

Nov 19, 2022 – 10:00 AM EST

]	PDB ID	:	7R81
EN	IDB ID	:	EMD-24307
	Title	:	Structure of the translating Neurospora crassa ribosome arrested by cyclohex-
			imide
	Authors	:	Shen, L.; Su, Z.; Yang, K.; Wu, C.; Becker, T.; Bell-Pedersen, D.; Zhang, J.;
			Sachs, M.S.
Depo	sited on	:	2021-06-25
Re	solution	:	2.70 Å(reported)
_			
	This is	a I	Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 43
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.3

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	A1	3338	<mark>6%</mark> 80%	13% 6%
2	A2	1796	85%	14% •
3	B1	120	92%	8%
4	B2	290	48%	28%
5	C1	158	9%87%	13%
6	C2	256	53% 82%	17%
7	D1	254	96%	·
8	D2	265	30% 79%	21%

Continued on next page...

Continue	nued fron	n previous	page	
Mol	Chain	Length	Quality of chain	
9	E1	392	• 98%	·
10	E2	262	85%	15%
11	F1	361	5% 99%	·
12	F2	261	98%	•
13	G1	301	99%	
14	G2	213	95%	5%
15	H1	202	96%	•
16	H2	239	79% 92%	• 7%
17	I1	248	99%	
18	I2	202	92%	• 6%
19	J1	262	90%	10%
20	J2	202	91%	9%
21	K1	193	98%	•
22	K2	190	92%	8%
23	L1	221	98%	•
24	L2	163	47% 55% 45%	
25	M1	174	94%	• 5%
26	M2	161	81%	19%
27	N1	214	99%	
28	N2	147	79%	21%
29	O1	142	99%	•
30	O2	151	48% 99%	•
31	P1	203	100%	
32	P2	150	84%	16%
33	Q1	231	86%	14%

Continued on next page...

Conti	nued fron	n previous	page	
Mol	Chain	Length	Quality of chain	
	0.5		66%	
34	Q2	152	82% · 16%	
35	R1	186	90% • 10%	-
36	R2	142	98%	I
37	S1	183	99%	I
38	S2	146	84% · 15%	I
39	T1	192	19% 99% •	I
40	T2	156	67% 90% 10%	I
41	U1	174	8%	I
42	U2	149	64% 96%	I
43	V1	160	98%	I
44	V2	117	58% 85% 15%	I
45	W1	126	80% 20%	I
46	W2	87	56% 99%	I
47	X1	139	5% 	I
48	X2	130	35% 99%	I
49	Y1	156	3 9% 61%	I
50	Y2	145	99%	
51	Z1	156	^{8%} 76% 24%	I
52	Z2	136	78% 90% • 9%	I
53	a1	136	7% 	I
54	a2	97	66% 73% 27%	I
55	b1	135	15%	
56	b2	119	23% 82% • 17%	I
57	c1	149	99%	
58	c2	82	80% 99%	I

Continued on next page...

Mol	Chain	Length	Quality of chain	
59	d1	65	98%	·
60	d2	68	51% 91%	9%
61	e1	109	8%	17%
62	e2	56	39%	
63	f1	122	8%	15%
64	f2	63	43%	220/
65		191	08%	32%
60	gı	131	92%	8%
66	g2	154	27% 73%	
67	h1	109	97%	••
68	h2	316	95%	
69	i1	117	5% 92%	8%
70	j1	125	94%	• 6%
71	k1	104	8%	8%
72	11	92	05%	
12	11	52	54%	• •
73	m1	80	90%	• 9%
74	n1	51	96%	• •
75	o1	52	94%	6%
76	p1	25	8%	
77	q1	106	99%	
78	r1	92	5% 92%	8%
79	s1	150	23%	
80	t1	76	50%	16%
80	111	76	33%	12%
	4		75%	12 /0
81	v1	4	41%	
82	w1	17	59% 35%	6%

Continued from previous page...

2 Entry composition (i)

There are 85 unique types of molecules in this entry. The entry contains 202730 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 26S rRNA.

Mol	Chain	Residues			AltConf	Trace			
1	A1	3123	Total 66761	C 29810	N 12043	O 21785	Р 3123	0	0

• Molecule 2 is a RNA chain called 18S rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	A2	1769	Total 37713	C 16852	N 6713	O 12379	Р 1769	0	0

• Molecule 3 is a RNA chain called 5S rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	B1	120	Total 2554	C 1141	N 456	0 837	Р 120	0	0

• Molecule 4 is a protein called 40S ribosomal protein S0.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	B2	209	Total 1635	C 1045	N 289	0 294	S 7	0	0

• Molecule 5 is a RNA chain called 5.8S rRNA.

Mol	Chain	Residues	Atoms				AltConf	Trace	
5	C1	158	Total	С	Ν	0	Р	0	0
, i i i i i i i i i i i i i i i i i i i			3360	1503	593	1106	158	Ū	, in the second s

• Molecule 6 is a protein called 40S ribosomal protein S1.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	C2	212	Total 1706	C 1082	N 314	O 306	$\frac{S}{4}$	0	0

• Molecule 7 is a protein called 60S ribosomal protein L2.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
7	D1	245	Total 1855	C 1158	N 368	O 326	${ m S} { m 3}$	0	0

• Molecule 8 is a protein called 40S ribosomal protein S2.

Mol	Chain	Residues	Atoms					AltConf	Trace
8	D2	210	Total 1612	C 1036	N 282	0 291	${ m S} { m 3}$	0	0

• Molecule 9 is a protein called 60S ribosomal protein L3.

Mol	Chain	Residues		At	Atoms					
9	E1	385	Total 3058	C 1946	N 573	O 529	S 10	0	0	

• Molecule 10 is a protein called Cytoplasmic ribosomal protein 10.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
10	E2	224	Total 1750	C 1102	N 319	0 322	S 7	0	0

• Molecule 11 is a protein called 60S ribosomal protein L4-A.

Mol	Chain	Residues		At	AltConf	Trace			
11	F1	360	Total 2727	C 1711	N 524	0 487	${ m S}{ m 5}$	0	0

• Molecule 12 is a protein called 40S ribosomal protein S4.

Mol	Chain	Residues	Atoms					AltConf	Trace
12	F2	256	Total 2048	C 1299	N 385	O 357	${f S}7$	0	0

• Molecule 13 is a protein called 60S ribosomal protein L5.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
13	G1	300	Total 2423	$\begin{array}{c} \mathrm{C} \\ 1527 \end{array}$	N 426	0 467	${ m S} { m 3}$	0	0

• Molecule 14 is a protein called 40S ribosomal protein S5.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	G2	202	Total 1586	C 987	N 298	O 294	${ m S} 7$	0	0

• Molecule 15 is a protein called 60S ribosomal protein L6.

Mol	Chain	Residues		At	oms			AltConf	Trace
15	H1	194	Total 1521	C 969	N 277	0 274	S 1	0	0

• Molecule 16 is a protein called 40S ribosomal protein S6.

Mol	Chain	Residues	Atoms					AltConf	Trace
16	H2	222	Total 1782	C 1116	N 351	0 310	$\frac{S}{5}$	0	0

• Molecule 17 is a protein called 60S ribosomal protein L7.

Mol	Chain	Residues	Atoms					AltConf	Trace
17	I1	247	Total 2016	C 1291	N 369	O 352	${S \atop 4}$	0	0

• Molecule 18 is a protein called 40S ribosomal protein S7.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
18	I2	189	Total 1514	C 955	N 287	0 272	0	0

• Molecule 19 is a protein called 60S ribosomal protein L8.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	J1	236	Total 1882	C 1206	N 347	O 323	S 6	0	0

• Molecule 20 is a protein called 40S ribosomal protein S8.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	J2	183	Total 1464	C 910	N 293	O 259	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 21 is a protein called 60S ribosomal protein L9.

Mol	Chain	Residues		At	oms			AltConf	Trace
21	K1	190	Total 1504	C 952	N 275	O 273	$\frac{S}{4}$	0	0

• Molecule 22 is a protein called 40S ribosomal protein S9.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	K2	174	Total 1420	C 900	N 284	0 234	${ m S} { m 2}$	0	0

• Molecule 23 is a protein called 60S ribosomal protein L10.

Mol	Chain	Residues		At	AltConf	Trace			
23	L1	217	Total 1751	C 1106	N 340	O 295	S 10	0	0

• Molecule 24 is a protein called Probable 40s ribosomal protein s10-b.

Mol	Chain	Residues		At	oms		AltConf	Trace	
24	L2	90	Total 753	C 490	N 125	0 135	${ m S} { m 3}$	0	0

• Molecule 25 is a protein called 60S ribosomal protein L11.

Mol	Chain	Residues		Atoms					Trace
25	M1	165	Total 1341	C 839	N 260	O 236	S 6	0	0

• Molecule 26 is a protein called 40S ribosomal protein S11.

Mol	Chain	Residues		At	oms			AltConf	Trace
26	M2	131	Total 1068	C 682	N 206	0 177	${ m S} { m 3}$	0	0

• Molecule 27 is a protein called 60S ribosomal protein L13.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
27	N1	213	Total 1675	C 1046	N 336	O 291	${ m S} { m 2}$	0	0

• Molecule 28 is a protein called 40S ribosomal protein S12.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	N2	116	Total 907	$ m C \ 566$	N 163	O 169	${ m S} 9$	0	0

• Molecule 29 is a protein called Ribosomal protein L14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	01	141	Total 1109	C 702	N 212	0 194	S 1	0	0

• Molecule 30 is a protein called 40S ribosomal protein S13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	O2	150	Total 1179	C 750	N 218	0 208	${ m S} { m 3}$	0	0

• Molecule 31 is a protein called 60S ribosomal protein L15.

Mol	Chain	Residues	Atoms					AltConf	Trace
31	P1	202	Total 1702	C 1063	N 359	0 278	${ m S} { m 2}$	0	0

• Molecule 32 is a protein called 40S ribosomal protein S14 (uS11).

Mol	Chain	Residues		At	oms	AltConf	Trace		
32	Ρ2	126	Total 938	С 574	N 186	0 173	${ m S}{ m 5}$	0	0

• Molecule 33 is a protein called 60S ribosomal protein L16.

Mol	Chain	Residues		Ate	AltConf	Trace			
33	Q1	199	Total 1595	C 1022	N 301	O 267	${f S}{5}$	0	0

• Molecule 34 is a protein called Ribosomal protein S12.

Mol	Chain	Residues		At	oms			AltConf	Trace
34	Q2	127	Total 1007	C 639	N 189	0 175	${S \atop 4}$	0	0

• Molecule 35 is a protein called 60S ribosomal protein L17.

Mol	Chain	Residues		At	oms		AltConf	Trace	
35	R1	168	Total 1322	C 819	N 269	0 231	${ m S} { m 3}$	0	0

• Molecule 36 is a protein called 40S ribosomal protein S16.

Mol	Chain	Residues		At	oms		AltConf	Trace	
36	R2	139	Total 1089	C 700	N 200	0 187	${S \over 2}$	0	0

• Molecule 37 is a protein called 60S ribosomal protein L18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	S1	182	Total 1445	C 912	N 291	0 240	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 38 is a protein called 40S ribosomal protein S17.

Mol	Chain	Residues		At	oms			AltConf	Trace
38	S2	124	Total 1005	C 636	N 182	0 185	${S \over 2}$	0	0

• Molecule 39 is a protein called Ribosomal protein L19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
39	T1	191	Total 1563	C 963	N 331	O 265	$\frac{S}{4}$	0	0

• Molecule 40 is a protein called 40S ribosomal protein S18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
40	Τ2	141	Total 1139	C 709	N 227	0 201	${ m S} { m 2}$	0	0

• Molecule 41 is a protein called 60S ribosomal protein L20.

Mol	Chain	Residues		At	oms			AltConf	Trace
41	U1	173	Total 1429	C 920	N 268	0 237	${S \atop 4}$	0	0

• Molecule 42 is a protein called 40S ribosomal protein S19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
42	U2	143	Total 1124	C 701	N 221	O 201	S 1	0	0

• Molecule 43 is a protein called Ribosomal protein Srp1.

Mol	Chain	Residues		At	oms	AltConf	Trace		
43	V1	159	Total 1276	C 807	N 246	0 221	${ m S} { m 2}$	0	0

• Molecule 44 is a protein called 40S ribosomal protein S20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
44	V2	99	Total 786	C 498	N 145	0 140	${ m S} { m 3}$	0	0

• Molecule 45 is a protein called 60S ribosomal protein L22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
45	W1	101	Total 816	C 530	N 141	0 144	S 1	0	0

• Molecule 46 is a protein called 40S ribosomal protein S21.

Mol	Chain	Residues		At	AltConf	Trace			
46	W2	86	Total 668	C 408	N 127	0 130	${ m S} { m 3}$	0	0

• Molecule 47 is a protein called 60S ribosomal protein L23.

Mol	Chain	Residues		At	AltConf	Trace			
47	X1	136	Total 1007	C 638	N 186	0 176	${ m S} 7$	0	0

• Molecule 48 is a protein called 40S ribosomal protein S22.

Mol	Chain	Residues		At	AltConf	Trace			
48	X2	129	Total 1035	C 659	N 192	0 180	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0

• Molecule 49 is a protein called 60S ribosomal protein L24.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
49	Y1	61	Total 525	C 334	N 104	O 86	S 1	0	0

• Molecule 50 is a protein called 40S ribosomal protein S23.

Mol	Chain	Residues		At	oms	AltConf	Trace		
50	Y2	144	Total 1113	C 701	N 218	0 192	${S \over 2}$	0	0

• Molecule 51 is a protein called 60S ribosomal protein L25.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
51	Z1	118	Total 941	C 602	N 170	O 169	0	0

• Molecule 52 is a protein called 40S ribosomal protein S24.

Mol	Chain	Residues		At	oms	AltConf	Trace		
52	Z2	124	Total 1003	C 630	N 197	0 174	${ m S} { m 2}$	0	0

• Molecule 53 is a protein called Ribosomal protein L26.

Mol	Chain	Residues		At	AltConf	Trace			
53	a1	121	Total 961	C 596	N 189	0 175	S 1	0	0

• Molecule 54 is a protein called 40S ribosomal protein S25.

Mol	Chain	Residues		At	oms			AltConf	Trace
54	a2	71	Total 565	C 356	N 105	0 102	${ m S} { m 2}$	0	0

• Molecule 55 is a protein called 60S ribosomal protein L27 (eL27).

Mol	Chain	Residues		At	oms	AltConf	Trace		
55	b1	135	Total 1108	C 707	N 206	0 191	${S \atop 4}$	0	0

• Molecule 56 is a protein called 40S ribosomal protein S26E.

Mol	Chain	Residues		At	oms			AltConf	Trace
56	b2	99	Total 793	C 488	N 167	0 131	${ m S} 7$	0	0

• Molecule 57 is a protein called 60S ribosomal protein L28.

Mol	Chain	Residues		At	oms	AltConf	Trace		
57	c1	148	Total 1166	C 738	N 235	0 191	${ m S} { m 2}$	0	0

• Molecule 58 is a protein called 40S ribosomal protein S27.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
58	c2	81	Total 611	C 386	N 110	0 108	${f S}{7}$	0	0

• Molecule 59 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
59	d1	64	Total 518	C 315	N 113	0 90	0	0

• Molecule 60 is a protein called 40S ribosomal protein S28.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
60	d2	62	Total 491	C 302	N 98	O 90	S 1	0	0

• Molecule 61 is a protein called 60S ribosomal protein L30.

Mol	Chain	Residues		At	oms	AltConf	Trace		
61	e1	91	Total 681	C 433	N 118	0 125	${f S}{5}$	0	0

• Molecule 62 is a protein called 40S ribosomal protein S29.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
62	e2	55	Total 446	C 271	N 94	0 77	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0

• Molecule 63 is a protein called 60s ribosomal protein.

Mol	Chain	Residues		At	oms		Atoms					
63	f1	104	Total 854	C 540	N 166	0 145	${ m S} { m 3}$	0	0			

• Molecule 64 is a protein called 40S ribosomal protein S30.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
64	f2	43	Total 346	C 216	N 72	O 58	0	0

• Molecule 65 is a protein called 60S ribosomal protein L32.

Mol	Chain	Residues		At	oms	AltConf	Trace		
65	g1	121	Total 973	C 609	N 199	0 159	S 6	0	0

• Molecule 66 is a protein called Ubiquitin-40S ribosomal protein S27a.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
66	r?	41	Total	С	Ν	Ο	\mathbf{S}	0	0
00	g2	41	328	204	59	61	4	0	0

• Molecule 67 is a protein called 60S ribosomal protein L33.

Mol	Chain	Residues		At	AltConf	Trace			
67	h1	108	Total 853	C 541	N 167	0 144	S 1	0	0

• Molecule 68 is a protein called Guanine nucleotide-binding protein subunit beta-like protein.

Mol	Chain	Residues		At	AltConf	Trace			
68	h2	310	Total 2429	C 1528	N 424	0 468	S 9	0	0

• Molecule 69 is a protein called 60S ribosomal protein L34.

Mol	Chain	Residues		At	oms			AltConf	Trace
69	i1	108	Total 853	C 530	N 174	0 145	${S \atop 4}$	0	0

• Molecule 70 is a protein called 60S ribosomal protein L35.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
70	j1	118	Total 967	C 613	N 192	O 162	0	0

• Molecule 71 is a protein called 60S ribosomal protein L36.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
71	k1	96	Total 760	C 473	N 162	O 125	0	0

• Molecule 72 is a protein called Ribosomal protein L37.

Mol	Chain	Residues		At	AltConf	Trace			
72	11	88	Total 691	C 424	N 147	0 116	$\frac{S}{4}$	0	0

• Molecule 73 is a protein called 60S ribosomal protein L38.

Mol	Chain	Residues		At	AltConf	Trace			
73	m1	73	Total 585	C 373	N 107	O 103	${ m S} { m 2}$	0	0

• Molecule 74 is a protein called 60S ribosomal protein L39.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
74	n1	50	Total 435	С 274	N 97	0 64	0	0

• Molecule 75 is a protein called 60S ribosomal protein L40.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
75	01	40	Total	С	Ν	Ο	\mathbf{S}	0	0
10	01	43	395	245	83	61	6	0	0

• Molecule 76 is a protein called hypothetical protein NCU16635 (eL41).

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
76	p1	25	Total 235	C 143	N 63	O 27	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 77 is a protein called 60S ribosomal protein L44.

Mol	Chain	Residues		At	oms	AltConf	Trace		
77	q1	105	Total 827	C 522	N 163	O 137	${f S}{5}$	0	0

• Molecule 78 is a protein called 60S ribosomal protein L43.

Mol	Chain	Residues		At	oms			AltConf	Trace
78	r1	85	Total 647	C 401	N 129	0 112	${ m S}{ m 5}$	0	0

• Molecule 79 is a protein called Ribosomal_L28e domain-containing protein.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
79	s1	149	Total 1118	C 697	N 222	O 199	0	0

• Molecule 80 is a RNA chain called tRNA.

Mol	Chain	Residues		\mathbf{A}	toms			AltConf	Trace
80	80 t1 76	76	Total	С	Ν	0	Р	0	0
00		10	1621	723	291	531	76	0	0
80	11	76	Total	С	Ν	0	Р	0	0
00	ul	70	1621	723	291	531	76	0	0

• Molecule 81 is a protein called Nascent peptide.

Mol	Chain	Residues	A	Aton	ıs		AltConf	Trace
81	v1	4	Total 20	C 12	N 4	0 4	0	0

• Molecule 82 is a RNA chain called mRNA.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
82	w1	17	Total 340	C 153	N 34	O 136	Р 17	0	0

• Molecule 83 is 4-{(2R)-2-[(1S,3S,5S)-3,5-dimethyl-2-oxocyclohexyl]-2-hydroxyethyl}piperidi ne-2,6-dione (three-letter code: 3HE) (formula: C₁₅H₂₃NO₄) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	A	Aton	ns		AltConf
83	A1	1	Total 20	C 15	N 1	0 4	0

 $\bullet\,$ Molecule 84 is SPERMIDINE (three-letter code: SPD) (formula: ${\rm C_7H_{19}N_3}).$

Mol	Chain	Residues	Atoms	AltConf
84	A1	1	Total C N 10 7 3	0

• Molecule 85 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
85	A1	180	Total Mg 180 180	0
85	A2	74	TotalMg7474	0
85	F1	1	Total Mg 1 1	0
85	F2	1	Total Mg 1 1	0
85	V1	1	Total Mg 1 1	0
85	Y2	1	Total Mg 1 1	0
85	i1	1	Total Mg 1 1	0
85	u1	1	Total Mg 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 26S rRNA

 \bullet Molecule 8: 40S ribosomal protein S2

• Molecule 19: 60S ribosomal protein L8

E61 A62 A62 A62 A64 A64 A64 A64 A66 B69 B69 S70 C71 E73 E73 E73 E73 E74 A75 K776 K776 K776 K776 K776 K776 K776 K7	Class
C121 S122 C123 V125 V126 V126 V126 M128 G130 G130 G130 G130 G130 G130 G130 G130	
• Molecule 29: Ribosomal protein L14	
Chain O1:	99% •
MET A2 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	B86 A1143 S14142 A1142 A444 A444 A444 A444 A444 A44
• Molecule 30: 40S ribosomal protein SI	13
Chain O2:	99%
MET G2 K7 A15 A15 A15 A15 A15 A15 A15 B22 P23 P22 P22 P22 P22 P22 P22 P22 P22 P	D355 137 137 137 137 138 140 141 140 141 141 143 153 153 153 153 153 153 153 15
P82 D83 L84 P85 E86 D87 L88 Y89 M90 K93 M90 K100 K100 K105 K105 K107 K107 L135	K140 E142 E142 E143 S144 A146 A146 S147 V150 V150
• Molecule 31: 60S ribosomal protein L	15
Chain P1:	100%
MET 12.45 A A A A A A A A A A A A A	
• Molecule 32: 40S ribosomal protein SI	14 (uS11)
Chain P2: 84%	16%
MET PRO LYS PRO LYS ALA ALA ALA ALA ALA ALA ALA ALA CLV CLV CLV CLV CLV CLV CLV CLV CLV CLV	R31 P45 L46 K62 A63 A63 A63 C84 C88 C84 C88 C84 C88 C88 C88
L118 A119 R120 G122 M123 M123 H125 G126 D137 D137 S138 B137 S138 L150	
• Molecule 33: 60S ribosomal protein L	16
Chain Q1: 869	% 14%

GLU GLU ASP ASP GLU

• Molecule 43: Ribosomal protein Srp1

• Molecule 48: 40S ribosomal protein S22

R64 T65 P66 F67 F67 G68 G68 G70 G70 G70 G71 T73 G74 G74 G74	 Y 75 Y 79 Y 79 Y 79 S 81 S 82 S 82 S 84 <l< th=""><th>G98 L99 A100 S101 F103 E104 A106 A106 A106 A106 A106 A100 C109</th><th>R114 K115 R117 Q116 Q118 Q118 L121 L121 K125 G122 G122 K125 K125</th></l<>	G98 L99 A100 S101 F103 E104 A106 A106 A106 A106 A106 A100 C109	R114 K115 R117 Q116 Q118 Q118 L121 L121 K125 G122 G122 K125 K125
V127 LYS GLY GLY LYS LYS GLU LYS GLU LYS			
• Molecule 53: Rib	osomal protein L26		
Chain a1:	88%	• 11%	
MET V2 N6 E41 E41 D112 D112 D112	L114 E115 1118 1119 1119 E120 E120 CLU L122 CLU CL2 CL2 CL2 CL2 CL2 CL2 CL2 CL2 CL2 CL2		
• Molecule 54: 40S	ribosomal protein S25		
Chain a2:	66% 73%	27%	
MET ALA ALA ALA ALA ALA ALA CLY GLY GLN GLN CYS LYS CLYS	TRP LVS GLY GLY LVS LVS LLYS LLYS LLYS LLYS A27 A24 A24 A24 A27 A25 A23 C129 A25 A27 A25 A27 A25 A27 A25 A25 A27 A25 A25 A25 A25 A25 A27 A26 A25 A25 A25 A25 A25 A25 A25 A25 A25 A25	Y39 K40 D41 Q43 Q43 Y45 Y45 F46 Y45 Y45 Y46 Y46 Y46 Y46 Y46 Y46 Y46	152 L53 D55 R56 L57 K58 N60 N60 G61
** ****			
• Molecule 55: 60S	<u> </u>	GCI CI C	
Chain b1:	100%		
• Molecule 56: 40S	ribosomal protein S26E		
Chain b2:	82%	• 17%	
		00010420470014	口氏对下点名此
• Molecule 57: 60S	ribosomal protein L28	PS PS VAR AS AS AS AS AS AS AS AS AS AS AS AS AS	
Chain c1:	99%		
MET P2 E85 E88 A94 A94 A95 A94 A95 A95 A95 A95 A95 A95 A95 A95 A95 A95	198 A09 A149 ◆		

• Molecule 58: 40S ribosomal protein S27

	80%	
Chain c2:	99%	-
	•••••	-
ME V2 A4 A5 A5 A5 C1 C7 C1 C7 C1 C7 C1 C7 C1 C7 C1 C7 C1 C7 C1 C7 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	A1 A1 A1 A1 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
368 369 471 872 872 672 576 576 577 578		
• Molecule 59: 60S	S ribosomal protein L29	
12%		_
Chain d1:	98%	•
MET A2 K25 841 856 650 660 K61		
• Molecule 60: 40S	S ribosomal protein S28	
Chain d2:	51% 91% 9'	%
•• •• •	•• • • •••••	•••••
MET ASP SER SER SER LYS LYS P7 V8 V8 K9 K19 K15	120 621 720 621 625 733 734 734 734 734 734 734 734 735 735 735 735 735 735 735 753 753 753	E63 A64 R65 R66 L67 ARG
• Molecule 61: 60S	5 ribosomal protein L30	
Chain e1:	83% 17%	_
MET PRO LYS SER LYS SER SER ALS GLA GLA CLA CLA	L19 K22 K22 K67 K67 K67 K67 K67 K67 K10 C100 C100 C100 C100 C100 C100 C100	
• Molecule 62: 40S	5 ribosomal protein S29	
Chain e2:	39%	-
• Molecule 63: 60s 	s ribosomal protein	
Chain f1:	85% 15%	-
MET SER SER SER LYS PRO PRO THR THR THR THR THR ARC GLN ARC	LILA ALA ALA ALA ALA B17 B33 B92 B93 A96 A97 B93 A96 A16 B93 A96 A97 B93 A96 A120 G10 G11 A111 A120 G111 G1	
• Molecule 64: 40S	S ribosomal protein S30	
Chain f2:	43% 68% 32%	_
	PROTEIN DATA BANK	

MET VAL VAL B B B C C C C C C C C C C C C C C C C
• Molecule 65: 60S ribosomal protein L32
Chain g1: 92% 8%
MET VAL A3 A123 A14 LYS VAL CUS VAL
\bullet Molecule 66: Ubiquitin-40S ribosomal protein S27a
Chain g2: 27% 73%
MET TILE TILE CLIN CLIN CLIN CLIN THR THR THR THR THR THR THR CLIN CLIN CLIN CLIN CLIN CLIN CLIN CLIN
LLE GLIN GLIN SER LLEU LLEU LLEU LLEU LLEU LLEU LLEU LL
C121 P122 P122 C125 C126 C126 C126 C129 C129 C129 C129 C129 C129 C129 C129
• Molecule 67: 60S ribosomal protein L33
Chain h1: 97% ···
RET 13 10 11 10 10 10 10 10 10 10 10
\bullet Molecule 68: Guanine nucleotide-binding protein subunit beta-like protein
95% Chain h2: 98% ·
MER ALA E3 C4 C4 C4 C5 C4 C4 C5 C4 C4 C4 C5 C5 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4
H62 H64 H64 H64 H64 H64 H65 H65 H66 H66 H66 H66 H66 H66 H66 H66
 81.22 81.23 81.24 81.24 81.25 81.25 81.25 81.25 81.26 81.23 81.25 81.24 81.25 81.25 81.45 81.67 81.67 81.67 81.67 81.67 81.67 81.67 81.67 81.75 81.67 81.75 81.80 81.81
C182 K183 C185 C185 C185 C185 C185 C185 C185 C185

6%

8%

• Molecule 75: 60S ribosomal protein L40 Chain o1: 94% MET • Molecule 76: hypothetical protein NCU16635 (eL41) Chain p1: 100% • Molecule 77: 60S ribosomal protein L44 11% Chain q1: 99% G9E D96 K97 K98 K98 K98 K98 Y10 310 A10 ġ. • Molecule 78: 60S ribosomal protein L43 Chain r1: 92% R84 L86 L86 ARG GLU CLU TLE TLE THR CLU VAL S2 K3 R4 • Molecule 79: Ribosomal_L28e domain-containing protein 23% Chain s1: 99% • Molecule 80: tRNA 50% Chain t1: 84% 16%

• Molecule 80: tRNA

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	196154	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	_
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	32	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT $(4k \ge 4k)$	Depositor
Maximum map value	4.040	Depositor
Minimum map value	-2.001	Depositor
Average map value	0.002	Depositor
Map value standard deviation	0.132	Depositor
Recommended contour level	0.5	Depositor
Map size (Å)	407.03998, 407.03998, 407.03998	wwPDB
Map dimensions	384, 384, 384	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.06, 1.06, 1.06	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: SPD, 3HE, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	E	Bond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	A1	0.36	0/74705	0.81	43/116467~(0.0%)
2	A2	0.24	0/42178	0.76	8/65727~(0.0%)
3	B1	0.28	0/2854	0.77	0/4445
4	B2	0.25	0/1675	0.49	0/2288
5	C1	0.32	0/3756	0.76	0/5849
6	C2	0.26	0/1733	0.55	1/2332~(0.0%)
7	D1	0.29	0/1890	0.55	0/2540
8	D2	0.26	0/1641	0.49	0/2218
9	E1	0.28	0/3127	0.51	0/4201
10	E2	0.25	0/1777	0.53	0/2387
11	F1	0.27	0/2776	0.51	0/3744
12	F2	0.26	0/2088	0.56	0/2806
13	G1	0.26	0/2469	0.50	0/3311
14	G2	0.25	0/1608	0.51	0/2167
15	H1	0.25	0/1549	0.49	0/2084
16	H2	0.25	0/1810	0.55	0/2420
17	I1	0.27	0/2052	0.50	0/2751
18	I2	0.25	0/1536	0.56	0/2069
19	J1	0.26	0/1909	0.49	0/2557
20	J2	0.27	0/1494	0.54	0/2004
21	K1	0.26	0/1523	0.50	0/2048
22	K2	0.24	0/1442	0.56	0/1932
23	L1	0.27	0/1788	0.54	0/2398
24	L2	0.24	0/775	0.47	0/1053
25	M1	0.25	0/1363	0.56	0/1821
26	M2	0.27	0/1092	0.57	0/1468
27	N1	0.26	0/1703	0.54	1/2281~(0.0%)
28	N2	0.24	0/918	0.53	0/1230
29	01	0.24	0/1125	0.49	0/1508
30	O2	0.24	0/1201	0.47	0/1618
31	P1	0.29	0/1738	0.58	$0/2\overline{327}$
32	P2	0.27	0/949	0.57	0/1272

Mal	Chain	Bond	d lengths Bond ang		Bond angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
33	Q1	0.28	0/1627	0.51	0/2176
34	Q2	0.25	0/1025	0.54	0/1371
35	R1	0.26	0/1342	0.55	0/1799
36	R2	0.25	0/1107	0.50	0/1485
37	S1	0.27	0/1469	0.57	0/1966
38	S2	0.25	0/1018	0.51	0/1367
39	T1	0.25	0/1582	0.53	0/2102
40	Τ2	0.25	0/1154	0.56	0/1547
41	U1	0.27	0/1464	0.53	0/1970
42	U2	0.23	0/1147	0.50	0/1548
43	V1	0.29	0/1296	0.52	0/1736
44	V2	0.23	0/794	0.53	0/1069
45	W1	0.25	0/829	0.46	0/1107
46	W2	0.25	0/675	0.52	0/905
47	X1	0.28	0/1025	0.51	0/1377
48	X2	0.25	0/1053	0.53	0/1412
49	Y1	0.29	0/537	0.56	0/714
50	Y2	0.25	0/1131	0.50	0/1507
51	Z1	0.25	0/957	0.49	0/1292
52	Z2	0.25	0/1018	0.54	0/1361
53	a1	0.26	0/972	0.56	0/1304
54	a2	0.25	0/569	0.49	0/760
55	b1	0.27	0/1130	0.52	0/1511
56	b2	0.27	0/805	0.59	0/1073
57	c1	0.28	0/1197	0.52	0/1608
58	c2	0.25	0/623	0.51	0/842
59	d1	0.24	0/528	0.50	0/697
60	d2	0.24	0/493	0.60	0/661
61	e1	0.26	0/689	0.47	0/925
62	e2	0.26	0/455	0.53	0/605
63	f1	0.27	0/869	0.53	0/1164
64	f2	0.25	0/353	0.50	0/471
65	g1	0.27	0/990	0.54	0/1319
66	g2	0.24	0/332	0.56	0/443
67	h1	0.30	0/874	0.56	0/1176
68	h2	0.25	0/2486	0.51	0/3378
69	i1	0.28	0/865	0.55	0/1158
70	j1	0.23	0/976	0.49	0/1295
71	k1	0.24	0/766	0.55	0/1016
72	11	0.28	0/704	0.58	0/933
73	m1	0.26	0/591	0.49	0/786
74	n1	0.24	0/445	0.59	0/592
75	01	0.25	0/401	0.55	0/528

Mal	Chain	Bond	lengths	E	Bond angles
WIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
76	p1	0.24	0/236	0.68	0/300
77	q1	0.27	0/841	0.51	0/1113
78	r1	0.29	0/655	0.55	0/873
79	s1	0.26	0/1134	0.51	0/1523
80	t1	0.21	0/1811	0.76	0/2821
80	u1	0.21	0/1811	0.74	0/2821
82	w1	0.25	0/373	0.99	4/574~(0.7%)
All	All	0.29	0/217468	0.70	57/319404~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
13	G1	0	1
18	I2	0	1
67	h1	0	1
72	l1	0	1
All	All	0	4

There are no bond length outliers.

All (57) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
1	A1	470	С	C2-N1-C1'	8.87	128.56	118.80
1	A1	470	С	N1-C2-O2	8.49	124.00	118.90
1	A1	175	С	N3-C2-O2	-7.79	116.44	121.90
82	w1	8	U	C2-N1-C1'	7.38	126.55	117.70
1	A1	2173	U	C2-N1-C1'	6.91	126.00	117.70
1	A1	904	U	C2-N1-C1'	6.80	125.86	117.70
1	A1	470	С	N3-C2-O2	-6.68	117.22	121.90
82	w1	8	U	N3-C2-O2	-6.55	117.62	122.20
2	A2	963	U	C2-N1-C1'	6.44	125.42	117.70
2	A2	1386	С	C2-N1-C1'	6.38	125.82	118.80
1	A1	470	С	C6-N1-C1'	-6.33	113.20	120.80
1	A1	2173	U	N1-C2-O2	6.14	127.10	122.80
1	A1	3002	С	C2-N1-C1'	6.01	125.41	118.80
27	N1	202	ALA	C-N-CA	5.95	136.57	121.70
82	w1	8	U	N1-C2-O2	5.90	126.93	122.80
1	A1	1479	С	C2-N1-C1'	5.86	125.24	118.80
1	A1	1538	U	N3-C2-O2	-5.74	118.18	122.20

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
1	A1	451	С	C2-N1-C1'	5.73	125.10	118.80
1	A1	2173	U	N3-C2-O2	-5.71	118.20	122.20
2	A2	450	С	C2-N1-C1'	5.70	125.07	118.80
1	A1	3019	С	C2-N1-C1'	5.67	125.03	118.80
1	A1	570	С	C2-N1-C1'	5.66	125.02	118.80
1	A1	2994	С	C2-N1-C1'	5.58	124.94	118.80
2	A2	450	С	N1-C2-O2	5.57	122.24	118.90
1	A1	172	С	N1-C2-O2	5.57	122.24	118.90
1	A1	2993	С	C2-N1-C1'	5.57	124.92	118.80
1	A1	3194	С	C2-N1-C1'	5.52	124.87	118.80
82	w1	7	U	OP2-P-O3'	5.50	117.31	105.20
1	A1	1538	U	N1-C2-O2	5.50	126.65	122.80
1	A1	3041	С	C2-N1-C1'	5.50	124.85	118.80
1	A1	450	С	C2-N1-C1'	5.42	124.77	118.80
6	C2	37	PRO	CA-N-CD	-5.42	103.92	111.50
1	A1	1704	U	O4'-C1'-N1	5.41	112.53	108.20
1	A1	3078	U	N3-C2-O2	-5.30	118.49	122.20
1	A1	3076	С	C2-N1-C1'	5.27	124.59	118.80
1	A1	3091	С	C6-N1-C2	-5.26	118.19	120.30
1	A1	3091	С	C2-N1-C1'	5.26	124.59	118.80
1	A1	3092	С	C2-N1-C1'	5.25	124.58	118.80
1	A1	470	С	C6-N1-C2	-5.23	118.21	120.30
2	A2	1369	С	N3-C2-O2	-5.23	118.24	121.90
1	A1	451	С	N1-C2-O2	5.20	122.02	118.90
2	A2	960	С	N1-C2-O2	5.20	122.02	118.90
1	A1	3091	С	N3-C2-O2	-5.15	118.29	121.90
1	A1	2996	С	N1-C2-O2	5.14	121.99	118.90
1	A1	175	С	N1-C2-O2	5.14	121.98	118.90
1	A1	3080	U	P-O3'-C3'	5.14	125.86	119.70
2	A2	960	С	N3-C2-O2	-5.14	118.30	121.90
1	A1	3193	С	N1-C2-O2	5.13	121.98	118.90
1	A1	3041	С	N3-C2-O2	-5.11	118.33	121.90
1	A1	2977	С	C2-N1-C1'	5.09	124.40	118.80
1	A1	3078	U	N1-C2-O2	5.09	126.36	122.80
1	A1	904	U	N1-C2-O2	5.08	126.36	122.80
1	A1	172	С	N3-C2-O2	-5.05	118.36	121.90
1	A1	1557	С	C2-N1-C1'	5.04	124.34	118.80
1	A1	3193	С	C2-N1-C1'	5.04	124.34	118.80
1	A1	2994	С	N1-C2-O2	5.03	121.92	118.90
2	A2	1454	G	C4-N9-C1'	5.00	133.00	126.50

There are no chirality outliers.

Mol	Chain	Res	Type	Group
13	G1	177	PRO	Peptide
18	I2	46	PRO	Peptide
67	h1	105	TYR	Peptide
72	l1	39	TYR	Peptide

All (4) planarity outliers are listed below:

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
4	B2	207/290~(71%)	200~(97%)	7 (3%)	0	100	100
6	C2	210/256~(82%)	201 (96%)	9 (4%)	0	100	100
7	D1	243/254~(96%)	226~(93%)	17 (7%)	0	100	100
8	D2	208/265~(78%)	197~(95%)	11 (5%)	0	100	100
9	E1	383/392~(98%)	370~(97%)	13 (3%)	0	100	100
10	E2	222/262~(85%)	213 (96%)	8 (4%)	1 (0%)	29	54
11	F1	358/361~(99%)	340 (95%)	18 (5%)	0	100	100
12	F2	254/261~(97%)	240 (94%)	14 (6%)	0	100	100
13	G1	298/301~(99%)	287~(96%)	11 (4%)	0	100	100
14	G2	200/213~(94%)	192 (96%)	8 (4%)	0	100	100
15	H1	190/202~(94%)	170 (90%)	20 (10%)	0	100	100
16	H2	220/239~(92%)	208 (94%)	12 (6%)	0	100	100
17	I1	245/248~(99%)	226 (92%)	18 (7%)	1 (0%)	34	60
18	I2	185/202~(92%)	177 (96%)	8 (4%)	0	100	100

\mathbf{Mol}	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{ntiles}
19	J1	234/262~(89%)	221 (94%)	12 (5%)	1 (0%)	34	60
20	J2	179/202~(89%)	176 (98%)	3 (2%)	0	100	100
21	K1	188/193~(97%)	174 (93%)	14 (7%)	0	100	100
22	K2	172/190~(90%)	167~(97%)	5 (3%)	0	100	100
23	L1	215/221~(97%)	205~(95%)	10 (5%)	0	100	100
24	L2	88/163~(54%)	87~(99%)	1 (1%)	0	100	100
25	M1	163/174~(94%)	159~(98%)	4 (2%)	0	100	100
26	M2	127/161~(79%)	119 (94%)	8 (6%)	0	100	100
27	N1	211/214~(99%)	206~(98%)	5 (2%)	0	100	100
28	N2	114/147~(78%)	113~(99%)	1 (1%)	0	100	100
29	O1	139/142~(98%)	134~(96%)	5 (4%)	0	100	100
30	O2	148/151~(98%)	143~(97%)	5 (3%)	0	100	100
31	P1	200/203~(98%)	187 (94%)	13 (6%)	0	100	100
32	P2	124/150~(83%)	120 (97%)	4 (3%)	0	100	100
33	Q1	197/231~(85%)	193~(98%)	4 (2%)	0	100	100
34	Q2	125/152~(82%)	119~(95%)	5 (4%)	1 (1%)	19	43
35	R1	164/186~(88%)	155~(94%)	9 (6%)	0	100	100
36	R2	137/142~(96%)	133~(97%)	4 (3%)	0	100	100
37	S1	180/183~(98%)	174 (97%)	6 (3%)	0	100	100
38	S2	120/146~(82%)	115 (96%)	5 (4%)	0	100	100
39	T1	189/192~(98%)	187 (99%)	2 (1%)	0	100	100
40	T2	139/156~(89%)	127~(91%)	12 (9%)	0	100	100
41	U1	171/174 (98%)	163~(95%)	8 (5%)	0	100	100
42	U2	141/149~(95%)	137~(97%)	4 (3%)	0	100	100
43	V1	157/160~(98%)	153~(98%)	2 (1%)	2 (1%)	12	30
44	V2	97/117~(83%)	95~(98%)	2 (2%)	0	100	100
45	W1	99/126~(79%)	99~(100%)	0	0	100	100
46	W2	84/87~(97%)	80 (95%)	4 (5%)	0	100	100
47	X1	134/139~(96%)	125 (93%)	9 (7%)	0	100	100
48	X2	127/130~(98%)	119 (94%)	8 (6%)	0	100	100
49	Y1	59/156~(38%)	56~(95%)	3 (5%)	0	100	100

α $\cdot \cdot$ \cdot	c		
Continued	from	previous	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
50	Y2	142/145~(98%)	139~(98%)	3(2%)	0	100	100
51	Z1	116/156~(74%)	111 (96%)	5(4%)	0	100	100
52	Z2	122/136~(90%)	117~(96%)	5 (4%)	0	100	100
53	a1	119/136~(88%)	114 (96%)	5 (4%)	0	100	100
54	a2	69/97~(71%)	68~(99%)	1 (1%)	0	100	100
55	b1	133/135~(98%)	127 (96%)	6 (4%)	0	100	100
56	b2	97/119 (82%)	92 (95%)	5 (5%)	0	100	100
57	c1	146/149~(98%)	130 (89%)	16 (11%)	0	100	100
58	c2	79/82~(96%)	73 (92%)	6 (8%)	0	100	100
59	d1	62/65~(95%)	62 (100%)	0	0	100	100
60	d2	60/68~(88%)	59~(98%)	1 (2%)	0	100	100
61	e1	89/109 (82%)	89 (100%)	0	0	100	100
62	e2	53/56~(95%)	52 (98%)	1 (2%)	0	100	100
63	f1	102/122~(84%)	97~(95%)	5 (5%)	0	100	100
64	f2	41/63~(65%)	40 (98%)	1 (2%)	0	100	100
65	g1	119/131 (91%)	113 (95%)	6 (5%)	0	100	100
66	g2	39/154~(25%)	37~(95%)	2(5%)	0	100	100
67	h1	106/109~(97%)	100 (94%)	5 (5%)	1 (1%)	17	40
68	h2	308/316~(98%)	292~(95%)	16 (5%)	0	100	100
69	i1	106/117~(91%)	103~(97%)	3 (3%)	0	100	100
70	j1	114/125~(91%)	110 (96%)	4 (4%)	0	100	100
71	k1	94/104~(90%)	91 (97%)	3 (3%)	0	100	100
72	l1	86/92~(94%)	78 (91%)	8 (9%)	0	100	100
73	m1	71/80~(89%)	67 (94%)	3 (4%)	1 (1%)	11	28
74	n1	$48/51 \ (94\%)$	45 (94%)	2 (4%)	1 (2%)	7	18
75	01	47/52~(90%)	46 (98%)	1 (2%)	0	100	100
76	p1	23/25~(92%)	23 (100%)	0	0	100	100
77	q1	103/106~(97%)	97 (94%)	6 (6%)	0	100	100
78	r1	83/92 (90%)	79~(95%)	4 (5%)	0	100	100
79	s1	147/150 (98%)	139 (95%)	8 (5%)	0	100	100
All	All	10969/12287~(89%)	10478 (96%)	482 (4%)	9 (0%)	54	78

Mol	Chain	Res	Type
43	V1	69	LYS
43	V1	157	GLU
67	h1	22	ARG
10	E2	48	VAL
73	m1	71	VAL
17	I1	84	ALA
74	n1	7	PHE
19	J1	166	VAL
34	Q2	131	LYS

All (9) Ramachandran outliers are listed below:

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
4	B2	172/225~(76%)	172~(100%)	0	100 100
6	C2	187/224~(84%)	187 (100%)	0	100 100
7	D1	188/196~(96%)	188 (100%)	0	100 100
8	D2	176/211~(83%)	176~(100%)	0	100 100
9	E1	323/328~(98%)	323~(100%)	0	100 100
10	E2	188/209~(90%)	188 (100%)	0	100 100
11	F1	281/282~(100%)	278~(99%)	3 (1%)	73 90
12	F2	219/222~(99%)	218 (100%)	1 (0%)	88 96
13	G1	244/245~(100%)	244 (100%)	0	100 100
14	G2	171/179~(96%)	171 (100%)	0	100 100
15	H1	162/168~(96%)	162 (100%)	0	100 100
16	H2	188/202~(93%)	186~(99%)	2(1%)	73 90
17	I1	216/217~(100%)	216 (100%)	0	100 100
18	I2	167/178~(94%)	165 (99%)	2 (1%)	71 88
19	J1	201/219~(92%)	201 (100%)	0	100 100
20	J2	146/163~(90%)	146 (100%)	0	100 100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
21	K1	168/171~(98%)	168 (100%)	0	100	100
22	K2	151/161~(94%)	151 (100%)	0	100	100
23	L1	181/184~(98%)	180 (99%)	1 (1%)	86	95
24	L2	80/127~(63%)	80 (100%)	0	100	100
25	M1	143/151~(95%)	142 (99%)	1 (1%)	84	94
26	M2	114/139~(82%)	113 (99%)	1 (1%)	78	92
27	N1	172/173~(99%)	172 (100%)	0	100	100
28	N2	99/125~(79%)	99 (100%)	0	100	100
29	O1	115/116~(99%)	115 (100%)	0	100	100
30	O2	131/132~(99%)	131 (100%)	0	100	100
31	P1	178/179~(99%)	178 (100%)	0	100	100
32	P2	96/115~(84%)	96 (100%)	0	100	100
33	Q1	164/192~(85%)	164 (100%)	0	100	100
34	Q2	109/130~(84%)	108 (99%)	1 (1%)	78	92
35	R1	131/146~(90%)	130 (99%)	1 (1%)	81	93
36	R2	112/114 (98%)	112 (100%)	0	100	100
37	S1	152/153~(99%)	152 (100%)	0	100	100
38	S2	112/132~(85%)	111 (99%)	1 (1%)	78	92
39	T1	159/160~(99%)	159 (100%)	0	100	100
40	Τ2	123/136~(90%)	123 (100%)	0	100	100
41	U1	153/154~(99%)	153 (100%)	0	100	100
42	U2	117/123~(95%)	117 (100%)	0	100	100
43	V1	134/135~(99%)	134 (100%)	0	100	100
44	V2	90/105~(86%)	90 (100%)	0	100	100
45	W1	89/109~(82%)	89 (100%)	0	100	100
46	W2	71/72~(99%)	71 (100%)	0	100	100
47	X1	104/106~(98%)	103~(99%)	1 (1%)	76	91
48	X2	112/113~(99%)	112 (100%)	0	100	100
49	Y1	55/125~(44%)	55 (100%)	0	100	100
50	Y2	116/117~(99%)	115 (99%)	1 (1%)	78	92
51	Z1	104/128~(81%)	104 (100%)	0	100	100

Continued	from	nrevious	page
Continueu	JIOIII	previous	page

Mol	Chain	Analysed	Rotameric	Outliers	Percentile
52	Z2	109/118~(92%)	108 (99%)	1 (1%)	78 92
53	a1	110/122~(90%)	109~(99%)	1 (1%)	78 92
54	a2	63/81~(78%)	63~(100%)	0	100 100
55	b1	122/122~(100%)	122 (100%)	0	100 100
56	b2	87/103~(84%)	86~(99%)	1 (1%)	73 90
57	c1	116/117~(99%)	116 (100%)	0	100 100
58	c2	70/71~(99%)	70 (100%)	0	100 100
59	d1	54/55~(98%)	54~(100%)	0	100 100
60	d2	55/61~(90%)	55~(100%)	0	100 100
61	e1	74/89~(83%)	74 (100%)	0	100 100
62	e2	48/49~(98%)	48 (100%)	0	100 100
63	f1	90/105~(86%)	90 (100%)	0	100 100
64	f2	37/51~(72%)	37~(100%)	0	100 100
65	g1	104/113~(92%)	104 (100%)	0	100 100
66	g2	34/138~(25%)	34~(100%)	0	100 100
67	h1	88/89~(99%)	88 (100%)	0	100 100
68	h2	272/276~(99%)	272~(100%)	0	100 100
69	i1	93/101~(92%)	93~(100%)	0	100 100
70	j1	103/109~(94%)	102~(99%)	1 (1%)	76 91
71	k1	78/82~(95%)	78~(100%)	0	100 100
72	l1	73/75~(97%)	73~(100%)	0	100 100
73	m1	64/70~(91%)	64~(100%)	0	100 100
74	n1	45/46~(98%)	45~(100%)	0	100 100
75	o1	44/47 (94%)	44 (100%)	0	100 100
76	p1	23/23 (100%)	23 (100%)	0	100 100
77	q1	87/88~(99%)	87 (100%)	0	100 100
78	r1	68/75 $(91%)$	68 (100%)	0	100 100
79	s1	112/113~(99%)	112 (100%)	0	100 100
All	All	$9387/102\overline{80}\ (91\%)$	9367 (100%)	20 (0%)	93 98

All (20) residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
11	F1	199	ARG
11	F1	299	ARG
11	F1	311	ASN
12	F2	232	LYS
16	H2	65	GLN
16	H2	217	LYS
18	I2	8	LYS
18	I2	115	ARG
23	L1	55	ASN
25	M1	103	ASN
26	M2	72	ARG
34	Q2	65	LYS
35	R1	111	ASN
38	S2	109	LYS
47	X1	47	ARG
50	Y2	114	LYS
52	Z2	66	GLN
53	a1	87	ARG
56	b2	12	LYS
70	j1	63	ASN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (12) such sidechains are listed below:

Mol	Chain	Res	Type
4	B2	52	ASN
9	E1	3	HIS
11	F1	311	ASN
16	H2	116	GLN
19	J1	41	GLN
46	W2	50	ASN
48	X2	42	GLN
51	Z1	110	GLN
52	Z2	32	HIS
54	a2	43	GLN
54	a2	76	GLN
74	n1	17	GLN

5.3.3 RNA (i)

	omann	Allaryscu	Dackbolle Outliers	Fucker Outliers
1	A1	3119/3338~(93%)	419~(13%)	12 (0%)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
2	A2	1765/1796~(98%)	244 (13%)	0
3	B1	119/120~(99%)	9~(7%)	0
5	C1	157/158~(99%)	21 (13%)	1 (0%)
80	t1	75/76~(98%)	12 (16%)	0
80	u1	75/76~(98%)	9~(12%)	0
82	w1	16/17~(94%)	6~(37%)	0
All	All	5326/5581~(95%)	720 (13%)	13~(0%)

All (720) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	A1	6	А
1	A1	22	G
1	A1	26	А
1	A1	40	А
1	A1	43	А
1	A1	49	А
1	A1	59	G
1	A1	60	А
1	A1	65	А
1	A1	66	А
1	A1	75	G
1	A1	92	G
1	A1	116	А
1	A1	117	U
1	A1	118	U
1	A1	122	А
1	A1	132	С
1	A1	133	G
1	A1	134	G
1	A1	151	U
1	A1	152	А
1	A1	157	А
1	A1	164	U
1	A1	165	G
1	A1	166	G
1	A1	167	U
1	A1	168	G
1	A1	169	А
1	A1	170	G
1	A1	171	G
1	A1	172	С

Mol	Chain	Res	Type
1	A1	173	А
1	A1	175	С
1	A1	180	G
1	A1	183	U
1	A1	184	С
1	A1	193	С
1	A1	212	А
1	A1	214	А
1	A1	223	U
1	A1	224	А
1	A1	225	G
1	A1	226	U
1	A1	227	С
1	A1	228	G
1	A1	230	А
1	A1	233	С
1	A1	236	А
1	A1	237	U
1	A1	240	А
1	A1	242	U
1	A1	244	U
1	A1	245	А
1	A1	246	А
1	A1	247	А
1	A1	248	G
1	A1	252	С
1	A1	255	С
1	A1	261	G
1	A1	278	U
1	A1	287	A
1	A1	297	U
1	A1	342	С
1	A1	368	G
1	A1	391	A
1	A1	395	C
1	A1	413	G
1	A1	414	A
1	A1	421	U
1	A1	433	U
1	A1	440	U
1	A1	441	U
1	A1	442	C

Mol	Chain	Res	Type
1	A1	445	А
1	A1	449	U
1	A1	457	U
1	A1	463	С
1	A1	465	G
1	A1	469	А
1	A1	471	U
1	A1	475	G
1	A1	476	А
1	A1	477	С
1	A1	511	A
1	A1	513	A
1	A1	544	U
1	A1	546	А
1	A1	547	U
1	A1	548	A
1	A1	549	G
1	A1	568	С
1	A1	579	A
1	A1	582	U
1	A1	591	С
1	A1	593	G
1	A1	599	A
1	A1	608	U
1	A1	609	A
1	A1	610	A
1	A1	624	С
1	A1	625	C
1	A1	637	A
1	A1	648	A
1	A1	650	U
1	A1	665	A
1	A1	669	U
1	A1	678	A
1	A1	700	G
1	A1	720	C
1	A1	721	G
1	A1	722	G
1	A1	748	U
1	A1	749	U
1	A1	758	U
1	A1	762	A

Mol	Chain	Res	Type
1	A1	763	G
1	A1	767	G
1	A1	781	G
1	A1	783	А
1	A1	798	А
1	A1	799	A
1	A1	812	А
1	A1	831	С
1	A1	839	G
1	A1	843	С
1	A1	856	U
1	A1	861	U
1	A1	877	A
1	A1	878	A
1	A1	879	U
1	A1	889	G
1	A1	890	G
1	A1	896	А
1	A1	898	G
1	A1	899	А
1	A1	903	А
1	A1	905	С
1	A1	906	G
1	A1	907	А
1	A1	919	G
1	A1	926	А
1	A1	941	С
1	A1	956	U
1	A1	961	С
1	A1	963	U
1	A1	964	С
1	A1	992	G
1	A1	1030	A
1	A1	1047	A
1	A1	1064	U
1	A1	1077	U
1	A1	1078	U
1	A1	1080	G
1	A1	1081	A
1	A1	1086	A
1	A1	1100	G
1	A1	1114	G

Mol	Chain	Res	Type
1	A1	1127	U
1	A1	1136	А
1	A1	1137	А
1	A1	1142	А
1	A1	1161	G
1	A1	1163	G
1	A1	1164	U
1	A1	1165	G
1	A1	1179	С
1	A1	1184	С
1	A1	1192	G
1	A1	1200	А
1	A1	1205	G
1	A1	1211	A
1	A1	1212	G
1	A1	1215	С
1	A1	1218	U
1	A1	1219	G
1	A1	1223	А
1	A1	1228	А
1	A1	1229	G
1	A1	1231	С
1	A1	1232	G
1	A1	1236	U
1	A1	1240	С
1	A1	1242	А
1	A1	1245	G
1	A1	1246	А
1	A1	1248	U
1	A1	1249	G
1	A1	1250	U
1	A1	1251	G
1	A1	1254	А
1	A1	1261	A
1	A1	1262	С
1	A1	1264	U
1	A1	1265	G
1	A1	1268	G
1	A1	1270	А
1	A1	1278	G
1	A1	1288	U
1	A1	1290	G

Mol	Chain	Res	Type
1	A1	1292	U
1	A1	1296	G
1	A1	1313	А
1	A1	1331	А
1	A1	1332	G
1	A1	1333	А
1	A1	1335	А
1	A1	1336	С
1	A1	1337	G
1	A1	1369	А
1	A1	1370	G
1	A1	1382	А
1	A1	1383	G
1	A1	1401	A
1	A1	1417	G
1	A1	1420	С
1	A1	1429	А
1	A1	1433	G
1	A1	1464	А
1	A1	1470	G
1	A1	1485	G
1	A1	1506	U
1	A1	1519	G
1	A1	1522	А
1	A1	1527	G
1	A1	1538	U
1	A1	1540	А
1	A1	1545	G
1	A1	1561	G
1	A1	1562	U
1	A1	1563	G
1	A1	1567	A
1	A1	1569	A
1	A1	1570	G
1	A1	1585	A
1	A1	1608	U
1	A1	1622	А
1	A1	1623	A
1	A1	1637	С
1	A1	1680	G
1	A1	1704	U
1	A1	1709	А

Mol	Chain	Res	Type
1	A1	1730	А
1	A1	1731	G
1	A1	1739	С
1	A1	1743	U
1	A1	1745	U
1	A1	1776	G
1	A1	1777	А
1	A1	1794	А
1	A1	1796	А
1	A1	1800	С
1	A1	1801	U
1	A1	1822	А
1	A1	1846	С
1	A1	1858	G
1	A1	1860	U
1	A1	1873	A
1	A1	1886	G
1	A1	1887	С
1	A1	1923	С
1	A1	2061	С
1	A1	2074	G
1	A1	2075	G
1	A1	2076	U
1	A1	2078	С
1	A1	2086	G
1	A1	2095	А
1	A1	2108	А
1	A1	2122	А
1	A1	2133	G
1	A1	2140	U
1	A1	2162	А
1	A1	2170	G
1	A1	2171	A
1	A1	$2\overline{173}$	U
1	A1	2213	G
1	A1	2220	A
1	A1	2236	G
1	A1	2237	G
1	A1	2244	A
1	A1	2245	A
1	A1	2271	G
1	A1	2272	С

Mol	Chain	Res	Type
1	A1	2274	U
1	A1	2277	А
1	A1	2279	G
1	A1	2298	U
1	A1	2299	G
1	A1	2337	А
1	A1	2338	С
1	A1	2339	G
1	A1	2357	G
1	A1	2361	А
1	A1	2366	А
1	A1	2367	G
1	A1	2368	A
1	A1	2375	U
1	A1	2399	G
1	A1	2405	А
1	A1	2469	U
1	A1	2478	U
1	A1	2479	А
1	A1	2501	U
1	A1	2502	U
1	A1	2503	U
1	A1	2511	С
1	A1	2512	U
1	A1	2514	С
1	A1	2517	G
1	A1	2522	А
1	A1	2523	А
1	A1	2532	G
1	A1	$2\overline{534}$	G
1	A1	2545	G
1	A1	2553	A
1	A1	2566	G
1	A1	2567	G
1	A1	2574	G
1	A1	2586	A
1	A1	2595	А
1	A1	2612	U
1	A1	2616	A
1	A1	2634	А
1	A1	2637	G
1	A1	2649	A

Mol	Chain	Res	Type
1	A1	2651	А
1	A1	2654	А
1	A1	2674	G
1	A1	2679	U
1	A1	2688	G
1	A1	2689	U
1	A1	2697	С
1	A1	2713	G
1	A1	2715	С
1	A1	2722	А
1	A1	2732	С
1	A1	2733	С
1	A1	2737	G
1	A1	2738	А
1	A1	2760	G
1	A1	2761	А
1	A1	2762	А
1	A1	2763	А
1	A1	2770	С
1	A1	2777	А
1	A1	2804	С
1	A1	2805	А
1	A1	2827	С
1	A1	2831	G
1	A1	2835	U
1	A1	2847	А
1	A1	2849	С
1	A1	2858	G
1	A1	2895	U
1	A1	2896	А
1	A1	2907	G
1	A1	2931	A
1	A1	2943	C
1	A1	2950	G
1	A1	2970	А
1	A1	$2\overline{981}$	G
1	A1	2996	С
1	A1	3015	U
1	A1	3018	G
1	A1	3028	G
1	A1	3029	A
1	A1	3030	С

Mol	Chain	Res	Type
1	A1	3031	С
1	A1	3037	G
1	A1	3038	U
1	A1	3051	С
1	A1	3052	С
1	A1	3058	С
1	A1	3063	U
1	A1	3074	С
1	A1	3077	С
1	A1	3078	U
1	A1	3079	С
1	A1	3081	А
1	A1	3089	А
1	A1	3090	U
1	A1	3101	A
1	A1	3113	С
1	A1	3114	U
1	A1	3124	U
1	A1	3128	G
1	A1	3136	А
1	A1	3142	G
1	A1	3146	С
1	A1	3147	С
1	A1	3156	А
1	A1	3163	С
1	A1	3164	А
1	A1	3165	G
1	A1	3185	U
1	A1	3189	G
1	A1	3193	С
1	A1	3201	А
1	A1	3205	С
1	A1	3215	А
1	A1	3246	С
1	A1	3249	А
1	A1	3255	U
1	A1	3258	А
1	A1	3259	U
1	A1	3262	G
1	A1	3277	A
1	A1	3283	U
1	A1	3284	A

Mol	Chain	Res	Type
1	A1	3287	G
1	A1	3294	U
1	A1	3296	U
1	A1	3297	U
1	A1	3298	G
1	A1	3311	G
1	A1	3320	С
1	A1	3324	С
1	A1	3331	С
1	A1	3332	U
2	A2	2	А
2	A2	4	С
2	A2	17	C
2	A2	26	A
2	A2	34	G
2	A2	42	G
2	A2	43	А
2	A2	45	U
2	A2	47	А
2	A2	63	G
2	A2	72	А
2	A2	78	С
2	A2	79	С
2	A2	80	G
2	A2	103	A
2	A2	113	А
2	A2	115	U
2	A2	125	A
2	A2	126	G
2	A2	130	С
2	A2	138	A
2	A2	166	A
2	A2	181	С
2	A2	187	U
2	A2	189	С
2	A2	212	U
2	A2	216	А
2	A2	217	А
2	A2	220	A
2	A2	223	G
2	A2	227	U
2	A2	229	С

Mol	Chain	Res	Type
2	A2	230	G
2	A2	236	A
2	A2	258	С
2	A2	262	A
2	A2	269	U
2	A2	277	С
2	A2	278	G
2	A2	284	G
2	A2	296	А
2	A2	299	U
2	A2	311	С
2	A2	313	А
2	A2	334	G
2	A2	335	С
2	A2	338	G
2	A2	349	A
2	A2	356	A
2	A2	358	С
2	A2	397	A
2	A2	398	А
2	A2	399	С
2	A2	421	С
2	A2	423	G
2	A2	431	G
2	A2	436	U
2	A2	441	С
2	A2	442	A
2	A2	465	A
2	A2	474	А
2	A2	485	G
2	A2	491	U
2	A2	492	U
2	A2	493	G
2	A2	494	G
2	A2	495	G
2	A2	502	А
2	A2	503	A
2	A2	504	U
2	A2	505	U
2	A2	512	A
2	A2	538	A
2	A2	539	A

Mol	Chain	Res	Type
2	A2	552	А
2	A2	562	С
2	A2	565	G
2	A2	576	А
2	A2	591	А
2	A2	603	А
2	A2	608	U
2	A2	616	А
2	A2	617	А
2	A2	619	А
2	A2	620	А
2	A2	636	U
2	A2	642	U
2	A2	652	G
2	A2	653	G
2	A2	654	U
2	A2	678	G
2	A2	689	U
2	A2	697	G
2	A2	698	G
2	A2	699	А
2	A2	700	G
2	A2	702	А
2	A2	704	С
2	A2	716	А
2	A2	719	G
2	A2	720	G
2	A2	724	U
2	A2	734	С
2	A2	736	A
2	A2	737	G
2	A2	741	U
2	A2	754	A
2	A2	764	G
2	A2	765	С
2	A2	774	G
2	A2	781	G
2	A2	782	С
2	A2	787	A
2	A2	792	С
2	A2	793	U
2	A2	804	А

Mol	Chain	Res	Type
2	A2	809	А
2	A2	818	U
2	A2	819	G
2	A2	832	G
2	A2	834	U
2	A2	835	G
2	A2	839	U
2	A2	842	А
2	A2	854	А
2	A2	861	А
2	A2	874	G
2	A2	884	U
2	A2	895	С
2	A2	896	А
2	A2	911	G
2	A2	931	А
2	A2	933	U
2	A2	958	U
2	A2	964	А
2	A2	1002	U
2	A2	1003	А
2	A2	1024	А
2	A2	1026	С
2	A2	1030	G
2	A2	1037	А
2	A2	1058	U
2	A2	1073	А
2	A2	1079	С
2	A2	1089	А
2	A2	1090	А
2	A2	1094	U
2	A2	1097	G
2	A2	1135	А
2	A2	1147	G
2	A2	1155	C
2	A2	1168	A
2	A2	1170	С
2	A2	1172	U
2	A2	1175	G
2	A2	1177	C
2	A2	1178	U
2	A2	1180	А

Mol	Chain	Res	Type
2	A2	1181	А
2	A2	1182	U
2	A2	1191	А
2	A2	1193	А
2	A2	1196	G
2	A2	1197	G
2	A2	1199	А
2	A2	1213	С
2	A2	1214	А
2	A2	1215	G
2	A2	1223	G
2	A2	1224	А
2	A2	1225	G
2	A2	1226	G
2	A2	1228	U
2	A2	1230	G
2	A2	1238	G
2	A2	1239	А
2	A2	1241	А
2	A2	1242	G
2	A2	1245	С
2	A2	1247	U
2	A2	1251	U
2	A2	1252	G
2	A2	1253	A
2	A2	1281	С
2	A2	1298	U
2	A2	1311	U
2	A2	1312	U
2	A2	1318	A
2	A2	1358	U
2	A2	1359	U
2	A2	1360	G
2	A2	1361	G
2	A2	1363	A
2	A2	1364	G
2	A2	1367	С
2	A2	1368	G
2	A2	1369	С
2	A2	1371	G
2	A2	1387	U
2	A2	1398	G

Mol	Chain	Res	Type
2	A2	1409	U
2	A2	1411	U
2	A2	1423	А
2	A2	1424	G
2	A2	1429	G
2	A2	1432	А
2	A2	1441	G
2	A2	1453	С
2	A2	1455	С
2	A2	1465	А
2	A2	1467	А
2	A2	1487	С
2	A2	1492	U
2	A2	1512	A
2	A2	1517	G
2	A2	1519	U
2	A2	1520	А
2	A2	1533	С
2	A2	1538	G
2	A2	1553	U
2	A2	1555	А
2	A2	1586	G
2	A2	1597	G
2	A2	1627	А
2	A2	1631	А
2	A2	1653	U
2	A2	1654	G
2	A2	1685	А
2	A2	1691	G
2	A2	1699	С
2	A2	1732	G
2	A2	1751	А
2	A2	1752	A
2	A2	1753	G
2	A2	1756	G
2	A2	1762	A
2	A2	1765	U
2	A2	1776	G
2	A2	1778	A
2	A2	1788	G
2	A2	1789	G
2	A2	1790	А

Mol	Chain	Res	Type
2	A2	1792	С
2	A2	1795	U
3	B1	7	G
3	B1	29	G
3	B1	54	U
3	B1	55	А
3	B1	65	G
3	B1	98	G
3	B1	103	U
3	B1	111	G
3	B1	120	U
5	C1	23	U
5	C1	34	U
5	C1	35	С
5	C1	38	U
5	C1	59	А
5	C1	62	G
5	C1	63	G
5	C1	76	С
5	C1	78	G
5	C1	81	U
5	C1	83	С
5	C1	84	А
5	C1	85	G
5	C1	87	G
5	C1	89	А
5	C1	95	G
5	C1	104	А
5	C1	106	С
5	C1	116	G
5	C1	125	U
5	C1	152	G
80	t1	9	G
80	t1	10	G
80	t1	16	U
80	t1	17	G
80	t1	19	U
80	t1	22	C
80	t1	36	G
80	t1	42	G
80	t1	43	A
80	t1	47	U

Mol	Chain	Res	Type
80	t1	48	U
80	t1	74	С
80	u1	9	G
80	u1	16	U
80	u1	17	G
80	u1	21	А
80	u1	42	G
80	u1	46	А
80	u1	58	А
80	u1	74	С
80	u1	76	А
82	w1	2	U
82	w1	4	U
82	w1	8	U
82	w1	12	U
82	w1	13	U
82	w1	14	U

All (13) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	A1	166	G
1	A1	169	А
1	A1	170	G
1	A1	246	А
1	A1	439	G
1	A1	855	С
1	A1	898	G
1	A1	1136	А
1	A1	1211	А
1	A1	2468	U
1	A1	2803	U
1	A1	3080	U
5	C1	84	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 262 ligands modelled in this entry, 260 are monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Ма	Tune	Chain	Dec	Timle	Bo	ond leng	$_{\rm sths}$	E	ond ang	gles
IVIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
84	SPD	A1	8002	-	$9,\!9,\!9$	0.31	0	8,8,8	0.58	0
83	3HE	A1	8001	-	21,21,21	4.31	8 (38%)	19,30,30	5.20	11 (57%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
84	SPD	A1	8002	-	-	2/7/7/7	-
83	3HE	A1	8001	-	-	5/8/36/36	0/2/2/2

All (8) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
83	A1	8001	3HE	O-C4	11.63	1.40	1.21
83	A1	8001	3HE	O1-C11	8.04	1.39	1.23
83	A1	8001	3HE	O2-C12	7.74	1.39	1.23
83	A1	8001	3HE	C12-N	7.65	1.50	1.37
83	A1	8001	3HE	C11-N	6.58	1.48	1.37
83	A1	8001	3HE	C8-C9	3.21	1.58	1.53
83	A1	8001	3HE	C13-C9	-2.38	1.49	1.53
83	A1	8001	3HE	C10-C9	-2.00	1.50	1.53

All (11) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
83	A1	8001	3HE	C11-N-C12	-10.78	112.71	125.78
83	A1	8001	3HE	O-C4-C5	-8.93	110.28	123.28
83	A1	8001	3HE	O-C4-C3	-8.02	110.20	122.15
83	A1	8001	3HE	O2-C12-N	-7.94	107.69	120.28
83	A1	8001	3HE	O2-C12-C13	-7.34	108.33	122.62
83	A1	8001	3HE	O1-C11-N	-7.11	109.01	120.28
83	A1	8001	3HE	O1-C11-C10	-7.04	108.92	122.62
83	A1	8001	3HE	C10-C11-N	-3.31	111.89	115.95
83	A1	8001	3HE	C9-C8-C7	-2.40	110.89	116.82
83	A1	8001	3HE	C6-C1-C2	2.10	113.19	110.10
83	A1	8001	3HE	C13-C12-N	-2.10	113.38	115.95

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
83	A1	8001	3HE	C6-C5-C7-C8
83	A1	8001	3HE	C6-C5-C7-O3
83	A1	8001	3HE	C7-C8-C9-C10
83	A1	8001	3HE	C7-C8-C9-C13
84	A1	8002	SPD	C3-C4-C5-N6
84	A1	8002	SPD	C2-C3-C4-C5
83	A1	8001	3HE	C4-C5-C7-O3

All (7) torsion outliers are listed below:

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-24307. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 192

Z Index: 192

6.2.2 Raw map

X Index: 192

Y Index: 192

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 180

Z Index: 228

6.3.2 Raw map

X Index: 177

Y Index: 207

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.5. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.5

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{24307}msk_{1.map}$ (i) 6.5.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 752 $\rm nm^3;$ this corresponds to an approximate mass of 679 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.370 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.370 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.70	-	-
Author-provided FSC curve	2.69	2.99	2.73
Unmasked-calculated*	3.21	4.10	3.27

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.21 differs from the reported value 2.7 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-24307 and PDB model 7R81. Per-residue inclusion information can be found in section 3 on page 20.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.5 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.5).

9.4 Atom inclusion (i)

At the recommended contour level, 70% of all backbone atoms, 66% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.5) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	Q-score
All	0.6573	0.5390
A1	0.8444	0.5780
A2	0.6061	0.4900
B1	0.8618	0.5770
B2	0.3199	0.4800
C1	0.8173	0.5650
C2	0.3499	0.4980
D1	0.8181	0.6080
D2	0.4523	0.5170
E1	0.7685	0.5980
E2	0.2685	0.4600
F1	0.7326	0.5830
F2	0.2656	0.4850
G1	0.5689	0.5380
G2	0.3556	0.4860
H1	0.5222	0.5380
H2	0.1851	0.4520
I1	0.7180	0.5720
I2	0.1581	0.4150
J1	0.6047	0.5430
J2	0.5018	0.5280
K1	0.6205	0.5620
K2	0.3243	0.4670
L1	0.6653	0.5600
L2	0.1858	0.4420
M1	0.5000	0.5250
M2	0.5717	0.5500
N1	0.6800	0.5600
N2	0.0000	0.2160
01	0.6277	0.5590
O2	0.4374	0.5140
P1	0.8444	0.6110
P2	0.5248	0.5260
Q1	0.7696	0.5930
Q2	0.2301	0.4520

0.0 <0.0</td>

1.0

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
R1	0.7761	0.5900
R2	0.3776	0.5090
S1	0.7747	0.6000
S2	0.2370	0.4420
T1	0.6460	0.5410
T2	0.3039	0.4770
U1	0.7469	0.5910
U2	0.3049	0.4810
V1	0.7030	0.5780
V2	0.2725	0.4500
W1	0.0474	0.4640
W2	0.3498	0.4830
X1	0.7325	0.5950
X2	0.4931	0.5250
Y1	0.7510	0.5960
Y2	0.5897	0.5640
Z1	0.6677	0.5750
Z2	0.2027	0.4480
al	0.7000	0.5720
a2	0.1775	0.4400
b1	0.6474	0.5570
b2	0.5816	0.5280
c1	0.7843	0.6000
c2	0.2429	0.4600
d1	0.7018	0.5730
d2	0.3227	0.5020
e1	0.6771	0.5710
e2	0.4590	0.5160
f1	0.7567	0.5890
f2	0.3254	0.4860
g1	0.7792	0.5980
g2	0.0000	0.2560
h1	0.7956	0.6070
h2	0.0814	0.4240
i1	0.7652	0.5960
j1	0.6322	0.5570
k1	0.6763	0.5650
<u>l1</u>	0.8256	0.6030
m1	0.3962	0.5020
n1	0.7029	0.5700
o1	0.7513	0.5940
p1	0.6822	0.5940

Continued on next page...

~	0		
Continued	trom	nremons	naae
Continueu	JIOIN	previous	page

Chain	Atom inclusion	Q-score
q1	0.7182	0.5780
r1	0.7628	0.5870
s1	0.5925	0.5610
t1	0.4300	0.4890
u1	0.5321	0.5080
v1	0.2000	0.5090
w1	0.4794	0.4360

