

May 25, 2024 - 10:25 am BST

PDB ID	:	8QZS
EMDB ID	:	EMD-18781
Title	:	Cryo-EM structure of the cross-exon B-like complex
Authors	:	Zhang, Z.; Kumar, V.; Dybkov, O.; Will, C.L.; Zhong, J.; Ludwig, S.; Urlaub,
		H.; Kastner, B.; Stark, H.; Luehrmann, R.
Deposited on	:	2023-10-29
Resolution	:	4.10 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev92
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 4.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain					
1	А	2335		Q	95%			•••
2	В	2136		79%		·	21	1%
3	5	117	48%			32%	13%	• 7%
4	2	188	32% 32%	16%	·	48%		
5	6	106	•	16%	8%	44%		
6	4	144	- 54%			38%		• 6%
7	С	972		85%			•	14%

Mol	Chain		Quality of chain	
0	D	149		
0	D	142	•99%	•
9	Ε	357	84%	16%
10	Ι	312	58% •	41%
11	М	128	95%	•••
12	U	565	80%	• 19%
13	W	177	92%	• 5%
14	Х	376	21% 79%	
15	Z	15	87%	13%
16	7	793	26% 74%	
17	r	199	57%	43%
18	B4	424	18% 82%	
19	8	464	30% • 69%	
20	9	501	62%	30%
21	B2	895	8% 23% 77%	
22	B5	86	8%	20%
23	B3	1217	24%	
24	BP	110	8%	• 9%
25	B1	1304	66%	33%
26	B6	125	6 5% 7%	28%
27	62	95	95%	5%
28	63	102	32%	27%
29	64	139	53%	47%
30	65	91	77%	• 21%
31	66	80	79% 88%	12%
32	67	103	63%	37%

Mol	Chain	Length	Quality of chair	n
33	68	96	6 1% •	36%
34	22	118	72%	19%
34	42	118	60% •	37%
34	52	118	<mark>6%</mark> 48% 3	• 17%
35	2f	86	81%	16%
35	4f	86	83%	17%
35	5f	86	83%	15%
36	20	92	78%	12%
36	40	02	•	1270
36	50	02	042%	100/
30	0e	92	64%	16%
37	2g	70	96%	
37	4g	76	96%	•
37	5g	76	72%	25% ·
38	23	126	64%	• 34%
38	43	126	56%	44%
38	53	126	55% 12%	33%
39	2b	240	31% 34%	66%
39	4b	240	27% 73	3%
39	5b	240	30% •	70%
40	21	119	61%	33%
40	41	119	69%	31%
40	51	119	38% 26%	•• 32%
41	2B	225	41%	59%
42	2A	255	64%	36%
43	x	557	6% 7% 93%	

Mol	Chain	Length	Quality of chain						
43	У	557	7%	93%					
44	v	513	24%	97%		•			
44	W	513	18%	96%		•			
45	K	439	25%		75%				
46	z1	11	5	5%	45%				
47	z2	4		100%					
48	J	683	33%		67%				
49	L	499		75%		25%			
50	F	522		75%	•	23%			
51	Ν	941		87%		• 12%			
52	S	800	21%		79%				

2 Entry composition (i)

There are 52 unique types of molecules in this entry. The entry contains 86145 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Pre-mRNA-processing-splicing factor 8.

Mol	Chain	Residues	Atoms				AltConf	Trace
1	А	2247	Total 11389	C 6895	N 2247	O 2247	0	0

• Molecule 2 is a protein called U5 small nuclear ribonucleoprotein 200 kDa helicase.

Mol	Chain	Residues	Atoms				AltConf	Trace
2	В	1693	Total 8538	C 5154	N 1693	O 1691	0	0

• Molecule 3 is a RNA chain called U5 snRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	5	109	Total 2296	C 1028	N 383	О 776	Р 109	0	0

• Molecule 4 is a RNA chain called U2 snRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	2	98	Total 2071	C 926	N 349	O 698	Р 98	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
2	97	А	G	conflict	GB 36516

• Molecule 5 is a RNA chain called U6 snRNA.

Mol	Chain	Residues		A	AltConf	Trace			
5	6	59	Total 1251	C 558	N 230	O 404	Р 59	0	0

• Molecule 6 is a RNA chain called U4 snRNA.

Mol	Chain	Residues		\mathbf{A}	AltConf	Trace			
6	4	136	Total 2881	C 1288	N 498	O 959	Р 136	0	0

• Molecule 7 is a protein called 116 kDa U5 small nuclear ribonucleoprotein component.

Mol	Chain	Residues		Ator	AltConf	Trace		
7	С	836	Total 4223	C 2551	N 836	O 836	0	0

• Molecule 8 is a protein called Thioredoxin-like protein 4A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
8	D	141	Total 708	C 426	N 141	0 141	0	0

• Molecule 9 is a protein called U5 small nuclear ribonucleoprotein 40 kDa protein.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
9	Е	299	Total 1196	C 598	N 299	O 299	0	0

• Molecule 10 is a protein called Pre-mRNA-splicing factor 38A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
10	Ι	183	Total 920	$\begin{array}{c} \mathrm{C} \\ 554 \end{array}$	N 183	O 183	0	0

• Molecule 11 is a protein called NHP2-like protein 1, N-terminally processed.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
11	М	124	Total 627	C 379	N 124	O 124	0	0

• Molecule 12 is a protein called Ubiquitin carboxyl-terminal hydrolase 39.

Mol	Chain	Residues		Ator	AltConf	Trace		
12	U	456	Total 2308	C 1396	N 456	O 456	0	0

• Molecule 13 is a protein called Peptidyl-prolyl cis-trans isomerase H.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
13	W	169	Total 844	C 506	N 169	O 169	0	0

• Molecule 14 is a protein called WW domain-binding protein 4.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
14	Х	80	Total 403	C 243	N 80	O 80	0	0

• Molecule 15 is a RNA chain called Pre-mRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
15	Z	15	Total 314	C 141	N 51	O 107	Р 15	0	0

• Molecule 16 is a protein called Splicing factor 3A subunit 1.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
16	7	204	Total 1028	C 620	N 204	O 204	0	0

• Molecule 17 is a protein called Zinc finger matrin-type protein 2.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
17	r	114	Total 568	C 340	N 114	0 114	0	0

• Molecule 18 is a protein called Splicing factor 3B subunit 4.

Mol	Chain	Residues	Atoms				AltConf	Trace
18	Β4	78	Total 391	C 235	N 78	O 78	0	0

• Molecule 19 is a protein called Splicing factor 3A subunit 2.

Mol	Chain	Residues	Atoms				AltConf	Trace
19	8	144	Total 729	C 441	N 144	0 144	0	0

• Molecule 20 is a protein called Splicing factor 3A subunit 3.

Mol	Chain	Residues	Atoms				AltConf	Trace
20	9	350	Total 1755	C 1055	N 350	O 350	0	0

• Molecule 21 is a protein called Splicing factor 3B subunit 2.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
21	B2	208	Total 1072	C 656	N 208	O 208	0	0

• Molecule 22 is a protein called Splicing factor 3B subunit 5.

Mol	Chain	Residues	Atoms				AltConf	Trace
22	B5	69	Total 347	C 209	N 69	O 69	0	0

• Molecule 23 is a protein called Splicing factor 3B subunit 3.

Mol	Chain	Residues	Atoms				AltConf	Trace
23	B3	1186	Total 5969	C 3597	N 1186	O 1186	0	0

• Molecule 24 is a protein called PHD finger-like domain-containing protein 5A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
24	BP	100	Total 498	C 298	N 100	O 100	0	0

• Molecule 25 is a protein called Splicing factor 3B subunit 1.

Mol	Chain	Residues		Ator	AltConf	Trace		
25	B1	870	Total 4383	C 2643	N 870	0 870	0	0

• Molecule 26 is a protein called Splicing factor 3B subunit 6.

Mol	Chain	Residues	Atoms				AltConf	Trace
26	B6	90	Total 455	C 275	N 90	O 90	0	0

• Molecule 27 is a protein called U6 snRNA-associated Sm-like protein LSm2.

Mol	Chain	Residues	Atoms				AltConf	Trace
27	62	90	Total 360	C 180	N 90	O 90	0	0

• Molecule 28 is a protein called U6 snRNA-associated Sm-like protein LSm3.

Mol	Chain	Residues	Atoms				AltConf	Trace
28	63	74	Total 296	C 148	N 74	0 74	0	0

• Molecule 29 is a protein called U6 snRNA-associated Sm-like protein LSm4.

Mol	Chain	Residues	Atoms			AltConf	Trace	
29	64	74	Total 296	C 148	N 74	О 74	0	0

• Molecule 30 is a protein called U6 snRNA-associated Sm-like protein LSm5.

Mol	Chain	Residues	Atoms				AltConf	Trace
30	65	72	Total 288	C 144	N 72	О 72	0	0

• Molecule 31 is a protein called U6 snRNA-associated Sm-like protein LSm6.

Mol	Chain	Residues	Atoms				AltConf	Trace
31	66	70	Total 280	C 140	N 70	O 70	0	0

• Molecule 32 is a protein called U6 snRNA-associated Sm-like protein LSm7.

Mol	Chain	Residues	Atoms				AltConf	Trace
32	67	65	Total 260	C 130	N 65	O 65	0	0

• Molecule 33 is a protein called U6 snRNA-associated Sm-like protein LSm8.

Mol	Chain	Residues	Atoms				AltConf	Trace
33	68	61	Total 244	C 122	N 61	0 61	0	0

• Molecule 34 is a protein called Small nuclear ribonucleoprotein Sm D2.

Mol	Chain	Residues	Atoms	AltConf	Trace
34	42	74	Total C N O 300 152 74 74	0	0
34	52	98	Total C N O S 796 498 144 148 6	0	0
34	22	95	Total C N O 482 292 95 95	0	0

• Molecule 35 is a protein called Small nuclear ribonucleoprotein F.

Mol	Chain	Residues	Atoms	AltConf	Trace
35	4f	71	Total C N O 292 150 71 71	0	0
35	5f	73	Total C N O S 567 367 94 101 5	0	0
35	2f	72	Total C N O 359 215 72 72	0	0

• Molecule 36 is a protein called Small nuclear ribonucleoprotein E.

Mol	Chain	Residues	Atoms	AltConf	Trace
36	4e	78	Total C N O 314 158 78 78	0	0
36	5e	77	Total C N O S 638 405 113 115 5	0	0
36	2e	81	Total C N O 403 241 81 81	0	0

• Molecule 37 is a protein called Small nuclear ribonucleoprotein G.

Mol	Chain	Residues	Atoms	AltConf	Trace
37	4g	73	Total C N O 298 152 73 73	0	0
37	$5\mathrm{g}$	74	Total C N O S 577 364 104 103 6	0	0
37	2g	73	Total C N O 364 218 73 73	0	0

• Molecule 38 is a protein called Small nuclear ribonucleoprotein Sm D3.

Mol	Chain	Residues	Atoms				AltConf	Trace
38	43	71	Total 288	C 146	N 71	O 71	0	0

a 1	C		
Continued	from	previous	page
	J	1	I J

Mol	Chain	Residues	Atoms	AltConf	Trace
38	53	84	Total C N O S 657 412 116 123 6	0	0
38	23	83	Total C N O 415 249 83 83	0	0

• Molecule 39 is a protein called Small nuclear ribonucleoprotein-associated proteins B and B'.

Mol	Chain	Residues	Atoms	AltConf	Trace
39	4b	64	Total C N O 256 128 64 64	0	0
39	5b	73	Total C N O S 594 376 108 103 7	0	0
39	2b	82	Total C N O 413 249 82 82	0	0

• Molecule 40 is a protein called Small nuclear ribonucleoprotein Sm D1.

Mol	Chain	Residues	Atoms	AltConf	Trace
40	41	82	Total C N O 334 170 82 82	0	0
40	51	81	Total C N O S 641 408 112 118 3	0	0
40	21	80	Total C N O 402 242 80 80	0	0

• Molecule 41 is a protein called U2 small nuclear ribonucleoprotein B".

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
41	2B	92	Total 461	C 277	N 92	0 92	0	0

• Molecule 42 is a protein called U2 small nuclear ribonucleoprotein A'.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
42	2A	162	Total 816	C 492	N 162	O 162	0	0

• Molecule 43 is a protein called Protein Red.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
43	v	30	Total	С	Ν	0	0	0
45	Х	59	197	119	39	39	0	0
43	37	37	Total	С	Ν	0	0	0
40	У	51	187	113	37	37	0	0

• Molecule 44 is a protein called WD40 repeat-containing protein SMU1.

Mol	Chain	Residues		Ator	AltConf	Trace		
44	337	405	Total	С	Ν	Ο	0	0
44 V	W	495	2474	1484	495	495	0	0
4.4		406	Total	С	Ν	0	0	0
44	v	490	2478	1486	496	496	0	0

• Molecule 45 is a protein called Microfibrillar-associated protein 1.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
45	K	109	Total 543	C 325	N 109	O 109	0	0

• Molecule 46 is a RNA chain called Oligo 1.

Mol	Chain	Residues		Ate	\mathbf{oms}	AltConf	Trace		
46	z1	11	Total 239	C 107	N 46	O 75	Р 11	0	0

• Molecule 47 is a RNA chain called Oligo 2.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
47	z2	4	Total 90	C 40	N 20	O 26	Р 4	0	0

 $\bullet\,$ Molecule 48 is a protein called U4/U6 small nuclear ribonucleoprotein Prp3.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
48	J	224	Total 1125	C 677	N 224	O 224	0	0

• Molecule 49 is a protein called U4/U6 small nuclear ribonucleoprotein Prp31.

Mol	Chain	Residues		Ator	AltConf	Trace		
49	L	376	Total 1887	C 1135	N 376	0 376	0	0

 $\bullet\,$ Molecule 50 is a protein called U4/U6 small nuclear ribonucleoprotein Prp4.

Mol	Chain	Residues		Ator	AltConf	Trace		
50	F	404	Total 2020	C 1212	N 404	O 404	0	0

• Molecule 51 is a protein called Pre-mRNA-processing factor 6.

Mol	Chain	Residues	Atoms			AltConf	Trace	
51	Ν	831	Total 4192	C 2530	N 831	0 831	0	0

• Molecule 52 is a protein called U4/U6.U5 tri-snRNP-associated protein 1.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
52	S	171	Total 858	C 516	N 171	0 171	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Pre-mRNA-processing-splicing factor 8

• Molecule 7: 12	16 kDa U5 small nuclear ribonucleoprotein compo	onent	
Chain C:	85%	• 14%	
MET ASP THR ASP ASP LEU ASP CLU CLU CLU CLU ASN	ASP 1.1.1 1.1.	ASP ASP ASP ASP ASP HIS PIC GLU VAL VAL	SIH
GLU ASP LYS LYS LYS TYR TYR PRO ALA GLU VAL	TYRR TYRR CLV CLV CLV CLV CLV CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	LEUU PRO PRO VAL THR VAL TAL GLU GLU P191	<mark>S197</mark>
Y 198 L 199 V225 A252 A252 A252 A256 A349 A395 V496	449 GB47 GB47 GB47 GB47 A87 A87 A87 A87 A87 A87 A87 A8		
• Molecule 8: T	'hioredoxin-like protein 4A		
Chain D:	99%		
MET 82 142 Y142			
• Molecule 9: U	15 small nuclear ribonucleoprotein 40 kDa protein	L	
Chain E:	84%	16%	
MET ILE GLU GLN GLN LYS LYS GLY GLY GLU	PRD PRD PRD PRD PRD PRD PRD PRD PRD PRD	PRO PRO CYS SER SER SER SER SER SER SER ALA ALA	G 97
A268 P269 P269 P269 P269 L320 L322 L322 L323	T 1366 GLN		
• Molecule 10: 1	Pre-mRNA-splicing factor 38A		
Chain I:	58% · 41%		
MET A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2	ARP ARP ARP CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	ARG SER PRO THR LEU ARG ARG SER ARG	SER
ARG SER PRO ARG ARG SER ARG SER PRO LYS ARG	ARK ARK SER PRO SER ARC ARC ARC ARC ARC ARC ARC ARC ARC AR	ARG SER ARG SER HIS ARG SER HIS SER SER VIS	SER
PR0 GLU GLU ARG SER LYS SER HIS LYS SER SER SEG	ARG GL Y ASN GLU		
• Molecule 11: I	NHP2-like protein 1, N-terminally processed		
Chain M:	95%		

• Molecule 12:	Ubiquitin carboxyl-tern	ninal hydrolase	39		
Chain U:	80%		•	19%	
MET SER GLY ARG SER LYS ARG GLU SER ARG GLY	SER ARG GLY CLYS CLYS CLU SER SER SER SER SER ARG CLY ARG CLY VAL	LYS ARG GLU ARG GLU GLU GLU GLU SILV	ALA ALA SER SER ARG GLY SER PRO VAL VAL	LYS ARG GLU PHE GLU PRO ALA SFR	ALA ARG
GLU PRO ALA ALA ALA ALA SER VAL VAL PRO PHE VAL VAL	LYS LYS ARG GLU GLU GLU GLU PRO GLU PRO GLU GLU GLU VAL	ARG ARG LYS LYS GLY GLY ARF ARF AGO AGU	C174 C174 N178 D268 D268 K308 ♦	T314 K315 A367 E368	P411 K459
V464 T469 S510 E511 G512 ASP	ASN ASP ASP GLU GLN GLN GLN ALA				
• Molecule 13:	Peptidyl-prolyl cis-tran	s isomerase H			
Chain W:		92%		• 5%	
MET ALA VAL ALA ALA ASS SER SER PRO PRO V12 V12	M27 E30 F65 G147 G147 K153 M177				
• Molecule 14:	WW domain-binding p	rotein 4			
Chain X:	21%	79%			
MET ALA D3 A72 A72 LEU CLU GLU GLU	SER CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	I HK THK SER ASN GLN GLN GLN CLYS LYS LYS	LYS LYS LYS ARG LYS LYS ASP ASP PRO SER LYS	GLY ARG TRP VAL GLU GLU TLE THR	GLU
GLY TYR HIS TYR TYR TYR ASP LEU ILEU SER SER GLY	ALA ALA GLN TRP GLN TRP CLU CLV CLV CLV CLV CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	ALA VAL LYS THP VAL VAL CLU GLU GLU SEU STU	ASP ALV CLY CLY THR TYR TYR ASN ASN THR CLU	THR GLY GLU SER ARG TRP GLU CVS	PRO ASP
ASP PHE ILE PRO HIS PRO HIS SER ASP LEU PRO SER	SER LYS VAL VAL ASN ASN ASN ASN ASU ASU CLU CLU CLU CLU CLU CLU CLU SER SER SER	SER HIS SER ASP SER ASP GLY GLV GLU GLU	GLU GLU GLV GLY VAL SER THR CLU GLU GLU	LYS PRO LYS LYS LYS PHE LYS GIJI GIJI	LYS ASN
LYS ASN SER ASP GLY GLY SER ASP PRO GLU	GLM GLVS GLVS GLV CLYS SER GLM GLN SER SER SER SER SER SER SER SER SER SER	LYS LYS LYS LYS LEU LYS LYS SER ASN PRO TYV	GLU GLU GLU GLU GLU GLU GLU GLU	SER HIS GLU GLU VAL ASP LEU GLU	LEU PRO
SER THR GLU GLU TYR VAL SER THR SER CLU	ALA ASP GLY GLY GLY GLY GLY CLY CLY VAL VAL VAL VAL VAL LYS CLY GLU GLU THR THR	SEK LEU GLY VAL ASP ASP GLY VAL ALA PRO	PHE LYS LYS LYS ARG ARG GLU GLU CYS	SER ARG ASN LEU ARG GLN GLN GLN	ASP
GLN					
• Molecule 15:	Pre-mRNA				
Chain Z:	879	%		13%	
G29 A41 U42 C43					
• Molecule 16:	Splicing factor 3A subu	mit 1			
Chain 7:	26%	74%			
		W O R L D W I D PROTEIN DATA BAN	E		

 \bullet Molecule 34: Small nuclear ribonucleoprotein Sm D2

	72%	_	
Chain 22:	81%	19%	
MET SER SER LEU ASN ASN LYS SER CLU SER SER SER SER SER SER SER SER SER SER	417 418 419 520 521 522 523 524 724 726 726 726 726 726 726 726 726 733 733 733 733 733 733 733 733 734 734	V 365 K 37 N 38 N 38 N 39 Q 41 V 42 Q 41 V 42 C 46 N 45 N 45 N 46 N 46 N 46	LE2 C53 C54 R55 V55 K57 A58 A58 F59 F59
H61 H62 C63 M64 M65 M65 M65 L67 E68 N69 V70 K71 F72	1775 777 777 777 777 777 1775 1178 1178	S97 K98 M99 F100 L101 V108 V108 V108 V108 R111 N112 F113 F113 F113 F113 M12	SAT
• Molecule 35: Small n	uclear ribonucleoprotein F		
Chain 4f:	83%	17%	
MET SER LEU GLU GLU GLU GLU GLU GLU GLU GLU MET	arta		
• Molecule 35: Small n	uclear ribonucleoprotein F		
Chain 5f:	83%	• 15%	
MET SSRA SSRA L13 M12 C13 C13 C13 C13 C13 C13 C13 C13 C13 C13	GLU GLU ASP ASP GLY MET MET ARG GLU		
• Molecule 35: Small n	uclear ribonucleoprotein F		
Chain 2f:	81%	16%	
••• •••••	•••••••	••••	
MET SER SER SER LEU P4 P4 P7 P7 F10 F10 F10 F10 G13 C114	T15 G16 K17 P18 V19 M20 V21 V21 K22 L23 K24 W25 G26 G26 G26 G26 K30 G26 G26 K30 G26 S31 Y29 S31 Y32 S432 S432 S432 S432 S432 S432 S432 S4	V34 S35 V36 V36 C38 C38 C38 C38 V39 C44 C44 C44 C44 C44 C44 C44 C44 C44 C4	Y50 151 151 052 053 454 155 856 657 159 159
E61 V62 L63 L64 R65 C66 N67 N67 V69 V69 V69 V71 T72 V73			
• Molecule 36: Small n	uclear ribonucleoprotein E		
Chain 4e:	85%	15%	

 \bullet Molecule 36: Small nuclear ribonucleoprotein E

Chain 5e:	84%	16%	
MET ALA TYR ARG GLY GLN GLN CLN LYS	VAL GLN LYS VAL VAL VAL VAL SER SER ASN		
• Molecule 3	36: Small nuclear ribonucleoprotein E		
Chain 2e:	78%	12%	
	•••••	*********	•••••
MET ALA TYR ARG GLY GLN GLN CLN LYS	VAL VAL Q11 R12 V13 V13 P17 P17 P17 P17 P15 P12 R20 R19 R22 R22 R22 R22 R22 R22 R22 R22 R22 R2	E37 Q38 N40 N41 R42 R42 E44 G45 C46 C46 C46 I47	148 649 750 753 753 753 753 755 156 156 059 050
E62 E63 I64 H65 S66 K67 T68	K69 870 871 871 773 775 775 775 775 876 876 876 881 881 882 889 882 889 888 889 889 888 889 889		
• Molecule 3	37: Small nuclear ribonucleoprotein G		
Chain 4g:	96%	•	
MET SER LYS A4 R75 V76			
• Molecule 3	37: Small nuclear ribonucleoprotein G		
Chain 5g:	72%	25% ·	
MET SER K3 K10 K11 K11 K15	L19 V27 V27 B35 B44 C44 C44 C44 C44 C44 C44 C44 C44 C44		
• Molecule 3	37: Small nuclear ribonucleoprotein G		
Chain 2g:	64% 96%		
MET SER LYS A4 H5 P6 P7	La K10 F12 F12 F12 F12 C29 C29 C29 C29 F24 F34 F34 F34 F34 F34 F34 F34 F34 F34 F3	A49 T50 S51 G52 G52 G53 G54 N155 N155 G58 M59	V60 V61 162 R63 664 N65 C64 N65 A72 E71 A72 E74 K75 V76 V76
• Molecule 3	38: Small nuclear ribonucleoprotein Sm D3		
Chain 43:	56%	44%	

MET TLE TLE TLE MET MET MET MET MET MET MET MET MET ME
• Molecule 38: Small nuclear ribonucleoprotein Sm D3
Chain 53: 55% 12% 33%
M1 H16 H16 H16 H16 H23 H23 H23 H23 H23 H23 H23 H23 H23 H23
ARG MET GLY GLY ASN ASN LYS CLYS ARG ARG ARG
• Molecule 38: Small nuclear ribonucleoprotein Sm D3
Chain 23: 64% · 34%
MET S2 S2 S2 S2 S2 S2 S2 S2 S2 S2
168 177 177 177 177 177 177 177 177 177 17
• Molecule 39: Small nuclear ribonucleoprotein-associated proteins B and B'
Chain 4b: 27% 73%
MET THR THR VILL VILL VILL VILL VILL VILL VILL VIL
PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO
MET MET ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
PRO
• Molecule 39: Small nuclear ribonucleoprotein-associated proteins B and B'
Chain 5b: 30% · 70%
MET THR VAL VAL CUY SS CUY CUY SER CUY CUY CUY CUY CUY CUY CUY CUY CUY CUY
GLY LEU ALA ARG GLY CLY CLY CLY CLY CLY CLY CLY CLY CLY C
PRO MET MET MET PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO

• Molecule 44: WD40 repeat-containing protein SMU1

• Molecule 44: WD40 repeat-containing protein SMU1

24%	
Chain v: 97% ·	
MET 13 13 14 14 14 14 14 14 14 14 14 14	L115 E118 N119 S124 Y125 F126
R129 8 R129 8 R129 8 S154 9 V155 9 V155 9 V155 9 V155 9 V155 9 V155 13 V155 13 V155 13 V155 13 V155 13 V155 14 V155 14 V155 14 V155 14 V15 14 V14 14 V15 14 V15 14 V14 14	T381
E382 C3333 C333 C333 C333 C333 C333 C333	D486 E504 D505 P513
\bullet Molecule 45: Microfibrillar-associated protein 1	
Chain K: 25% 75%	
MET SER SER VAL PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	
GLN PHE LYS LYS CLV CLV CLV CLV GLV GLV GLV GLV GLV GLV GLV GLV GLV G	
GLU GLV ASP ASP ASP ASP ASP ASP ASP ASP GLU GLU GLU GLU GLU GLU GLU GLU GLU ASP GLU GLU ASP GLU ASP GLU ASP GLU ASP GLU ASP ASP GLU ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	
VAL VAL CLN CLN CLN CLN CLN CLN CLN CLN CLN CL	
LYS TYR TYR HTS ALA ARG ARG ARD ARD ARD ARD ARD ARD ARD ARD ARD ARD	
THR SFR ASP ASP ASP CLV ASP CLV CLV CLV CLV CLV ALA ASN ASN ASN ASN ASN ASN ASN ASN ASN AS	
• Molecule 46: Oligo 1	
Chain z1: 55% 45%	
• Molecule 47: Oligo 2	
Chain z2: 100%	
There are no outlier residues recorded for this chain.	
\bullet Molecule 48: U4/U6 small nuclear ribonucleoprotein Prp3	
Chain J: 33% 67%	

MET ALA LIEU LIEU SER REC GLU CLEU CLEU CLEU CLEU CLEU CLEU CLEU CL	L VAL ARG LEU LEU LEU LEU PHE SER PHE SER THR THR THR ALA ALA ALA ALA ALA ASN CSS SS	GLY GLY GLY GLY GLY GLY GLY GLY GLY GLY
ARG PHE VAL VAL LYS CLV CLV CLV CLV CLV CLV CLV CLV CLV CLV	LYEN SER SER SER SER ASP ASP ARG ARG ARG CLV VAL LEU CLV GLV VAL CLV SYP ARG CLV SAP ARG	SER SER CLU CLU STEE SER CLY CLY CLY SER CLY PRC PRC CLU CLU CLU CLU
GLU GLU GLU GLU CALU CALU FRO GLY PRO FRO GLY FRO GLY FRO GLY FRO GLY FRO GLY FRO GLY FRO GLU	LEU GLN GLN GLN GLN GLN MET MET MET MET ALA ALA ALA ALA ALA ALA GLU GLU GLU GLU	LIN LEU LEU FHE FHE FRO FRO FNO FNO FNO FNO FNO FNO FNO FNO FNO FN
LEU PRO PRO CLLE CLLE CLLE CLLE CLLE ASN ASN ALLA ALLA ALLA ALLA ALLA ALLA A	TLA CLU CLU CLU CLU CLU ALA ALA ALA ALA ALA ALA ALA ALA ALA A	LEU LEU LYE CLY CLY CLY CLEU CLEU CLEU ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN
ALA PRO PRO LYES VAL LEU LEU CASP CLN LEU THR PRO FRO FRO FRO FRO FRO FRO FRO FRO	GLN GLN GLN GLN GLN ARG ASP ASP CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	PRD THR LYS LYS LYS ALA ALA ALA ALA ALA ALA CVAL CYS GLU CVS GLU CVS GLU CVS GLU CVS CLU CVS CLU CVS CLU CVS CLU CVS CLU CVS CLU CVS CLU CVS CVS CVS CVS CVS CVS CVS CVS CVS CVS
PRO SER SER ASP ASP ASP ASP PHE PHE PHE PRO PRO PRO PRO PAC	SFR SFR GLN GLN GLN GLN GLN PHE PHE PHE PHE CVS CLVS CLVS CLVS CLVS CLVS CLVS CLVS	ALLE ALLE GLN ARG CLU ARG ALA CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU
LYS THR THR THR THR SER THR SER THR SER THR SER THR SER THR THR THR CU	LTE CLU GLU GLU GLU ASP GLU TLE TLE TTRP TRP TTRP TTRP TTRP TTRP TTRP TTRP	PHL ASP THEU THEU THEU ASP ASN ASN ASP ASD ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP
PRO ALA GLN GLN CEU ASN PRO PRO PRO PRO PRO PRO PRO PRO ASP THR THR THR THR PRO ASP ASP PRO ASP ASP ASP ASP ASP ASP ASP ASP ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	ASP TRP TRP GLN GLN GLN ASP ASP ASP ASP CLU CLU CLU CLU CLU	GLU ALA LYS LYS LYS LYS HR NG28 NG28 NG28
\bullet Molecule 49: U4/U6 sn	nall nuclear ribonucleoprot	tein Prp31
Chain L:	75%	25%
MET SER SER LLEU ALFA ALFA ALA ALA ALA ALA ALA ALA GLU GLU GLU GLU	GLY GLY SER SER TYR SER TYR GLY GLU GLU GLU GLU GLU GLU GLU GLU	THR GLN GLN GLN GLN GLN SER SER CLFU GLV CLFU GLV CLFU GLV CLFU GLV CLFU GLV CLFU GLV CLFU GLV CLFU GLV CLFU GLN CLFU GLN CLFU GLN CLFU GLN CLFU GLN CLFU CLFU CLFU CLFU CLFU CLFU CLFU CLFU
ABT 4832 8932 VAL VAL TYR TYR CLY CLY CLY CLY CLY ASC CLY ASC ASC ASC ASC ASC ASC ASC ASC ASC ASC	THR SER SER SER SER SER PHE PHE PHE PHE CLN CLN CLN CLN VAL LEU VAL CLN CLN CLN CLN CLN CLN CLN CLN CLN CL	ALA ALA ALA CJU CJU CJU VAL ALA ALA ALA ALA ALA ALA ALA ALA ALA
LYS GLV GLV LYS SER SER MET THR THR		
\bullet Molecule 50: U4/U6 sn	nall nuclear ribonucleoprot	tein Prp4
Chain F:	75%	• 23%
MET ALLA SER SER SER SER ALA ALA ALA ALA ALA ALA ALA ALA ARA AR	VAL VAL VAL PRO PRO VAL VAL VAL VAL VAL VAL VAL VAL VAL VAL	0117 017 010 010 010 017 017 017 017 017
GLU ALA ALA ALA ALA ALA ALA ALA GLU GLU GLU GLU C	SER SER GLU GLU GLU ALA CLU ALA ASP ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	LINK LINK ASP ASP ASP CLV CVS CLV CVS CLV CVS CLV CLV CLV CLV CLV CLV CLV CLV CLV CLV
PR0 N1 72 P333 P333 P333 P333 P333 P333 C334 C334	L465 A474 H477 L488 E522	
• Molecule 51: Pre-mRN	A-processing factor 6	
Chain N:	87%	· 12%

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	334084	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	45	Depositor
Minimum defocus (nm)	1500	Depositor
Maximum defocus (nm)	5000	Depositor
Magnification	Not provided	
Image detector	FEI FALCON III (4k x 4k)	Depositor
Maximum map value	0.088	Depositor
Minimum map value	-0.026	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.004	Depositor
Recommended contour level	0.011	Depositor
Map size (Å)	540.0, 540.0, 540.0	wwPDB
Map dimensions	400, 400, 400	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.35, 1.35, 1.35	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.25	0/11512	0.42	0/16156	
2	В	0.25	0/8614	0.43	0/12072	
3	5	0.35	0/2559	1.02	22/3977~(0.6%)	
4	2	0.32	0/2307	1.05	12/3582~(0.3%)	
5	6	0.31	0/1398	0.90	6/2172~(0.3%)	
6	4	0.25	0/3214	0.87	4/4998~(0.1%)	
7	С	0.26	0/4270	0.44	0/5983	
8	D	0.25	0/712	0.43	0/995	
9	Е	0.24	0/1195	0.50	0/1492	
10	Ι	0.23	0/926	0.41	0/1295	
11	М	0.24	0/632	0.41	0/885	
12	U	0.24	0/2330	0.43	0/3268	
13	W	0.25	0/853	0.47	0/1188	
14	Х	0.24	0/404	0.36	0/565	
15	Ζ	0.28	0/349	1.03	0/540	
16	7	0.24	0/1034	0.39	0/1446	
17	r	0.23	0/568	0.39	0/790	
18	B4	0.26	0/394	0.44	0/549	
19	8	0.24	0/734	0.46	0/1025	
20	9	0.24	0/1762	0.38	0/2460	
21	B2	0.25	0/1092	0.43	0/1536	
22	B5	0.24	0/349	0.36	0/487	
23	B3	0.26	0/6024	0.48	0/8425	
24	BP	0.25	0/501	0.45	0/697	
25	B1	0.25	0/4421	0.43	0/6190	
26	B6	0.31	0/459	0.43	0/642	
27	62	0.23	0/359	0.44	0/447	
28	63	0.23	0/294	0.49	0/364	
29	64	0.23	0/294	0.45	0/364	
30	65	0.23	0/286	0.49	0/354	
31	66	0.24	0/279	0.49	0/347	
32	67	0.24	0/258	0.51	0/319	
33	68	0.22	0/242	0.49	0/299	
34	22	0.24	0/485	0.44	0/677	

Mal	Chain	Bond	lengths	E	Bond angles
WIOI	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5
34	42	0.23	0/298	0.48	0/370
34	52	0.43	0/805	0.71	1/1081~(0.1%)
35	2f	0.26	0/362	0.48	0/502
35	4f	0.24	0/291	0.52	0/363
35	5f	0.44	0/579	0.79	0/783
36	2e	0.24	0/403	0.45	0/561
36	4e	0.22	0/313	0.51	0/390
36	5e	0.37	0/646	0.70	0/867
37	2g	0.24	0/366	0.49	0/509
37	4g	0.25	0/297	0.53	0/371
37	$5\mathrm{g}$	0.41	0/584	0.72	1/779~(0.1%)
38	23	0.26	0/417	0.48	0/581
38	43	0.24	0/287	0.51	0/358
38	53	0.44	0/665	0.56	0/896
39	2b	0.25	0/416	0.47	0/581
39	4b	0.22	0/254	0.50	0/314
39	5b	0.42	0/602	0.59	0/801
40	21	0.23	0/404	0.48	0/564
40	41	0.22	0/333	0.48	0/416
40	51	0.40	0/649	0.73	1/878~(0.1%)
41	2B	0.24	0/463	0.41	0/646
42	2A	0.24	0/821	0.46	0/1149
43	Х	0.43	0/196	0.47	0/270
43	у	0.37	0/186	0.44	0/256
44	V	0.25	0/2491	0.45	0/3477
44	W	0.29	0/2486	0.46	0/3469
45	Κ	0.22	0/540	0.28	0/750
46	z1	0.25	0/268	0.77	0/416
47	z2	0.20	0/101	0.79	0/156
48	J	0.24	0/1131	0.39	0/1580
49	L	0.24	0/1899	0.38	0/2654
50	F	0.24	0/2034	0.45	0/2838
51	Ν	0.23	0/4224	0.39	0/5915
52	S	0.40	0/858	0.46	0/1191
All	All	0.27	0/87779	0.54	47/123318~(0.0%)

There are no bond length outliers.

All (47) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	6	66	С	P-O3'-C3'	-10.19	107.47	119.70
5	6	67	G	P-O3'-C3'	-9.98	107.72	119.70

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	5	75	G	P-O3'-C3'	-9.83	107.90	119.70
3	5	76	A	P-O3'-C3'	-9.79	107.95	119.70
3	5	115	С	C2-N1-C1'	9.67	129.44	118.80
5	6	68	С	P-O3'-C3'	-9.35	108.48	119.70
5	6	65	G	P-O3'-C3'	-9.31	108.53	119.70
3	5	90	U	N1-C2-O2	8.57	128.80	122.80
6	4	87	С	N3-C2-O2	-7.97	116.32	121.90
3	5	90	U	N3-C2-O2	-7.80	116.74	122.20
3	5	110	С	C5-C6-N1	7.75	124.87	121.00
3	5	110	C	C6-N1-C2	-7.67	117.23	120.30
3	5	90	U	C2-N1-C1'	7.51	126.72	117.70
4	2	106	G	P-O3'-C3'	7.13	128.25	119.70
4	2	103	U	OP2-P-O3'	7.06	120.73	105.20
3	5	115	С	N1-C2-O2	6.99	123.10	118.90
3	5	115	C	C6-N1-C1'	-6.88	112.55	120.80
4	2	103	U	P-O3'-C3'	6.88	127.95	119.70
4	2	46	U	P-O3'-C3'	6.68	127.71	119.70
3	5	115	C	C5-C6-N1	6.65	124.33	121.00
5	6	64	U	P-O3'-C3'	-6.53	111.87	119.70
3	5	105	U	N1-C2-O2	6.50	127.35	122.80
3	5	96	А	N7-C8-N9	6.38	116.99	113.80
3	5	105	U	N3-C2-O2	-6.37	117.74	122.20
4	2	156	U	C2-N1-C1'	6.35	125.32	117.70
3	5	110	С	N1-C2-O2	6.19	122.61	118.90
3	5	74	U	P-O3'-C3'	-6.16	112.31	119.70
4	2	156	U	N1-C2-O2	6.01	127.01	122.80
3	5	115	С	C6-N1-C2	-5.97	117.91	120.30
6	4	87	С	N1-C2-O2	5.94	122.46	118.90
4	2	156	U	N3-C2-O2	-5.83	118.12	122.20
3	5	105	U	C2-N1-C1'	5.80	124.66	117.70
6	4	115	G	N3-C4-N9	5.77	129.46	126.00
37	$5\mathrm{g}$	19	LEU	CB-CG-CD2	-5.76	101.22	111.00
3	5	96	A	C4-N9-C1'	5.65	136.47	126.30
4	2	40	С	N1-C2-O2	5.63	122.28	118.90
3	5	96	A	C8-N9-C4	-5.49	103.61	105.80
6	4	84	C	N1-C2-O2	5.47	122.18	118.90
4	2	58	U	N1-C2-O2	5.34	126.54	122.80
4	2	168	A	$C4-N9-\overline{C1'}$	$5.3\overline{4}$	135.91	126.30
4	2	58	U	N3-C2-O2	-5.30	118.49	122.20
40	51	76	LEU	CA-CB-CG	5.27	127.41	115.30
4	2	168	A	C2-N3-C4	5.25	113.23	110.60
3	5	110	C	N3-C2-O2	-5.20	118.26	121.90

	3	1	1 0				
Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	6	69	A	P-O3'-C3'	-5.20	113.46	119.70
34	52	53	LEU	CA-CB-CG	5.20	127.25	115.30
3	5	110	С	C2-N1-C1'	5.08	124.39	118.80

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	11389	0	5553	17	0
2	В	8538	0	4146	7	0
3	5	2296	0	1163	29	0
4	2	2071	0	1049	11	0
5	6	1251	0	630	16	0
6	4	2881	0	1461	15	0
7	С	4223	0	2099	9	0
8	D	708	0	328	0	0
9	Е	1196	0	337	0	0
10	Ι	920	0	433	1	0
11	М	627	0	315	1	0
12	U	2308	0	1104	3	0
13	W	844	0	426	9	0
14	Х	403	0	200	6	0
15	Ζ	314	0	160	1	0
16	7	1028	0	487	0	0
17	r	568	0	245	0	0
18	B4	391	0	197	0	0
19	8	729	0	356	4	0
20	9	1755	0	823	1	0
21	B2	1072	0	563	1	0
22	B5	347	0	171	0	0
23	B3	5969	0	2985	14	0
24	BP	498	0	241	2	0
25	B1	4383	0	2195	2	0
26	B6	455	0	227	4	0

Conti	nuea _J ron	<i>i</i> previous	page			
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
27	62	360	0	95	0	0
28	63	296	0	76	0	0
29	64	296	0	77	0	0
30	65	288	0	78	1	0
31	66	280	0	81	0	0
32	67	260	0	75	0	0
33	68	244	0	71	1	0
34	22	482	0	220	0	0
34	42	300	0	80	2	0
34	52	796	0	821	38	0
35	2f	359	0	179	0	0
35	4f	292	0	93	0	0
35	5f	567	0	575	0	0
36	2e	403	0	173	0	0
36	4e	314	0	86	0	0
36	5e	638	0	657	0	0
37	2g	364	0	176	0	0
37	4g	298	0	89	0	0
37	5g	577	0	603	0	0
38	23	415	0	198	1	0
38	43	288	0	84	0	0
38	53	657	0	675	10	0
39	2b	413	0	194	0	0
39	4b	256	0	70	0	0
39	5b	594	0	615	0	0
40	21	402	0	184	0	0
40	41	334	0	92	0	0
40	51	641	0	681	15	0
41	2B	461	0	218	1	0
42	2A	816	0	386	0	0
43	X	197	0	90	0	0
43	У	187	0	86	0	0
44	v	2478	0	1181	0	0
44	W	2474	0	1177	0	0
45	K	543	0	238	0	0
46	z1	239	0	119	0	0
47	z2	90	0	45	0	0
48	J	1125	0	551	1	0
49	L	1887	0	934	0	0
50	F	2020	0	1002	6	0
51	N	4192	0	2152	7	0
52	S	858	0	408	2	0

 α ntia J fa

Continued from previous page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
All	All	86145	0	43579	202	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

All (202) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
13:W:153:LYS:HA	14:X:72:ALA:HB2	1.20	1.10
7:C:191:PRO:HA	7:C:197:SER:HA	1.45	0.97
13:W:153:LYS:CA	14:X:72:ALA:HB2	2.00	0.92
13:W:153:LYS:HA	14:X:72:ALA:CB	2.03	0.89
23:B3:886:GLU:HA	23:B3:910:ALA:O	1.73	0.88
38:23:48:VAL:O	38:23:55:VAL:HA	1.77	0.83
3:5:94:U:H2'	34:52:47:ARG:HH12	1.42	0.82
7:C:191:PRO:CA	7:C:197:SER:HA	2.15	0.76
34:52:77:VAL:HA	34:52:88:LYS:HA	1.69	0.75
23:B3:486:SER:O	23:B3:491:VAL:HA	1.87	0.74
7:C:191:PRO:HA	7:C:197:SER:CA	2.17	0.74
5:6:67:G:H5'	48:J:518:ARG:O	1.89	0.73
3:5:23:C:O2'	3:5:57:G:N2	2.23	0.71
38:53:48:VAL:O	38:53:55:VAL:HA	1.92	0.70
13:W:153:LYS:CA	14:X:72:ALA:CB	2.67	0.68
23:B3:671:ASN:HA	23:B3:696:SER:HA	1.75	0.68
34:52:76:GLU:HB2	34:52:89:PRO:HG2	1.76	0.68
2:B:434:SER:HA	2:B:446:HIS:O	1.94	0.67
3:5:96:A:H1'	34:52:47:ARG:HH21	1.57	0.67
3:5:76:A:H2'	3:5:77:G:C8	2.30	0.67
51:N:601:VAL:HA	51:N:607:ALA:HB3	1.77	0.67
1:A:465:LYS:O	3:5:23:C:N4	2.27	0.67
34:52:77:VAL:HA	34:52:88:LYS:HB3	1.76	0.66
12:U:411:PRO:HG2	12:U:469:THR:HA	1.78	0.66
34:52:48:ASN:O	34:52:50:LYS:N	2.30	0.65
34:52:77:VAL:HA	34:52:88:LYS:CB	2.27	0.64
34:52:42:VAL:O	34:52:53:LEU:HA	1.99	0.63
3:5:77:G:H4'	3:5:78:U:OP1	2.00	0.62
34:52:10:GLU:HG2	34:52:12:THR:H	1.64	0.62
3:5:74:U:H2'	3:5:75:G:C8	2.35	0.61
12:U:174:CYS:O	12:U:178:ASN:N	2.33	0.61
1:A:597:LYS:N	3:5:45:C:OP1	2.33	0.61
34:52:77:VAL:HA	34:52:88:LYS:CA	2.31	0.60

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
50:F:369:TYR:H	50:F:384:GLY:HA2	1.66	0.60
23:B3:669:LEU:O	23:B3:698:PRO:HA	2.03	0.59
51:N:444:GLU:HA	51:N:449:ALA:HB3	1.84	0.59
5:6:66:C:H2'	5:6:67:G:C8	2.38	0.59
38:53:19:THR:HG23	38:53:72:ILE:HB	1.84	0.58
1:A:142:SER:HA	1:A:242:ALA:HB2	1.84	0.58
34:52:39:ASN:O	34:52:55:ARG:NH1	2.36	0.58
40:51:76:LEU:HA	40:51:79:LEU:HB2	1.84	0.58
13:W:153:LYS:CB	14:X:72:ALA:CB	2.82	0.58
23:B3:671:ASN:HA	23:B3:696:SER:CA	2.34	0.57
34:52:53:LEU:HD11	34:52:71:LYS:HD3	1.86	0.57
3:5:75:G:H2'	3:5:76:A:C8	2.40	0.57
23:B3:671:ASN:CA	23:B3:696:SER:HA	2.35	0.57
34:52:46:CYS:SG	34:52:50:LYS:HB2	2.45	0.56
26:B6:85:ARG:C	26:B6:87:LEU:H	2.09	0.56
34:52:76:GLU:HB2	34:52:89:PRO:CG	2.34	0.56
34:52:107:ILE:HG22	34:52:108:VAL:HG13	1.86	0.56
40:51:25:VAL:HG22	40:51:45:MET:HG3	1.86	0.56
3:5:94:U:C2'	34:52:47:ARG:HH12	2.17	0.56
3:5:96:A:H8	34:52:47:ARG:NH2	2.04	0.55
40:51:33:ASP:HB2	40:51:37:ASN:HB2	1.89	0.55
34:52:41:GLN:HE21	34:52:53:LEU:HD13	1.72	0.55
1:A:2130:GLY:N	1:A:2173:GLU:O	2.35	0.55
4:2:165:A:H61	41:2B:84:ALA:HB1	1.71	0.55
34:52:46:CYS:HA	34:52:106:VAL:HA	1.88	0.55
23:B3:1101:VAL:HA	23:B3:1121:THR:HA	1.88	0.55
50:F:474:ALA:O	50:F:488:LEU:N	2.39	0.54
1:A:2273:VAL:O	1:A:2297:GLN:N	2.34	0.54
1:A:1382:SER:HA	1:A:1415:GLY:HA2	1.89	0.53
34:52:44:ILE:HG23	34:52:106:VAL:HG23	1.90	0.53
3:5:91:U:O2'	40:51:61:ARG:NH1	2.42	0.53
34:52:32:LEU:HD22	34:52:56:VAL:HG11	1.90	0.53
5:6:69:A:H2'	5:6:70:A:O4'	2.09	0.53
10:I:29:ILE:HA	10:I:67:PRO:HG3	1.90	0.53
5:6:65:G:H2'	5:6:66:C:C6	2.44	0.53
7:C:478:THR:HA	7:C:494:GLY:HA3	1.90	0.52
3:5:46:U:O4	3:5:47:A:N6	2.42	0.52
3:5:76:A:H2'	3:5:77:G:H8	1.74	0.52
4:2:161:U:O2	4:2:163:G:N2	2.42	0.52
51:N:936:ARG:O	51:N:938:LYS:N	2.42	0.52
7:C:736:GLY:N	7:C:743:ASN:O	2.39	0.51

	A 4 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
34:52:54:GLY:HA3	34:52:70:VAL:HG12	1.92	0.51
4:2:33:G:H1	15:Z:42:U:H3	1.58	0.51
3:5:96:A:C1'	34:52:47:ARG:HH21	2.22	0.51
5:6:51:U:O2'	5:6:52:U:OP1	2.27	0.51
40:51:29:ILE:HA	40:51:40:LEU:HD23	1.92	0.51
40:51:66:ARG:CZ	34:52:48:ASN:HB3	2.41	0.51
23:B3:336:ALA:HA	23:B3:351:SER:HA	1.92	0.51
1:A:2133:PRO:HA	1:A:2140:LYS:HA	1.93	0.51
5:6:44:G:O3'	5:6:45:A:H3'	2.11	0.51
6:4:17:A:H2'	6:4:18:G:H5"	1.94	0.50
30:65:48:ASN:CA	30:65:74:LEU:O	2.60	0.50
7:C:830:PRO:HG2	7:C:877:ALA:HB3	1.92	0.50
34:52:77:VAL:CA	34:52:88:LYS:HA	2.40	0.50
51:N:415:GLU:O	51:N:419:ALA:N	2.37	0.49
23:B3:785:PRO:HA	23:B3:801:GLU:HA	1.93	0.49
23:B3:439:ARG:O	23:B3:774:PHE:HA	2.12	0.49
23:B3:671:ASN:CB	23:B3:696:SER:HA	2.43	0.49
34:52:43:LEU:HB3	34:52:110:LEU:HD23	1.95	0.49
1:A:464:PRO:HB2	3:5:23:C:C4	2.47	0.49
3:5:19:A:H4'	3:5:20:G:C8	2.47	0.49
6:4:16:C:H2'	6:4:17:A:C8	2.48	0.48
3:5:96:A:C8	34:52:47:ARG:NH2	2.82	0.48
23:B3:157:PRO:HD2	24:BP:16:GLY:HA2	1.94	0.48
19:8:56:CYS:O	19:8:60:LEU:HA	2.13	0.48
4:2:3:C:H2'	4:2:4:G:H8	1.77	0.48
13:W:65:PHE:HA	13:W:76:GLY:HA3	1.94	0.48
34:52:62:HIS:O	34:52:103:GLY:HA3	2.14	0.48
5:6:40:U:H2'	5:6:41:A:C8	2.49	0.47
26:B6:80:PHE:C	26:B6:82:VAL:H	2.17	0.47
50:F:465:LEU:N	50:F:477:TRP:O	2.43	0.47
5:6:37:C:H2'	5:6:38:G:O4'	2.14	0.47
5:6:65:G:H2'	5:6:66:C:H6	1.79	0.47
38:53:23:ASN:O	38:53:69:ARG:NH2	2.46	0.47
34:52:32:LEU:HD11	34:52:109:VAL:HG11	1.95	0.47
3:5:47:A:O2'	3:5:48:A:H5"	2.15	0.47
4:2:12:G:H1	5:6:86:U:H3	1.62	0.47
40:51:68:PHE:HB2	34:52:100:PHE:HB3	1.96	0.47
51:N:916:SER:HA	51:N:921:ASN:H	1.80	0.47
33:68:35:ASN:CA	33:68:62:VAL:O	2.62	0.47
34:52:31:VAL:HG13	34:52:111:ARG:HE	1.80	0.47
38:53:16:HIS:HB3	38:53:74:PRO:HG2	1.97	0.47

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
50:F:333:PRO:HG2	50:F:374:HIS:O	2.16	0.46
19:8:115:PRO:HD2	19:8:176:TYR:HA	1.98	0.46
3:5:7:U:H3'	3:5:8:G:H8	1.80	0.46
3:5:89:U:O2'	38:53:64:ARG:NH2	2.48	0.46
3:5:109:G:O3'	40:51:49:ASN:ND2	2.48	0.46
40:51:19:LEU:HD21	40:51:60:ILE:HD13	1.98	0.46
6:4:91:A:H2	6:4:110:G:H22	1.62	0.46
6:4:108:C:H2'	6:4:109:G:C8	2.51	0.46
6:4:20:A:H2'	6:4:21:U:C6	2.51	0.45
40:51:67:TYR:HB3	34:52:101:LEU:HD12	1.98	0.45
5:6:66:C:H2'	5:6:67:G:H8	1.79	0.45
13:W:12:VAL:HA	13:W:30:GLU:HA	1.98	0.45
6:4:20:A:C5	6:4:54:A:H8	2.34	0.45
26:B6:73:ALA:O	26:B6:77:LEU:CB	2.64	0.45
34:52:32:LEU:HD23	34:52:32:LEU:HA	1.82	0.45
1:A:2131:VAL:HA	1:A:2172:MET:HA	1.98	0.44
4:2:32:U:H2'	4:2:33:G:H8	1.82	0.44
3:5:111:A:H2'	3:5:112:A:C8	2.53	0.44
34:52:90:VAL:O	34:52:92:LYS:N	2.50	0.44
3:5:75:G:C6	3:5:76:A:C6	3.05	0.44
3:5:71:C:H2'	3:5:72:U:C6	2.53	0.44
1:A:1567:PRO:HB2	5:6:47:A:H61	1.83	0.44
7:C:191:PRO:HA	7:C:197:SER:N	2.32	0.44
50:F:431:CYS:N	50:F:445:ILE:O	2.43	0.44
2:B:1670:ASN:O	2:B:1674:HIS:N	2.50	0.43
13:W:153:LYS:CB	14:X:72:ALA:HB2	2.45	0.43
1:A:2069:SER:C	52:S:315:PRO:CB	2.87	0.43
21:B2:482:ALA:HB2	25:B1:1257:PRO:HG3	2.00	0.43
4:2:175:G:H2'	4:2:176:G:H8	1.83	0.43
1:A:897:GLU:O	1:A:908:VAL:N	2.44	0.43
3:5:93:U:H4'	3:5:94:U:H5"	2.00	0.43
2:B:716:ALA:HB1	2:B:749:GLY:HA3	2.01	0.43
4:2:37:U:H2'	4:2:38:A:C8	2.54	0.43
23:B3:427:CYS:O	23:B3:433:SER:HA	2.19	0.43
38:53:64:ARG:NE	38:53:66:SER:OG	2.49	0.43
38:53:23:ASN:N	38:53:67:LYS:O	2.52	0.43
5:6:51:U:HO2'	5:6:52:U:P	2.40	0.43
2:B:1670:ASN:O	2:B:1674:HIS:HA	2.19	0.43
38:53:30:GLY:HA3	38:53:46:ILE:HD13	2.00	0.42
40:51:51:GLU:OE1	40:51:51:GLU:N	2.52	0.42
34:52:61:ARG:C	34:52:63:CYS:H	2.23	0.42

	10	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
3:5:92:U:OP1	40:51:63:ASN:ND2	2.52	0.42
11:M:61:GLU:HA	11:M:62:PRO:HA	1.93	0.42
12:U:459:LYS:HA	12:U:464:VAL:HA	2.01	0.42
38:53:19:THR:HB	38:53:29:ARG:HG3	2.01	0.42
4:2:182:U:H2'	4:2:183:G:C8	2.55	0.42
6:4:40:U:O2'	51:N:824:PRO:O	2.23	0.42
52:S:329:LYS:N	52:S:330:PRO:HD2	2.34	0.42
1:A:2127:TYR:O	1:A:2146:VAL:N	2.30	0.42
3:5:75:G:H2'	3:5:76:A:H8	1.82	0.42
5:6:45:A:H2'	5:6:45:A:N3	2.34	0.42
26:B6:23:ILE:O	26:B6:59:THR:HA	2.19	0.42
40:51:66:ARG:NH1	34:52:48:ASN:H	2.18	0.42
1:A:2178:ILE:HA	1:A:2214:ILE:O	2.20	0.42
7:C:225:VAL:N	7:C:252:ALA:O	2.47	0.42
25:B1:508:THR:O	25:B1:512:ARG:N	2.49	0.42
1:A:1890:GLN:N	1:A:2013:GLY:HA3	2.35	0.42
20:9:408:CYS:O	20:9:413:ASN:HA	2.20	0.42
1:A:947:PRO:HB2	1:A:949:PRO:HD2	2.01	0.41
4:2:151:C:H2'	4:2:152:G:H8	1.84	0.41
5:6:73:A:H2	6:4:2:G:H22	1.68	0.41
19:8:147:PRO:HB3	19:8:173:ALA:HB2	2.03	0.41
6:4:20:A:N3	6:4:54:A:H1'	2.35	0.41
6:4:127:C:O2'	34:42:47:ARG:O	2.38	0.41
7:C:496:VAL:O	7:C:547:GLY:N	2.36	0.41
2:B:2018:GLU:CB	2:B:2042:GLU:O	2.68	0.41
4:2:3:C:H2'	4:2:4:G:C8	2.55	0.41
40:51:13:GLU:HG2	40:51:74:LEU:HD11	2.02	0.41
50:F:389:GLY:O	50:F:403:LEU:N	2.53	0.41
34:42:50:LYS:CA	34:42:73:MET:O	2.69	0.41
5:6:67:G:H1	6:4:8:C:H42	1.69	0.41
23:B3:84:SER:HA	23:B3:110:SER:HA	2.03	0.41
24:BP:42:LEU:HA	24:BP:70:TYR:HA	2.02	0.41
6:4:6:U:H2'	6:4:7:G:C8	2.56	0.41
6:4:108:C:H2'	6:4:109:G:H8	1.86	0.41
19:8:56:CYS:O	19:8:60:LEU:CA	2.69	0.41
38:53:48:VAL:HG21	38:53:58:LEU:HD12	2.03	0.41
40:51:16:THR:HA	40:51:25:VAL:O	2.20	0.41
2:B:1263:PRO:HA	2:B:1264:PRO:HD3	1.98	0.41
34:52:87:SER:O	34:52:89:PRO:HD3	2.20	0.41
2:B:1300:GLU:HA	2:B:1514:PHE:HA	2.03	0.40
6:4:92:C:H2'	6:4:93:G:H8	1.86	0.40

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:2231:THR:O	1:A:2235:TYR:N	2.46	0.40
3:5:94:U:O2'	34:52:47:ARG:NH2	2.45	0.40
6:4:111:C:H2'	6:4:112:A:H8	1.86	0.40
13:W:27:MET:HA	13:W:147:GLY:HA3	2.02	0.40
51:N:743:THR:N	51:N:744:PRO:HD2	2.36	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	2243/2335~(96%)	2208~(98%)	35~(2%)	0	100	100
2	В	1691/2136~(79%)	1643~(97%)	47 (3%)	1 (0%)	51	84
7	C	834/972~(86%)	815 (98%)	18 (2%)	1 (0%)	51	84
8	D	139/142~(98%)	138 (99%)	1 (1%)	0	100	100
9	Е	297/357~(83%)	283~(95%)	14 (5%)	0	100	100
10	Ι	181/312~(58%)	176 (97%)	5 (3%)	0	100	100
11	М	122/128~(95%)	122 (100%)	0	0	100	100
12	U	454/565~(80%)	447 (98%)	7 (2%)	0	100	100
13	W	167/177~(94%)	163 (98%)	4 (2%)	0	100	100
14	Х	78/376~(21%)	78 (100%)	0	0	100	100
16	7	200/793~(25%)	197 (98%)	3 (2%)	0	100	100
17	r	110/199~(55%)	109 (99%)	1 (1%)	0	100	100
18	B4	76/424~(18%)	76 (100%)	0	0	100	100
19	8	138/464~(30%)	136 (99%)	2 (1%)	0	100	100
20	9	344/501~(69%)	336~(98%)	8 (2%)	0	100	100
21	B2	204/895~(23%)	200 (98%)	4 (2%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
22	B5	67/86~(78%)	66 (98%)	1 (2%)	0	100	100
23	B3	1176/1217~(97%)	1131 (96%)	45 (4%)	0	100	100
24	BP	98/110~(89%)	96~(98%)	2 (2%)	0	100	100
25	B1	866/1304~(66%)	840 (97%)	26 (3%)	0	100	100
26	B6	88/125~(70%)	86 (98%)	1 (1%)	1 (1%)	14	50
27	62	88/95~(93%)	84 (96%)	4 (4%)	0	100	100
28	63	70/102~(69%)	66 (94%)	4 (6%)	0	100	100
29	64	70/139~(50%)	66 (94%)	4 (6%)	0	100	100
30	65	68/91~(75%)	64 (94%)	4 (6%)	0	100	100
31	66	68/80~(85%)	63~(93%)	5 (7%)	0	100	100
32	67	61/103~(59%)	59~(97%)	2(3%)	0	100	100
33	68	57/96~(59%)	55 (96%)	2 (4%)	0	100	100
34	22	91/118~(77%)	90 (99%)	1 (1%)	0	100	100
34	42	70/118~(59%)	67 (96%)	3 (4%)	0	100	100
34	52	94/118~(80%)	86 (92%)	6 (6%)	2(2%)	7	38
35	2f	70/86~(81%)	68 (97%)	2 (3%)	0	100	100
35	4f	69/86~(80%)	66 (96%)	3 (4%)	0	100	100
35	5f	71/86~(83%)	64 (90%)	7 (10%)	0	100	100
36	2e	79/92~(86%)	79 (100%)	0	0	100	100
36	4e	76/92~(83%)	75 (99%)	1 (1%)	0	100	100
36	$5\mathrm{e}$	75/92~(82%)	72 (96%)	3 (4%)	0	100	100
37	2g	71/76~(93%)	70 (99%)	1 (1%)	0	100	100
37	4g	71/76~(93%)	65~(92%)	6 (8%)	0	100	100
37	$5\mathrm{g}$	72/76~(95%)	66 (92%)	6 (8%)	0	100	100
38	23	81/126 (64%)	79 (98%)	2 (2%)	0	100	100
38	43	69/126~(55%)	68 (99%)	1 (1%)	0	100	100
38	53	82/126~(65%)	77 (94%)	5 (6%)	0	100	100
39	2b	80/240~(33%)	80 (100%)	0	0	100	100
39	4b	60/240~(25%)	58 (97%)	2 (3%)	0	100	100
39	5b	69/240~(29%)	67 (97%)	2 (3%)	0	100	100
40	21	78/119~(66%)	76 (97%)	2 (3%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
40	41	80/119~(67%)	78~(98%)	2(2%)	0	100	100
40	51	79/119~(66%)	75~(95%)	4 (5%)	0	100	100
41	2B	90/225~(40%)	90 (100%)	0	0	100	100
42	2A	160/255~(63%)	157~(98%)	3 (2%)	0	100	100
43	х	33/557~(6%)	29~(88%)	4 (12%)	0	100	100
43	У	31/557~(6%)	28~(90%)	3 (10%)	0	100	100
44	V	492/513~(96%)	484 (98%)	8 (2%)	0	100	100
44	W	489/513~(95%)	478 (98%)	10 (2%)	1 (0%)	47	80
45	K	103/439~(24%)	103 (100%)	0	0	100	100
48	J	220/683~(32%)	217~(99%)	3 (1%)	0	100	100
49	L	372/499~(74%)	364 (98%)	8 (2%)	0	100	100
50	F	400/522~(77%)	386~(96%)	14 (4%)	0	100	100
51	Ν	823/941~(88%)	799~(97%)	24 (3%)	0	100	100
52	S	161/800~(20%)	160 (99%)	1 (1%)	0	100	100
All	All	15016/23399~(64%)	14624 (97%)	386 (3%)	6 (0%)	100	100

All (6) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
34	52	49	ASN
34	52	91	ASN
44	W	177	LEU
2	В	1292	PRO
7	С	199	LEU
26	B6	86	TYR

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percen	tiles
1	А	125/2108~(6%)	125 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
2	В	77/1908~(4%)	77 (100%)	0	100	100
7	\mathbf{C}	48/866~(6%)	48 (100%)	0	100	100
8	D	5/130~(4%)	5 (100%)	0	100	100
10	Ι	7/293~(2%)	7 (100%)	0	100	100
11	М	6/111~(5%)	6 (100%)	0	100	100
12	U	23/511~(4%)	23 (100%)	0	100	100
13	W	10/148~(7%)	10 (100%)	0	100	100
14	Х	2/333~(1%)	2 (100%)	0	100	100
16	7	8/709~(1%)	8 (100%)	0	100	100
17	r	2/181~(1%)	2 (100%)	0	100	100
18	B4	4/336~(1%)	4 (100%)	0	100	100
19	8	8/382~(2%)	8 (100%)	0	100	100
20	9	10/446~(2%)	10 (100%)	0	100	100
21	B2	22/776~(3%)	22 (100%)	0	100	100
22	B5	3/77~(4%)	3 (100%)	0	100	100
23	B3	60/1051~(6%)	60 (100%)	0	100	100
24	BP	4/95~(4%)	4 (100%)	0	100	100
25	B1	40/1104~(4%)	40 (100%)	0	100	100
26	B6	5/109~(5%)	5 (100%)	0	100	100
34	22	5/110~(4%)	5 (100%)	0	100	100
34	52	93/110~(84%)	91~(98%)	2(2%)	52	71
35	2f	4/74~(5%)	4 (100%)	0	100	100
35	5f	61/74~(82%)	59~(97%)	2(3%)	38	62
36	2e	1/84~(1%)	1 (100%)	0	100	100
36	$5\mathrm{e}$	72/84~(86%)	72 (100%)	0	100	100
37	2g	3/66~(4%)	3~(100%)	0	100	100
37	$5\mathrm{g}$	64/66~(97%)	46 (72%)	18 (28%)	0	3
38	23	3/101~(3%)	3 (100%)	0	100	100
38	53	73/101~(72%)	73 (100%)	0	100	100
39	2b	4/177~(2%)	4 (100%)	0	100	100
39	5b	67/177~(38%)	65 (97%)	2 (3%)	41	64

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
40	21	3/101~(3%)	3~(100%)	0	100	100
40	51	76/101~(75%)	55 (72%)	21 (28%)	0	3
41	2B	3/195~(2%)	3 (100%)	0	100	100
42	2A	6/218~(3%)	6 (100%)	0	100	100
43	x	2/498~(0%)	2 (100%)	0	100	100
43	У	2/498~(0%)	2 (100%)	0	100	100
44	V	15/450~(3%)	15 (100%)	0	100	100
44	W	15/450~(3%)	15 (100%)	0	100	100
48	J	8/599~(1%)	8 (100%)	0	100	100
49	L	14/424~(3%)	14 (100%)	0	100	100
50	F	16/442~(4%)	16 (100%)	0	100	100
51	Ν	36/792~(4%)	36 (100%)	0	100	100
52	S	5/681~(1%)	5 (100%)	0	100	100
All	All	1120/18347~(6%)	1075 (96%)	45 (4%)	35	57

All (45) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
35	5f	11	LEU
35	5f	39	TYR
40	51	2	LYS
40	51	4	VAL
40	51	8	MET
40	51	10	LEU
40	51	11	SER
40	51	16	THR
40	51	28	THR
40	51	33	ASP
40	51	35	SER
40	51	44	LYS
40	51	47	LEU
40	51	48	LYS
40	51	51	GLU
40	51	53	VAL
40	51	54	GLN
40	51	55	LEU
40	51	56	GLU

Mol	Chain	Res	Type
40	51	57	THR
40	51	74	LEU
40	51	76	LEU
40	51	81	VAL
39	5b	16	ARG
39	5b	61	ARG
34	52	33	THR
34	52	46	CYS
37	5g	3	LYS
37	5g	10	LYS
37	5g	11	LYS
37	$5\mathrm{g}$	15	LYS
37	$5\mathrm{g}$	27	VAL
37	$5\mathrm{g}$	35	ASP
37	5g	43	ASP
37	5g	44	GLU
37	5g	46	VAL
37	5g	47	GLU
37	$5\mathrm{g}$	50	THR
37	5g	51	SER
37	$5\mathrm{g}$	59	MET
37	5g	62	ILE
37	5g	66	SER
37	$5\mathrm{g}$	70	LEU
37	5g	71	GLU
37	5g	73	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (14) such sidechains are listed below:

Mol	Chain	Res	Type
36	5e	32	GLN
36	5e	38	GLN
36	5e	88	GLN
38	53	42	GLN
35	5f	6	ASN
35	5f	68	ASN
40	51	63	ASN
40	51	64	ASN
39	5b	22	GLN
34	52	34	GLN
34	52	41	GLN
37	$5\mathrm{g}$	5	HIS

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type
37	$5\mathrm{g}$	26	HIS
37	$5\mathrm{g}$	55	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
15	Ζ	14/15~(93%)	1 (7%)	0
3	5	107/117~(91%)	34 (31%)	3(2%)
4	2	94/188~(50%)	18 (19%)	4 (4%)
46	z1	10/11~(90%)	5(50%)	0
47	z2	3/4~(75%)	0	0
5	6	55/106~(51%)	11 (20%)	3~(5%)
6	4	133/144~(92%)	39~(29%)	0
All	All	416/585~(71%)	108~(25%)	10 (2%)

All (108) RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
3	5	8	G
3	5	9	G
3	5	10	U
3	5	20	G
3	5	21	А
3	5	22	U
3	5	23	С
3	5	24	G
3	5	25	С
3	5	26	А
3	5	28	А
3	5	36	С
3	5	39	С
3	5	44	А
3	5	45	С
3	5	57	G
3	5	68	С
3	5	69	A
3	5	78	U
3	5	86	С
3	5	88	А
3	5	89	U
3	5	90	U

Mol	Chain	Res	Type
3	5	94	U
3	5	95	G
3	5	97	G
3	5	98	G
3	5	102	U
3	5	104	С
3	5	105	U
3	5	106	U
3	5	107	U
3	5	108	G
3	5	109	G
4	2	30	А
4	2	38	А
4	2	40	С
4	2	42	G
4	2	47	U
4	2	48	А
4	2	49	U
4	2	100	U
4	2	101	U
4	2	102	U
4	2	103	U
4	2	104	U
4	2	105	G
4	2	106	G
4	2	107	А
4	2	157	G
4	2	169	С
4	2	178	А
5	6	45	А
5	6	46	G
5	6	47	А
5	6	49	G
5	6	51	U
5	6	52	U
5	6	53	A
5	6	71	G
5	6	77	С
5	6	78	А
5	6	104	U
6	4	9	G
6	4	11	А

Mol	Chain	Res	Type
6	4	22	С
6	4	25	А
6	4	36	U
6	4	39	А
6	4	40	U
6	4	41	С
6	4	44	А
6	4	45	G
6	4	53	U
6	4	55	U
6	4	58	С
6	4	61	А
6	4	69	С
6	4	71	U
6	4	73	U
6	4	74	С
6	4	75	С
6	4	76	С
6	4	78	А
6	4	80	А
6	4	82	С
6	4	83	С
6	4	84	С
6	4	85	G
6	4	90	G
6	4	100	А
6	4	103	А
6	4	114	U
6	4	115	G
6	4	118	А
6	4	119	А
6	4	121	U
6	4	124	U
6	4	125	G
6	4	126	А
6	4	127	С
6	4	144	G
15	Z	41	А
46	z1	-2	А
46	z1	1	G
46	z1	2	U
46	z1	4	А

Continued from previous page...

Mol	Chain	Res	Type
46	z1	5	G

All (10) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
3	5	77	G
3	5	96	А
3	5	105	U
4	2	37	U
4	2	46	U
4	2	103	U
4	2	106	G
5	6	45	А
5	6	51	U
5	6	77	С

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-18781. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

Orthogonal projections (i) 6.1

6.1.1**Primary** map

Х

6.1.2Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 200

Y Index: 200

Z Index: 200

6.2.2 Raw map

X Index: 200

Y Index: 200

Z Index: 200 $\,$

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 171

Y Index: 164

Z Index: 216

6.3.2 Raw map

X Index: 187

Y Index: 165

Z Index: 216

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.011. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 3969 $\rm nm^3;$ this corresponds to an approximate mass of 3585 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.244 $\rm \AA^{-1}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.244 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	4.10	-	-
Author-provided FSC curve	-	-	-
Unmasked-calculated*	7.59	11.63	7.79

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 7.59 differs from the reported value 4.1 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-18781 and PDB model 8QZS. Per-residue inclusion information can be found in section 3 on page 15.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.011 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.011).

9.4 Atom inclusion (i)

At the recommended contour level, 84% of all backbone atoms, 84% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.011) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.8380	0.1680
2	0.3540	-0.0190
21	0.0900	0.0130
22	0.0980	0.0220
23	0.1730	0.0220
2A	0.0040	-0.0060
2B	0.0090	0.0360
2b	0.1190	-0.0180
2e	0.1090	-0.0070
2f	0.0470	0.0470
2g	0.3430	0.0280
4	0.9500	0.1680
41	1.0000	0.0610
42	1.0000	0.0610
43	0.9970	0.0530
4b	0.9920	0.0540
$4\mathrm{e}$	0.9840	0.0580
$4\mathrm{f}$	0.9830	0.0330
4g	0.9730	0.0790
5	0.9980	0.2060
51	1.0000	0.0990
52	0.9230	0.0950
53	0.9810	0.0860
5b	0.9930	0.0910
$5\mathrm{e}$	0.9700	0.0730
5f	0.9610	0.0810
$5\mathrm{g}$	0.9820	0.0570
6	0.9190	0.2200
62	0.7610	0.0080
63	0.5340	0.0060
64	0.6930	0.0110
65	0.0210	-0.0540
66	0.0790	-0.0320
67	0.3000	0.0020
68	0.9550	-0.0080

Chain	Atom inclusion	Q-score
7	0.4520	0.1340
8	0.3060	0.0100
9	0.1180	0.0150
А	0.9970	0.3450
В	0.9950	0.2040
B1	0.7250	-0.0010
B2	0.6230	-0.0080
B3	0.7530	0.0100
B4	0.7750	0.0500
B5	0.8700	0.0380
B6	0.9870	0.0020
BP	0.9020	-0.0080
С	1.0000	0.3320
D	1.0000	0.3700
Е	0.9580	0.0470
F	1.0000	0.2960
Ι	0.9990	0.3150
J	1.0000	0.3140
K	0.9820	0.2080
L	0.9940	0.3270
М	1.0000	0.3490
N	0.9990	0.2840
S	0.9710	0.2950
U	0.9580	0.3090
W	1.0000	0.2400
Х	1.0000	0.3080
Z	0.9780	-0.0170
r	0.9790	0.3070
V	0.7610	0.0240
W	0.8150	0.0420
Х	0.1880	-0.0090
У	0.8400	-0.0060
z1	1.0000	0.3250
z2	1.0000	0.2400

