:NH1	0.50	2.74	8	1	
1:A:71:LEU:CD2	1:A:81:LEU:HD11	0.50	2.36	10	3	
1:B:271:LEU:CD2	1:B:281:LEU:HD11	0.50	2.37	10	3	
2:D:523:ARG:NE	2:D:524:ILE:N	0.50	2.60	16	1	
1:B:270:GLN:O	1:B:274:GLU:N	0.50	2.36	18	1	
2:C:425:ALA:O	2:C:426:LYS:CB	0.50	2.58	20	2	
1:A:60:HIS:CD2	2:C:418:LYS:NZ	0.50	2.79	8	1	
2:D:513:ILE:HG22	2:D:515:VAL:HG13	0.50	1.83	4	1	
1:A:29:PHE:CD2	2:D:512:ARG:NH1	0.50	2.79	15	1	
1:A:95:LEU:O	1:A:98:MET:CG	0.50	2.59	15	1	
2:C:423:ARG:CG	2:C:424:ILE:N	0.50	2.74	8	2	
1:A:20:ILE:CD1	1:A:45:LYS:CE	0.50	2.90	2	8	
2:C:418:LYS:O	2:C:419:THR:HG22	0.50	2.06	23	2	
1:A:90:ASP:OD1	1:A:90:ASP:O	0.50	2.29	14	2	
1:A:64:MET:HE3	1:A:84:TYR:CG	0.50	2.40	24	1	
1:B:254:SER:N	2:D:528:MET:SD	0.50	2.84	21	1	
1:B:240:ASP:O	1:B:244:SER:OG	0.50	2.22	8	3	
1:A:92:ILE:O	1:A:96:CYS:SG	0.50	2.70	1	4	
1:A:86:LEU:HD11	2:D:520:GLU:O	0.50	2.07	6	3	
2:D:520:GLU:OE2	2:D:523:ARG:CZ	0.50	2.60	6	1	
2:D:527:GLY:O	2:D:528:MET:C	0.50	2.48	6	1	

			\mathbf{D}	Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
1:A:81:LEU:CD1	1:A:81:LEU:N	0.50	2.74	9	1	
2:D:518:LYS:O	2:D:519:THR:HG22	0.50	2.06	23	2	
1:A:95:LEU:HD12	1:A:99:TYR:CZ	0.50	2.42	24	1	
1:B:258:GLU:CD	2:D:529:GLN:NE2	0.50	2.64	24	1	
2:D:523:ARG:CG	2:D:524:ILE:N	0.50	2.74	8	2	
1:A:39:ILE:HG21	1:A:94:HIS:ND1	0.50	2.22	2	1	
2:C:410:PRO:O	2:C:411:THR:CB	0.50	2.59	4	1	
1:B:295:LEU:HD12	1:B:299:TYR:CZ	0.50	2.42	24	1	
1:A:58:GLU:OE2	2:C:429:GLN:NE2	0.50	2.44	24	1	
2:D:519:THR:O	2:D:519:THR:HG23	0.50	2.06	17	2	
1:B:290:ASP:OD1	1:B:290:ASP:C	0.50	2.50	14	2	
1:B:295:LEU:O	1:B:298:MET:CG	0.50	2.59	15	1	
2:C:420:GLU:OE2	2:C:423:ARG:CZ	0.50	2.60	6	1	
2:C:430:ASP:O	2:C:430:ASP:OD1	0.50	2.30	7	1	
1:A:94:HIS:CD2	2:D:526:LYS:HZ2	0.50	2.25	8	1	
2:D:518:LYS:C	2:D:519:THR:CG2	0.49	2.80	6	2	
1:A:95:LEU:HD23	1:A:96:CYS:N	0.49	2.21	24	3	
1:B:264:MET:HE1	1:B:284:TYR:HB3	0.49	1.84	17	3	
1:A:29:PHE:CE1	2:D:513:ILE:HD12	0.49	2.41	17	1	
1:B:211:ARG:CG	1:B:211:ARG:NH1	0.49	2.73	1	2	
1:A:30:ASN:HB2	1:A:33:ALA:HB3	0.49	1.83	6	7	
1:B:282:LEU:CD2	1:B:282:LEU:C	0.49	2.79	17	4	
2:D:509:THR:N	2:D:512:ARG:NH2	0.49	2.51	15	1	
1:B:260:HIS:CD2	1:B:260:HIS:C	0.49	2.85	4	5	
1:B:254:SER:OG	2:D:529:GLN:CB	0.49	2.61	19	2	
1:A:43:VAL:HG13	1:A:95:LEU:HA	0.49	1.84	15	6	
1:A:82:LEU:HD13	2:D:515:VAL:HG12	0.49	1.83	17	1	
1:A:80:ILE:O	1:A:83:ASP:CG	0.49	2.51	18	1	
1:A:97:GLU:OE2	1:A:101:ARG:NH2	0.49	2.44	8	1	
2:C:422:ALA:O	2:C:423:ARG:C	0.49	2.50	19	8	
1:B:253:VAL:O	1:B:257:LEU:N	0.49	2.41	18	5	
2:C:421:LEU:C	2:C:423:ARG:N	0.49	2.66	9	6	
1:A:90:ASP:C	1:A:90:ASP:OD1	0.49	2.50	14	1	
1:B:252:SER:CB	2:D:528:MET:O	0.49	2.59	22	1	
1:B:297:GLU:OE2	1:B:300:ARG:NH2	0.49	2.43	25	1	
1:A:58:GLU:OE1	2:C:429:GLN:NE2	0.49	2.45	8	1	
1:A:54:SER:N	2:C:428:MET:SD	0.49	2.86	21	1	
1:A:79:ASP:HB3	2:D:515:VAL:HG23	0.49	1.85	5	1	
1:B:243:VAL:HG13	1:B:295:LEU:HA	0.49	1.84	15	6	
1:B:300:ARG:NH2	1:B:301:ARG:CZ	0.49	2.75	6	1	
1:B:281:LEU:CD1	1:B:281:LEU:N	0.49	2.75	9	1	

		$Clash(\hat{\lambda})$	${ m Distance}({ m \AA})$	Models		
Atom-1	Atom-2	Clash(A)		Worst	Total	
1:B:277:SER:H	2:C:411:THR:CG2	0.49	2.20	25	1	
1:B:260:HIS:CD2	2:D:518:LYS:NZ	0.49	2.80	8	1	
1:B:265:ASP:OD2	2:D:518:LYS:NZ	0.49	2.41	4	1	
1:B:260:HIS:NE2	2:D:521:LEU:CD1	0.49	2.75	7	3	
1:B:290:ASP:OD1	2:C:426:LYS:NZ	0.49	2.26	9	2	
1:B:214:LEU:HD21	1:B:251:ILE:HD11	0.49	1.83	10	1	
1:A:71:LEU:CD2	1:A:81:LEU:HD21	0.49	2.38	13	1	
1:B:239:ILE:HG21	1:B:294:HIS:ND1	0.49	2.21	2	1	
2:C:423:ARG:NE	2:C:424:ILE:N	0.49	2.60	16	1	
1:A:48:PHE:C	1:A:48:PHE:CD1	0.49	2.86	1	1	
2:D:510:PRO:O	2:D:511:THR:CB	0.49	2.59	4	1	
2:D:530:ASP:OD1	2:D:530:ASP:O	0.49	2.30	7	1	
1:B:283:ASP:N	1:B:283:ASP:OD1	0.49	2.41	9	2	
1:B:279:ASP:HB3	2:C:415:VAL:HG23	0.49	1.84	5	1	
1:A:71:LEU:N	1:A:71:LEU:CD1	0.49	2.76	18	2	
1:A:14:LEU:HD21	1:A:51:ILE:HD11	0.49	1.83	10	1	
1:B:271:LEU:CD2	1:B:281:LEU:HD21	0.49	2.38	13	1	
2:C:420:GLU:OE1	2:C:423:ARG:NH2	0.49	2.46	18	1	
1:A:54:SER:OG	2:C:429:GLN:CB	0.49	2.61	19	1	
1:A:45:LYS:O	1:A:49:ALA:CB	0.49	2.61	22	1	
1:A:14:LEU:CD1	1:A:55:GLN:OE1	0.49	2.61	21	1	
1:A:82:LEU:HG	1:A:86:LEU:HD12	0.49	1.84	9	3	
2:D:521:LEU:HD22	2:D:522:ALA:H	0.49	1.67	2	4	
1:B:264:MET:SD	1:B:284:TYR:HB3	0.49	2.48	5	10	
1:A:21:TYR:OH	1:A:60:HIS:CE1	0.49	2.66	13	2	
1:B:247:PHE:C	1:B:247:PHE:CD1	0.49	2.86	5	4	
1:A:54:SER:OG	2:C:429:GLN:N	0.49	2.45	11	1	
1:B:297:GLU:CG	2:C:428:MET:SD	0.49	3.01	18	1	
1:A:100:ARG:NH2	1:A:101:ARG:CZ	0.48	2.76	6	1	
1:B:225:VAL:CG2	1:B:287:THR:HG21	0.48	2.38	22	2	
1:A:54:SER:OG	2:C:428:MET:CB	0.48	2.61	12	1	
1:B:280:ILE:O	1:B:283:ASP:CG	0.48	2.51	18	1	
1:B:277:SER:N	2:C:411:THR:HG23	0.48	2.23	25	1	
1:A:34:LYS:C	1:A:36:ASN:N	0.48	2.66	16	6	
2:D:521:LEU:C	2:D:523:ARG:N	0.48	2.66	9	6	
1:A:92:ILE:O	1:A:96:CYS:N	0.48	2.41	12	2	
1:B:290:ASP:OD1	2:C:424:ILE:HD12	0.48	2.08	10	1	
1:A:82:LEU:C	1:A:82:LEU:CD2	0.48	2.79	17	2	
2:C:421:LEU:HD22	2:C:422:ALA:H	0.48	1.67	2	4	
1:A:27:GLU:OE1	1:A:38:ARG:NE	0.48	2.47	17	3	
2:C:416:ASP:OD1	2:C:417:GLU:CD	0.48	2.52	3	1	

			\mathbf{D}	Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
1:B:280:ILE:O	1:B:282:LEU:N	0.48	2.46	9	3	
1:B:264:MET:HE3	1:B:284:TYR:HB3	0.48	1.85	15	1	
2:C:413:ILE:HG23	2:C:415:VAL:HG13	0.48	1.85	17	1	
1:B:227:GLU:O	1:B:235:VAL:HG22	0.48	2.09	17	3	
1:B:234:LYS:C	1:B:236:ASN:N	0.48	2.66	16	7	
1:A:58:GLU:OE1	2:C:425:ALA:HB2	0.48	2.08	17	2	
1:A:53:VAL:O	1:A:57:LEU:N	0.48	2.41	18	7	
1:A:25:VAL:CG2	1:A:87:THR:HG21	0.48	2.38	22	2	
2:C:418:LYS:C	2:C:419:THR:CG2	0.48	2.80	6	2	
2:D:522:ALA:O	2:D:523:ARG:C	0.48	2.51	5	10	
1:A:14:LEU:CD2	1:A:55:GLN:OE1	0.48	2.61	25	4	
1:B:271:LEU:CD1	1:B:271:LEU:N	0.48	2.76	18	1	
1:A:19:SER:OG	1:A:22:ARG:NH2	0.48	2.46	22	1	
1:A:68:SER:OG	2:C:417:GLU:OE2	0.48	2.32	8	1	
1:B:214:LEU:CD1	1:B:255:GLN:OE1	0.48	2.61	21	1	
2:D:525:ALA:O	2:D:526:LYS:CG	0.48	2.61	6	1	
1:B:214:LEU:CD2	1:B:255:GLN:OE1	0.48	2.61	13	4	
2:D:512:ARG:HH12	2:D:513:ILE:HG22	0.48	1.67	13	1	
2:D:513:ILE:HG23	2:D:515:VAL:HG13	0.48	1.85	17	1	
2:D:516:ASP:OD1	2:D:517:GLU:CD	0.48	2.52	3	1	
2:C:425:ALA:O	2:C:426:LYS:CG	0.48	2.61	6	1	
1:B:282:LEU:HG	1:B:286:LEU:HD12	0.48	1.86	13	2	
1:B:292:ILE:O	1:B:296:CYS:N	0.48	2.41	12	1	
1:A:64:MET:HE1	1:A:84:TYR:HB3	0.48	1.85	17	4	
1:B:245:LYS:O	1:B:249:ALA:CB	0.48	2.61	22	1	
1:B:274:GLU:CD	1:B:276:ARG:HH21	0.48	2.11	2	1	
2:D:520:GLU:OE1	2:D:523:ARG:NH2	0.48	2.46	18	1	
1:B:219:SER:OG	1:B:222:ARG:NH2	0.48	2.47	22	1	
1:B:248:PHE:C	1:B:248:PHE:CD1	0.48	2.86	1	1	
1:B:286:LEU:HD21	2:C:421:LEU:N	0.48	2.24	8	3	
1:B:221:TYR:OH	1:B:260:HIS:CE1	0.48	2.66	13	2	
1:B:222:ARG:CZ	1:B:226:LEU:HD11	0.48	2.39	25	1	
1:A:27:GLU:O	1:A:35:VAL:HG22	0.48	2.09	17	3	
1:A:11:ARG:HH22	1:A:18:ARG:NH1	0.48	2.07	2	1	
1:B:292:ILE:O	1:B:295:LEU:CD2	0.48	2.61	17	5	
1:A:58:GLU:CD	2:C:429:GLN:OE1	0.48	2.53	6	1	
1:A:90:ASP:OD2	2:D:524:ILE:CD1	0.48	2.61	12	1	
1:A:78:GLU:C	1:A:81:LEU:HD23	0.48	2.30	13	1	
2:C:420:GLU:CD	2:C:423:ARG:HH21	0.48	2.12	22	1	
1:B:278:GLU:O	1:B:281:LEU:CD2	0.48	2.60	25	1	
2:D:516:ASP:OD2	2:D:517:GLU:OE1	0.47	2.32	16	1	

		$Clash(\hat{\lambda})$	${ m Distance}({ m \AA})$	Models		
Atom-1	Atom-2	Clash(A)		Worst	Total	
1:A:64:MET:SD	1:A:84:TYR:HB3	0.47	2.50	21	10	
1:A:47:PHE:C	1:A:47:PHE:CD1	0.47	2.86	5	6	
1:B:281:LEU:CD2	1:B:281:LEU:N	0.47	2.77	13	1	
1:A:80:ILE:CD1	1:A:83:ASP:OD2	0.47	2.61	18	1	
1:A:72:LYS:HZ3	2:C:417:GLU:HG3	0.47	1.69	23	1	
1:B:267:PHE:O	1:B:271:LEU:HD13	0.47	2.08	9	8	
1:A:74:GLU:CD	1:A:76:ARG:HH21	0.47	2.12	2	1	
1:B:211:ARG:HH22	1:B:218:ARG:NH1	0.47	2.07	2	1	
1:B:298:MET:HG3	1:B:299:TYR:N	0.47	2.24	20	15	
1:B:227:GLU:OE1	1:B:238:ARG:NE	0.47	2.47	17	2	
1:B:258:GLU:OE2	2:D:525:ALA:HB1	0.47	2.08	12	4	
1:A:20:ILE:HD12	1:A:45:LYS:HZ1	0.47	1.69	14	1	
1:B:272:LYS:HZ3	2:D:517:GLU:HG3	0.47	1.69	23	1	
1:A:58:GLU:CD	2:C:429:GLN:NE2	0.47	2.67	24	1	
1:A:22:ARG:CZ	1:A:26:LEU:HD11	0.47	2.39	25	1	
1:A:67:PHE:O	1:A:71:LEU:HD13	0.47	2.08	9	8	
1:A:92:ILE:O	1:A:95:LEU:CD2	0.47	2.60	17	4	
1:B:241:GLU:HG3	1:B:245:LYS:NZ	0.47	2.25	11	3	
1:A:80:ILE:CD1	2:D:512:ARG:CZ	0.47	2.87	15	1	
1:B:282:LEU:CD2	2:C:415:VAL:HG21	0.47	2.40	18	1	
1:B:297:GLU:OE2	1:B:301:ARG:NH2	0.47	2.44	8	1	
2:D:524:ILE:O	2:D:524:ILE:CG1	0.47	2.62	8	1	
1:A:80:ILE:O	1:A:82:LEU:N	0.47	2.47	9	3	
1:B:278:GLU:C	1:B:281:LEU:HD23	0.47	2.30	13	1	
1:A:82:LEU:CD2	2:D:515:VAL:HG21	0.47	2.40	18	1	
2:C:430:ASP:OD1	2:C:430:ASP:C	0.47	2.53	25	3	
1:B:295:LEU:C	1:B:295:LEU:HD12	0.47	2.30	23	1	
1:B:302:SER:O	1:B:302:SER:OG	0.47	2.33	24	1	
2:D:523:ARG:HG2	2:D:524:ILE:N	0.47	2.25	1	2	
1:B:236:ASN:O	1:B:240:ASP:N	0.47	2.38	12	5	
1:B:251:ILE:CD1	1:B:255:GLN:HE22	0.47	2.23	3	1	
2:D:512:ARG:NH1	2:D:513:ILE:CB	0.47	2.78	13	1	
2:C:416:ASP:OD2	2:C:417:GLU:OE1	0.47	2.32	16	1	
1:A:86:LEU:HD21	2:D:521:LEU:H	0.47	1.70	17	1	
1:A:85:ARG:NE	1:B:285:ARG:CD	0.47	2.78	20	1	
2:D:520:GLU:CD	2:D:523:ARG:HH21	0.47	2.12	22	1	
2:D:518:LYS:NZ	2:D:518:LYS:O	0.47	2.29	25	1	
1:A:90:ASP:CG	2:D:526:LYS:HZ1	0.47	2.12	21	1	
1:B:253:VAL:HG12	1:B:257:LEU:CD1	0.47	2.40	19	8	
1:A:98:MET:HG3	1:A:99:TYR:N	0.47	2.24	20	15	
1:A:51:ILE:CD1	1:A:55:GLN:HE22	0.47	2.23	3	1	

				Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
1:A:72:LYS:CE	1:A:78:GLU:OE1	0.47	2.63	4	1	
1:A:86:LEU:HD11	2:D:520:GLU:HB2	0.47	1.87	9	2	
2:D:523:ARG:CD	2:D:523:ARG:C	0.47	2.82	16	1	
1:A:41:GLU:HG3	1:A:45:LYS:NZ	0.47	2.25	11	3	
1:A:52:SER:HB2	1:A:54:SER:HG	0.47	1.69	12	1	
1:A:80:ILE:CD1	2:D:509:THR:O	0.47	2.63	12	2	
1:B:292:ILE:O	1:B:296:CYS:CB	0.47	2.63	14	2	
1:B:229:PHE:CE1	2:C:413:ILE:HD12	0.47	2.45	17	1	
1:A:74:GLU:O	1:A:75:GLY:C	0.47	2.53	21	1	
1:B:280:ILE:HD13	2:C:410:PRO:N	0.47	2.25	9	1	
2:C:423:ARG:HG2	2:C:424:ILE:N	0.46	2.25	1	2	
2:D:529:GLN:O	2:D:529:GLN:CD	0.46	2.54	7	2	
1:B:227:GLU:O	1:B:230:ASN:CG	0.46	2.53	5	1	
1:B:223:THR:CG2	1:B:238:ARG:NE	0.46	2.78	6	1	
1:A:81:LEU:N	1:A:81:LEU:CD2	0.46	2.77	13	1	
1:A:89:ILE:CD1	2:D:521:LEU:HD21	0.46	2.40	13	3	
2:C:423:ARG:CD	2:C:423:ARG:C	0.46	2.83	16	1	
1:A:85:ARG:CD	1:B:285:ARG:NE	0.46	2.79	20	1	
1:B:274:GLU:O	1:B:275:GLY:C	0.46	2.53	21	1	
1:A:31:THR:O	1:A:32:ASP:CG	0.46	2.54	4	2	
1:A:27:GLU:O	1:A:30:ASN:CG	0.46	2.53	5	1	
1:A:64:MET:HE3	1:A:84:TYR:HB3	0.46	1.87	15	3	
1:A:77:SER:N	2:D:511:THR:CG2	0.46	2.78	25	1	
1:B:258:GLU:OE1	2:D:529:GLN:NE2	0.46	2.48	8	1	
1:A:53:VAL:HG12	1:A:57:LEU:CD1	0.46	2.40	19	10	
1:B:231:THR:O	1:B:232:ASP:CG	0.46	2.54	4	2	
2:D:528:MET:C	2:D:530:ASP:N	0.46	2.68	25	2	
1:B:211:ARG:O	1:B:215:ASP:N	0.46	2.41	24	5	
1:B:249:ALA:O	1:B:250:ASP:C	0.46	2.53	10	1	
2:C:412:ARG:NH1	2:C:413:ILE:CB	0.46	2.78	13	1	
2:D:530:ASP:OD1	2:D:530:ASP:C	0.46	2.53	25	2	
1:A:102:SER:OG	1:A:102:SER:O	0.46	2.33	24	1	
1:B:247:PHE:CD1	1:B:247:PHE:C	0.46	2.88	25	1	
1:A:64:MET:HB2	2:C:418:LYS:HZ2	0.46	1.69	8	1	
2:C:424:ILE:O	2:C:424:ILE:CG1	0.46	2.63	8	1	
1:A:23:THR:CG2	1:A:38:ARG:NE	0.46	2.78	6	1	
1:B:254:SER:OG	2:D:529:GLN:N	0.46	2.49	11	1	
1:B:277:SER:O	1:B:278:GLU:HG3	0.46	2.10	15	1	
1:A:64:MET:HA	1:A:64:MET:HE2	0.46	1.87	1	2	
1:B:272:LYS:CE	1:B:278:GLU:OE1	0.46	2.63	4	1	
2:C:429:GLN:O	2:C:429:GLN:CD	0.46	2.54	7	1	

				Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
1:A:49:ALA:O	1:A:50:ASP:C	0.46	2.53	10	1	
1:A:77:SER:O	1:A:78:GLU:HG3	0.46	2.10	15	1	
1:B:285:ARG:CB	1:B:285:ARG:NH1	0.46	2.79	2	1	
1:B:280:ILE:CD1	2:C:409:THR:O	0.46	2.64	12	2	
2:C:412:ARG:HH12	2:C:413:ILE:HG22	0.46	1.67	13	1	
1:A:29:PHE:HB3	2:D:512:ARG:NE	0.46	2.25	24	1	
1:B:234:LYS:O	1:B:235:VAL:C	0.46	2.54	1	2	
1:A:82:LEU:HD12	2:D:519:THR:HG23	0.46	1.88	17	2	
1:B:295:LEU:HG	1:B:296:CYS:N	0.46	2.25	14	8	
1:A:95:LEU:HG	1:A:96:CYS:N	0.46	2.26	20	8	
2:D:521:LEU:HD13	2:D:521:LEU:C	0.46	2.30	22	1	
1:A:64:MET:HE3	1:A:84:TYR:CD2	0.46	2.45	24	1	
1:B:260:HIS:CE1	1:B:264:MET:HG3	0.46	2.46	4	1	
1:A:60:HIS:CD2	1:A:60:HIS:C	0.46	2.89	7	2	
1:A:67:PHE:CG	1:A:84:TYR:CE2	0.46	3.04	17	1	
1:B:278:GLU:C	1:B:280:ILE:H	0.46	2.13	18	1	
2:C:421:LEU:HD13	2:C:421:LEU:C	0.46	2.31	22	1	
1:B:286:LEU:O	1:B:290:ASP:N	0.46	2.42	8	1	
2:C:416:ASP:CG	2:C:417:GLU:N	0.46	2.69	11	5	
1:B:298:MET:O	1:B:302:SER:N	0.46	2.48	4	1	
1:A:60:HIS:ND1	1:A:88:LEU:HB2	0.46	2.26	11	13	
1:A:47:PHE:HB2	1:A:98:MET:SD	0.46	2.51	14	3	
1:A:29:PHE:CE2	1:A:83:ASP:HB3	0.46	2.45	9	2	
1:B:229:PHE:CE2	1:B:283:ASP:HB3	0.46	2.45	9	2	
1:B:294:HIS:CB	2:C:426:LYS:HZ1	0.46	2.23	14	2	
1:B:280:ILE:HD12	2:C:412:ARG:NE	0.46	2.25	13	1	
1:A:64:MET:SD	1:A:84:TYR:HB2	0.46	2.51	15	1	
1:A:72:LYS:NZ	2:C:417:GLU:HG3	0.46	2.26	23	1	
1:A:86:LEU:O	1:A:90:ASP:N	0.46	2.42	8	1	
1:A:82:LEU:HB2	2:D:519:THR:HG1	0.46	1.69	21	1	
1:A:85:ARG:N	1:A:85:ARG:HD2	0.46	2.25	14	2	
1:A:78:GLU:C	1:A:80:ILE:H	0.46	2.13	18	1	
1:B:282:LEU:HD13	2:C:419:THR:CB	0.46	2.41	18	1	
1:B:290:ASP:CG	2:C:426:LYS:HZ1	0.46	2.14	21	1	
1:B:247:PHE:HB2	1:B:298:MET:SD	0.45	2.51	14	3	
1:A:80:ILE:HD13	2:D:510:PRO:N	0.45	2.25	9	1	
2:D:526:LYS:N	2:D:526:LYS:HE2	0.45	2.26	12	1	
1:B:289:ILE:CD1	2:C:421:LEU:HD21	0.45	2.41	8	2	
1:A:60:HIS:CE1	1:A:64:MET:HG3	0.45	2.46	4	1	
1:A:82:LEU:HD22	2:D:515:VAL:HG11	0.45	1.85	9	1	
1:B:243:VAL:HG21	1:B:294:HIS:HD2	0.45	1.71	12	2	

			Distance(Å)	Models		
Atom-1	Atom-2	Clash(A)		Worst	Total	
2:C:426:LYS:N	2:C:426:LYS:HE2	0.45	2.27	12	1	
1:A:30:ASN:C	1:A:30:ASN:HD22	0.45	2.14	14	1	
1:B:230:ASN:HD22	1:B:230:ASN:C	0.45	2.14	14	1	
2:C:416:ASP:O	2:C:417:GLU:C	0.45	2.54	16	1	
1:B:227:GLU:O	1:B:235:VAL:CG2	0.45	2.64	17	2	
1:A:11:ARG:O	1:A:15:ASP:N	0.45	2.41	24	7	
2:C:428:MET:C	2:C:430:ASP:N	0.45	2.68	25	2	
1:A:85:ARG:CB	1:A:85:ARG:NH1	0.45	2.79	2	1	
2:C:426:LYS:CE	2:C:426:LYS:N	0.45	2.80	12	1	
1:B:280:ILE:HB	2:C:412:ARG:NH2	0.45	2.26	13	1	
1:A:77:SER:N	2:D:511:THR:HG23	0.45	2.27	25	1	
2:C:418:LYS:NZ	2:C:418:LYS:O	0.45	2.29	25	1	
2:D:516:ASP:CG	2:D:517:GLU:N	0.45	2.70	11	5	
1:A:25:VAL:CG1	1:A:84:TYR:CD1	0.45	3.00	18	2	
2:D:512:ARG:HG3	2:D:513:ILE:N	0.45	2.27	6	3	
1:A:60:HIS:CE1	1:A:64:MET:CG	0.45	3.00	4	2	
1:B:260:HIS:CE1	1:B:264:MET:CG	0.45	3.00	4	2	
1:A:90:ASP:OD1	1:A:90:ASP:C	0.45	2.55	5	1	
1:A:80:ILE:HB	2:D:512:ARG:NH2	0.45	2.26	13	1	
1:A:82:LEU:HD11	2:D:519:THR:O	0.45	2.10	13	1	
1:B:220:ILE:HD12	1:B:245:LYS:HZ1	0.45	1.70	14	1	
1:A:27:GLU:O	1:A:35:VAL:CG2	0.45	2.64	17	1	
2:C:420:GLU:CD	2:C:423:ARG:HE	0.45	2.15	22	1	
2:D:510:PRO:C	2:D:511:THR:HG1	0.45	2.15	24	1	
1:A:35:VAL:O	1:A:38:ARG:N	0.45	2.50	8	8	
1:B:285:ARG:N	1:B:285:ARG:HD2	0.45	2.25	14	2	
1:B:264:MET:SD	1:B:284:TYR:HB2	0.45	2.51	15	1	
1:A:34:LYS:O	1:A:35:VAL:C	0.45	2.54	1	2	
1:A:11:ARG:CG	1:A:11:ARG:NH1	0.45	2.80	3	1	
1:B:260:HIS:ND1	1:B:288:LEU:HB2	0.45	2.26	11	13	
2:D:516:ASP:O	2:D:517:GLU:C	0.45	2.54	16	1	
1:A:78:GLU:O	1:A:80:ILE:N	0.45	2.50	18	1	
1:A:29:PHE:CZ	1:A:83:ASP:HB2	0.45	2.47	18	1	
2:D:520:GLU:CD	2:D:523:ARG:HE	0.45	2.15	22	1	
1:A:78:GLU:O	1:A:81:LEU:CD2	0.45	2.60	25	1	
1:B:225:VAL:CG1	1:B:284:TYR:CD1	0.45	3.00	18	2	
1:A:60:HIS:CE1	1:A:88:LEU:HB2	0.45	2.47	9	7	
2:D:524:ILE:HG23	2:D:525:ALA:N	0.45	2.27	7	1	
2:C:412:ARG:NH2	2:C:412:ARG:H	0.45	2.10	13	1	
2:D:512:ARG:NH1	2:D:513:ILE:HB	0.45	2.27	13	1	
2:C:423:ARG:NE	2:C:424:ILE:CA	0.45	2.80	16	1	

		(1 - 1)	\mathbf{D}^{\prime}	Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
1:B:267:PHE:CG	1:B:284:TYR:CE2	0.45	3.04	17	1	
1:A:53:VAL:HG12	1:A:57:LEU:HD11	0.45	1.88	19	2	
1:B:258:GLU:CD	2:D:525:ALA:CB	0.45	2.85	2	1	
1:B:271:LEU:N	1:B:271:LEU:CD1	0.45	2.80	5	1	
1:B:282:LEU:HD22	2:C:415:VAL:HG11	0.45	1.84	9	1	
1:A:30:ASN:ND2	1:A:30:ASN:C	0.45	2.70	20	3	
1:A:43:VAL:HG21	1:A:94:HIS:HD2	0.45	1.71	12	1	
1:A:82:LEU:HD13	2:D:519:THR:CB	0.45	2.42	18	1	
1:B:220:ILE:HD11	1:B:245:LYS:HZ1	0.45	1.72	19	1	
1:B:294:HIS:CD2	2:C:426:LYS:NZ	0.45	2.85	8	1	
1:B:264:MET:HA	1:B:264:MET:HE2	0.45	1.87	1	2	
2:D:518:LYS:HG2	2:D:519:THR:N	0.45	2.27	24	2	
1:A:47:PHE:CE2	1:A:99:TYR:CE1	0.45	3.06	9	4	
1:B:260:HIS:NE2	1:B:264:MET:CG	0.45	2.80	17	4	
1:A:18:ARG:CB	1:A:18:ARG:NH1	0.45	2.80	6	1	
2:C:424:ILE:HG23	2:C:425:ALA:N	0.45	2.27	7	1	
1:A:90:ASP:CG	2:D:526:LYS:HZ2	0.45	2.15	10	1	
2:C:412:ARG:NH1	2:C:413:ILE:HB	0.45	2.27	13	1	
1:A:80:ILE:HD12	2:D:512:ARG:NE	0.45	2.26	13	1	
1:A:60:HIS:NE2	1:A:64:MET:CG	0.44	2.80	17	4	
2:D:526:LYS:N	2:D:526:LYS:CE	0.44	2.80	12	1	
1:A:23:THR:CG2	1:A:38:ARG:HE	0.44	2.26	17	2	
1:B:223:THR:CG2	1:B:238:ARG:HE	0.44	2.26	17	2	
1:B:235:VAL:O	1:B:238:ARG:N	0.44	2.50	8	8	
1:B:218:ARG:CB	1:B:218:ARG:NH1	0.44	2.80	6	1	
1:B:211:ARG:NE	1:B:215:ASP:OD1	0.44	2.51	7	1	
1:B:268:SER:O	2:D:517:GLU:OE2	0.44	2.36	2	1	
1:B:286:LEU:HD11	2:C:420:GLU:HB2	0.44	1.89	9	2	
1:B:294:HIS:CD2	2:C:426:LYS:HZ1	0.44	2.29	14	1	
2:D:513:ILE:O	2:D:513:ILE:HG23	0.44	2.12	25	1	
1:A:98:MET:O	1:A:102:SER:N	0.44	2.48	4	1	
2:D:523:ARG:NE	2:D:524:ILE:CA	0.44	2.80	16	1	
1:B:229:PHE:CZ	1:B:283:ASP:HB2	0.44	2.47	18	1	
1:B:253:VAL:HG12	1:B:257:LEU:HD11	0.44	1.88	19	1	
1:B:297:GLU:OE2	1:B:301:ARG:CD	0.44	2.66	19	1	
1:B:227:GLU:OE1	1:B:238:ARG:CG	0.44	2.66	1	1	
1:A:82:LEU:CG	1:A:83:ASP:N	0.44	2.80	2	2	
1:A:71:LEU:O	1:A:75:GLY:CA	0.44	2.66	3	3	
1:B:271:LEU:O	1:B:275:GLY:CA	0.44	2.66	3	3	
2:D:523:ARG:HH11	2:D:524:ILE:HG23	0.44	1.72	11	1	
1:A:92:ILE:O	1:A:96:CYS:CB	0.44	2.65	12	2	

		$Clash(\hat{\lambda})$	Distance(Å)	Models		
Atom-1	Atom-2	Clash(A)		Worst	Total	
1:A:77:SER:H	2:D:511:THR:CG2	0.44	2.24	25	1	
1:A:100:ARG:NH2	1:B:250:ASP:OD2	0.44	2.51	8	1	
1:B:216:GLU:N	1:B:216:GLU:OE1	0.44	2.50	2	1	
1:B:211:ARG:CG	1:B:211:ARG:HH11	0.44	2.26	3	1	
1:B:290:ASP:OD2	2:C:424:ILE:CD1	0.44	2.65	12	1	
2:D:512:ARG:H	2:D:512:ARG:NH2	0.44	2.10	13	1	
2:C:423:ARG:HE	2:C:424:ILE:N	0.44	2.11	16	1	
1:B:260:HIS:CE1	1:B:288:LEU:HB2	0.44	2.48	24	7	
1:B:299:TYR:O	1:B:303:ILE:HG13	0.44	2.12	9	2	
2:D:529:GLN:CG	2:D:529:GLN:O	0.44	2.65	11	1	
2:D:523:ARG:HE	2:D:524:ILE:N	0.44	2.11	16	1	
1:A:79:ASP:C	1:A:81:LEU:H	0.44	2.15	17	1	
1:A:97:GLU:OE2	1:A:101:ARG:CD	0.44	2.66	19	1	
1:A:57:LEU:O	2:C:422:ALA:CB	0.44	2.66	24	1	
1:A:11:ARG:HH11	1:A:11:ARG:HG3	0.44	1.73	1	1	
1:B:294:HIS:CA	2:C:426:LYS:NZ	0.44	2.81	2	1	
2:C:412:ARG:HG3	2:C:413:ILE:N	0.44	2.27	6	3	
1:A:70:GLN:O	1:A:74:GLU:N	0.44	2.41	3	2	
1:B:264:MET:O	1:B:268:SER:OG	0.44	2.36	11	1	
2:C:429:GLN:CG	2:C:429:GLN:O	0.44	2.65	11	1	
1:B:290:ASP:O	1:B:290:ASP:OD1	0.44	2.36	17	1	
1:B:283:ASP:OD1	1:B:283:ASP:C	0.44	2.55	18	1	
2:C:413:ILE:HG23	2:C:413:ILE:O	0.44	2.12	25	1	
1:B:281:LEU:O	1:B:282:LEU:C	0.44	2.55	8	1	
2:C:418:LYS:HG2	2:C:419:THR:N	0.44	2.27	24	2	
2:C:412:ARG:C	2:C:412:ARG:HH11	0.44	2.16	9	1	
1:B:278:GLU:O	1:B:280:ILE:N	0.44	2.50	18	1	
1:A:60:HIS:CD2	2:C:418:LYS:HZ1	0.44	2.30	8	1	
1:A:27:GLU:OE1	1:A:38:ARG:CG	0.43	2.66	1	1	
1:A:94:HIS:CA	2:D:526:LYS:NZ	0.43	2.82	2	1	
2:C:422:ALA:C	2:C:423:ARG:CG	0.43	2.86	13	1	
1:A:41:GLU:HG2	1:A:45:LYS:NZ	0.43	2.28	21	2	
1:B:241:GLU:HG2	1:B:245:LYS:NZ	0.43	2.28	21	2	
2:D:521:LEU:C	2:D:521:LEU:HD13	0.43	2.32	1	3	
1:B:265:ASP:O	1:B:268:SER:OG	0.43	2.36	4	1	
2:C:418:LYS:C	2:C:419:THR:HG22	0.43	2.34	12	2	
2:D:522:ALA:C	2:D:523:ARG:CG	0.43	2.86	13	1	
1:B:280:ILE:CD1	2:C:412:ARG:CZ	0.43	2.88	15	1	
1:A:30:ASN:ND2	1:A:35:VAL:HG23	0.43	2.28	17	1	
1:B:278:GLU:CD	2:D:517:GLU:OE1	0.43	2.56	20	1	
1:B:272:LYS:NZ	2:D:517:GLU:HG3	0.43	2.28	23	1	

	h h		D: (()	Models	
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
2:C:416:ASP:OD1	2:C:417:GLU:OE2	0.43	2.37	3	1
1:B:247:PHE:CE2	1:B:299:TYR:CE1	0.43	3.05	9	3
1:A:11:ARG:NE	1:A:15:ASP:OD1	0.43	2.51	7	1
1:B:285:ARG:HH11	1:B:285:ARG:HG2	0.43	1.73	9	1
2:C:418:LYS:CE	2:C:421:LEU:HD13	0.43	2.43	8	1
2:D:516:ASP:OD1	2:D:517:GLU:OE2	0.43	2.36	3	1
2:D:518:LYS:O	2:D:519:THR:HG23	0.43	2.14	6	1
2:D:512:ARG:HH11	2:D:512:ARG:C	0.43	2.16	9	1
1:B:279:ASP:C	1:B:281:LEU:H	0.43	2.15	17	1
1:A:81:LEU:O	1:A:83:ASP:OD1	0.43	2.36	8	1
1:B:254:SER:OG	2:D:528:MET:CB	0.43	2.66	12	1
1:B:219:SER:O	1:B:223:THR:N	0.43	2.50	16	1
1:B:230:ASN:ND2	1:B:235:VAL:HG23	0.43	2.28	17	1
1:B:286:LEU:HD21	2:C:421:LEU:H	0.43	1.73	17	1
1:B:280:ILE:CD1	1:B:283:ASP:OD2	0.43	2.61	18	1
1:B:260:HIS:ND1	1:B:288:LEU:HG	0.43	2.29	20	3
1:A:85:ARG:HE	1:B:285:ARG:CD	0.43	2.27	20	1
1:A:60:HIS:ND1	1:A:88:LEU:HG	0.43	2.29	25	3
1:A:34:LYS:O	1:A:37:GLU:OE1	0.43	2.37	23	1
1:B:290:ASP:HA	2:C:426:LYS:NZ	0.43	2.28	21	1
1:A:16:GLU:OE1	1:A:16:GLU:N	0.43	2.50	2	1
2:D:524:ILE:CG2	2:D:525:ALA:N	0.43	2.81	7	1
2:D:527:GLY:C	2:D:529:GLN:H	0.43	2.14	7	1
1:A:95:LEU:CD1	1:A:99:TYR:OH	0.43	2.60	24	1
1:A:81:LEU:O	1:A:82:LEU:C	0.43	2.55	8	1
2:C:424:ILE:CG2	2:C:425:ALA:N	0.43	2.81	7	1
1:B:260:HIS:NE2	1:B:264:MET:HG3	0.43	2.29	17	1
1:A:83:ASP:C	1:A:83:ASP:OD1	0.43	2.55	18	1
1:B:299:TYR:O	1:B:303:ILE:HG12	0.43	2.14	3	1
1:B:248:PHE:C	1:B:250:ASP:H	0.43	2.17	4	3
2:C:423:ARG:HH11	2:C:424:ILE:HG23	0.43	1.72	11	1
1:A:60:HIS:NE2	1:A:64:MET:HG3	0.43	2.29	17	1
1:A:72:LYS:NZ	2:C:417:GLU:CG	0.43	2.81	23	1
1:B:281:LEU:O	1:B:283:ASP:OD1	0.43	2.36	8	1
2:D:524:ILE:HG13	2:D:525:ALA:N	0.43	2.29	17	3
2:D:510:PRO:O	2:D:511:THR:CG2	0.43	2.66	4	1
2:C:427:GLY:C	2:C:429:GLN:N	0.43	2.72	7	1
1:A:71:LEU:CD2	1:A:81:LEU:CD1	0.43	2.97	10	2
1:B:215:ASP:O	1:B:218:ARG:HG3	0.43	2.14	16	1
1:A:43:VAL:HG11	1:A:94:HIS:ND1	0.43	2.29	17	1
1:B:211:ARG:HH11	1:B:211:ARG:HG3	0.43	1.73	1	1

			D1 (8)	Models	
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
1:A:20:ILE:HD11	1:A:45:LYS:HZ2	0.43	1.72	3	1
1:A:20:ILE:CD1	1:A:45:LYS:HE2	0.43	2.44	22	2
1:B:290:ASP:CG	2:C:426:LYS:HZ2	0.43	2.17	10	1
1:A:64:MET:O	1:A:68:SER:OG	0.43	2.36	11	1
1:A:94:HIS:CD2	2:D:526:LYS:HZ1	0.43	2.32	14	1
1:B:243:VAL:HG21	1:B:294:HIS:CG	0.43	2.49	25	1
2:D:518:LYS:CE	2:D:521:LEU:HD13	0.43	2.43	8	1
2:C:421:LEU:C	2:C:421:LEU:HD13	0.42	2.34	13	3
1:B:251:ILE:CD1	1:B:255:GLN:NE2	0.42	2.83	3	1
2:C:410:PRO:O	2:C:411:THR:CG2	0.42	2.66	4	1
1:B:264:MET:CE	1:B:284:TYR:HB3	0.42	2.44	17	1
2:D:530:ASP:C	2:D:530:ASP:OD1	0.42	2.57	19	1
1:A:60:HIS:CE1	1:A:64:MET:HG2	0.42	2.49	24	2
1:B:234:LYS:O	1:B:237:GLU:OE1	0.42	2.37	23	1
1:A:85:ARG:HD2	1:A:85:ARG:N	0.42	2.29	21	1
1:A:30:ASN:HD22	1:A:32:ASP:N	0.42	2.12	21	4
1:A:99:TYR:O	1:A:103:ILE:HG13	0.42	2.12	9	3
1:A:11:ARG:CG	1:A:11:ARG:HH11	0.42	2.26	3	1
2:D:512:ARG:HH21	2:D:513:ILE:HD13	0.42	1.74	3	1
2:C:418:LYS:O	2:C:419:THR:HG23	0.42	2.14	6	1
1:A:95:LEU:C	1:A:95:LEU:CD1	0.42	2.88	14	1
2:C:416:ASP:H	2:C:419:THR:HB	0.42	1.75	20	1
1:B:272:LYS:NZ	2:D:517:GLU:CG	0.42	2.82	23	1
1:A:50:ASP:OD2	1:B:300:ARG:NH2	0.42	2.52	8	1
2:D:519:THR:C	2:D:520:GLU:O	0.42	2.58	2	2
2:C:424:ILE:HG13	2:C:425:ALA:N	0.42	2.29	17	3
2:C:412:ARG:HH21	2:C:413:ILE:HD13	0.42	1.74	3	1
2:D:518:LYS:C	2:D:519:THR:O	0.42	2.57	19	2
1:B:220:ILE:CD1	1:B:245:LYS:HE2	0.42	2.44	22	2
2:D:518:LYS:C	2:D:519:THR:HG22	0.42	2.34	12	2
1:B:282:LEU:HD12	1:B:283:ASP:N	0.42	2.29	18	1
1:B:260:HIS:CE1	1:B:264:MET:HG2	0.42	2.49	24	2
1:A:78:GLU:CD	2:C:417:GLU:OE1	0.42	2.58	20	1
1:B:230:ASN:HD22	1:B:232:ASP:N	0.42	2.12	21	2
1:A:68:SER:O	2:C:417:GLU:OE2	0.42	2.38	2	1
1:B:282:LEU:CG	1:B:283:ASP:N	0.42	2.81	2	2
2:C:419:THR:C	2:C:420:GLU:O	0.42	2.58	2	3
1:A:51:ILE:CD1	1:A:55:GLN:NE2	0.42	2.83	3	1
1:B:298:MET:HG2	1:B:299:TYR:N	0.42	2.30	21	3
1:A:90:ASP:O	1:A:90:ASP:OD1	0.42	2.37	5	1
1:B:271:LEU:CD2	1:B:281:LEU:CD1	0.42	2.97	10	1

				Models	
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
1:B:268:SER:HA	1:B:271:LEU:HD22	0.42	1.92	13	2
1:A:15:ASP:O	1:A:18:ARG:HG3	0.42	2.14	16	1
1:A:82:LEU:HD12	1:A:83:ASP:N	0.42	2.29	18	1
1:A:95:LEU:CD1	1:A:99:TYR:CZ	0.42	3.02	24	1
1:B:285:ARG:HD2	1:B:285:ARG:N	0.42	2.29	25	1
1:A:81:LEU:C	1:A:83:ASP:N	0.42	2.72	8	1
1:B:212:LYS:HB2	1:B:212:LYS:HZ3	0.42	1.75	21	1
1:B:285:ARG:HB3	1:B:285:ARG:NH1	0.42	2.30	2	1
1:A:101:ARG:HG2	1:A:101:ARG:NH1	0.42	2.30	5	1
1:A:85:ARG:HG2	1:A:85:ARG:HH11	0.42	1.74	9	1
1:A:77:SER:H	2:D:511:THR:HG22	0.42	1.74	12	1
1:B:282:LEU:HD11	2:C:419:THR:O	0.42	2.14	13	1
1:A:64:MET:CE	1:A:84:TYR:HB3	0.42	2.44	17	1
1:B:282:LEU:HD21	2:C:415:VAL:HG21	0.42	1.91	18	1
1:A:22:ARG:NH1	1:A:26:LEU:CD1	0.42	2.82	25	1
1:A:98:MET:HG2	1:A:99:TYR:N	0.42	2.29	21	4
1:A:48:PHE:C	1:A:50:ASP:H	0.42	2.17	4	3
1:A:51:ILE:HG23	1:A:55:GLN:NE2	0.42	2.30	17	1
1:A:82:LEU:HD21	2:D:515:VAL:HG21	0.42	1.91	18	1
1:B:257:LEU:O	2:D:522:ALA:CB	0.42	2.67	24	1
1:B:222:ARG:NH1	1:B:226:LEU:CD1	0.42	2.82	25	1
1:A:30:ASN:OD1	1:A:35:VAL:HG23	0.42	2.12	25	3
1:B:295:LEU:O	1:B:298:MET:N	0.42	2.53	13	1
1:A:85:ARG:H	1:A:85:ARG:CD	0.42	2.28	14	1
1:B:243:VAL:HG11	1:B:294:HIS:ND1	0.42	2.29	17	1
1:B:261:VAL:HG12	2:D:518:LYS:NZ	0.42	2.30	23	1
1:A:65:ASP:O	1:A:68:SER:OG	0.42	2.37	4	1
2:D:522:ALA:O	2:D:524:ILE:HG23	0.42	2.14	6	1
2:D:526:LYS:O	2:D:527:GLY:C	0.42	2.58	10	1
1:A:37:GLU:N	1:A:37:GLU:CD	0.42	2.72	23	1
1:B:295:LEU:CD1	1:B:299:TYR:CZ	0.42	3.02	24	1
1:B:230:ASN:OD1	1:B:235:VAL:HG23	0.42	2.15	1	3
2:C:429:GLN:CD	2:C:429:GLN:O	0.42	2.57	1	1
2:D:520:GLU:OE2	2:D:523:ARG:NH1	0.42	2.53	4	1
2:C:418:LYS:HG2	2:C:418:LYS:O	0.42	2.15	7	1
2:D:509:THR:O	2:D:512:ARG:HB2	0.42	2.15	21	4
1:B:297:GLU:HB2	2:C:428:MET:SD	0.42	2.55	11	1
2:C:412:ARG:NH2	2:C:413:ILE:HG22	0.42	2.29	13	1
2:D:509:THR:OG1	2:D:512:ARG:CD	0.42	2.68	19	2
1:B:292:ILE:CG2	1:B:296:CYS:SG	0.42	3.08	22	2
1:A:99:TYR:O	1:A:103:ILE:HG12	0.41	2.14	3	1

				Models	
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
1:A:98:MET:CG	1:A:99:TYR:N	0.41	2.83	5	1
1:B:301:ARG:HG2	1:B:301:ARG:NH1	0.41	2.30	5	1
2:D:527:GLY:C	2:D:529:GLN:N	0.41	2.72	7	1
2:C:426:LYS:O	2:C:427:GLY:C	0.41	2.58	10	1
1:A:95:LEU:O	1:A:98:MET:N	0.41	2.53	13	1
2:C:409:THR:OG1	2:C:412:ARG:CD	0.41	2.68	19	2
1:B:281:LEU:O	1:B:283:ASP:N	0.41	2.53	8	1
1:A:82:LEU:O	1:A:85:ARG:CG	0.41	2.68	3	1
2:C:418:LYS:C	2:C:419:THR:O	0.41	2.57	19	2
2:C:420:GLU:OE2	2:C:423:ARG:NH1	0.41	2.53	4	1
1:B:254:SER:HB2	2:D:528:MET:CB	0.41	2.45	5	1
1:A:80:ILE:O	1:A:80:ILE:HG13	0.41	2.15	6	1
2:C:422:ALA:O	2:C:424:ILE:HG23	0.41	2.15	6	1
1:B:274:GLU:CD	1:B:276:ARG:NH1	0.41	2.73	12	1
2:D:512:ARG:H	2:D:512:ARG:NE	0.41	2.13	13	1
1:A:95:LEU:CD1	1:A:95:LEU:C	0.41	2.88	20	1
1:A:86:LEU:HD21	2:D:521:LEU:O	0.41	2.15	20	1
2:C:409:THR:CB	2:C:412:ARG:CZ	0.41	2.99	23	1
1:A:81:LEU:O	1:A:83:ASP:N	0.41	2.53	8	1
1:A:85:ARG:H	1:A:85:ARG:HD2	0.41	1.74	21	1
1:A:23:THR:CG2	1:A:38:ARG:CZ	0.41	2.97	1	1
1:A:85:ARG:CD	1:B:285:ARG:HE	0.41	2.28	20	1
1:A:51:ILE:CG2	1:A:52:SER:N	0.41	2.83	8	1
1:A:55:GLN:O	1:A:59:ILE:CB	0.41	2.69	8	1
2:D:509:THR:CG2	2:D:512:ARG:NH1	0.41	2.83	8	1
1:A:100:ARG:CB	1:A:100:ARG:NH1	0.41	2.84	4	1
1:A:13:LEU:O	1:A:17:LEU:HG	0.41	2.16	5	5
1:B:213:LEU:O	1:B:217:LEU:HG	0.41	2.15	22	4
1:A:100:ARG:NH1	1:A:100:ARG:HG3	0.41	2.29	9	1
1:A:85:ARG:HH11	1:B:285:ARG:NH1	0.41	2.12	15	1
1:B:251:ILE:HG23	1:B:255:GLN:NE2	0.41	2.30	17	1
1:A:43:VAL:HG21	1:A:94:HIS:CG	0.41	2.49	25	1
1:A:76:ARG:HB3	2:D:511:THR:HG23	0.41	1.92	21	1
1:A:58:GLU:CD	2:C:425:ALA:CB	0.41	2.89	2	1
1:B:260:HIS:CD2	1:B:264:MET:HG2	0.41	2.51	2	1
1:B:229:PHE:CZ	1:B:283:ASP:CB	0.41	3.03	18	1
2:C:409:THR:O	2:C:410:PRO:C	0.41	2.59	20	1
2:D:509:THR:CB	2:D:512:ARG:CZ	0.41	2.99	23	1
1:A:29:PHE:HB2	2:D:512:ARG:NH1	0.41	2.31	23	1
1:B:261:VAL:CG1	2:D:518:LYS:NZ	0.41	2.83	23	1
1:B:229:PHE:HB3	2:C:412:ARG:NE	0.41	2.31	24	1

A	<u>r-J-</u>			Models	
Atom-1	Atom-2	Ulash(A)	Distance(A)	Worst	Total
1:B:295:LEU:O	1:B:298:MET:HG3	0.41	2.16	1	2
1:B:282:LEU:O	1:B:285:ARG:CG	0.41	2.68	3	1
1:B:300:ARG:NH1	1:B:300:ARG:CB	0.41	2.84	4	1
1:A:82:LEU:CD2	1:A:82:LEU:C	0.41	2.89	5	3
1:B:225:VAL:HG11	1:B:284:TYR:CE1	0.41	2.51	6	1
2:D:509:THR:O	2:D:510:PRO:C	0.41	2.59	20	2
2:D:528:MET:O	2:D:529:GLN:HB3	0.41	2.15	14	1
1:B:285:ARG:NH2	2:C:421:LEU:CD1	0.41	2.84	20	1
1:B:286:LEU:HD21	2:C:421:LEU:O	0.41	2.13	20	1
1:B:264:MET:HE3	1:B:284:TYR:CG	0.41	2.50	24	1
1:B:213:LEU:HD12	1:B:249:ALA:HB2	0.41	1.93	8	1
2:C:418:LYS:CG	2:C:418:LYS:O	0.41	2.68	10	1
2:C:412:ARG:NH2	2:C:413:ILE:H	0.41	2.14	13	1
2:D:512:ARG:HH21	2:D:512:ARG:H	0.41	1.59	13	1
1:B:285:ARG:CD	1:B:285:ARG:H	0.41	2.28	14	1
1:A:54:SER:HB2	2:C:428:MET:CB	0.41	2.46	16	1
2:D:523:ARG:NH1	2:D:523:ARG:CB	0.41	2.84	24	1
1:A:95:LEU:O	1:A:98:MET:HG3	0.41	2.16	1	2
1:B:298:MET:CG	1:B:299:TYR:N	0.41	2.83	5	1
2:D:518:LYS:O	2:D:518:LYS:HG2	0.41	2.15	7	1
2:C:412:ARG:H	2:C:412:ARG:HH21	0.41	1.59	13	1
1:A:68:SER:HA	1:A:71:LEU:HD22	0.41	1.92	19	2
1:B:267:PHE:O	1:B:271:LEU:HD22	0.41	2.16	17	1
2:C:411:THR:HG22	2:C:411:THR:O	0.41	2.15	18	1
1:A:11:ARG:HH22	1:A:18:ARG:NH2	0.41	2.14	25	1
1:B:223:THR:CG2	1:B:238:ARG:CZ	0.41	2.97	1	1
2:C:429:GLN:O	2:C:429:GLN:CG	0.41	2.69	1	1
2:D:523:ARG:NE	2:D:523:ARG:C	0.41	2.74	2	1
1:A:85:ARG:HB3	1:A:85:ARG:NH1	0.41	2.29	2	1
2:C:410:PRO:C	2:C:411:THR:CG2	0.41	2.83	4	1
2:D:510:PRO:C	2:D:511:THR:CG2	0.41	2.83	4	1
1:B:280:ILE:O	1:B:280:ILE:HG13	0.41	2.15	6	1
1:B:300:ARG:NH1	1:B:300:ARG:HG3	0.41	2.29	9	1
1:B:220:ILE:HD13	1:B:245:LYS:HZ1	0.41	1.76	11	1
1:B:252:SER:HB2	1:B:254:SER:HG	0.41	1.75	12	1
2:D:512:ARG:NH2	2:D:513:ILE:HG22	0.41	2.30	13	1
1:A:77:SER:O	1:A:78:GLU:HB3	0.41	2.16	17	1
1:B:277:SER:O	1:B:278:GLU:HB3	0.41	2.16	17	1
2:D:523:ARG:NE	2:D:524:ILE:CG2	0.41	2.84	17	1
1:A:29:PHE:CZ	1:A:83:ASP:CB	0.41	3.03	18	1
1:A:97:GLU:HG2	2:D:528:MET:SD	0.41	2.56	18	1

				Models	
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
2:D:524:ILE:CG1	2:D:524:ILE:O	0.41	2.69	19	1
2:C:424:ILE:CG1	2:C:424:ILE:O	0.41	2.69	19	1
1:A:85:ARG:HD3	1:B:285:ARG:NE	0.41	2.31	22	1
1:B:268:SER:HG	2:D:517:GLU:CD	0.41	2.18	23	1
1:B:281:LEU:C	1:B:283:ASP:N	0.41	2.73	8	1
1:B:267:PHE:CE2	1:B:284:TYR:CZ	0.41	3.09	21	1
1:A:81:LEU:HA	1:A:84:TYR:CE2	0.41	2.51	16	2
2:C:419:THR:OG1	2:C:419:THR:O	0.41	2.31	7	1
1:B:211:ARG:NH1	1:B:211:ARG:HG2	0.41	2.31	22	1
1:B:268:SER:OG	2:D:517:GLU:CG	0.41	2.69	23	1
1:B:229:PHE:HB2	2:C:412:ARG:NH1	0.41	2.31	23	1
1:A:13:LEU:HD22	1:A:13:LEU:HA	0.41	1.76	24	1
1:B:295:LEU:CD1	1:B:299:TYR:OH	0.41	2.60	24	1
2:C:423:ARG:NH1	2:C:423:ARG:CB	0.41	2.84	24	1
1:B:255:GLN:O	1:B:259:ILE:CB	0.41	2.69	8	1
2:C:423:ARG:C	2:C:423:ARG:NE	0.40	2.74	2	1
1:A:100:ARG:NH1	1:B:252:SER:CB	0.40	2.83	5	1
2:D:525:ALA:O	2:D:527:GLY:O	0.40	2.39	7	1
1:B:294:HIS:HD1	1:B:294:HIS:C	0.40	2.19	14	1
1:A:85:ARG:NH2	2:D:521:LEU:CD1	0.40	2.84	20	1
1:B:279:ASP:HB3	2:C:415:VAL:CG2	0.40	2.46	24	1
1:B:211:ARG:HH22	1:B:218:ARG:NH2	0.40	2.14	25	1
1:B:297:GLU:OE2	1:B:300:ARG:NE	0.40	2.52	25	1
1:A:85:ARG:NH1	1:B:285:ARG:NH2	0.40	2.69	8	1
1:B:285:ARG:O	1:B:289:ILE:CG1	0.40	2.70	8	1
1:B:241:GLU:CG	1:B:245:LYS:HZ3	0.40	2.28	21	1
1:B:227:GLU:OE1	1:B:238:ARG:CZ	0.40	2.70	2	1
1:B:230:ASN:ND2	1:B:233:ALA:CA	0.40	2.84	3	1
1:A:54:SER:N	2:C:428:MET:HE3	0.40	2.31	12	1
1:A:85:ARG:NH1	1:B:285:ARG:HH11	0.40	2.12	15	1
1:A:97:GLU:OE2	1:A:101:ARG:CZ	0.40	2.69	19	1
2:D:516:ASP:H	2:D:519:THR:HB	0.40	1.75	20	1
2:C:416:ASP:O	2:C:419:THR:HG22	0.40	2.16	21	1
1:B:285:ARG:NH2	2:D:518:LYS:O	0.40	2.54	1	1
2:C:425:ALA:O	2:C:427:GLY:O	0.40	2.39	7	1
2:C:420:GLU:N	2:C:420:GLU:OE1	0.40	2.47	9	1
2:C:423:ARG:NH1	2:C:423:ARG:HB2	0.40	2.31	9	1
2:D:523:ARG:NH1	2:D:523:ARG:HB2	0.40	2.31	9	1
1:A:85:ARG:NE	1:B:285:ARG:HD3	0.40	2.32	22	1
2:D:511:THR:O	2:D:511:THR:HG22	0.40	2.17	22	1
2:C:409:THR:CG2	2:C:412:ARG:NH1	0.40	2.83	8	1

Atom 1	Atom D	$Cleat (\lambda)$	Distance (&)	Models	
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
1:A:97:GLU:OE1	1:A:100:ARG:NH2	0.40	2.54	21	1
2:D:516:ASP:O	2:D:519:THR:CA	0.40	2.70	21	1
1:A:60:HIS:CD2	1:A:64:MET:HG2	0.40	2.51	2	1
1:A:30:ASN:ND2	1:A:33:ALA:CA	0.40	2.84	3	1
1:B:290:ASP:CG	2:C:426:LYS:NZ	0.40	2.75	10	1
2:C:409:THR:O	2:C:412:ARG:HB2	0.40	2.16	24	2
1:B:242:PHE:CD1	1:B:242:PHE:C	0.40	2.95	17	1
1:B:251:ILE:CG2	1:B:252:SER:N	0.40	2.83	8	1
1:B:264:MET:HB2	2:D:518:LYS:HZ2	0.40	1.76	8	1
1:B:260:HIS:CD2	2:D:518:LYS:HZ1	0.40	2.33	8	1
2:D:521:LEU:HA	2:D:521:LEU:HD22	0.40	1.81	9	1
1:A:60:HIS:NE2	1:A:64:MET:HG2	0.40	2.32	10	1
2:D:518:LYS:CG	2:D:518:LYS:O	0.40	2.69	10	1
1:A:94:HIS:C	1:A:94:HIS:HD1	0.40	2.19	14	1
1:A:100:ARG:NH2	1:B:250:ASP:CG	0.40	2.75	15	1
1:A:19:SER:O	1:A:23:THR:N	0.40	2.50	16	1
2:C:424:ILE:O	2:C:425:ALA:HB3	0.40	2.17	16	1
1:B:282:LEU:HD12	2:C:419:THR:HG23	0.40	1.92	17	1
1:A:52:SER:CB	2:C:428:MET:O	0.40	2.70	22	1
1:A:79:ASP:HB3	2:D:515:VAL:CG2	0.40	2.47	24	1
1:A:85:ARG:NH2	1:B:285:ARG:NH1	0.40	2.70	8	1
1:A:14:LEU:HD13	1:A:55:GLN:OE1	0.40	2.16	21	1

6.3 Torsion angles (i)

6.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	97/107~(91%)	$92\pm2~(95\pm2\%)$	$4\pm1~(4\pm2\%)$	$1 \pm 1 (1 \pm 1\%)$	24 71
1	В	97/107~(91%)	$92\pm2~(95\pm2\%)$	$4\pm2~(4\pm2\%)$	$1\pm1 (1\pm1\%)$	24 71
2	С	22/34~(65%)	$11\pm2~(49\pm9\%)$	$5\pm2~(23\pm8\%)$	$6\pm2~(28\pm8\%)$	0 1
2	D	22/34~(65%)	$11\pm2~(49\pm9\%)$	$5\pm2~(23\pm8\%)$	$6\pm2~(28\pm8\%)$	0 1
All	All	5950/7050~(84%)	5154 (87%)	449 (8%)	347~(6%)	3 21

Mol	Chain	Res	Type	Models (Total)
2	С	419	THR	21
2	D	519	THR	21
2	С	420	GLU	20
2	D	520	GLU	20
2	С	423	ARG	18
2	D	523	ARG	18
2	D	510	PRO	14
2	С	410	PRO	14
2	D	525	ALA	12
2	С	425	ALA	12
2	D	530	ASP	11
2	С	430	ASP	11
2	С	422	ALA	10
2	D	522	ALA	10
2	D	521	LEU	9
1	А	77	SER	9
1	В	277	SER	9
2	С	421	LEU	9
2	D	512	ARG	8
2	D	511	THR	8
2	С	411	THR	8
2	С	412	ARG	8
2	D	526	LYS	6
2	С	426	LYS	6
2	С	417	GLU	5
2	D	517	GLU	5
2	С	418	LYS	3
1	В	278	GLU	3
2	D	518	LYS	3
1	В	235	VAL	3
1	A	$\overline{35}$	VAL	3
1	A	78	GLU	3
2	D	528	MET	3
1	A	$10\overline{4}$	PRO	3
1	В	304	PRO	3
2	D	509	THR	2
2	С	428	MET	2
2	D	527	GLY	2
2	С	427	GLY	2
2	С	429	GLN	2
2	C	409	THR	2

All 46 unique Ramachandran outliers are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res		Models (Total)
2	D	529	GLN	2
1	А	49	ALA	1
1	В	249	ALA	1
1	В	280	ILE	1
1	A	80	ILE	1

6.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the sidechain conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	91/99~(92%)	83 ± 1 (91 $\pm1\%$)	$8\pm1~(9\pm1\%)$	13	59
1	В	91/99~(92%)	83 ± 1 (91 $\pm1\%$)	$8\pm1~(9\pm1\%)$	13	59
2	С	19/27~(70%)	$15\pm1~(78\pm7\%)$	$4\pm1~(22\pm7\%)$	3	29
2	D	19/27~(70%)	$15\pm1~(78\pm7\%)$	$4\pm1~(22\pm7\%)$	3	29
All	All	5500/6300 (87%)	4875 (89%)	625 (11%)	9	52

All 82 unique residues with a non-rotameric sidechain are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Models (Total)
1	В	303	ILE	25
1	А	13	LEU	25
1	А	95	LEU	25
1	В	213	LEU	25
1	А	103	ILE	25
1	В	295	LEU	25
1	В	271	LEU	24
1	А	71	LEU	24
1	А	82	LEU	20
1	В	282	LEU	20
2	D	512	ARG	19
2	С	412	ARG	19
1	А	80	ILE	18
1	В	280	ILE	18
2	С	423	ARG	17
2	D	523	ARG	17

Mol	Chain	\mathbf{Res}	Type	Models (Total)
1	В	298	MET	16
2	D	521	LEU	15
2	С	421	LEU	15
1	А	98	MET	15
1	А	64	MET	11
1	В	264	MET	11
2	D	509	THR	10
1	А	54	SER	10
1	В	254	SER	10
2	D	513	ILE	10
2	С	413	ILE	10
2	С	409	THR	10
2	D	511	THR	9
2	С	411	THR	9
2	С	419	THR	8
2	D	519	THR	8
1	А	30	ASN	6
1	В	230	ASN	6
2	D	526	LYS	5
2	С	426	LYS	5
2	С	428	MET	4
2	С	418	LYS	4
2	D	528	MET	4
2	D	518	LYS	4
1	В	210	LYS	3
1	А	10	LYS	3
1	А	68	SER	3
1	В	268	SER	3
1	В	211	ARG	2
1	А	81	LEU	2
1	В	251	ILE	2
1	А	101	ARG	2
1	В	301	ARG	2
2	D	524	ILE	2
1	A	51	ILE	2
2	С	424	ILE	2
1	A	69	LYS	2
1	A	11	ARG	2
1	В	297	GLU	2
1	A	97	GLU	2
1	В	269	LYS	2
1	В	281	LEU	2

Mol	Chain	\mathbf{Res}	Type	Models (Total)
1	В	236	ASN	1
1	А	70	GLN	1
1	А	85	ARG	1
1	А	100	ARG	1
1	В	278	GLU	1
1	В	252	SER	1
1	А	37	GLU	1
2	D	530	ASP	1
1	В	300	ARG	1
2	С	420	GLU	1
1	В	285	ARG	1
1	В	237	GLU	1
2	D	514	SER	1
1	А	78	GLU	1
1	А	52	SER	1
1	А	47	PHE	1
2	С	414	SER	1
2	D	520	GLU	1
1	А	36	ASN	1
1	В	247	PHE	1
2	С	430	ASP	1
1	А	22	ARG	1
1	В	222	ARG	1
1	В	270	GLN	1

Continued from previous page...

6.3.3 RNA (i)

There are no RNA molecules in this entry.

6.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.5 Carbohydrates (i)

There are no carbohydrates in this entry.

6.6 Ligand geometry (i)

There are no ligands in this entry.

6.7 Other polymers (i)

There are no such molecules in this entry.

6.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

7 Chemical shift validation (i)

No chemical shift data were provided

