

Dec 10, 2022 – 08:16 pm GMT

: PDB ID 6R10 EMDB ID : EMD-4703 Title : Thermus thermophilus V/A-type ATPase/synthase, rotational state 1R Authors Zhou, L.; Sazanov, L. : Deposited on 2019-03-13 : Resolution 4.30 Å(reported) : Based on initial models 5Y5Y, 5Y5X :

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev43
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.3

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 4.30 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	578	85%	15%	
1	В	578	81%	18%	
1	С	578	80%	20%	
2	D	478	83%	13%	·
2	Е	478	80%	16%	·
2	F	478	78%	17%	•
3	G	223	79%	13% 7	%
4	Н	104	6%	22%	•

Mol	Chain	Length	Quality of chain		
5	Ι	120	86%		14%
5	Κ	120	82%		18%
6	J	188	94%		5%•
6	L	188	96%		
7	М	323	18% 97%		••
8	Ν	652	96%		•
9	0	99	73%	•	26%
9	Р	99	71%	•	26%
9	Q	99	71%	•	25%
9	R	99	7%	•	26%
9	S	99	13%	•	26%
9	Т	99	10%	•	26%
9	U	99	10%	•	26%
9	V	99	8%	•	26%
9	W	99	6% 72%	•	26%
9	Х	99	12%	•	27%
9	Y	99	10%	•	26%
9	Z	99	71%	•	26%

2 Entry composition (i)

There are 11 unique types of molecules in this entry. The entry contains 38522 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms		AltConf	Trace	
1	1 Λ	577	Total	С	Ν	0	\mathbf{S}	0	0
1	Π	511	4472	2854	762	834	22		0
1	Р	577	Total	С	Ν	0	S	0	0
1	D	511	4472	2854	762	834	22		0
1	C	577	Total	С	Ν	0	S	0	0
1	U	511	4472	2854	762	834	22	0	0

• Molecule 1 is a protein called V-type ATP synthase alpha chain.

• Molecule 2 is a protein called V-type ATP synthase beta chain.

Mol	Chain	Residues		At	oms		AltConf	Trace	
2	D	460	Total 3600	C 2280	N 623	O 687	S 10	0	0
2	Е	460	Total 3600	C 2280	N 623	O 687	S 10	0	0
2	F	460	Total 3600	C 2280	N 623	O 687	S 10	0	0

• Molecule 3 is a protein called V-type ATP synthase subunit D.

Mol	Chain	Residues		At	AltConf	Trace			
3	G	207	Total 1628	C 1026	N 304	O 296	${S \over 2}$	0	0

• Molecule 4 is a protein called V-type ATP synthase subunit F.

Mol	Chain	Residues		At	oms	AltConf	Trace		
4	Н	104	Total 792	C 501	N 136	0 152	${ m S} { m 3}$	0	0

• Molecule 5 is a protein called V-type ATP synthase, subunit (VAPC-THERM).

Mol	Chain	Residues	Atoms	AltConf Tra	ce
5	Ι	103	Total C N O 511 306 103 102	0 0	
5	K	99	Total C N O 494 297 99 98	0 0	

• Molecule 6 is a protein called V-type ATP synthase subunit E.

Mol	Chain	Residues	Atoms				AltConf	Trace
6	Т	186	Total	С	Ν	Ο	0	0
0 1	100	922	551	186	185	0	0	
6	т	197	Total	С	Ν	Ο	0	0
0	L	107	926	553	187	186	0	0

• Molecule 7 is a protein called V-type ATP synthase subunit C.

Mol	Chain	Residues	Atoms				AltConf	Trace
7	М	320	Total 1575	C 935	N 320	O 320	0	0

• Molecule 8 is a protein called V-type ATP synthase subunit I.

Mol	Chain	Residues	Atoms				AltConf	Trace
8	Ν	649	Total	\mathbf{C}	Ν	Ο	0	0
0	1 N	049	3190	1892	649	649	0	0

• Molecule 9 is a protein called V-type ATP synthase, subunit K.

Mol	Chain	Residues		Aton	ns		AltConf	Trace
0	0	73	Total	С	Ν	0	0	0
9	0	15	351	205	73	73	0	0
0	P	73	Total	С	Ν	0	0	0
9	Г	15	351	205	73	73	0	0
0	0	74	Total	С	Ν	0	0	0
9	Q	14	356	208	74	74		0
0	В	73	Total	С	Ν	0	0	0
9	п	15	351	205	73	73	0	0
0	q	73	Total	С	Ν	0	0	0
9	G	15	351	205	73	73	0	U
0	т	73	Total	С	Ν	0	0	0
9	T	15	351	205	73	73	0	0
0	II	73	Total	С	Ν	0	0	0
9	U	13	351	205	73	73	0	U

Mol	Chain	Residues		Atom	ıs		AltConf	Trace
0	V	73	Total	С	Ν	Ο	0	0
9	v	15	351	205	73	73	0	0
0	W	73	Total	С	Ν	0	0	0
9	vv	15	351	205	73	73	0	0
0	v	79	Total	С	Ν	0	0	0
9	Λ	12	347	203	72	72	0	0
0	V	72	Total	С	Ν	0	0	0
9	1	15	351	205	73	73	0	0
0	7	73	Total	С	Ν	0	0	0
9		10	351	205	73	73		0

• Molecule 10 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
10	А	1	Total Mg 1 1	0

• Molecule 11 is ADENOSINE-5'-DIPHOSPHATE (three-letter code: ADP) (formula: $C_{10}H_{15}N_5O_{10}P_2$).

Mol	Chain	Residues		Ate	oms			AltConf
11	٨	1	Total	С	Ν	0	Р	0
	1	27	10	5	10	2	0	
11	Б	1	Total	С	Ν	0	Р	0
	Г	1	27	10	5	10	2	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: V-type ATP synthase alpha chain

• Molecule 1: V-type ATP synthase alpha chain

MET ASP LEU LEU

1484 D315 K146 6487 8319 K154 6487 8319 K154 7490 1.322 V160 6497 8339 K154 6497 1.322 V160 6496 1.322 V160 6496 1.332 V160 6496 1.341 V173 647 N365 N136 658 N364 N136 659 N364 N136 650 1.370 N264 650 1.366 N264 650 1.366 N264 647 N378 N244 647 N378 N264 6416 N266 N264 6416 N266 N264 6416 N266 N264

• Molecule 2: V-type ATP synthase beta chain

Chain D:	83%	13% •	•
MET LEU LEU LEU 135 135 135 135 135 135 135 135 135 135	V/8 R91 R92 R124 R126 R125 R126 R126 R126 R126 R126 R126 R146 R146 R146 R146 R146 R146 R146 R14	A165 Q170 P175 C181 C181 C181 C181 C181 C181 C181 C181 C181 C181 C181 C181 C181 C181 C181 C181 C170 C181	E200 L201 1205 Q206
E207 F208 F208 F209 F209 F209 F210 F214 F214 F214 F218 F248 F248 F248 F252	V255 V255 V255 V255 V265 V265 V269 V269 V269 V301 V301 V301 V301 V301 V301 V301 V301	P351 P351 C365 R372 E401 R409 R410 R420 R420 R420	E431 E434 P447
Y462 Y463 G464 CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	ALA LEU ASP		
• Molecule 2: V-typ	be ATP synthase beta chain		
Chain E:	80%	16% ·	
MET ASP LEU LEU LEU LEU E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7	V / 6 K81 K81 K85 K86 K86 K92 K93 K93 K93 K111 L113 K111 L113 T115 T115	K126 1131 1135 1135 1138 1138 1138 1138 1152 1152	R169 A188 V189
A193 M94 0195 1196 1201 1205 1205 1205 1205 1205 1205 1205	N222 N222 N223 N224 D2255 D2255 D2256 D2256 D2256 N236 N236 N265 N265 N265 N265 N265 N265 N266 N266	A273 A273 R280 R280 R281 R281 R297 R295 R311 P311 P311 P313	1322 1322 1325
Y331 1337 R341 R341 8350 S357 L361 L361 L361	147.1 147.1 1383 1382 1392 1423 1423 1423 1423 1423 1423 1423 142	GLN LEU ASP	
• Molecule 2: V-typ	be ATP synthase beta chain		
Chain F:	78%	17% •	

• Molecule 3:	V-type ATP synthase subunit D		
Chain G:	79%	13% 7%	Ď
MET SER Q3 L20 L20 Y61	A69 477 477 477 477 477 885 886 886 886 886 886 886 886 886 886	1145 E152 K155 K156	q180 q181 q185
R193 L194 L197 K200 E207	GLY ARG PRO PRO CLN CLN CLN CLN CLN CLN CLN CLN CLN		
• Molecule 4:	V-type ATP synthase subunit F		
Chain H:	77%	22%	·
M1 A2 14 14 14 114 115 619 619	Y21 G22 A26 A46 V45 V45 V45 V45 V45 L51 P55 P56 P57 P58 P58 P58 P58 P58		
• Molecule 5:	V-type ATP synthase, subunit (VAPC-THERM)		
Chain I:	86%	14%	-
MET THR GLY GLY LEU VAL LEU ASN ALA ILE	SER ALA GLY ALA ALA ALA ALA D120		
• Molecule 5:	V-type ATP synthase, subunit (VAPC-THERM)		
Chain K:	82%	18%	-
MET THR GLY GLY LEU VAL LEU ASN ALA ILE	SER ARG ALA GLY GLY GLY GLY CL2 P120		
• Molecule 6:	V-type ATP synthase subunit E		
Chain J:	94%	5%	ó•
MET 82 81 81 81 81 81 81 81 81 81 87 94	C151 V152 A153 0156 0156 0156 1164 N165 8166 017 017		
• Molecule 6:	V-type ATP synthase subunit E		
Chain L:	96%		•••
MET 82 82 12 12 12 145 6151 154 6154	V 163 2 V 163 2 1 3 6 1 3 7 1 6 1 6 1 7 1 7 1 6 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7		

 \bullet Molecule 7: V-type ATP synthase subunit C

• Molecule	e 9: V-type ATP synthase, subunit K	
Chain S:	13% 71% •	26%
MET LYS LYS LEU LEU VAL THR VAL	val LEU LEU ALA ALA ALA ALA ALA ALA ALA AL	G41 ← V42 ← V42 ← V66 ← 165 ← 167 ← 167 ← 167 ← 167 ← 180 L80
• Molecule	e 9: V-type ATP synthase, subunit K	
Chain T:	10% 71%	26%
MET LYS LYS LEU LEU VAL VAL	LEU LEU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	E47 F62 L65 I75 I75 L80
• Molecule	e 9: V-type ATP synthase, subunit K	
Chain U:	10% 71%	26%
MET LYS LYS LYS LEU LEU VAL THR VAL	VAL VAL LEU LEU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	P62 E63 L65 L65 L80
• Molecule	e 9: V-type ATP synthase, subunit K	
	D 0/	
Chain V:	71% •	26%
Chain V:	8% 71% VALA VA	26%
Chain V:	71% • • • • • • • • • • • • • • • • • • •	26%
Chain V:	71% **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ***** ****** ************************************	26%
Chain V:	71% 71% 71% 9 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	26%
Chain V:	71% 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	26%
Chain V:	71% 38 71% 38 48 48 48 48 48 48 58 48 58 <td>26%</td>	26%
Chain V: Molecule Chain W: Molecule Chain W: Molecule Chain X:	71% ************************************	26% 26% 26% 26%
Chain V: Molecula Chain W: Chain W: Molecula Chain X:	8% 71% ************************************	26% 26% 26%

• Molecule 9: V-type ATP synthase, subunit K

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	15571	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	1780	Depositor
Magnification	129032	Depositor
Image detector	FEI FALCON III $(4k \ge 4k)$	Depositor
Maximum map value	0.175	Depositor
Minimum map value	-0.076	Depositor
Average map value	0.004	Depositor
Map value standard deviation	0.012	Depositor
Recommended contour level	0.0215	Depositor
Map size (Å)	143.22, 143.22, 251.72	wwPDB
Map dimensions	232, 132, 132	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.085, 1.085, 1.085	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, ADP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles		
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.42	0/4568	0.60	0/6198	
1	В	0.39	0/4568	0.62	3/6198~(0.0%)	
1	С	0.42	0/4568	0.61	0/6198	
2	D	0.42	0/3667	0.62	2/4965~(0.0%)	
2	Е	0.39	0/3667	0.64	2/4965~(0.0%)	
2	F	0.42	0/3667	0.65	5/4965~(0.1%)	
3	G	0.36	0/1648	0.61	0/2217	
4	Н	0.31	0/803	0.65	0/1084	
5	Ι	0.24	0/510	0.26	0/711	
5	Κ	0.26	0/493	0.28	0/689	
6	J	0.25	0/921	0.37	0/1283	
6	L	0.26	0/925	0.38	0/1288	
7	М	0.24	0/1574	0.38	0/2187	
8	Ν	0.25	0/3189	0.44	0/4430	
9	0	0.25	0/350	0.37	0/480	
9	Р	0.25	0/350	0.34	0/480	
9	Q	0.25	0/355	0.37	0/487	
9	R	0.25	0/350	0.37	0/480	
9	S	0.25	0/350	0.36	0/480	
9	Т	0.25	0/350	0.36	0/480	
9	U	0.24	0/350	0.35	0/480	
9	V	0.25	0/350	0.34	0/480	
9	W	0.25	0/350	0.36	0/480	
9	Х	0.24	0/346	0.35	0/475	
9	Y	0.25	0/350	0.35	0/480	
9	Ζ	0.25	0/350	0.37	0/480	
All	All	0.36	0/38969	0.56	12/53140~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a

Mol	Chain	#Chirality outliers	#Planarity outliers
1	С	0	2
4	Н	0	1
All	All	0	3

sidechain that are expected to be planar.

There are no bond length outliers.

All (12) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	152	ASP	CB-CG-OD1	7.92	125.43	118.30
2	D	106	ILE	C-N-CA	6.49	137.91	121.70
2	D	150	LEU	CA-CB-CG	6.13	129.40	115.30
2	Е	361	LEU	C-N-CA	5.61	135.72	121.70
2	F	150	LEU	CA-CB-CG	5.43	127.79	115.30
2	Е	150	LEU	CA-CB-CG	5.38	127.67	115.30
2	F	361	LEU	CA-CB-CG	5.38	127.67	115.30
1	В	241	LEU	CA-CB-CG	5.22	127.31	115.30
1	В	28	CYS	CA-CB-SG	5.10	123.17	114.00
2	F	358	LEU	CA-CB-CG	5.07	126.97	115.30
2	F	371	THR	C-N-CA	5.05	134.33	121.70
2	F	259	ASP	CB-CG-OD1	5.04	122.83	118.30

There are no chirality outliers.

All (3) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	С	142	GLY	Peptide
1	С	477	GLN	Peptide
4	Н	3	VAL	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	4472	0	4491	51	0
1	В	4472	0	4491	62	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	С	4472	0	4491	70	0
2	D	3600	0	3627	39	0
2	Е	3600	0	3627	48	0
2	F	3600	0	3627	49	0
3	G	1628	0	1707	21	0
4	Н	792	0	803	17	0
5	Ι	511	0	279	0	0
5	Κ	494	0	268	0	0
6	J	922	0	488	6	0
6	L	926	0	491	4	0
7	М	1575	0	775	4	0
8	Ν	3190	0	1547	13	0
9	0	351	0	194	1	0
9	Р	351	0	194	3	0
9	Q	356	0	196	4	0
9	R	351	0	194	2	0
9	S	351	0	194	3	0
9	Т	351	0	194	3	0
9	U	351	0	194	3	0
9	V	351	0	194	3	0
9	W	351	0	194	2	0
9	Х	347	0	191	2	0
9	Y	351	0	194	3	0
9	Ζ	351	0	194	3	0
10	А	1	0	0	0	0
11	А	27	0	12	3	0
11	F	27	0	12	0	0
All	All	38522	0	33063	372	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

All (372) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:E:193:ALA:O	2:E:222:ASN:HB2	1.66	0.93
2:F:36:LYS:O	2:F:71:THR:HA	1.67	0.93
1:B:116:LYS:HA	1:B:166:TYR:O	1.74	0.85
4:H:85:ASP:O	4:H:89:TYR:HB2	1.87	0.74
1:B:450:LEU:HD22	1:B:516:MET:HG2	1.68	0.74
1:B:75:LEU:O	1:B:184:TYR:HA	1.88	0.73

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:G:94:GLU:HB2	3:G:101:VAL:O	1.88	0.73
1:B:512:ALA:O	1:B:516:MET:HB2	1.88	0.73
1:B:227:PRO:HA	1:B:384:VAL:O	1.91	0.71
1:C:40:ILE:O	1:C:48:PHE:HB3	1.90	0.71
2:E:82:LEU:O	2:E:111:ARG:HA	1.92	0.69
8:N:167:LEU:HA	8:N:179:LEU:O	1.92	0.68
1:B:8:LYS:HD3	1:B:15:ILE:HD12	1.78	0.65
1:C:476:LEU:HD22	1:C:481:ARG:HD2	1.78	0.65
1:C:26:ASP:HB2	1:C:39:ILE:HD12	1.78	0.65
2:E:76:VAL:HG12	2:E:77:GLU:HG2	1.78	0.65
2:D:165:ALA:HB1	2:D:207:GLU:HG2	1.79	0.64
1:A:258:ARG:NH2	2:F:331:TYR:O	2.31	0.63
2:D:161:ASN:ND2	2:D:200:GLU:OE1	2.32	0.62
8:N:586:ALA:HB1	8:N:594:VAL:HA	1.80	0.62
1:B:496:GLN:HB3	1:B:552:ARG:HH12	1.64	0.62
2:F:41:ARG:NH2	2:F:42:VAL:O	2.33	0.61
1:A:54:ASP:O	1:A:104:ARG:NH1	2.34	0.61
1:C:388:GLY:HA3	2:E:322:THR:HG23	1.83	0.60
2:E:169:ARG:NH1	2:E:427:GLN:OE1	2.35	0.60
1:B:206:LEU:HB2	1:B:246:ASN:HB2	1.83	0.60
1:C:89:ARG:NH1	1:C:106:VAL:O	2.35	0.60
2:D:372:ARG:NH2	2:D:462:TYR:OH	2.34	0.59
2:E:158:LEU:HD21	2:E:341:ARG:HG2	1.83	0.59
9:X:18:GLY:HA3	9:Y:17:VAL:HA	1.83	0.59
1:B:93:ARG:NH1	1:B:109:HIS:O	2.36	0.59
1:C:53:GLU:OE2	1:C:89:ARG:NH2	2.36	0.59
1:B:8:LYS:HB3	1:B:15:ILE:HB	1.85	0.59
1:C:386:PRO:O	2:E:331:TYR:OH	2.21	0.59
1:C:24:MET:HB2	2:F:65:GLY:H	1.68	0.58
1:C:315:ASP:HA	1:C:370:THR:HG21	1.84	0.58
1:A:473:PRO:O	1:A:481:ARG:NH1	2.36	0.58
1:C:489:ILE:O	1:C:493:ASP:HB3	2.03	0.58
1:A:250:VAL:O	1:A:285:THR:HA	2.02	0.58
4:H:1:MET:N	4:H:41:GLY:O	2.36	0.58
9:U:18:GLY:HA3	9:V:17:VAL:HA	1.84	0.58
1:B:443:VAL:O	1:B:510:LYS:NZ	2.37	0.58
1:C:198:LYS:HG2	1:C:368:VAL:HG12	1.83	0.58
2:D:27:LEU:HD23	2:D:75:LEU:HD12	1.86	0.57
1:A:159:GLU:HG2	1:A:174:VAL:HB	1.86	0.57
4:H:1:MET:HA	4:H:44:LEU:HB3	1.87	0.57
1:B:221:GLY:H	1:B:379:THR:HB	1.70	0.56

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
9:P:18:GLY:HA3	9:Q:17:VAL:HA	1.87	0.56
1:C:417:ARG:NH2	2:E:357:SER:O	2.37	0.56
2:F:278:PRO:HA	2:F:284:PRO:HA	1.87	0.56
1:A:416:ARG:NH2	2:F:391:ASP:OD2	2.38	0.56
2:E:188:ALA:HB3	2:E:253:VAL:HG22	1.88	0.56
2:E:193:ALA:HB3	2:E:221:LEU:HA	1.87	0.56
1:C:225:ALA:HB2	1:C:403:VAL:HG11	1.87	0.55
2:E:211:THR:HG23	2:E:213:ALA:H	1.70	0.55
9:Q:18:GLY:HA3	9:R:17:VAL:HA	1.87	0.55
2:E:419:GLU:HA	2:E:423:ILE:HD12	1.89	0.55
2:D:170:GLN:NE2	2:D:429:ASN:OD1	2.39	0.55
1:A:172:VAL:HG23	1:A:173:VAL:HG23	1.88	0.55
2:D:92:ARG:HG2	2:D:219:LEU:HD12	1.90	0.54
2:D:35:ILE:HG12	2:D:73:VAL:HG12	1.87	0.54
3:G:15:ARG:HH21	3:G:180:GLN:HE21	1.55	0.54
1:C:39:ILE:HG12	1:C:49:VAL:HG22	1.90	0.54
1:A:189:VAL:HB	1:A:304:TYR:HB3	1.89	0.54
1:B:138:VAL:O	1:B:145:HIS:HB3	2.08	0.54
6:J:118:ALA:HA	6:J:156:GLY:HA2	1.88	0.54
8:N:391:ILE:O	8:N:395:ALA:N	2.40	0.54
1:A:9:ILE:HG12	1:A:14:VAL:HG22	1.90	0.54
1:C:75:LEU:HA	1:C:79:MET:HE3	1.90	0.54
2:D:190:VAL:HB	2:D:255:VAL:HG22	1.89	0.54
1:C:488:ARG:O	1:C:492:GLU:HB2	2.07	0.54
1:C:300:GLU:HG3	1:C:330:TRP:HE1	1.73	0.53
9:S:22:ALA:HB2	9:T:20:GLY:HA2	1.90	0.53
1:B:268:GLU:OE2	2:D:126:LYS:NZ	2.41	0.53
2:D:401:GLU:O	2:D:409:ARG:NH2	2.41	0.53
1:A:347:GLU:OE1	2:D:268:ARG:NH1	2.41	0.53
1:C:75:LEU:HD13	1:C:312:TYR:HB2	1.90	0.53
2:D:196:ILE:HD11	2:D:201:LEU:HD12	1.91	0.53
2:D:244:TYR:O	2:D:248:GLU:HB2	2.09	0.53
2:E:196:ILE:HD12	2:E:201:LEU:HB2	1.90	0.53
4:H:85:ASP:O	4:H:89:TYR:CB	2.55	0.53
9:Y:18:GLY:HA3	9:Z:17:VAL:HA	1.91	0.53
1:A:211:ILE:HD12	1:A:495:LEU:HD22	1.90	0.53
1:B:211:ILE:HD12	1:B:495:LEU:HD22	1.90	0.53
1:B:211:ILE:HG23	$1:B:212:LE\overline{U:HG}$	1.90	0.53
1:A:41:ARG:NH2	1:A:341:LEU:O	2.38	0.53
2:D:339:LEU:HD22	2:D:351:PRO:HG2	1.89	0.53
1:A:242:ALA:O	1:A:284:ARG:NH1	2.38	0.53

		Interatomic	Clash	
Atom-1	Atom-2	distance $(Å)$	overlap (Å)	
1:B:496:GLN:O	1:B:552:ARG:NH1	2.41	0.53	
1:C:300:GLU:OE2	1:C:357:ARG:NH1	2.42	0.53	
2:D:92:ARG:HH11	2:D:205:ILE:HG21	1.74	0.53	
1:A:73:VAL:O	1:A:186:THR:HA	2.09	0.53	
1:C:418:HIS:NE2	1:C:495:LEU:O	2.42	0.53	
1:C:365:ALA:HA	1:C:378:VAL:HG13	1.90	0.52	
2:E:195:GLY:HA2	2:E:224:ALA:HB2	1.91	0.52	
2:F:142:ASN:ND2	2:F:383:TYR:OH	2.41	0.52	
1:A:465:GLN:HA	1:A:468:VAL:HG12	1.91	0.52	
1:B:542:LEU:HD12	1:B:543:PRO:HD2	1.91	0.52	
1:A:75:LEU:O	1:A:184:TYR:HA	2.09	0.52	
2:F:149:LYS:O	2:F:333:THR:OG1	2.27	0.52	
2:E:60:PHE:HB3	2:E:229:ILE:HG21	1.92	0.52	
1:A:236:VAL:HG21	11:A:602:ADP:H2'	1.91	0.52	
1:B:126:GLY:O	1:B:156:ARG:NH1	2.43	0.52	
2:F:169:ARG:HG3	2:F:170:GLN:HG2	1.92	0.52	
1:C:9:ILE:HG12	1:C:14:VAL:HG22	1.91	0.52	
1:A:111:LEU:O	1:A:113:ARG:NH2	2.43	0.52	
2:E:280:ARG:O	3:G:185:GLN:NE2	2.42	0.52	
1:A:260:ASN:ND2	2:F:334:GLU:OE2	2.41	0.51	
1:B:413:LEU:HB3	1:B:418:HIS:HB3	1.93	0.51	
1:C:489:ILE:O	1:C:493:ASP:CB	2.58	0.51	
3:G:190:ASP:OD1	3:G:193:ARG:NH1	2.43	0.51	
1:A:83:ILE:HA	1:A:287:LEU:O	2.09	0.51	
1:A:250:VAL:HB	1:A:285:THR:HG22	1.92	0.51	
2:F:219:LEU:HD23	2:F:221:LEU:HD21	1.92	0.51	
1:B:264:ASP:O	1:B:268:GLU:HB2	2.11	0.51	
2:F:59:VAL:HG12	2:F:61:GLU:H	1.75	0.51	
3:G:94:GLU:OE2	3:G:103:ARG:NH2	2.43	0.51	
1:A:384:VAL:HG21	1:A:399:THR:HG21	1.91	0.51	
2:F:37:ASP:HA	2:F:71:THR:HG22	1.93	0.51	
2:F:6:LYS:HA	6:L:163:VAL:HA	1.93	0.51	
1:B:30:VAL:O	1:B:34:GLY:HA2	2.10	0.51	
1:C:211:ILE:HG13	1:C:215:LEU:HD12	1.93	0.51	
1:C:253:VAL:HG21	1:C:306:GLY:HA3	1.93	0.51	
2:E:236:ARG:NH2	2:E:290:ASP:OD1	2.44	0.51	
2:F:165:ALA:HB1	2:F:207:GLU:HG2	1.92	0.51	
2:F:222:ASN:HD21	2:F:230:GLU:HG3	1.75	0.51	
8:N:11:ALA:HA	8:N:276:PHE:O	2.11	0.51	
1:C:432:THR:HB	1:C:451:ARG:HH22	1.76	0.50	
2:E:281:ARG:NH1	3:G:181:GLN:OE1	2.44	0.50	

EMD-4703, 6R	10
--------------	----

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
6:J:132:GLU:O	6:J:135:ALA:HB3	2.10	0.50	
2:D:125:ARG:NH2	2:D:301:VAL:O	2.45	0.50	
1:B:199:LEU:HD11	1:B:369:ILE:HG23	1.93	0.50	
3:G:93:VAL:O	3:G:103:ARG:NH2	2.45	0.50	
1:B:30:VAL:HA	1:B:64:VAL:HG22	1.94	0.50	
2:F:195:GLY:N	2:F:222:ASN:O	2.38	0.50	
2:F:197:THR:OG1	2:F:198:GLN:N	2.45	0.50	
2:F:94:ASN:OD1	2:F:98:LYS:N	2.45	0.49	
2:E:152:ILE:HB	2:E:313:ILE:HG12	1.94	0.49	
7:M:3:ASP:N	7:M:77:THR:O	2.45	0.49	
1:C:27:ILE:HD11	1:C:71:LEU:HD13	1.93	0.49	
2:F:48:ILE:HD12	2:F:274:ARG:HD2	1.93	0.49	
2:F:207:GLU:OE2	2:F:210:ARG:NH2	2.46	0.49	
1:B:486:VAL:HG21	1:B:523:TYR:HD1	1.78	0.49	
1:C:322:LEU:HD22	1:C:380:ILE:HG12	1.94	0.49	
2:F:109:GLU:OE1	2:F:244:TYR:OH	2.30	0.49	
1:A:231:GLY:N	11:A:602:ADP:O2B	2.46	0.49	
1:B:93:ARG:NH1	1:B:111:LEU:O	2.46	0.49	
1:C:74:GLU:HG2	1:C:186:THR:HG22	1.95	0.49	
1:A:75:LEU:HD13	1:A:312:TYR:HB2	1.95	0.48	
1:C:116:LYS:HA	1:C:166:TYR:O	2.12	0.48	
1:C:160:VAL:HG22	1:C:173:VAL:HG22	1.95	0.48	
6:J:151:GLY:HA3	6:J:166:SER:HA	1.95	0.48	
3:G:61:TYR:OH	3:G:133:TYR:OH	2.29	0.48	
3:G:69:ALA:HB1	7:M:302:LEU:HA	1.95	0.48	
1:C:415:PHE:O	2:E:383:TYR:OH	2.31	0.48	
1:B:116:LYS:HB3	1:B:165:GLU:HG2	1.94	0.48	
2:D:91:ARG:NE	2:D:101:ASP:OD2	2.42	0.48	
2:F:93:PHE:HB3	2:F:97:GLY:HA2	1.95	0.48	
2:E:265:GLU:HA	2:E:268:ARG:HG2	1.95	0.48	
1:B:329:ARG:NH2	2:D:331:TYR:O	2.37	0.48	
2:F:190:VAL:HB	2:F:255:VAL:HG22	1.96	0.48	
8:N:165:TYR:HA	8:N:181:VAL:O	2.14	0.48	
1:A:328:SER:OG	1:A:329:ARG:NH2	2.46	0.48	
1:C:525:GLU:HG2	1:C:574:PHE:HD2	1.79	0.48	
1:B:517:LYS:HD2	1:B:563:PHE:HZ	1.77	0.47	
2:D:431:SER:OG	2:D:434:GLU:OE1	2.25	0.47	
2:F:396:VAL:HG22	2:F:404:LEU:HD21	1.96	0.47	
2:E:231:ARG:HD2	2:E:266:ALA:HB2	1.95	0.47	
2:F:135:ILE:HA	2:F:425:GLN:HE22	1.79	0.47	
8:N:10:LEU:O	8:N:277:ALA:HA	2.14	0.47	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:41:ARG:HD3	1:A:341:LEU:HD22	1.96	0.47	
1:C:444:ALA:HB3	1:C:447:TYR:HB2	1.96	0.47	
2:F:140:VAL:O	2:F:375:HIS:NE2	2.47	0.47	
4:H:14:ARG:NE	4:H:19:GLU:OE2	2.47	0.47	
6:J:153:ARG:HA	6:J:164:GLU:HA	1.95	0.47	
1:A:391:MET:N	1:A:391:MET:SD	2.88	0.47	
2:E:196:ILE:HD11	2:E:223:LYS:H	1.79	0.47	
1:A:408:ARG:N	1:A:427:SER:OG	2.42	0.47	
1:B:475:ALA:HB1	4:H:104:LEU:HA	1.97	0.47	
1:C:210:ARG:HH21	1:C:496:GLN:H	1.62	0.47	
2:E:92:ARG:HD3	2:E:205:ILE:HD11	1.96	0.47	
8:N:272:GLY:N	8:N:275:GLY:O	2.42	0.47	
1:B:54:ASP:OD1	1:B:54:ASP:N	2.48	0.47	
2:D:175:PRO:HB2	2:D:181:GLY:HA3	1.95	0.47	
2:E:85:SER:OG	2:E:86:LYS:N	2.47	0.47	
2:E:94:ASN:HB3	2:E:97:GLY:H	1.80	0.47	
1:A:11:GLY:O	1:A:55:THR:OG1	2.31	0.47	
1:C:267:VAL:HG11	2:E:126:LYS:HE2	1.97	0.47	
2:D:92:ARG:HH21	2:D:101:ASP:HA	1.79	0.47	
2:D:270:ILE:HG22	2:D:274:ARG:HE	1.80	0.47	
1:A:488:ARG:NH1	1:A:492:GLU:OE1	2.49	0.46	
1:B:85:ASP:OD1	1:B:89:ARG:N	2.43	0.46	
1:B:132:GLY:HA3	1:B:371:LEU:HB2	1.96	0.46	
2:F:34:ASP:HA	2:F:43:ARG:O	2.15	0.46	
1:A:466:GLU:HG3	3:G:20:LEU:HD21	1.98	0.46	
1:B:27:ILE:HG23	1:B:36:VAL:HG13	1.97	0.46	
1:C:547:ARG:NH1	1:C:569:GLU:OE2	2.48	0.46	
2:D:149:LYS:HA	2:D:310:GLN:O	2.15	0.46	
2:F:46:GLN:HB3	2:F:58:GLN:HE21	1.80	0.46	
2:F:92:ARG:HG2	2:F:219:LEU:HB2	1.98	0.46	
4:H:4:ILE:HG22	4:H:22:GLY:HA2	1.97	0.46	
2:E:366:VAL:HG12	2:E:371:THR:HG21	1.98	0.46	
1:B:174:VAL:HG22	1:B:180:GLU:HG2	1.96	0.46	
1:C:304:TYR:HA	1:C:307:VAL:HG12	1.98	0.46	
1:A:250:VAL:HG22	1:A:321:ALA:HB3	1.98	0.46	
2:D:142:ASN:N	2:D:142:ASN:OD1	2.49	0.46	
1:A:228:GLY:HA3	1:A:409:LEU:HD12	1.97	0.46	
1:C:41:ARG:NH1	1:C:341:LEU:O	2.49	0.46	
4:H:3:VAL:HG22	4:H:20:GLY:HA3	1.97	0.46	
7:M:180:ALA:HB1	7:M:189:ARG:HA	1.97	0.46	
$8:N:142:PRO:H\overline{A}$	8:N:179:LEU:HA	1.98	0.46	

	to as pagem	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:305:VAL:HA	1:A:308:THR:HG22	1.98	0.46	
1:C:254:GLY:HA2	1:C:325:ASP:HB3	1.97	0.45	
1:B:249:VAL:O	1:B:320:VAL:HA	2.16	0.45	
1:C:204:PRO:HB3	1:C:435:LEU:HD13	1.98	0.45	
1:B:338:SER:HB2	1:B:351:PRO:HG3	1.98	0.45	
1:B:365:ALA:HA	1:B:378:VAL:HG13	1.98	0.45	
1:A:243:LYS:HA	1:A:281:LEU:HD21	1.98	0.45	
1:B:497:GLN:NE2	1:B:504:ASP:O	2.50	0.45	
2:D:75:LEU:HD21	2:D:78:ASP:HB3	1.97	0.45	
2:F:129:GLN:OE1	2:F:146:ARG:NH1	2.45	0.45	
9:P:29:GLY:HA3	9:Q:28:LEU:HA	1.97	0.45	
1:C:8:LYS:HB3	1:C:15:ILE:HG23	1.98	0.45	
2:D:145:VAL:HG11	2:D:365:GLY:HA3	1.97	0.45	
2:E:252:HIS:NE2	2:E:305:LYS:O	2.50	0.45	
1:B:263:THR:OG1	2:D:124:ARG:O	2.27	0.45	
2:D:288:TYR:HD1	2:D:328:LEU:HD22	1.82	0.45	
1:C:130:ARG:HA	1:C:154:ARG:HG2	1.99	0.45	
9:S:29:GLY:HA3	9:T:28:LEU:HA	1.99	0.45	
1:B:200:ASP:OD1	1:B:200:ASP:N	2.50	0.45	
1:B:542:LEU:HG	1:B:544:VAL:H	1.82	0.45	
1:C:243:LYS:HA	1:C:281:LEU:HD21	1.99	0.45	
2:D:421:PHE:O	2:D:430:ARG:NH2	2.44	0.45	
1:A:233:GLY:N	11:A:602:ADP:O1B	2.50	0.44	
2:D:146:ARG:HB3	2:D:307:SER:HB2	1.99	0.44	
2:D:252:HIS:ND1	2:D:307:SER:OG	2.44	0.44	
1:B:33:GLU:OE1	1:B:104:ARG:NH1	2.50	0.44	
1:B:491:ARG:HA	1:B:495:LEU:HD12	1.99	0.44	
1:C:559:PHE:O	1:C:563:PHE:HB2	2.17	0.44	
2:E:131:ILE:HG23	2:E:146:ARG:HB2	1.99	0.44	
2:E:135:ILE:HD12	2:E:350:PRO:HG3	1.98	0.44	
2:E:189:VAL:HA	2:E:254:LEU:O	2.17	0.44	
2:E:254:LEU:HD11	2:E:311:ILE:HD12	1.98	0.44	
9:Y:29:GLY:HA3	9:Z:28:LEU:HA	1.98	0.44	
1:C:211:ILE:HB	1:C:495:LEU:HD22	2.00	0.44	
2:E:7:GLU:N	6:J:162:GLN:O	2.46	0.44	
1:A:257:GLU:OE2	1:A:326:SER:OG	2.24	0.44	
2:F:192:ALA:HB3	2:F:257:LEU:HD23	1.99	0.44	
1:C:424:TRP:HH2	1:C:491:ARG:HD3	1.82	0.44	
1:C:30:VAL:HG11	1:C:51:VAL:HG12	1.98	0.44	
6:L:154:ALA:O	6:L:162:GLN:HA	2.17	0.44	
1:A:329:ARG:NH2	1:A:385:SER:OG	2.51	0.44	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:F:140:VAL:HA	2:F:375:HIS:HE2	1.83	0.44	
3:G:142:ASN:HA	3:G:145:THR:HG22	2.00	0.44	
9:P:33:ALA:HA	9:Q:35:ALA:HB2	1.99	0.44	
6:L:123:ALA:O	6:L:145:GLU:N	2.46	0.44	
1:B:26:ASP:HB2	1:B:39:ILE:HD12	1.99	0.43	
1:C:38:GLU:O	1:C:49:VAL:HA	2.18	0.43	
1:C:146:LYS:O	1:C:316:GLN:NE2	2.51	0.43	
2:E:224:ALA:HB1	2:E:231:ARG:HH21	1.83	0.43	
1:B:440:ARG:NH1	1:B:445:GLU:O	2.51	0.43	
2:F:130:PHE:HA	2:F:145:VAL:HG12	2.00	0.43	
1:A:238:GLN:HE22	1:A:325:ASP:HB3	1.83	0.43	
1:B:335:ARG:NH2	2:D:280:ARG:HD2	2.32	0.43	
4:H:3:VAL:HG12	4:H:46:ALA:HB3	1.99	0.43	
1:B:370:THR:OG1	1:B:373:GLY:N	2.51	0.43	
3:G:194:LEU:HA	3:G:197:ILE:HG22	1.99	0.43	
1:A:80:LEU:HD23	1:A:286:VAL:HG23	2.01	0.43	
9:W:18:GLY:HA3	9:X:17:VAL:HA	1.99	0.43	
1:A:486:VAL:HA	1:A:489:ILE:HG12	2.01	0.43	
2:E:115:THR:O	2:E:297:ARG:NH1	2.51	0.43	
2:F:281:ARG:HH11	2:F:323:HIS:CD2	2.37	0.43	
1:B:501:HIS:CE1	1:B:503:VAL:HG12	2.54	0.43	
9:O:28:LEU:HA	9:Z:29:GLY:HA3	2.00	0.43	
2:D:188:ALA:HB3	2:D:253:VAL:HG22	2.01	0.43	
2:F:33:VAL:HG21	2:F:57:ILE:HG12	2.01	0.43	
3:G:94:GLU:HG2	3:G:103:ARG:HH21	1.84	0.43	
1:A:473:PRO:HD3	2:F:395:LEU:HD21	2.01	0.43	
2:F:77:GLU:OE2	2:F:111:ARG:NH2	2.52	0.43	
1:B:226:ILE:HG22	1:B:407:TRP:HB2	2.00	0.43	
1:B:474:ASP:O	1:B:481:ARG:NH1	2.52	0.43	
1:C:344:MET:HG3	2:F:275:GLU:HA	2.00	0.43	
1:B:477:GLN:HE21	4:H:103:LYS:N	2.17	0.42	
1:C:234:LYS:HD2	1:C:383:ALA:HB1	1.99	0.42	
1:C:424:TRP:CH2	1:C:491:ARG:HD3	2.54	0.42	
4:H:57:ARG:O	4:H:61:ARG:HB2	2.18	0.42	
1:B:168:VAL:HG23	1:B:183:MET:HB2	2.01	0.42	
1:B:214:VAL:HG11	1:B:494:PHE:HZ	1.84	0.42	
1:B:490:ILE:HD13	1:B:490:ILE:HA	1.90	0.42	
2:D:207:GLU:OE2	2:D:210:ARG:NH2	2.51	0.42	
2:E:138:ILE:HG12	2:E:337:ILE:HD13	2.01	0.42	
8:N:439:GLY:N	8:N:447:ILE:O	2.52	0.42	
1:C:19:MET:N	1:C:45:ASP:O	2.51	0.42	

EMD-4703, 6R	10
--------------	----

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:C:188:PRO:HG2	1:C:191:ARG:HH12	1.84	0.42	
1:C:481:ARG:HA	1:C:484:ILE:HD12	2.01	0.42	
1:C:520:LEU:HD23	1:C:520:LEU:HA	1.86	0.42	
2:E:205:ILE:HD13	2:E:205:ILE:HA	1.88	0.42	
4:H:47:VAL:O	4:H:74:ILE:N	2.52	0.42	
4:H:51:LEU:HG	4:H:52:LEU:HD12	2.02	0.42	
2:E:7:GLU:O	6:J:162:GLN:N	2.52	0.42	
2:F:174:ARG:HH22	2:F:177:LEU:HD22	1.84	0.42	
3:G:108:PHE:O	3:G:131:ARG:NH2	2.53	0.42	
4:H:2:ALA:O	4:H:45:VAL:HA	2.18	0.42	
1:A:446:ASP:OD1	1:A:513:TYR:OH	2.26	0.42	
1:C:29:LYS:HA	1:C:35:LEU:O	2.18	0.42	
1:C:93:ARG:HH21	1:C:112:ASP:HB2	1.83	0.42	
2:F:85:SER:OG	2:F:86:LYS:N	2.53	0.42	
4:H:4:ILE:HG13	4:H:47:VAL:HG22	2.01	0.42	
1:B:168:VAL:HG22	1:B:184:TYR:HD1	1.85	0.42	
2:E:81:ARG:HA	2:E:113:PRO:HA	2.02	0.42	
3:G:90:GLU:OE2	3:G:105:LYS:NZ	2.35	0.42	
1:B:30:VAL:O	1:B:34:GLY:CA	2.67	0.42	
3:G:156:LYS:HE2	3:G:156:LYS:HB3	1.92	0.42	
3:G:197:ILE:HG13	3:G:200:LYS:HD2	2.01	0.42	
1:C:220:MET:SD	1:C:319:SER:OG	2.77	0.42	
2:E:388:ASN:O	2:E:392:ILE:HB	2.20	0.42	
4:H:55:PRO:HB2	4:H:71:LEU:HB3	2.02	0.42	
1:B:556:GLU:HA	1:B:559:PHE:HB2	2.01	0.41	
2:F:206:GLN:HA	2:F:209:GLU:HG2	2.02	0.41	
3:G:152:GLU:HA	3:G:155:LYS:HG2	2.01	0.41	
9:U:29:GLY:HA3	9:V:28:LEU:HA	2.02	0.41	
2:F:67:ASP:OD1	2:F:70:THR:OG1	2.28	0.41	
7:M:214:PRO:O	7:M:218:PHE:N	2.51	0.41	
1:C:6:ILE:HD12	1:C:62:GLU:HB2	2.02	0.41	
3:G:93:VAL:HG22	3:G:100:LYS:HZ1	1.85	0.41	
4:H:45:VAL:HB	4:H:71:LEU:HD23	2.02	0.41	
8:N:208:LEU:HA	8:N:216:ALA:HB1	2.02	0.41	
9:V:29:GLY:HA3	9:W:28:LEU:HA	2.02	0.41	
1:A:7:GLN:HB2	1:A:17:LYS:HB2	2.02	0.41	
1:B:205:PHE:HB3	1:B:218:VAL:HG13	2.02	0.41	
1:C:244:TRP:HB3	1:C:506:TYR:HD1	1.85	0.41	
2:D:209:GLU:HG2	2:D:214:LEU:HG	2.03	0.41	
2:E:101:ASP:HB3	2:E:103:LEU:HD13	2.02	0.41	
1:A:210:ARG:NH2	1:A:496:GLN:O	2.51	0.41	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:B:255:CYS:HG	1:B:302:SER:HG	1.62	0.41	
2:E:229:ILE:HA	2:E:232:ILE:HG22	2.01	0.41	
1:A:158:LYS:HD3	1:A:176:GLU:HA	2.02	0.41	
1:A:393:GLU:OE2	2:F:280:ARG:NH1	2.53	0.41	
2:F:114:ILE:HD11	2:F:237:MET:HB2	2.02	0.41	
1:A:323:MET:HG3	1:A:381:VAL:HB	2.02	0.41	
1:B:42:LEU:HB3	2:E:68:LEU:HD11	2.02	0.41	
1:C:260:ASN:HA	1:C:263:THR:HG22	2.02	0.41	
2:D:130:PHE:HA	2:D:145:VAL:HA	2.01	0.41	
2:E:226:ASP:OD1	2:E:226:ASP:N	2.53	0.41	
1:C:116:LYS:HE3	1:C:165:GLU:HG3	2.02	0.41	
2:F:140:VAL:HG12	2:F:141:MET:HG3	2.02	0.41	
2:F:335:GLY:HA2	2:F:358:LEU:O	2.20	0.41	
8:N:456:THR:O	8:N:460:ALA:N	2.49	0.41	
9:T:22:ALA:HB2	9:U:20:GLY:HA2	2.03	0.41	
1:A:226:ILE:HD12	1:A:407:TRP:HE3	1.86	0.41	
1:C:191:ARG:N	1:C:364:ARG:HH12	2.19	0.41	
1:C:401:ARG:NH1	2:F:265:GLU:OE2	2.38	0.41	
2:D:188:ALA:O	2:D:253:VAL:HA	2.21	0.41	
2:D:190:VAL:O	2:D:255:VAL:HA	2.20	0.41	
1:A:387:PRO:HD2	1:A:393:GLU:HG3	2.03	0.40	
1:C:487:GLY:O	1:C:491:ARG:HG2	2.21	0.40	
1:A:346:ALA:HB2	1:A:352:PRO:HB3	2.04	0.40	
1:C:239:GLN:NE2	1:C:261:GLU:OE1	2.55	0.40	
8:N:587:GLU:HA	8:N:591:LEU:HA	2.03	0.40	
1:C:205:PHE:HB2	1:C:220:MET:HA	2.01	0.40	
2:E:18:LEU:HD11	2:E:273:ALA:HB1	2.04	0.40	
6:L:151:GLY:HA3	6:L:166:SER:HA	2.02	0.40	
8:N:147:GLU:O	8:N:149:GLU:N	2.50	0.40	
1:B:334:LEU:HG	1:B:351:PRO:HG2	2.03	0.40	
2:E:263:TYR:OH	2:E:290:ASP:OD2	2.29	0.40	
2:F:176:ASP:OD1	2:F:176:ASP:N	2.54	0.40	
3:G:110:ASP:HB2	3:G:131:ARG:HH22	1.86	0.40	
1:C:38:GLU:OE1	1:C:52:TYR:OH	2.30	0.40	
2:D:410:ARG:HD3	2:D:447:PRO:HD3	2.03	0.40	
2:E:325:ILE:HD13	2:E:325:ILE:HA	1.82	0.40	
3:G:84:PRO:HG2	3:G:86:LEU:HD12	2.04	0.40	
9:R:22:ALA:HB2	9:S:20:GLY:HA2	2.03	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	575/578~(100%)	532 (92%)	43 (8%)	0	100	100
1	В	575/578~(100%)	519~(90%)	56 (10%)	0	100	100
1	С	575/578~(100%)	521 (91%)	54 (9%)	0	100	100
2	D	458/478~(96%)	423 (92%)	35 (8%)	0	100	100
2	Е	458/478~(96%)	409 (89%)	49 (11%)	0	100	100
2	F	458/478~(96%)	414 (90%)	44 (10%)	0	100	100
3	G	205/223~(92%)	189 (92%)	16 (8%)	0	100	100
4	Н	102/104~(98%)	84 (82%)	18 (18%)	0	100	100
5	Ι	101/120~(84%)	99~(98%)	2 (2%)	0	100	100
5	K	97/120 (81%)	96 (99%)	1 (1%)	0	100	100
6	J	184/188~(98%)	179 (97%)	5 (3%)	0	100	100
6	L	185/188~(98%)	171 (92%)	14 (8%)	0	100	100
7	М	318/323~(98%)	304 (96%)	14 (4%)	0	100	100
8	Ν	647/652~(99%)	580 (90%)	67 (10%)	0	100	100
9	Ο	71/99~(72%)	69~(97%)	2(3%)	0	100	100
9	Р	71/99~(72%)	69~(97%)	2(3%)	0	100	100
9	Q	72/99~(73%)	$70 \ (97\%)$	2(3%)	0	100	100
9	R	71/99~(72%)	70~(99%)	1 (1%)	0	100	100
9	S	71/99~(72%)	69 (97%)	2 (3%)	0	100	100
9	Т	71/99~(72%)	67 (94%)	4 (6%)	0	100	100
9	U	71/99~(72%)	68 (96%)	3 (4%)	0	100	100
9	V	71/99~(72%)	69 (97%)	2 (3%)	0	100	100
9	W	71/99~(72%)	69~(97%)	2 (3%)	0	100	100
9	X	70/99~(71%)	69 (99%)	1 (1%)	0	100	100
9	Y	71/99~(72%)	70 (99%)	1 (1%)	0	100	100

All

441 (8%)

5349 (92%)

Percentiles

100

100

100

100

0

0

Conti	nueu fron	i previous puge			
Mol	Chain	Analysed	Favoured	Allowed	Outliers
9	Z	71/99 (72%)	70 (99%)	1 (1%)	0

Continued from provious nage

All

There are no Ramachandran outliers to report.

5790/6274 (92%)

5.3.2Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	468/468~(100%)	464 (99%)	4 (1%)	78	88
1	В	468/468~(100%)	460 (98%)	8 (2%)	60	78
1	С	468/468~(100%)	466 (100%)	2 (0%)	91	94
2	D	386/401~(96%)	384 (100%)	2~(0%)	88	93
2	Ε	386/401~(96%)	384 (100%)	2 (0%)	88	93
2	F	386/401~(96%)	385~(100%)	1 (0%)	92	95
3	G	165/176~(94%)	164 (99%)	1 (1%)	86	92
4	Н	80/80~(100%)	80 (100%)	0	100	100
All	All	2807/2863~(98%)	2787 (99%)	20 (1%)	84	90

All (20) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	95	ARG
1	А	284	ARG
1	А	314	ARG
1	А	531	LYS
1	В	95	ARG
1	В	154	ARG
1	В	158	LYS
1	В	191	ARG
1	В	423	ASN
1	В	450	LEU

Mol	Chain	Res	Type
1	В	532	ARG
1	В	568	LYS
1	С	95	ARG
1	С	401	ARG
2	D	5	LYS
2	D	146	ARG
2	Е	149	LYS
2	Е	222	ASN
2	F	149	LYS
3	G	105	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (15) such sidechains are listed below:

Mol	Chain	Res	Type
1	В	316	GLN
1	В	477	GLN
1	С	238	GLN
1	С	283	HIS
1	С	316	GLN
1	С	459	GLN
2	D	161	ASN
2	D	249	HIS
2	Е	129	GLN
2	Е	170	GLN
2	F	425	GLN
2	F	429	ASN
3	G	17	GLN
3	G	180	GLN
3	G	185	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 3 ligands modelled in this entry, 1 is monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tinle	Bo	ond leng	$_{\rm ths}$	B	ond ang	les
INIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
11	ADP	F	501	-	24,29,29	0.95	1 (4%)	29,45,45	1.39	4 (13%)
11	ADP	А	602	10	24,29,29	0.93	1 (4%)	29,45,45	1.51	4 (13%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
11	ADP	F	501	-	-	5/12/32/32	0/3/3/3
11	ADP	А	602	10	-	7/12/32/32	0/3/3/3

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$\operatorname{Observed}(\operatorname{\AA})$	$\mathrm{Ideal}(\mathrm{\AA})$
11	F	501	ADP	C5-C4	2.48	1.47	1.40
11	А	602	ADP	C5-C4	2.35	1.47	1.40

All (8) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$\operatorname{Ideal}(^{o})$
11	А	602	ADP	PA-O3A-PB	-3.77	119.90	132.83
11	F	501	ADP	C3'-C2'-C1'	3.36	106.04	100.98
11	А	602	ADP	N3-C2-N1	-3.36	123.43	128.68
11	F	501	ADP	N3-C2-N1	-3.01	123.97	128.68

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
11	А	602	ADP	C3'-C2'-C1'	2.90	105.35	100.98
11	А	602	ADP	C4-C5-N7	-2.56	106.73	109.40
11	F	501	ADP	C4-C5-N7	-2.26	107.05	109.40
11	F	501	ADP	PA-O3A-PB	-2.23	125.19	132.83

There are no chirality outliers.

All (12) torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
11	А	602	ADP	PA-O3A-PB-O3B
11	А	602	ADP	C5'-O5'-PA-O2A
11	А	602	ADP	C5'-O5'-PA-O3A
11	F	501	ADP	C5'-O5'-PA-O1A
11	F	501	ADP	C5'-O5'-PA-O2A
11	А	602	ADP	O4'-C4'-C5'-O5'
11	А	602	ADP	C3'-C4'-C5'-O5'
11	F	501	ADP	PB-O3A-PA-O5'
11	А	602	ADP	C5'-O5'-PA-O1A
11	А	602	ADP	PA-O3A-PB-O2B
11	F	501	ADP	C5'-O5'-PA-O3A
11	F	501	ADP	O4'-C4'-C5'-O5'

There are no ring outliers.

1 monomer is involved in 3 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
11	А	602	ADP	3	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-4703. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 66

Y Index: 66

 \mathbf{Z}

Z Index: 116

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 60

Y Index: 75

Z Index: 174

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.0215. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 453 nm^3 ; this corresponds to an approximate mass of 409 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

This section was not generated. The rotationally averaged power spectrum is only generated for cubic maps.

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.233 \AA^{-1}

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estim	Estimation criterion (FSC cut-off)				
Resolution estimate (A)	0.143	0.5	Half-bit			
Reported by author	4.30	-	-			
Author-provided FSC curve	4.28	7.28	4.34			
Unmasked-calculated*	-	-	-			

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-4703 and PDB model 6R10. Per-residue inclusion information can be found in section 3 on page 7.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.0215 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.0215).

9.4 Atom inclusion (i)

At the recommended contour level, 95% of all backbone atoms, 87% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.0215) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	Q-score
All	0.8695	0.3600
А	0.8894	0.4290
В	0.8779	0.4140
С	0.8750	0.4160
D	0.8854	0.4260
Ε	0.8660	0.4170
F	0.8586	0.4190
G	0.8165	0.3330
Н	0.7684	0.2890
Ι	0.9746	0.2510
J	0.9816	0.2760
К	0.9717	0.2400
L	0.9784	0.2730
М	0.7479	0.2110
Ν	0.9351	0.2580
0	0.8262	0.2530
Р	0.7692	0.2370
Q	0.7781	0.2090
R	0.8091	0.2420
S	0.7977	0.2160
Т	0.8120	0.2300
U	0.7721	0.2230
V	0.7977	0.2350
W	0.8148	0.2550
Х	0.7291	0.2170
Y	0.7949	0.2350
Ζ	0.8319	0.2500

