

Full wwPDB X-ray Structure Validation Report (i)

May 15, 2020 - 01:39 am BST

PDB ID	:	6S9O
Title	:	Designed Armadillo Repeat protein internal Lock1 fused to target peptide
		KRKRKLKFKR
Authors	:	Ernst, P.; Zosel, F.; Reichen, C.; Schuler, B.; Pluckthun, A.
Deposited on	:	2019-07-15
Resolution	:	3.17 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

$\operatorname{MolProbity}$:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.11
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.11
Ideal geometry (proteins) Ideal geometry (DNA, RNA) Validation Pipeline (wwPDB-VP)	: : :	Engh & Huber (2001) Parkinson et al. (1996) 2.11

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 3.17 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	1467 (3.20-3.16)
Clashscore	141614	1599 (3.20-3.16)
Ramachandran outliers	138981	1574(3.20-3.16)
Sidechain outliers	138945	1573 (3.20-3.16)
RSRZ outliers	127900	1423 (3.20-3.16)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of ch	ain
1	Δ	244		
	A	344	63%	35% ••
	-		%	
1	В	344	62%	37% •
			2%	
1	C	344	56%	41% ••
	_		6%	
1	D	344	59%	38% •
1	E	344	60%	38% •
			2%	
1	F	344	65%	35%

6S9O

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 15205 atoms, of which 60 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called designed Armadillo repeat protein with internal Lock1 fused to target peptide KRKRKLKFKR.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
1	Δ	240	Total	С	Ν	Ο	S	0	0	0
	А	340	2513	1566	440	506	1	0	0	0
1	В	241	Total	С	Ν	Ο	\mathbf{S}	0	1	Ο
1	D	041	2522	1569	442	510	1	0	T	0
1	C	335	Total	С	Ν	Ο	S	0	1	Ο
1	U	000	2484	1550	433	500	1	0	T	0
1	л	224	Total	С	Ν	Ο	S	0	9	Ο
1	D	004	2493	1557	434	501	1	0	2	
1	F	241	Total	С	Ν	Ο	S	0	1	Ο
1		041	2522	1569	442	510	1	0	T	0
1	F	3/3	Total	С	Ν	Ο	S	0	1	Ο
	L,	040	2533	1576	444	512	1			

• Molecule 2 is CALCIUM ION (three-letter code: CA) (formula: Ca).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	5	Total Ca 5 5	0	0
2	D	3	Total Ca 3 3	0	0
2	С	2	Total Ca 2 2	0	0
2	F	1	Total Ca 1 1	0	0
2	Е	5	Total Ca 5 5	0	0

• Molecule 3 is 1,2-ETHANEDIOL (three-letter code: EDO) (formula: $C_2H_6O_2$).

Mol	Chain	Residues	A	ton	ns		ZeroOcc	AltConf	
2	Δ	1	Total	С	Η	0	0	0	
3	A	L	10	2	6	2	0	0	
2	Δ	1	Total	С	Η	0	0	0	
J	A	L	10	2	6	2	0	0	
2	В	1	Total	С	Η	0	0	0	
J	D	L	10	2	6	2	0	0	
2	р	1	Total	С	Η	0	0	0	
J	D	L	10	2	6	2	0	0	
2	р	1	Total	С	Η	Ο	0	0	
J	D	1	10	2	6	2	0	0	
2	C	1	Total	С	Η	Ο	0	0	
0	U	I	10	2	6	2	0		
2	С	1	Total	С	Η	0	0	0	
0	U	I	10	2	6	2	0	0	
2	F	1	Total	С	Η	0	0	0	
0		T	10	2	6	2	0	0	
2	F	1	Total	С	Η	Ο	0	0	
່ ^ວ			10	2	6	2		U	
2	Б	1	Total	С	Η	Ο	0	0	
O			10	2	6	2	U	U	

• Molecule 4 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	5	Total O 5 5	0	0
4	В	3	Total O 3 3	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	С	8	Total O 8 8	0	0
4	D	3	Total O 3 3	0	0
4	Е	2	Total O 2 2	0	0
4	F	1	Total O 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

 \bullet Molecule 1: designed Armadillo repeat protein with internal Lock1 fused to target peptide KRKRKLKFKR

 \bullet Molecule 1: designed Armadillo repeat protein with internal Lock1 fused to target peptide KRKRKLKFKR

Chain C:	56%		41%	•••	
G8 99 8 G10 8 G10 8 G10 9 14 9 14 9 14 9 19 8 120 8 22 8 22 8 22	P23 D24 E27 L28 L32 L32 L32 L32 L38 C33 C33 C33 C33 C33 C33 C33 C33 C33 C	A39 641 641 642 642 643 844 146 146 155	P56 A57 L58 V59 V59 L61 L61 L61 L61 L62 L62	1468 1476 177 177 177 177 177 178 176 177 177 177 177 177 177 177 177	
684 087 087 087 087 087 198 199 1000 1100 1102	1103 1104 5105 5106 8106 8100 8100 1111 1111 1111 1111 1	A123 8124 6126 6126 1130 A141 1142 1143	0144 1145 1146 1146 1150 1153 1153	A160 1461 1164 1165 1165 1166 1176 1176	
A178 4179 4180 18181 18184 18184 18184 18184 1818 1188 1188 1188 1188 1188 1188 1188 1188	M201 A202 1206 1211 1211 1213 1213 1225 1225 1225 1225	V227 1223 2331 2332 2332 2333 7233 7233 7	q239 E240 E240 L2242 W2243 A244 A244 A244	1265 2266 1272 1275 1275 1277 1277	
1280 1284 1284 1284 1286 1286 1286 1286 1280 1290 1290 1290	1307 1307 1313 1314 1314 1314 1314 1314 1314 131	K323 E324 A325 A328 A328 E330 E331 C133 C1332 C1322 C1332 C1	HIS GLY GLY GLY SER SER CLY	K346 K348 K348 K350 K350 R351	
• Molecule 1: desig KRKRKLKFKR	ned Armadillo rep	oeat protein wi	th internal I	Lock1 fused to	target peptide
Chain D:	59%		38%	·	
617 811 811 811 811 814 814 814 814 814 814	Q29 L32 K33 K34 K34 K34 K34 K34 K34 A48 Q47 V49 I50	D51 454 1556 1556 1656 160 162 162 162	N66 E67 E67 LC70 LC70 Q71 W75	L77 L77 180 883 683 683 192	
D33 494 197 197 198 199 1000 1100 1100 1100 1100 1100 1	1112 1119 1119 1120 1125 1125 1125 1125 1125 1125 1125	A 38 11338 11339 11441 11442 11442 11442 11446 1146	0152 1153 1154 1164 1164 1164	A180 L184 L188 L188 R193 Q194 1195	
A202 L203 1206 7214 7214 A222 P224 A225 L223	V227 V227 N234 2336 236 236 236 236 1236 1246 1248 1248 1248	1260 1266 1266 7266 7266 8272 8273 8273	P275 N276 N276 1279 1280 0280 1280 1284 1284	L287 1290 8291 8291 8295 8295 8296 8296 8297 8297	
4200 4300 4301 4301 4304 4305 4305 4305 1305 1310 1313	0314 8315 8315 8315 8315 8316 8310 8310 8320 8322 83225 83225 83225 83225 83225 83225 83225 83225 83225 83225 83225 83275 8325	A328 1329 1329 1333 1331 1332 1332 1333 1333	GLY S3 40 S3 40 13 43 13 43 13 43 13 43 13 43 13 43 13 49 13 50	10 20 20	
• Molecule 1: desig KRKRKLKFKR	ned Armadillo rep	peat protein wi	th internal I	Lock1 fused to	target peptide
Chain E:	60%		38%		
GLY PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	128 132 132 135 135 135 138 138 143 146 147 047	V49 150 151 A51 A52 A54 F56 A57 L55 A57 L58 V59	060 161 162 162 863 863 867 169	L/0 475 476 177 180 180 180	
A94 197 197 197 199 1400 1400 1400 1400 1400 1410 1111	L112 Q113 Q113 N117 A129 A129 C126 N127 1130	A138 140 1440 1441 1442 1443 1443 1443 1443 146 1146 1146	0152 1153 1164 1161 1161 1164 1164 1164	5166 N169 E170 2171 1181 1181 7182 A180 7182 A182 1184	
1185 1187 1187 1187 1186 1196 1198 1198 1198 1198 1198 1198	1225 1225 1225 1225 1225 1225 1225 1225	V227 V228 (1228 1229 1239 N234 1236 1235 1235 1235 1235 1235	L245 L245 1248 A249 A249 A249 A249 A262 C261	4255 1256 1265 1265 1265 1265 1266 1271 1271	
A286 L287 L288 N289 1290 A291 C293 C293 C293 C293 C293 C293 C293 C293	K309 1313 1316 1316 1316 1318 1318 1318 1318	S340 S344 K344 K350 K350 R351			
		WORLDWIDE PROTEIN DATA BANK			

 \bullet Molecule 1: designed Armadillo repeat protein with internal Lock1 fused to target peptide KRKRKLKFKR

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	168.70\AA 82.40\AA 191.78\AA	Deperitor
a, b, c, α , β , γ	90.00° 90.36° 90.00°	Depositor
$\mathbf{P}_{\text{acclution}}(\hat{\mathbf{A}})$	48.45 - 3.17	Depositor
Resolution (A)	48.45 - 3.17	EDS
% Data completeness	98.2 (48.45-3.17)	Depositor
(in resolution range)	98.5(48.45 - 3.17)	EDS
R _{merge}	0.31	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.26 (at 3.19 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.15.2_3472	Depositor
D D .	0.235 , 0.291	Depositor
Π, Π_{free}	0.236 , 0.292	DCC
R_{free} test set	2221 reflections $(5.00%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	85.4	Xtriage
Anisotropy	0.703	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.31 , 73.1	EDS
L-test for $twinning^2$	$< L >=0.46, < L^2>=0.30$	Xtriage
Estimated twinning fraction	0.023 for -h,-k,l	Xtriage
F_o, F_c correlation	0.94	EDS
Total number of atoms	15205	wwPDB-VP
Average B, all atoms $(Å^2)$	91.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 18.05% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CA, EDO

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles		
	Cham	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.26	0/2539	0.42	0/3446	
1	В	0.26	0/2548	0.41	0/3459	
1	С	0.26	0/2509	0.41	0/3407	
1	D	0.26	0/2519	0.41	0/3421	
1	Е	0.26	0/2548	0.40	0/3459	
1	F	0.26	0/2560	0.40	0/3475	
All	All	0.26	0/15223	0.41	0/20667	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2513	0	2558	124	0
1	В	2522	0	2563	117	0
1	С	2484	0	2533	142	0
1	D	2493	0	2537	136	0
1	Е	2522	0	2563	128	0
1	F	2533	0	2574	127	0
2	А	5	0	0	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	С	2	0	0	0	0
2	D	3	0	0	0	0
2	Е	5	0	0	0	0
2	F	1	0	0	0	0
3	А	8	12	12	0	0
3	В	12	18	18	1	0
3	С	8	12	12	0	0
3	Е	12	18	18	1	0
4	А	5	0	0	1	1
4	В	3	0	0	0	0
4	С	8	0	0	1	0
4	D	3	0	0	1	0
4	Е	2	0	0	1	0
4	F	1	0	0	0	0
All	All	15145	60	15388	761	1

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 25.

All (761)	close	$\operatorname{contacts}$	within	the	same	asymmetr	ic un	it are	listed	below,	sorted	by	$ ext{their}$	clash
magnitud	le.													

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	$distance ({ m \AA})$	overlap (Å)
1:A:280:LEU:HD23	1:A:321:ILE:HD13	1.32	1.11
1:A:139:LEU:HD21	1:A:164:ILE:HD13	1.33	1.10
1:F:223:LEU:HD21	1:F:248:ILE:HD13	1.43	1.01
1:E:293:GLY:HA2	1:E:337:SER:HB2	1.42	0.99
1:C:176:ILE:HG12	1:C:181:LEU:HD21	1.44	0.98
1:E:46:ILE:HD11	1:E:80:ILE:HA	1.43	0.97
1:F:46:ILE:HD11	1:F:80:ILE:HA	1.50	0.94
1:C:77:LEU:HD23	1:C:80:ILE:HD11	1.50	0.93
1:C:144:GLN:NE2	4:C:501:HOH:O	2.03	0.91
1:A:185:VAL:HA	1:A:188:LEU:HD13	1.52	0.90
1:D:139:LEU:HD21	1:D:164:ILE:HD13	1.52	0.89
1:E:14:PRO:O	1:E:17:VAL:HG12	1.75	0.87
1:E:76:ALA:O	1:E:80:ILE:HG13	1.75	0.87
1:F:276:ASN:HB3	1:F:279:ILE:HG12	1.56	0.86
1:F:309:LYS:HE3	1:F:313:LEU:HD11	1.57	0.86
1:B:58:LEU:O	1:B:62:LEU:HD12	1.76	0.86
1:E:62:LEU:HD11	1:E:77:LEU:HD11	1.56	0.86
1:A:188:LEU:HD11	1:A:203:LEU:CD1	2.05	0.85
1:D:76:ALA:O	1:D:80:ILE:HG13	1.78	0.83

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:71:GLN:NE2	1:A:110:GLN:OE1	2.11	0.83
1:A:121:ASN:ND2	1:A:349:PHE:O	2.10	0.82
1:F:185:VAL:HA	1:F:188:LEU:HD13	1.58	0.82
1:A:74:LEU:HD11	1:A:111:ILE:HG23	1.61	0.82
1:E:58:LEU:O	1:E:62:LEU:HD12	1.80	0.82
1:E:252:GLY:O	1:E:256:ILE:HD12	1.80	0.82
1:A:272:LEU:HD11	1:A:287:LEU:HD12	1.60	0.81
1:F:46:ILE:CD1	1:F:80:ILE:HA	2.10	0.81
1:E:245:LEU:HD23	1:E:248:ILE:HD11	1.61	0.81
1:F:43:ASN:O	1:F:46:ILE:HG22	1.80	0.80
1:E:46:ILE:CD1	1:E:80:ILE:HA	2.12	0.80
1:E:43:ASN:HA	1:E:46:ILE:HG22	1.63	0.80
1:A:148:SER:OG	1:A:153:ILE:HD11	1.80	0.79
1:D:32:LEU:HD11	1:D:61:LEU:HD13	1.61	0.79
1:B:43:ASN:OD1	1:B:87:GLN:NE2	2.16	0.78
1:F:318:ASN:HB3	1:F:321:ILE:HD11	1.64	0.78
1:C:24:ASP:OD1	1:C:27:GLU:HB3	1.83	0.78
1:D:154:LEU:HD23	1:D:195:ILE:HD13	1.65	0.78
1:E:64:SER:OG	1:E:69:ILE:HD11	1.83	0.78
1:C:108:ASN:HB3	1:C:111:ILE:HG12	1.65	0.77
1:C:232:SER:CB	1:C:237:ILE:HD11	2.14	0.77
1:D:313:LEU:HD11	1:D:325:ALA:HB2	1.67	0.77
1:F:252:GLY:O	1:F:256:ILE:HD12	1.85	0.77
1:B:252:GLY:O	1:B:256:ILE:HD12	1.85	0.77
1:A:96:ALA:O	1:A:100:LEU:HD13	1.84	0.77
1:E:350:LYS:O	1:E:351:ARG:HG2	1.85	0.77
1:D:180:ALA:O	1:D:184:LEU:HD12	1.85	0.76
1:A:66:ASN:HB3	1:A:69:ILE:HG12	1.65	0.76
1:D:316:HIS:HB3	1:D:321:ILE:CD1	2.15	0.76
1:A:184:LEU:O	1:A:188:LEU:HD12	1.85	0.76
1:F:134:ILE:HG12	1:F:139:LEU:HD11	1.68	0.76
1:B:180:ALA:O	1:B:184:LEU:HD12	1.87	0.75
1:B:214:ILE:O	1:B:217:VAL:HG22	1.86	0.75
1:C:32:LEU:HD21	1:C:61:LEU:HD23	1.68	0.75
1:C:320:LYS:HE2	1:C:324:GLU:OE2	1.87	0.75
1:D:71:GLN:O	1:D:75[B]:TRP:HD1	1.67	0.75
1:E:245:LEU:CD2	1:E:248:ILE:HD11	2.16	0.75
1:E:35:LEU:HD23	1:E:38:ILE:HD11	1.66	0.75
1:E:190:SER:OG	1:E:195:ILE:HD11	1.87	0.75
1:E:235:GLU:OE2	4:E:501:HOH:O	2.03	0.75
1:B:76:ALA:O	1:B:80:ILE:HG12	1.86	0.75

	ious puge	Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)		
1:D:188:LEU:HD11	1:D:203:LEU:HD12	1.68	0.75		
1:A:150:ASN:HB3	1:A:153:ILE:HG12	1.68	0.75		
1:E:46:ILE:HD11	1:E:80:ILE:CA	2.17	0.75		
1:A:134:ILE:HG12	1:A:164:ILE:HD11	1.69	0.74		
1:C:143:VAL:HG21	1:C:178:ALA:HB1	1.69	0.74		
1:B:43:ASN:HD21	1:B:84:GLY:H	1.35	0.74		
1:A:188:LEU:HD11	1:A:203:LEU:HD12	1.69	0.74		
1:A:222:ALA:O	1:A:226:LEU:HD12	1.88	0.73		
1:E:160:ALA:O	1:E:164:ILE:HG13	1.88	0.73		
1:E:180:ALA:O	1:E:184:LEU:HD12	1.88	0.73		
1:A:83:GLY:O	1:A:348:LYS:NZ	2.17	0.73		
1:D:120:ARG:HH21	1:D:347:LEU:HD13	1.53	0.73		
1:F:126:GLY:O	1:F:130:ILE:HD12	1.86	0.73		
1:F:274:SER:OG	1:F:279:ILE:HD11	1.89	0.73		
1:F:46:ILE:HD11	1:F:80:ILE:CA	2.18	0.73		
1:B:292:SER:HB3	1:B:331:LYS:NZ	2.04	0.73		
1:D:302:LYS:NZ	1:D:307:LEU:HD12	2.04	0.73		
1:F:318:ASN:HB3	1:F:321:ILE:CD1	2.19	0.73		
1:A:311:GLU:OE2	4:A:501:HOH:O	2.07	0.72		
1:A:188:LEU:HD11	1:A:203:LEU:HD11	1.70	0.72		
1:D:260:ILE:HD12	1:D:265:LEU:HD11	1.71	0.72		
1:A:104:LEU:HD21	1:A:116:LEU:HD23	1.70	0.72		
1:B:190:SER:OG	1:B:195:ILE:HD11	1.90	0.72		
1:B:350:LYS:O	1:B:351:ARG:HB2	1.89	0.72		
1:A:272:LEU:HD11	1:A:287:LEU:CD1	2.19	0.72		
1:B:272:LEU:HD11	1:B:287:LEU:HD12	1.72	0.72		
1:C:77:LEU:CD2	1:C:80:ILE:HD11	2.20	0.72		
1:B:62:LEU:HD11	1:B:77:LEU:HD11	1.72	0.71		
1:F:188:LEU:HD11	1:F:203:LEU:CD1	2.20	0.71		
1:A:57:ALA:O	1:A:61:LEU:HD13	1.91	0.71		
1:B:316:HIS:ND1	1:B:321:ILE:HD11	2.06	0.71		
1:C:34:LYS:O	1:C:38:ILE:HG13	1.91	0.71		
1:D:302:LYS:HD3	1:D:307:LEU:HG	1.73	0.71		
1:F:316:HIS:O	1:F:322:GLN:NE2	2.20	0.71		
1:F:316:HIS:ND1	1:F:321:ILE:HD11	2.05	0.71		
1:A:227:VAL:HG21	1:A:262:ALA:HB1	1.73	0.70		
1:B:308:GLU:O	1:B:312:GLN:NE2	2.25	0.70		
1:C:99:ALA:O	1:C:103:LEU:HD13	1.91	0.70		
1:A:154:LEU:HD23	1:A:195:ILE:HD13	1.74	0.70		
1:B:16:MET:O	1:B:20:LEU:HD23	1.91	0.70		
1:C:222:ALA:O	1:C:226:LEU:HD12	1.92	0.70		

	A i o	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:46:ILE:HD12	1:C:80:ILE:HA	1.74	0.70
1:F:98:PRO:HA	1:F:101:VAL:HG22	1.74	0.70
1:D:276:ASN:HB3	1:D:279:ILE:HG12	1.73	0.70
1:C:79:ASN:ND2	1:C:351:ARG:OXT	2.21	0.69
1:A:35:LEU:CD1	1:A:49:VAL:HG11	2.22	0.69
1:A:59:VAL:HG11	1:A:94:ALA:HB1	1.74	0.69
1:E:126:GLY:O	1:E:130:ILE:HD12	1.93	0.69
1:F:267:ALA:O	1:F:271:LEU:HD13	1.91	0.69
1:A:350:LYS:HG2	1:A:351:ARG:H	1.56	0.69
1:F:272:LEU:HB3	1:F:309:LYS:HG2	1.75	0.69
1:C:126:GLY:O	1:C:130:ILE:HD12	1.92	0.69
1:E:292:SER:HB3	1:E:331:LYS:NZ	2.08	0.69
1:D:92:ILE:HD12	1:D:97:LEU:HD11	1.75	0.69
1:C:232:SER:OG	1:C:237:ILE:HD11	1.94	0.68
1:C:244:ALA:O	1:C:248:ILE:HG13	1.93	0.68
1:A:74:LEU:CD1	1:A:111:ILE:HG23	2.24	0.68
1:A:180:ALA:O	1:A:184:LEU:HD12	1.92	0.68
1:A:99:ALA:O	1:A:103:LEU:HD23	1.94	0.68
1:E:350:LYS:HG2	1:E:351:ARG:H	1.58	0.68
1:F:64:SER:OG	1:F:69:ILE:HD11	1.94	0.68
1:A:24:ASP:OD1	1:A:27:GLU:HB2	1.94	0.68
1:C:180:ALA:O	1:C:184:LEU:HD12	1.94	0.68
1:D:316:HIS:HB3	1:D:321:ILE:HD13	1.75	0.68
1:E:293:GLY:HA2	1:E:337:SER:CB	2.19	0.67
1:F:184:LEU:O	1:F:188:LEU:HD12	1.94	0.67
1:E:222:ALA:O	1:E:226:LEU:HD12	1.95	0.67
1:D:161:LEU:HA	1:D:164:ILE:HG22	1.77	0.67
1:E:138:ALA:O	1:E:142:LEU:HD12	1.93	0.67
1:B:66:ASN:OD1	1:B:68:GLN:HG2	1.95	0.67
1:D:12:GLU:O	1:D:16:MET:HG3	1.95	0.67
1:E:226:LEU:O	1:E:230:LEU:HD13	1.93	0.67
1:A:126:GLY:O	1:A:130:ILE:HD12	1.93	0.67
1:B:43:ASN:HD21	1:B:84:GLY:N	1.93	0.67
1:D:43:ASN:O	1:D:46:ILE:HG12	1.94	0.67
1:F:245:LEU:HA	1:F:248:ILE:HG22	1.77	0.67
1:F:28:LEU:O	1:F:32:LEU:HD13	1.95	0.67
1:C:100:LEU:HB3	1:C:119:LEU:HD11	1.75	0.67
1:C:106:SER:OG	1:C:111:ILE:HD11	1.95	0.66
1:E:267:ALA:O	1:E:271:LEU:HD13	1.94	0.66
1:D:256:ILE:CG2	1:D:290:ILE:HG23	2.24	0.66
1:A:104:LEU:HD11	1:A:119:LEU:HD12	1.77	0.66

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:193:GLU:N	1:D:193:GLU:OE1	2.27	0.66
1:C:24:ASP:O	1:C:28:LEU:HD13	1.96	0.66
1:A:269:VAL:HA	1:A:272:LEU:HD13	1.78	0.66
1:B:244:ALA:O	1:B:248:ILE:HG13	1.95	0.66
1:E:146:LEU:HD11	1:E:161:LEU:HD12	1.75	0.66
1:E:62:LEU:HD11	1:E:77:LEU:CD1	2.24	0.66
1:D:130:ILE:HG23	1:D:164:ILE:HG13	1.78	0.66
1:D:256:ILE:HG23	1:D:290:ILE:HG23	1.76	0.66
1:E:309:LYS:O	1:E:313:LEU:HD13	1.96	0.66
1:C:36:SER:HB3	1:C:75:TRP:CD1	2.30	0.66
1:F:276:ASN:HB3	1:F:279:ILE:CG1	2.24	0.66
1:B:192:ASN:HB3	1:B:195:ILE:HG12	1.76	0.66
1:C:31:ALA:O	1:C:35:LEU:HD12	1.95	0.66
1:F:218:ILE:HG12	1:F:248:ILE:HD11	1.77	0.66
1:C:269:VAL:O	1:C:272:LEU:HB2	1.96	0.65
1:C:284:LEU:HD21	1:C:325:ALA:HB2	1.78	0.65
1:D:321:ILE:HD12	1:D:322:GLN:N	2.11	0.65
1:A:66:ASN:HB3	1:A:69:ILE:CG1	2.25	0.65
1:C:181:LEU:O	1:C:185:VAL:HG23	1.96	0.65
1:B:181:LEU:O	1:B:185:VAL:HG23	1.97	0.65
1:C:146:LEU:HD11	1:C:161:LEU:HD12	1.78	0.65
1:D:260:ILE:HD12	1:D:265:LEU:CD1	2.27	0.65
1:E:99:ALA:O	1:E:103:LEU:HD13	1.97	0.65
1:F:193:GLU:OE1	1:F:193:GLU:N	2.29	0.65
1:D:300:ALA:HA	1:D:303:GLU:OE1	1.97	0.65
1:F:218:ILE:CG1	1:F:248:ILE:HD11	2.27	0.65
1:F:318:ASN:HB3	1:F:321:ILE:CG1	2.27	0.64
1:A:238:LEU:O	1:A:242:LEU:HD13	1.97	0.64
1:D:244:ALA:O	1:D:248:ILE:HG13	1.97	0.64
1:F:104:LEU:HD11	1:F:119:LEU:HD12	1.80	0.64
1:A:223:LEU:O	1:A:227:VAL:HG23	1.97	0.64
1:A:66:ASN:HB3	1:A:69:ILE:CD1	2.28	0.64
1:B:193:GLU:OE1	1:B:193:GLU:N	2.30	0.64
1:D:193:GLU:OE2	4:D:501:HOH:O	2.15	0.64
1:D:274:SER:OG	1:D:279:ILE:HD11	1.97	0.64
1:F:56:PRO:O	1:F:59:VAL:HG22	1.98	0.64
1:D:139:LEU:HD21	1:D:164:ILE:CD1	2.27	0.64
1:B:138:ALA:O	1:B:142:LEU:HD12	1.97	0.64
1:B:185:VAL:HG21	1:B:220:ALA:HB1	1.77	0.64
1:C:57:ALA:O	1:C:61:LEU:HD13	1.98	0.64
1:B:69:ILE:HD12	1:B:70:LEU:N	2.13	0.63

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:E:143:VAL:HA	1:E:146:LEU:HD13	1.79	0.63
1:A:56:PRO:O	1:A:59:VAL:HG22	1.98	0.63
1:B:34:LYS:O	1:B:38:ILE:HG13	1.97	0.63
1:F:12:GLU:O	1:F:16:MET:HG2	1.99	0.63
1:B:218:ILE:HG12	1:B:223:LEU:HD11	1.80	0.63
1:E:193:GLU:OE1	1:E:193:GLU:N	2.31	0.63
1:E:35:LEU:HA	1:E:38:ILE:HD11	1.80	0.63
1:A:193:GLU:N	1:A:193:GLU:OE1	2.29	0.63
1:F:146:LEU:HD11	1:F:161:LEU:CD1	2.29	0.62
1:B:54:ALA:O	1:B:58:LEU:HD12	2.00	0.62
1:F:66:ASN:HB3	1:F:69:ILE:HG12	1.81	0.62
1:E:316:HIS:O	1:E:322:GLN:NE2	2.30	0.62
1:A:268:LEU:O	1:A:272:LEU:HD12	1.99	0.62
1:C:272:LEU:HD21	1:C:284:LEU:HD12	1.81	0.62
1:E:57:ALA:O	1:E:61:LEU:HD13	1.99	0.62
1:F:190:SER:OG	1:F:195:ILE:HD11	1.99	0.62
1:B:323:LYS:NZ	1:F:323:LYS:HD2	2.14	0.62
1:A:104:LEU:HD21	1:A:116:LEU:CD2	2.29	0.62
1:C:193:GLU:OE1	1:C:193:GLU:N	2.32	0.62
1:D:146:LEU:HD11	1:D:161:LEU:HD12	1.80	0.62
1:B:292:SER:HB3	1:B:331:LYS:CE	2.29	0.62
1:C:20:LEU:HD11	1:C:32:LEU:HD12	1.82	0.62
1:C:43:ASN:HA	1:C:46:ILE:HG23	1.80	0.62
1:E:245:LEU:HD23	1:E:248:ILE:CD1	2.30	0.62
1:B:208:SER:OG	1:B:344:LYS:HE2	1.99	0.62
1:B:234:ASN:HB3	1:B:237:ILE:HG13	1.80	0.62
1:C:224:PRO:O	1:C:227:VAL:HG12	1.99	0.62
1:A:55:LEU:O	1:A:59:VAL:HG13	1.98	0.62
1:C:9:PRO:O	1:C:13:LEU:HG	2.00	0.61
1:E:146:LEU:HD11	1:E:161:LEU:CD1	2.29	0.61
1:D:310:LEU:HA	1:D:313:LEU:HG	1.82	0.61
1:A:134:ILE:CG1	1:A:164:ILE:HD11	2.30	0.61
1:A:214:ILE:O	1:A:217:VAL:HG22	1.99	0.61
1:F:223:LEU:HD21	1:F:248:ILE:CD1	2.24	0.61
1:B:292:SER:HB3	1:B:331:LYS:HE2	1.82	0.61
1:E:43:ASN:HA	1:E:46:ILE:CG2	2.29	0.61
1:C:307:LEU:HD13	1:C:332:LEU:HD23	1.82	0.61
1:A:265:LEU:O	1:A:269:VAL:HG23	2.01	0.61
1:C:98:PRO:O	1:C:101:VAL:HG22	2.01	0.61
1:E:22:SER:OG	1:E:27:GLU:OE2	2.09	0.61
1:F:188:LEU:HD11	1:F:203:LEU:HD11	1.82	0.61

	h h h h h	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:222:ALA:O	1:D:226:LEU:HD12	2.01	0.61
1:C:288:SER:OG	1:C:331:LYS:NZ	2.27	0.61
1:E:108:ASN:ND2	1:E:111:ILE:HG12	2.16	0.61
1:E:192:ASN:HB3	1:E:195:ILE:HG12	1.83	0.60
1:C:350:LYS:O	1:C:351:ARG:HG3	2.01	0.60
1:D:66:ASN:HD22	1:D:69:ILE:HG12	1.66	0.60
1:C:146:LEU:HD11	1:C:161:LEU:CD1	2.32	0.60
1:C:16:MET:HA	1:C:19:GLN:HG2	1.83	0.60
1:C:314:GLN:O	1:C:322:GLN:NE2	2.32	0.60
1:F:82:SER:HB2	1:F:350:LYS:HG2	1.83	0.60
1:E:67:GLU:O	1:E:71:GLN:HG3	2.02	0.60
1:D:214:ILE:O	1:D:217:VAL:HG22	2.01	0.60
1:E:59:VAL:HA	1:E:62:LEU:CD1	2.32	0.60
1:A:244:ALA:O	1:A:248:ILE:HG13	2.01	0.60
1:D:184:LEU:O	1:D:188:LEU:HD12	2.01	0.60
1:E:32:LEU:HD21	1:E:61:LEU:HD23	1.83	0.60
1:D:325:ALA:O	1:D:329:LEU:HD13	2.02	0.59
1:A:35:LEU:HD11	1:A:49:VAL:HG11	1.82	0.59
1:B:66:ASN:HB3	1:B:69:ILE:CG1	2.33	0.59
1:C:350:LYS:HG2	1:C:351:ARG:H	1.66	0.59
1:D:54:ALA:O	1:D:58:LEU:HD12	2.02	0.59
1:F:43:ASN:OD1	1:F:87:GLN:NE2	2.32	0.59
1:D:98:PRO:O	1:D:101:VAL:HG22	2.02	0.59
1:B:99:ALA:O	1:B:103:LEU:HD13	2.02	0.59
1:D:260:ILE:HD12	1:D:265:LEU:CG	2.32	0.59
1:E:140:PRO:HA	1:E:143:VAL:HG22	1.85	0.59
1:E:34:LYS:O	1:E:38:ILE:HG12	2.03	0.59
1:A:101:VAL:O	1:A:104:LEU:HB2	2.02	0.59
1:C:16:MET:HG2	1:C:35:LEU:HD11	1.85	0.59
1:A:82:SER:HB2	1:A:350:LYS:HA	1.84	0.59
1:F:188:LEU:HD11	1:F:203:LEU:HD12	1.82	0.59
1:D:272:LEU:HD11	1:D:287:LEU:HD12	1.84	0.59
1:E:196:LEU:O	1:E:200:LEU:HD13	2.03	0.59
1:C:56:PRO:O	1:C:59:VAL:HG22	2.03	0.59
1:E:43:ASN:CA	1:E:46:ILE:HG22	2.33	0.59
1:C:84:GLY:N	1:C:87:GLN:OE1	2.36	0.58
1:C:98:PRO:HA	1:C:101:VAL:HG22	1.84	0.58
1:F:12:GLU:CD	1:F:34:LYS:HE2	2.23	0.58
1:C:284:LEU:CD2	1:C:325:ALA:HB2	2.33	0.58
1:A:276:ASN:ND2	1:B:67:GLU:HG2	2.17	0.58
1:F:82:SER:CB	1:F:350:LYS:HG2	2.33	0.58

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:D:276:ASN:HB3	1:D:279:ILE:CD1	2.34	0.58
1:E:142:LEU:O	1:E:146:LEU:HD12	2.04	0.58
1:F:318:ASN:HB3	1:F:321:ILE:HG12	1.85	0.58
1:B:59:VAL:HA	1:B:62:LEU:CD1	2.34	0.58
1:D:170:GLU:N	1:D:170:GLU:OE1	2.31	0.58
1:D:302:LYS:HD3	1:D:307:LEU:CD1	2.33	0.58
1:A:150:ASN:HB3	1:A:153:ILE:CG1	2.33	0.58
1:C:108:ASN:HB3	1:C:111:ILE:CG1	2.32	0.57
1:B:150:ASN:HD22	1:B:153:ILE:HD11	1.68	0.57
1:D:108:ASN:OD1	1:D:111:ILE:HG13	2.04	0.57
1:F:276:ASN:HB3	1:F:279:ILE:CD1	2.34	0.57
1:F:316:HIS:CE1	1:F:321:ILE:HD11	2.38	0.57
1:B:13:LEU:HA	1:B:16:MET:HG3	1.85	0.57
1:C:124:SER:OG	1:C:348:LYS:HE2	2.04	0.57
1:D:62:LEU:HD11	1:D:77:LEU:CD1	2.34	0.57
1:A:140:PRO:O	1:A:143:VAL:HG12	2.05	0.57
1:B:292:SER:CB	1:B:331:LYS:HE2	2.35	0.57
1:C:109:GLU:O	1:C:113:GLN:HG3	2.05	0.57
1:C:141:ALA:O	1:C:144:GLN:HG2	2.04	0.57
1:D:292:SER:HB2	1:D:331:LYS:NZ	2.18	0.57
1:A:185:VAL:HG21	1:A:220:ALA:HB1	1.85	0.57
1:A:32:LEU:HD13	1:A:72:GLU:HB3	1.86	0.57
1:C:108:ASN:HB3	1:C:111:ILE:CD1	2.35	0.57
1:D:46:ILE:HG13	1:D:87:GLN:HG2	1.87	0.57
1:E:43:ASN:O	1:E:46:ILE:HG22	2.04	0.57
1:F:309:LYS:HE3	1:F:313:LEU:CD1	2.34	0.57
1:A:139:LEU:HD21	1:A:164:ILE:CD1	2.22	0.57
1:B:227:VAL:HG21	1:B:262:ALA:HB1	1.87	0.57
1:C:104:LEU:HD11	1:C:119:LEU:HD22	1.85	0.57
1:D:139:LEU:O	1:D:143:VAL:HG22	2.06	0.56
1:D:71:GLN:HG2	1:D:75[B]:TRP:HE1	1.69	0.56
1:B:97:LEU:HB2	1:B:98:PRO:HD3	1.88	0.56
1:E:56:PRO:O	1:E:59:VAL:HG22	2.05	0.56
1:A:114:GLU:OE2	1:A:351:ARG:NH1	2.38	0.56
1:F:114:GLU:OE1	1:F:351:ARG:NH1	2.38	0.56
1:B:62:LEU:HD11	1:B:77:LEU:CD1	2.36	0.56
1:C:14:PRO:O	1:C:17:VAL:HG12	2.05	0.56
1:F:214:ILE:HG23	1:F:248:ILE:HG13	1.85	0.56
1:B:337:SER:HB3	1:F:344:LYS:HB2	1.88	0.56
1:C:288:SER:HB2	1:C:328:ALA:HB2	1.87	0.56
1:D:82:SER:O	1:D:350:LYS:NZ	2.38	0.56

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:F:12:GLU:HG2	1:F:34:LYS:HE2	1.88	0.56
1:C:160:ALA:O	1:C:164:ILE:HG12	2.07	0.56
1:D:256:ILE:O	1:D:260:ILE:HG12	2.05	0.55
1:E:38:ILE:HD12	1:E:49:VAL:HG22	1.88	0.55
1:D:43:ASN:HA	1:D:46:ILE:HG12	1.88	0.55
1:A:202:ALA:O	1:A:206:ILE:HG13	2.06	0.55
1:A:236:GLN:O	1:A:240:GLU:HG2	2.06	0.55
1:F:61:LEU:HD23	1:F:61:LEU:O	2.05	0.55
1:F:192:ASN:HB3	1:F:195:ILE:HG12	1.89	0.55
1:A:208:SER:OG	1:A:344:LYS:NZ	2.35	0.55
1:F:50:ILE:HD12	1:F:87:GLN:HG2	1.88	0.55
1:D:265:LEU:O	1:D:269:VAL:HG23	2.07	0.55
1:A:161:LEU:HA	1:A:164:ILE:HG22	1.88	0.55
1:C:235:GLU:OE1	1:C:235:GLU:N	2.36	0.55
1:D:126:GLY:O	1:D:130:ILE:HD12	2.07	0.55
1:D:59:VAL:HG21	1:D:94:ALA:HB1	1.89	0.55
1:E:54:ALA:O	1:E:58:LEU:HD23	2.06	0.55
1:F:43:ASN:HD21	1:F:84:GLY:N	2.04	0.55
1:B:292:SER:HB3	1:B:331:LYS:HZ1	1.68	0.55
1:C:20:LEU:HD23	1:C:57:ALA:HB3	1.89	0.55
1:D:276:ASN:HB3	1:D:279:ILE:CG1	2.37	0.55
1:C:12:GLU:HG2	1:C:16:MET:HE3	1.90	0.54
1:D:134:ILE:HG12	1:D:164:ILE:HD11	1.87	0.54
1:D:297:GLN:O	1:D:301:VAL:HG23	2.08	0.54
1:A:146:LEU:HD21	1:A:158:LEU:HD23	1.90	0.54
1:F:142:LEU:O	1:F:146:LEU:HD12	2.08	0.54
1:B:323:LYS:HZ1	1:F:323:LYS:HD2	1.71	0.54
1:C:19:GLN:HB2	1:C:27:GLU:OE2	2.07	0.54
1:D:11:SER:OG	1:D:12:GLU:N	2.41	0.54
1:D:302:LYS:HD3	1:D:307:LEU:CG	2.36	0.54
1:D:71:GLN:O	1:D:75[B]:TRP:CD1	2.54	0.54
1:A:103:LEU:HD12	1:A:111:ILE:CG2	2.38	0.54
1:A:35:LEU:HD12	1:A:35:LEU:O	2.08	0.54
1:B:294:GLY:N	1:B:297:GLN:OE1	2.41	0.54
1:C:238:LEU:O	1:C:242:LEU:HD13	2.08	0.54
1:D:112:LEU:HD23	1:D:153:ILE:HD13	1.89	0.54
1:D:236:GLN:O	1:D:240:GLU:HG2	2.07	0.54
1:C:100:LEU:HB3	1:C:119:LEU:CD1	2.38	0.54
1:D:50:ILE:CD1	1:D:55:LEU:HD11	2.37	0.54
1:E:182:PRO:HA	1:E:185:VAL:HG22	1.90	0.54
1:F:38:ILE:HG13	1:F:45:GLN:OE1	2.08	0.54

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:277:GLU:OE1	1:A:277:GLU:N	2.39	0.53
1:B:318:ASN:HB3	1:B:321:ILE:CD1	2.38	0.53
1:D:143:VAL:HA	1:D:146:LEU:HD13	1.90	0.53
1:F:35:LEU:HA	1:F:38:ILE:HG22	1.89	0.53
1:F:46:ILE:HD11	1:F:80:ILE:O	2.08	0.53
1:A:150:ASN:HB3	1:A:153:ILE:CD1	2.38	0.53
1:B:109:GLU:O	1:B:113:GLN:HG3	2.08	0.53
1:C:12:GLU:HG2	1:C:16:MET:CE	2.39	0.53
1:F:146:LEU:HD11	1:F:161:LEU:HD11	1.90	0.53
1:F:161:LEU:O	1:F:164:ILE:HG12	2.09	0.53
1:C:55:LEU:HD12	1:C:55:LEU:H	1.74	0.53
1:C:8:GLY:N	1:C:9:PRO:HD3	2.23	0.53
1:F:318:ASN:O	1:F:322:GLN:HG3	2.08	0.53
1:F:66:ASN:HB2	1:F:69:ILE:HD11	1.90	0.53
1:F:66:ASN:CB	1:F:69:ILE:HG12	2.38	0.53
1:E:13:LEU:HD22	1:E:52:ALA:HB2	1.89	0.53
1:B:169:ASN:ND2	1:F:211:ASN:OD1	2.42	0.53
1:F:66:ASN:HB2	1:F:69:ILE:CD1	2.38	0.53
1:B:139:LEU:O	1:B:143:VAL:HG23	2.08	0.53
1:B:146:LEU:HD21	1:B:158:LEU:HD23	1.91	0.53
1:B:166:SER:OG	1:B:346:LYS:NZ	2.33	0.53
1:F:67:GLU:N	1:F:67:GLU:OE1	2.41	0.53
1:A:33:ARG:HD3	1:A:72:GLU:OE2	2.08	0.53
1:B:276:ASN:OD1	1:B:279:ILE:HG12	2.08	0.53
1:C:232:SER:HB3	1:C:237:ILE:HD11	1.87	0.53
1:B:57:ALA:O	1:B:61:LEU:HD13	2.08	0.53
1:C:112:LEU:HD23	1:C:153:ILE:HD13	1.91	0.52
1:C:13:LEU:HB2	1:C:14:PRO:HD3	1.91	0.52
1:C:74:LEU:HD13	1:C:114:GLU:HB2	1.90	0.52
1:D:260:ILE:HD12	1:D:265:LEU:HG	1.91	0.52
1:E:109:GLU:O	1:E:113:GLN:HG3	2.09	0.52
1:E:117:TRP:CZ2	1:E:351:ARG:HD3	2.44	0.52
1:E:59:VAL:HA	1:E:62:LEU:HD13	1.92	0.52
1:C:236:GLN:O	1:C:240:GLU:HG2	2.09	0.52
1:B:138:ALA:C	1:B:142:LEU:HD12	2.30	0.52
1:C:234:ASN:HB3	1:C:237:ILE:HG12	1.91	0.52
1:E:28:LEU:O	1:E:32:LEU:HD13	2.10	0.52
1:F:109:GLU:O	1:F:113:GLN:HG3	2.10	0.52
1:C:311:GLU:HG2	1:C:329:LEU:HD11	1.91	0.52
1:E:223:LEU:HD21	1:E:248:ILE:HD12	1.92	0.52
1:B:89:GLN:HB2	1:B:129:GLN:HE21	1.75	0.52

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:C:213:GLN:N	1:C:213:GLN:OE1	2.41	0.52
1:F:161:LEU:CD2	1:F:164:ILE:HD11	2.40	0.52
1:A:138:ALA:O	1:A:142:LEU:HD12	2.10	0.52
1:A:26:GLN:OE1	1:A:29:GLN:NE2	2.43	0.52
1:C:165:ALA:HB1	1:C:206:ILE:HD13	1.91	0.52
1:C:55:LEU:N	1:C:56:PRO:HD2	2.25	0.52
1:D:302:LYS:CE	1:D:307:LEU:HD12	2.40	0.52
1:C:224:PRO:HA	1:C:227:VAL:HG12	1.92	0.51
1:C:277:GLU:OE1	1:C:277:GLU:N	2.41	0.51
1:E:138:ALA:C	1:E:142:LEU:HD12	2.31	0.51
1:F:183:ALA:O	1:F:187:LEU:HD13	2.10	0.51
1:F:265:LEU:O	1:F:269:VAL:HG23	2.11	0.51
1:C:234:ASN:O	1:C:237:ILE:HG13	2.10	0.51
1:C:280:LEU:O	1:C:284:LEU:HD13	2.10	0.51
1:E:35:LEU:HA	1:E:38:ILE:CD1	2.41	0.51
1:D:314:GLN:NE2	1:D:329:LEU:HD22	2.25	0.51
1:E:138:ALA:HB1	1:E:142:LEU:HD11	1.92	0.51
1:E:250:SER:HB2	1:E:340:SER:HB3	1.93	0.51
1:A:84:GLY:N	1:A:87:GLN:OE1	2.42	0.51
1:C:265:LEU:HD21	1:C:290:ILE:HG21	1.93	0.51
1:F:146:LEU:HD11	1:F:161:LEU:HD12	1.92	0.51
1:F:84:GLY:N	1:F:87:GLN:OE1	2.42	0.51
1:B:188:LEU:HD21	1:B:200:LEU:HD23	1.92	0.51
1:E:47:GLN:NE2	1:E:51:ASP:OD1	2.44	0.51
1:F:55:LEU:N	1:F:56:PRO:HD2	2.25	0.51
1:A:130:ILE:HG23	1:A:164:ILE:HG13	1.92	0.51
1:A:20:LEU:HB3	1:A:57:ALA:HB1	1.93	0.51
1:D:318:ASN:O	1:D:321:ILE:HG13	2.11	0.51
1:E:67:GLU:N	1:E:67:GLU:OE1	2.44	0.51
1:A:107:PRO:HG3	1:C:105:SER:O	2.11	0.51
1:D:161:LEU:HA	1:D:164:ILE:CG2	2.40	0.51
1:A:13:LEU:HB2	1:A:14:PRO:HD3	1.91	0.51
1:A:350:LYS:HG2	1:A:351:ARG:N	2.25	0.51
1:B:86:GLU:OE1	1:B:86:GLU:N	2.36	0.51
1:D:100:LEU:O	1:D:104:LEU:HD13	2.11	0.51
1:D:146:LEU:HD11	1:D:161:LEU:CD1	2.41	0.51
1:E:245:LEU:HA	1:E:248:ILE:HG12	1.93	0.51
1:E:318:ASN:O	1:E:322:GLN:HG3	2.10	0.51
1:F:98:PRO:HA	1:F:101:VAL:CG2	2.39	0.51
1:D:55:LEU:N	1:D:56:PRO:HD2	2.26	0.51
1:A:230:LEU:HD11	1:A:245:LEU:CD1	2.41	0.50

Interatomic Clash				
Atom-1	Atom-2	distance $(Å)$	overlap (Å)	
1:C:28:LEU:O	1:C:32:LEU:HD13	2.11	0.50	
1:F:299:GLN:O	1:F:303:GLU:HG2	2.11	0.50	
1:D:98:PRO:HA	1:D:101:VAL:HG22	1.92	0.50	
1:A:130:ILE:HG22	1:A:171:GLN:HG2	1.92	0.50	
1:C:227:VAL:HA	1:C:230:LEU:HD12	1.92	0.50	
1:C:272:LEU:HD21	1:C:284:LEU:CD1	2.41	0.50	
1:F:309:LYS:O	1:F:313:LEU:HD13	2.11	0.50	
1:A:103:LEU:O	1:A:106:SER:HB3	2.12	0.50	
1:C:143:VAL:HG21	1:C:178:ALA:CB	2.38	0.50	
1:A:125:GLY:HA3	1:A:129:GLN:OE1	2.12	0.50	
1:B:350:LYS:O	1:B:351:ARG:CB	2.58	0.50	
1:B:55:LEU:HD12	1:B:55:LEU:H	1.77	0.50	
1:A:350:LYS:CG	1:A:351:ARG:H	2.25	0.50	
1:D:29:GLN:OE1	1:D:33:ARG:NH1	2.35	0.50	
1:A:227:VAL:HG21	1:A:262:ALA:CB	2.40	0.50	
1:B:223:LEU:O	1:B:227:VAL:HG23	2.12	0.50	
1:B:59:VAL:HA	1:B:62:LEU:HD13	1.94	0.50	
1:C:193:GLU:HG2	1:D:108:ASN:ND2	2.27	0.50	
1:F:112:LEU:HD23	1:F:153:ILE:HD13	1.92	0.50	
1:B:124:SER:HB3	1:B:163:ASN:ND2	2.26	0.49	
1:C:67:GLU:N	1:C:67:GLU:OE1	2.45	0.49	
1:D:291:ALA:O	1:D:331:LYS:HE2	2.12	0.49	
1:E:289:ASN:O	1:E:292:SER:OG	2.24	0.49	
1:F:224:PRO:HA	1:F:227:VAL:HG22	1.94	0.49	
1:D:310:LEU:HB3	1:D:329:LEU:HD11	1.93	0.49	
1:E:35:LEU:CD2	1:E:38:ILE:HD11	2.37	0.49	
1:A:238:LEU:HD23	1:A:279:ILE:HD13	1.95	0.49	
1:F:62:LEU:HD11	1:F:77:LEU:CD1	2.43	0.49	
1:A:17:VAL:HG21	1:A:52:ALA:O	2.13	0.49	
1:C:56:PRO:HA	1:C:59:VAL:HG22	1.92	0.49	
1:E:108:ASN:HD22	1:E:111:ILE:HG12	1.75	0.49	
1:D:142:LEU:O	1:D:146:LEU:HD12	2.13	0.49	
1:D:13:LEU:HB2	1:D:14:PRO:HD3	1.95	0.49	
1:D:151:GLU:OE1	1:D:151:GLU:N	2.45	0.49	
1:D:50:ILE:HD12	1:D:55:LEU:HD11	1.93	0.49	
1:E:97:LEU:O	1:E:101:VAL:HG23	2.12	0.49	
1:A:66:ASN:HB3	1:A:69:ILE:HD11	1.93	0.49	
1:E:350:LYS:C	1:E:351:ARG:HG2	2.32	0.49	
1:F:143:VAL:HA	1:F:146:LEU:HD13	1.95	0.49	
1:F:161:LEU:HA	1:F:164:ILE:HG12	1.95	0.49	
1:B:235:GLU:OE1	1:B:235:GLU:N	2.41	0.49	

Interatomic Clash				
Atom-1	Atom-2	distance (Å)	overlan (Å)	
1:B:183:ALA:O	1:B:187:LEU:HD13	2.12	0.49	
1:B:236:GLN:O	1:B:240:GLU:HG2	2.12	0.49	
1:C:176:ILE:HG23	1:C:181:LEU:HD23	1.94	0.49	
1:D:213:GLN:OE1	1:D:213:GLN:N	2.43	0.49	
1:D:316:HIS:HB3	1:D:321:ILE:HD11	1.94	0.49	
1:E:151:GLU:OE1	1:E:151:GLU:N	2.45	0.49	
1:E:224:PRO:HA	1:E:227:VAL:HG12	1.94	0.49	
1:F:12:GLU:CG	1:F:34:LYS:HE2	2.43	0.48	
1:C:266:PRO:O	1:C:269:VAL:HG12	2.13	0.48	
1:C:22:SER:O	1:C:28:LEU:HD11	2.13	0.48	
1:E:161:LEU:HD23	1:E:164:ILE:HD12	1.96	0.48	
1:E:234:ASN:CG	1:E:237:ILE:HG12	2.33	0.48	
1:E:268:LEU:O	1:E:272:LEU:HD12	2.13	0.48	
1:C:100:LEU:O	1:C:104:LEU:HD13	2.13	0.48	
1:A:26:GLN:O	1:A:29:GLN:HG2	2.13	0.48	
1:B:227:VAL:HA	1:B:230:LEU:HD12	1.94	0.48	
1:B:286:ALA:O	1:B:290:ILE:HG13	2.13	0.48	
1:E:46:ILE:HD11	1:E:80:ILE:O	2.14	0.48	
1:A:161:LEU:O	1:A:164:ILE:HG22	2.13	0.48	
1:D:124:SER:OG	1:D:348:LYS:HE2	2.14	0.48	
1:E:101:VAL:O	1:E:104:LEU:HB2	2.14	0.48	
1:F:236:GLN:O	1:F:240:GLU:HG2	2.14	0.48	
1:B:234:ASN:CB	1:B:237:ILE:HG13	2.43	0.48	
1:C:350:LYS:O	1:C:351:ARG:CG	2.61	0.48	
1:F:245:LEU:HA	1:F:248:ILE:CG2	2.43	0.48	
1:A:82:SER:HB2	1:A:350:LYS:HG3	1.94	0.48	
1:C:123:ALA:HB1	1:C:164:ILE:HD13	1.95	0.48	
1:D:71:GLN:HG2	1:D:75[B]:TRP:NE1	2.29	0.48	
1:E:62:LEU:HA	1:E:70:LEU:CD1	2.44	0.48	
1:B:187:LEU:HD11	3:B:402:EDO:H12	1.95	0.48	
1:B:50:ILE:HG12	1:B:55:LEU:HD11	1.96	0.48	
1:A:32:LEU:HD11	1:A:61:LEU:HD23	1.95	0.48	
1:D:282:GLU:OE1	1:D:343:ARG:NH2	2.38	0.48	
1:E:183:ALA:O	1:E:187:LEU:HD13	2.14	0.48	
1:A:235:GLU:N	1:A:235:GLU:OE1	2.43	0.48	
1:C:272:LEU:CD2	1:C:284:LEU:HD12	2.44	0.48	
1:D:46:ILE:CD1	1:D:83:GLY:HA3	2.44	0.48	
1:F:182:PRO:HA	1:F:185:VAL:HG22	1.95	0.47	
1:D:140:PRO:HA	1:D:143:VAL:CG2	2.43	0.47	
1:F:59:VAL:HG11	1:F:94:ALA:HB1	1.95	0.47	
1:B:66:ASN:HB3	1:B:69:ILE:HG13	1.95	0.47	

	lo uo puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:313:LEU:HD11	1:D:325:ALA:CB	2.42	0.47
1:E:234:ASN:HB3	1:E:237:ILE:HG12	1.97	0.47
1:F:208:SER:OG	1:F:344:LYS:NZ	2.41	0.47
1:B:143:VAL:HG21	1:B:178:ALA:HB1	1.95	0.47
1:B:311:GLU:O	1:B:314:GLN:HG2	2.15	0.47
1:D:184:LEU:CD2	1:D:202:ALA:HB3	2.45	0.47
1:D:298:LYS:HG2	1:D:332:LEU:HD23	1.96	0.47
1:F:223:LEU:N	1:F:224:PRO:HD2	2.29	0.47
1:F:269:VAL:O	1:F:272:LEU:HB2	2.14	0.47
1:D:180:ALA:C	1:D:184:LEU:HD12	2.33	0.47
1:D:188:LEU:HD11	1:D:203:LEU:CD1	2.43	0.47
1:C:100:LEU:CB	1:C:119:LEU:HD11	2.44	0.47
1:C:321:ILE:HD12	1:C:321:ILE:H	1.80	0.47
1:C:54:ALA:O	1:C:58:LEU:HD12	2.14	0.47
1:A:103:LEU:HD12	1:A:111:ILE:HG21	1.96	0.47
1:B:28:LEU:HD23	1:B:28:LEU:C	2.35	0.47
1:D:138:ALA:O	1:D:142:LEU:HD12	2.15	0.47
1:F:43:ASN:HA	1:F:46:ILE:HG22	1.95	0.47
1:B:323:LYS:O	1:B:326:GLN:HG2	2.15	0.47
1:B:47:GLN:NE2	1:B:51:ASP:OD1	2.47	0.47
1:C:265:LEU:HB2	1:C:266:PRO:HD3	1.97	0.47
1:B:316:HIS:CG	1:B:321:ILE:HD11	2.50	0.47
1:E:150:ASN:ND2	1:E:153:ILE:HG12	2.30	0.47
1:A:59:VAL:HG11	1:A:94:ALA:CB	2.43	0.47
1:C:142:LEU:O	1:C:146:LEU:HD12	2.15	0.47
1:E:109:GLU:N	1:E:109:GLU:OE1	2.48	0.47
1:E:43:ASN:C	1:E:46:ILE:HG22	2.35	0.47
1:D:256:ILE:CG2	1:D:297:GLN:HG2	2.45	0.47
1:D:313:LEU:CD1	1:D:325:ALA:HB2	2.39	0.47
1:D:71:GLN:CG	1:D:75[B]:TRP:HE1	2.28	0.47
1:B:64:SER:OG	1:B:69:ILE:HD11	2.15	0.46
1:D:180:ALA:HB1	1:D:184:LEU:HD11	1.97	0.46
1:D:92:ILE:CD1	1:D:97:LEU:HD11	2.43	0.46
1:F:273:SER:HA	1:F:309:LYS:HE2	1.96	0.46
1:A:68:GLN:HG2	1:B:277:GLU:HB2	1.97	0.46
1:E:100:LEU:O	1:E:104:LEU:HD13	2.15	0.46
1:E:245:LEU:HD22	1:E:248:ILE:HD11	1.96	0.46
1:A:181:LEU:O	1:A:185:VAL:HG23	2.15	0.46
1:C:77:LEU:HA	1:C:80:ILE:HG12	1.97	0.46
1:D:66:ASN:ND2	1:D:69:ILE:HG12	2.30	0.46
1:E:292:SER:HB3	1:E:331:LYS:HZ3	1.77	0.46

Interatomic Clash				
Atom-1	Atom-2	distance $(Å)$	overlan (Å)	
1:F:14:PRO:HA	1:F:17:VAL:HG12	1.97	0.46	
1:C:20:LEU:HD23	1:C:57:ALA:CB	2.45	0.46	
1:D:119:LEU:HA	1:D:119:LEU:HD23	1.76	0.46	
1:D:67:GLU:N	1:D:67:GLU:OE1	2.48	0.46	
1:A:183:ALA:O	1:A:187:LEU:HD13	2.15	0.46	
1:B:150:ASN:HB3	1:B:153:ILE:HD12	1.98	0.46	
1:F:218:ILE:HG12	1:F:223:LEU:HD11	1.98	0.46	
1:C:307:LEU:CD1	1:C:332:LEU:HD23	2.46	0.46	
1:E:166:SER:HB3	1:E:205:ASN:ND2	2.31	0.46	
1:F:47:GLN:HB2	1:F:87:GLN:HE21	1.81	0.46	
1:E:64:SER:CB	1:E:69:ILE:HD11	2.46	0.46	
1:A:82:SER:CB	1:A:350:LYS:HG3	2.46	0.46	
1:D:109:GLU:N	1:D:109:GLU:OE1	2.49	0.46	
1:E:245:LEU:O	1:E:248:ILE:HG12	2.15	0.46	
1:F:227:VAL:HA	1:F:230:LEU:HD12	1.98	0.46	
1:B:104:LEU:HA	1:B:112:LEU:CD1	2.45	0.45	
1:E:59:VAL:HG11	1:E:94:ALA:HB1	1.98	0.45	
1:B:33:ARG:O	1:B:37:GLN:HG3	2.17	0.45	
1:C:100:LEU:HD13	1:C:119:LEU:HD12	1.97	0.45	
1:D:292:SER:HB2	1:D:331:LYS:HZ3	1.80	0.45	
1:C:77:LEU:HD23	1:C:80:ILE:CD1	2.35	0.45	
1:D:140:PRO:HA	1:D:143:VAL:HG22	1.98	0.45	
1:E:130:ILE:HG23	1:E:164:ILE:HG23	1.98	0.45	
1:C:62:LEU:HA	1:C:70:LEU:CD1	2.46	0.45	
1:D:154:LEU:HD23	1:D:195:ILE:CD1	2.43	0.45	
1:D:234:ASN:CG	1:D:237:ILE:HG13	2.37	0.45	
1:E:236:GLN:O	1:E:240:GLU:HG2	2.15	0.45	
1:E:265:LEU:O	1:E:269:VAL:HG23	2.17	0.45	
1:F:202:ALA:O	1:F:206:ILE:HG13	2.16	0.45	
1:A:130:ILE:CG2	1:A:171:GLN:HG2	2.45	0.45	
1:A:57:ALA:O	1:A:60:GLN:HG2	2.16	0.45	
1:C:169:ASN:HD21	1:E:211:ASN:ND2	2.14	0.45	
1:E:228:GLN:HG2	3:E:408:EDO:H21	1.98	0.45	
1:E:286:ALA:O	1:E:290:ILE:HG13	2.17	0.45	
1:E:294:GLY:HA3	1:E:297:GLN:OE1	2.17	0.45	
1:E:35:LEU:HA	1:E:38:ILE:CG1	2.47	0.45	
1:A:27:GLU:N	1:A:27:GLU:OE1	2.40	0.45	
1:B:269:VAL:HA	1:B:272:LEU:HD13	1.97	0.45	
1:B:46:ILE:CG2	1:B:87:GLN:HG2	2.46	0.45	
1:D:134:ILE:CG1	1:D:164:ILE:HD11	2.46	0.45	
1:D:161:LEU:CA	1:D:164:ILE:HG22	2.46	0.45	

Interatomic Clash				
Atom-1	Atom-2	distance $(Å)$	overlap (Å)	
1:D:224:PRO:HA	1:D:227:VAL:HG22	1.98	0.45	
1:B:238:LEU:HD23	1:B:279:ILE:HD12	1.98	0.45	
1:A:64:SER:OG	1:A:69:ILE:HG13	2.17	0.45	
1:B:227:VAL:O	1:B:230:LEU:HB2	2.16	0.45	
1:C:234:ASN:HB3	1:C:237:ILE:CG1	2.46	0.45	
1:E:56:PRO:HA	1:E:59:VAL:HG22	1.99	0.45	
1:F:151:GLU:N	1:F:151:GLU:OE1	2.49	0.45	
1:F:98:PRO:O	1:F:101:VAL:HG22	2.17	0.45	
1:A:320:LYS:HD3	1:A:320:LYS:HA	1.73	0.45	
1:D:48:ALA:O	1:D:51:ASP:OD1	2.35	0.45	
1:D:66:ASN:HD22	1:D:69:ILE:CG1	2.30	0.45	
1:A:218:ILE:HG12	1:A:223:LEU:HD11	1.98	0.44	
1:D:61:LEU:HD22	1:D:69:ILE:CG2	2.46	0.44	
1:B:307:LEU:HD21	1:B:332:LEU:HD13	2.00	0.44	
1:F:141:ALA:O	1:F:144:GLN:HG2	2.18	0.44	
1:B:234:ASN:CG	1:B:237:ILE:HG13	2.38	0.44	
1:F:235:GLU:N	1:F:235:GLU:OE1	2.44	0.44	
1:B:67:GLU:OE1	1:B:67:GLU:N	2.50	0.44	
1:A:227:VAL:HA	1:A:230:LEU:HD12	1.99	0.44	
1:F:116:LEU:HB3	1:F:156:SER:HB3	2.00	0.44	
1:C:55:LEU:HD23	1:C:91:VAL:HA	2.00	0.44	
1:D:161:LEU:O	1:D:164:ILE:HG22	2.18	0.44	
1:D:306:ALA:O	1:D:310:LEU:HD13	2.17	0.44	
1:F:277:GLU:OE1	1:F:277:GLU:N	2.44	0.44	
1:A:16:MET:SD	1:A:35:LEU:HB2	2.58	0.44	
1:B:253:ASN:OD1	1:B:293:GLY:HA3	2.17	0.44	
1:F:139:LEU:N	1:F:140:PRO:HD2	2.33	0.44	
1:F:326:GLN:O	1:F:330:GLU:HG3	2.18	0.44	
1:A:139:LEU:HB2	1:A:140:PRO:HD3	2.00	0.44	
1:C:272:LEU:CD2	1:C:284:LEU:CD1	2.96	0.44	
1:E:97:LEU:HB2	1:E:98:PRO:HD3	2.00	0.44	
1:A:265:LEU:N	1:A:266:PRO:HD2	2.33	0.44	
1:F:154:LEU:O	1:F:158:LEU:HG	2.17	0.44	
1:A:286:ALA:O	1:A:290:ILE:HG13	2.18	0.43	
1:B:150:ASN:HB3	1:B:153:ILE:CD1	2.48	0.43	
1:B:59:VAL:HG21	1:B:94:ALA:HB1	2.00	0.43	
1:C:40:SER:HA	1:C:350:LYS:HE2	2.00	0.43	
1:D:203:LEU:HD23	1:D:203:LEU:HA	1.84	0.43	
1:A:185:VAL:HA	1:A:188:LEU:CD1	2.36	0.43	
1:B:252:GLY:N	1:B:255:GLN:OE1	2.51	0.43	
1:E:182:PRO:O	1:E:185:VAL:HG22	2.17	0.43	

Interatomic Clash				
Atom-1	Atom-2	distance $(Å)$	overlap (Å)	
1:E:86:GLU:HA	1:E:86:GLU:OE1	2.18	0.43	
1:F:119:LEU:HA	1:F:119:LEU:HD23	1.77	0.43	
1:A:92:ILE:HD12	1:A:129:GLN:HG2	2.00	0.43	
1:B:268:LEU:O	1:B:272:LEU:HD12	2.19	0.43	
1:C:97:LEU:HB2	1:C:98:PRO:HD3	2.01	0.43	
1:D:202:ALA:O	1:D:206:ILE:HG13	2.19	0.43	
1:E:123:ALA:O	1:E:163:ASN:HB3	2.18	0.43	
1:E:269:VAL:HA	1:E:272:LEU:HD13	2.00	0.43	
1:F:98:PRO:CA	1:F:101:VAL:HG22	2.47	0.43	
1:C:316:HIS:CE1	1:C:318:ASN:HB2	2.53	0.43	
1:D:276:ASN:O	1:D:279:ILE:HG12	2.19	0.43	
1:F:161:LEU:HD23	1:F:164:ILE:HD11	2.01	0.43	
1:A:55:LEU:N	1:A:56:PRO:HD2	2.33	0.43	
1:C:150:ASN:ND2	1:C:153:ILE:HG13	2.33	0.43	
1:C:166:SER:OG	1:C:346:LYS:HD3	2.19	0.43	
1:C:290:ILE:HG22	1:C:301:VAL:CG2	2.49	0.43	
1:C:32:LEU:CD2	1:C:69:ILE:HG23	2.49	0.43	
1:D:62:LEU:HD11	1:D:77:LEU:HD11	2.00	0.43	
1:A:138:ALA:C	1:A:142:LEU:HD12	2.39	0.43	
1:C:181:LEU:N	1:C:182:PRO:HD2	2.34	0.43	
1:E:181:LEU:N	1:E:182:PRO:HD2	2.34	0.43	
1:E:62:LEU:HA	1:E:70:LEU:HD12	1.99	0.43	
1:A:280:LEU:CD2	1:A:321:ILE:HG21	2.49	0.43	
1:B:69:ILE:HG13	1:B:69:ILE:H	1.71	0.43	
1:D:274:SER:OG	1:D:275:PRO:HD2	2.18	0.43	
1:E:140:PRO:O	1:E:143:VAL:HG22	2.19	0.43	
1:E:142:LEU:O	1:E:146:LEU:CD1	2.67	0.43	
1:E:230:LEU:HD11	1:E:245:LEU:HD12	1.99	0.43	
1:F:227:VAL:O	1:F:230:LEU:HB2	2.18	0.43	
1:A:306:ALA:O	1:A:310:LEU:HD13	2.19	0.43	
1:C:202:ALA:O	1:C:206:ILE:HG12	2.18	0.43	
1:C:211:ASN:OD1	1:E:169:ASN:ND2	2.52	0.43	
1:C:266:PRO:HA	1:C:269:VAL:HG12	2.01	0.43	
1:A:68:GLN:CG	1:B:277:GLU:HB2	2.48	0.42	
1:D:302:LYS:HD3	1:D:307:LEU:HD12	2.00	0.42	
1:F:252:GLY:N	1:F:255:GLN:OE1	2.49	0.42	
1:A:35:LEU:HD13	1:A:49:VAL:HG11	1.99	0.42	
1:B:77:LEU:HA	1:B:77:LEU:HD23	1.81	0.42	
1:C:104:LEU:O	1:C:112:LEU:HD13	2.19	0.42	
1:C:55:LEU:HD12	1:C:55:LEU:N	2.34	0.42	
1:D:265:LEU:HD21	1:D:301:VAL:HG22	2.01	0.42	

Interatomic Clash				
Atom-1	Atom-2	distance (Å)	overlan (Å)	
1:E:272:LEU:HD11	1:E:287:LEU:HD12	2.00	0.42	
1:A:86:GLU:OE1	1:A:86:GLU:N	2.42	0.42	
1:B:161:LEU:HD23	1:B:161:LEU:HA	1.90	0.42	
1:B:87:GLN:OE1	1:B:87:GLN:N	2.51	0.42	
1:E:15:GLN:O	1:E:18:GLN:HB2	2.19	0.42	
1:A:294:GLY:HA3	1:A:297:GLN:OE1	2.19	0.42	
1:C:222:ALA:C	1:C:226:LEU:HD12	2.40	0.42	
1:E:139:LEU:O	1:E:143:VAL:HG13	2.19	0.42	
1:F:127:ASN:ND2	1:F:167:GLY:HA2	2.35	0.42	
1:B:318:ASN:HB3	1:B:321:ILE:HG12	2.00	0.42	
1:C:16:MET:O	1:C:19:GLN:HG2	2.20	0.42	
1:B:213:GLN:N	1:B:213:GLN:OE1	2.47	0.42	
1:D:280:LEU:HD23	1:D:280:LEU:C	2.40	0.42	
1:D:269:VAL:HG21	1:D:304:ALA:HB1	2.01	0.42	
1:D:291:ALA:HB1	1:D:332:LEU:HD23	2.02	0.42	
1:E:350:LYS:CG	1:E:351:ARG:H	2.28	0.42	
1:B:254:GLU:OE1	1:B:254:GLU:N	2.48	0.42	
1:C:298:LYS:HE3	1:C:332:LEU:C	2.40	0.42	
1:F:161:LEU:HD22	1:F:164:ILE:HD11	2.01	0.42	
1:C:32:LEU:HD22	1:C:69:ILE:HG23	2.02	0.42	
1:E:119:LEU:HD23	1:E:119:LEU:HA	1.80	0.42	
1:A:104:LEU:HD11	1:A:119:LEU:CD1	2.48	0.42	
1:B:311:GLU:HA	1:B:314:GLN:OE1	2.20	0.42	
1:B:55:LEU:N	1:B:55:LEU:HD12	2.35	0.42	
1:C:74:LEU:HB3	1:C:114:GLU:HB3	2.02	0.42	
1:C:188:LEU:HA	1:C:188:LEU:HD23	1.90	0.42	
1:C:44:GLU:HG3	1:C:45:GLN:HG2	2.01	0.42	
1:E:214:ILE:CG2	1:E:255:GLN:HG2	2.50	0.42	
1:B:265:LEU:HB2	1:B:266:PRO:HD3	2.02	0.41	
1:C:109:GLU:OE1	1:C:109:GLU:N	2.53	0.41	
1:E:13:LEU:N	1:E:14:PRO:CD	2.83	0.41	
1:E:184:LEU:CD2	1:E:202:ALA:HB3	2.50	0.41	
1:F:13:LEU:HB2	1:F:14:PRO:HD3	2.02	0.41	
1:F:141:ALA:O	1:F:145:LEU:HG	2.20	0.41	
1:F:214:ILE:CG2	1:F:248:ILE:HG13	2.50	0.41	
1:A:193:GLU:HB2	1:B:150:ASN:OD1	2.19	0.41	
1:C:12:GLU:O	1:C:16:MET:HB2	2.20	0.41	
1:D:309:LYS:HD3	1:D:309:LYS:HA	1.91	0.41	
1:B:123:ALA:O	1:B:163:ASN:HB3	2.19	0.41	
1:B:287:LEU:HA	1:B:287:LEU:HD23	1.87	0.41	
1:B:138:ALA:HB1	1:B:142:LEU:HD11	2.03	0.41	

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:43:ASN:HA	1:D:46:ILE:CD1	2.50	0.41
1:F:166:SER:OG	1:F:346:LYS:HD3	2.20	0.41
1:C:151:GLU:OE1	1:C:151:GLU:N	2.53	0.41
1:D:82:SER:OG	1:D:350:LYS:NZ	2.46	0.41
1:F:138:ALA:O	1:F:142:LEU:HD12	2.20	0.41
1:B:213:GLN:O	1:B:217:VAL:HG13	2.21	0.41
1:D:265:LEU:HB2	1:D:266:PRO:HD3	2.03	0.41
1:E:265:LEU:N	1:E:266:PRO:HD2	2.35	0.41
1:E:298:LYS:O	1:E:302:LYS:HG3	2.20	0.41
1:E:350:LYS:HG2	1:E:351:ARG:N	2.31	0.41
1:F:181:LEU:N	1:F:182:PRO:HD2	2.36	0.41
1:A:227:VAL:HG11	1:A:262:ALA:O	2.21	0.41
1:B:170:GLU:N	1:B:170:GLU:OE1	2.34	0.41
1:D:20:LEU:HD11	1:D:35:LEU:CD1	2.51	0.41
1:F:35:LEU:O	1:F:38:ILE:HG22	2.21	0.41
1:A:161:LEU:HD23	1:A:161:LEU:HA	1.91	0.41
1:A:313:LEU:HA	1:A:313:LEU:HD23	1.93	0.41
1:D:161:LEU:HA	1:D:161:LEU:HD23	1.85	0.41
1:E:58:LEU:HD22	1:E:58:LEU:N	2.36	0.41
1:F:323:LYS:HA	1:F:323:LYS:HD3	1.78	0.41
1:F:329:LEU:HA	1:F:329:LEU:HD12	1.91	0.41
1:A:213:GLN:O	1:A:217:VAL:HG13	2.20	0.41
1:B:153:ILE:H	1:B:153:ILE:HG13	1.63	0.41
1:C:280:LEU:HD23	1:C:280:LEU:HA	1.82	0.41
1:C:188:LEU:HD21	1:C:200:LEU:CD2	2.51	0.41
1:E:208:SER:OG	1:E:344:LYS:HE2	2.21	0.41
1:A:185:VAL:HG21	1:A:220:ALA:CB	2.51	0.40
1:B:150:ASN:HD22	1:B:153:ILE:CD1	2.34	0.40
1:F:20:LEU:O	1:F:28:LEU:HD21	2.21	0.40
1:F:55:LEU:HD21	1:F:80:ILE:HD13	2.03	0.40
1:B:68:GLN:HG3	1:B:69:ILE:N	2.36	0.40
1:B:46:ILE:HG22	1:B:87:GLN:HG2	2.04	0.40
1:C:183:ALA:O	1:C:187:LEU:HD13	2.22	0.40
1:C:286:ALA:O	1:C:290:ILE:HG13	2.22	0.40
1:D:15:GLN:O	1:D:19:GLN:HG3	2.21	0.40
1:F:101:VAL:O	1:F:104:LEU:HB2	2.21	0.40
1:F:245:LEU:HD23	1:F:245:LEU:HA	1.80	0.40
1:A:213:GLN:OE1	1:A:213:GLN:N	2.50	0.40
1:C:141:ALA:O	1:C:145:LEU:HG	2.20	0.40
1:C:284:LEU:HD11	1:C:313:LEU:CD1	2.51	0.40
1:E:127:ASN:HB3	1:E:171:GLN:HE22	1.86	0.40

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:B:181:LEU:N	1:B:182:PRO:HD2	2.36	0.40
1:C:275:PRO:O	1:D:25:GLN:NE2	2.55	0.40
1:C:59:VAL:HG11	1:C:94:ALA:HB1	2.03	0.40
1:D:302:LYS:HZ2	1:D:307:LEU:HD12	1.83	0.40

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
4:A:502:HOH:O	4:A:502:HOH:O[2_555]	2.11	0.09

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{ntiles}
1	А	336/344~(98%)	329~(98%)	7(2%)	0	100	100
1	В	340/344~(99%)	338~(99%)	2(1%)	0	100	100
1	С	332/344~(96%)	329~(99%)	2(1%)	1 (0%)	41	73
1	D	332/344~(96%)	328~(99%)	4 (1%)	0	100	100
1	E	340/344~(99%)	334~(98%)	6(2%)	0	100	100
1	F	342/344~(99%)	337~(98%)	4 (1%)	1 (0%)	41	73
All	All	2022/2064~(98%)	1995~(99%)	25~(1%)	2(0%)	51	83

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	F	41	GLY
1	С	41	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	266/267~(100%)	264~(99%)	2(1%)	81 92
1	В	267/267~(100%)	264~(99%)	3~(1%)	73 88
1	С	263/267~(98%)	261~(99%)	2(1%)	81 92
1	D	264/267~(99%)	259~(98%)	5 (2%)	57 80
1	Ε	267/267~(100%)	265~(99%)	2(1%)	84 93
1	F	268/267~(100%)	268~(100%)	0	100 100
All	All	1595/1602~(100%)	1581 (99%)	14 (1%)	78 91

All (14) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	16	MET
1	А	106	SER
1	В	162	SER
1	В	237	ILE
1	В	289	ASN
1	С	35	LEU
1	С	46	ILE
1	D	128	GLU
1	D	194	GLN
1	D	284	LEU
1	D	295	ASN
1	D	343	ARG
1	Е	75	TRP
1	Е	237	ILE

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (14) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	29	GLN
1	В	127	ASN
1	В	312	GLN

Mol	Chain	Res	Type
1	С	19	GLN
1	С	68	GLN
1	С	110	GLN
1	С	169	ASN
1	D	194	GLN
1	D	278	GLN
1	D	314	GLN
1	Е	108	ASN
1	Е	197	GLN
1	F	253	ASN
1	F	314	GLN

Continued from previous page...

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no carbohydrates in this entry.

5.6 Ligand geometry (i)

Of 26 ligands modelled in this entry, 16 are monoatomic - leaving 10 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mol Type Chain R	Bos	\mathbf{Res}	Bos	Link	B	ond leng	\mathbf{gths}	E	Bond ang	gles
MOI		Unain			Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2	
3	EDO	С	403	-	3,3,3	0.50	0	2,2,2	0.22	0	
3	EDO	В	401	-	3,3,3	0.48	0	2,2,2	0.34	0	
3	EDO	A	407	-	3,3,3	0.48	0	2,2,2	0.24	0	

Mal	ol Type Chain Bes L		n Bes Link		Bond lengths			Bond angles		
WIOI	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
3	EDO	В	402	-	3,3,3	0.48	0	2,2,2	0.27	0
3	EDO	Е	406	-	3,3,3	0.49	0	$2,\!2,\!2$	0.22	0
3	EDO	В	403	-	3,3,3	0.43	0	2,2,2	0.67	0
3	EDO	А	406	-	3,3,3	0.45	0	2,2,2	0.37	0
3	EDO	С	404	-	3,3,3	0.51	0	2,2,2	0.35	0
3	EDO	Е	407	-	3,3,3	0.47	0	2,2,2	0.28	0
3	EDO	Е	408	-	3,3,3	0.43	0	$2,\!2,\!2$	0.55	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	\mathbf{Res}	Link	Chirals	Torsions	Rings
3	EDO	С	403	-	-	0/1/1/1	-
3	EDO	В	401	-	-	0/1/1/1	-
3	EDO	А	407	-	-	1/1/1/1	-
3	EDO	В	402	-	-	0/1/1/1	-
3	EDO	Е	406	-	-	0/1/1/1	-
3	EDO	В	403	-	-	0/1/1/1	-
3	EDO	А	406	-	-	0/1/1/1	-
3	EDO	С	404	-	-	1/1/1/1	-
3	EDO	Е	407	-	-	0/1/1/1	-
3	EDO	Е	408	-	-	1/1/1/1	-

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (3) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	С	404	EDO	O1-C1-C2-O2
3	А	407	EDO	O1-C1-C2-O2
3	Е	408	EDO	O1-C1-C2-O2

There are no ring outliers.

2 monomers are involved in 2 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	В	402	EDO	1	0

Continued from previous page...

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	Ε	408	EDO	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$\mathbf{OWAB}(\mathbf{\AA}^2)$	Q<0.9
1	А	340/344~(98%)	-0.34	0 100 100	47, 77, 116, 179	0
1	В	341/344~(99%)	-0.17	2 (0%) 89 83	52, 83, 125, 173	0
1	С	335/344~(97%)	-0.03	8 (2%) 59 44	52, 82, 186, 312	0
1	D	334/344~(97%)	0.11	21 (6%) 20 11	49, 82, 192, 242	0
1	Ε	341/344~(99%)	-0.22	0 100 100	51,83,136,163	0
1	F	343/344~(99%)	-0.16	6 (1%) 70 57	56, 87, 161, 205	0
All	All	2034/2064~(98%)	-0.14	37 (1%) 68 55	47, 82, 160, 312	0

All (37) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	D	312	GLN	5.9
1	С	315	SER	5.9
1	D	326	GLN	5.3
1	С	314	GLN	4.9
1	D	311	GLU	4.4
1	D	313	LEU	4.3
1	D	324	GLU	4.0
1	D	304	ALA	4.0
1	D	317	GLU	3.8
1	D	328	ALA	3.7
1	D	327	GLU	3.4
1	D	309	LYS	3.2
1	С	311	GLU	3.1
1	D	325	ALA	3.1
1	F	72	GLU	3.0
1	С	306	ALA	3.0
1	F	11	SER	3.0
1	D	300	ALA	2.9
1	D	12	GLU	2.8

Mol	Chain	Res	Type	RSRZ
1	С	10	GLY	2.8
1	F	23	PRO	2.8
1	D	316	HIS	2.8
1	D	315	SER	2.6
1	С	12	GLU	2.6
1	D	322	GLN	2.6
1	F	337	SER	2.6
1	D	301	VAL	2.5
1	D	303	GLU	2.2
1	С	307	LEU	2.2
1	F	335	HIS	2.2
1	D	321	ILE	2.2
1	С	22	SER	2.1
1	В	12	GLU	2.1
1	F	22	SER	2.1
1	В	26	GLN	2.1
1	D	308	GLU	2.1
1	D	319	GLU	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no carbohydrates in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	${f B} ext{-factors}({ m \AA}^2)$	Q<0.9
3	EDO	С	403	4/4	0.68	0.23	$89,\!107,\!110,\!110$	0
3	EDO	А	406	4/4	0.70	0.20	88,106,111,117	0
3	EDO	А	407	4/4	0.74	0.30	$78,\!94,\!106,\!107$	0
3	EDO	В	403	4/4	0.80	0.34	73,88,92,94	0
2	CA	D	403	1/1	0.82	0.19	$68,\!68,\!68,\!68$	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} extsf{-}\mathbf{factors}(\mathbf{A}^2)$	Q<0.9
3	EDO	В	401	4/4	0.83	0.21	$83,\!100,\!108,\!108$	0
3	EDO	С	404	4/4	0.83	0.51	$77,\!92,\!99,\!105$	0
3	EDO	В	402	4/4	0.86	0.29	72,87,100,102	0
3	EDO	Е	408	4/4	0.87	0.57	66,79,89,89	0
2	CA	Е	404	1/1	0.87	0.19	72,72,72,72	0
3	EDO	Е	407	4/4	0.88	0.36	$98,\!118,\!120,\!121$	0
3	EDO	Е	406	4/4	0.90	0.16	64,77,84,88	0
2	CA	Е	405	1/1	0.92	0.27	$120,\!120,\!120,\!120$	0
2	CA	С	401	1/1	0.93	0.15	56, 56, 56, 56	0
2	CA	А	403	1/1	0.93	0.15	58, 58, 58, 58	0
2	CA	А	401	1/1	0.93	0.15	$63,\!63,\!63,\!63$	0
2	CA	С	402	1/1	0.95	0.12	$62,\!62,\!62,\!62$	0
2	CA	Е	401	1/1	0.95	0.13	$64,\!64,\!64,\!64$	0
2	CA	А	405	1/1	0.96	0.15	$68,\!68,\!68,\!68$	0
2	CA	Е	403	1/1	0.96	0.18	59, 59, 59, 59, 59	0
2	CA	А	402	1/1	0.97	0.15	$63,\!63,\!63,\!63$	0
2	CA	Е	402	1/1	0.97	0.20	74, 74, 74, 74	0
2	CA	A	404	1/1	0.98	0.26	$67,\!67,\!67,\!67$	0
2	CA	D	401	1/1	0.98	0.12	52, 52, 52, 52, 52	0
2	CA	F	401	1/1	0.98	0.15	$\overline{67,\!67,\!67,\!67}$	0
2	CA	D	402	1/1	0.99	0.13	$5\overline{3},\!5\overline{3},\!5\overline{3},\!5\overline{3}$	0

6.5 Other polymers (i)

There are no such residues in this entry.

