

Nov 30, 2021 – 02:19 pm GMT

PDB ID 7PKS : EMDB ID : EMD-13479 Title : Structural basis of Integrator-mediated transcription regulation Authors : Fianu, I.; Chen, Y.; Dienemann, C.; Cramer, P. Deposited on 2021-08-26 : 3.60 Å(reported) Resolution : Based on initial models 7CUN, 7BFP, 3DW8, 6GML :

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	$0.0.0.{ m dev}97$
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.23.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.60 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive $(\#Entries)$	${f EM} {f structures} \ (\#{f Entries})$		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		
RNA backbone	4643	859		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	1970	71%	29%
2	В	1174	95%	5%
3	С	275	95%	5%
4	D	142	89%	11%
5	Е	210	99%	·
6	F	127	• 61%	39%
7	G	172	5% 99%	••
8	Н	150	5%	

Mol	Chain	Length	Quality of chain	
9	Ι	125	94%	6%
10	J	67	• 99%	·
11	Κ	117	5% 98%	·
12	L	58	79%	21%
13	М	13	100%	
14	Ν	48	50%	50%
15	Р	17	59%	41%
16	Т	48	69%	31%
17	U	528	5% 34% 65%	
18	V	614	73%	27%
19	W	616	5% 82%	18%
20	Х	22	100%	
21	Ζ	1087	2 5% 75%	
22	a	2190	56%	44%
23	b	1204	87%	13%
24	d	963	85%	15%
25	е	1019	64%	36%
26	f	887	6 0%	40%
27	g	962	92%	8%
28	h	995	89%	11%
29	i	658	83%	16%
30	k	600	76%	24%
31	р	589	97%	·
32	q	309	94%	6%
33	u	27	100%	

Continued from previous page...

2 Entry composition (i)

There are 36 unique types of molecules in this entry. The entry contains 101147 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called DNA-directed RNA polymerase subunit.

Mol	Chain	Residues		Α	AltConf	Trace			
1	А	1392	Total 11012	C 6933	N 1973	O 2037	S 69	0	0

There are 14 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	?	-	TYR	deletion	UNP A0A7M4DUC2
А	?	-	SER	deletion	UNP A0A7M4DUC2
А	?	-	PRO	deletion	UNP A0A7M4DUC2
А	?	-	THR	deletion	UNP A0A7M4DUC2
А	?	-	SER	deletion	UNP A0A7M4DUC2
А	?	-	PRO	deletion	UNP A0A7M4DUC2
А	?	-	SER	deletion	UNP A0A7M4DUC2
А	?	-	TYR	deletion	UNP A0A7M4DUC2
А	?	-	SER	deletion	UNP A0A7M4DUC2
А	?	-	PRO	deletion	UNP A0A7M4DUC2
А	?	-	THR	deletion	UNP A0A7M4DUC2
А	?	-	SER	deletion	UNP A0A7M4DUC2
А	?	-	PRO	deletion	UNP A0A7M4DUC2
А	?	-	SER	deletion	UNP A0A7M4DUC2

• Molecule 2 is a protein called DNA-directed RNA polymerase subunit beta.

Mol	Chain	Residues		Α	AltConf	Trace			
2	В	1112	Total	С	Ν	0	S	0	0
2	Ъ	D 1112	8901	5634	1560	1643	64	Ŭ	Ũ

• Molecule 3 is a protein called DNA-directed RNA polymerase II subunit RPB3.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	С	261	Total 2096	C 1314	N 360	0 416	S 6	0	0

• Molecule 4 is a protein called RNA polymerase II subunit D.

Mol	Chain	Residues		At	oms	AltConf	Trace		
4	D	126	Total 975	C 613	N 166	O 192	$\frac{S}{4}$	0	0

• Molecule 5 is a protein called DNA-directed RNA polymerase II subunit E.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	Е	209	Total 1721	C 1089	N 300	0 324	S 8	0	0

• Molecule 6 is a protein called DNA-directed RNA polymerase II subunit F.

Mol	Chain	Residues		At	oms	AltConf	Trace		
6	F	78	Total 627	C 401	N 106	0 115	${ m S}{ m 5}$	0	0

• Molecule 7 is a protein called DNA-directed RNA polymerase II subunit RPB7.

Mol	Chain	Residues		At	oms	AltConf	Trace		
7	G	171	Total 1316	C 858	N 208	0 242	S 8	0	0

• Molecule 8 is a protein called DNA-directed RNA polymerases I, II, and III subunit RPABC3.

Mol	Chain	Residues		At	oms	AltConf	Trace		
8	Н	148	Total 1186	C 750	N 194	0 237	${S \atop 5}$	0	0

• Molecule 9 is a protein called DNA-directed RNA polymerase II subunit RPB9.

Mol	Chain	Residues		A	toms	AltConf	Trace		
9	Ι	117	Total 944	C 584	N 166	0 183	S 11	0	0

• Molecule 10 is a protein called DNA-directed RNA polymerases I, II, and III subunit RPABC5.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
10	J	67	Total 533	C 345	N 90	O 92	S 6	0	0

• Molecule 11 is a protein called RNA_pol_L_2 domain-containing protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
11	K	115	Total 920	$\begin{array}{c} \mathrm{C} \\ 593 \end{array}$	N 152	0 173	${ m S} { m 2}$	0	0

• Molecule 12 is a protein called RNA polymerase II subunit K.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
12	L	46	Total 383	C 238	N 72	O 67	S 6	0	0

• Molecule 13 is a protein called RPBI C-terminal domain peptide.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
13	М	13	Total 95	C 60	N 13	O 22	0	0

• Molecule 14 is a DNA chain called Non-template DNA.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
14	Ν	24	Total 489	C 234	N 90	0 141	Р 24	0	0

• Molecule 15 is a RNA chain called TAR RNA.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
15	Р	17	Total 361	C 162	N 66	0 116	Р 17	0	0

• Molecule 16 is a DNA chain called DNA Template.

Mol	Chain	Residues		A	toms		AltConf	Trace	
16	Т	33	Total 682	C 325	N 122	O 202	Р 33	0	0

• Molecule 17 is a protein called Negative elongation factor A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	U	183	Total 1398	C 889	N 238	0 264	S 7	0	0

• Molecule 18 is a protein called Negative elongation factor B.

Mol	Chain	Residues		Ator	AltConf	Trace		
18	V	451	Total 2040	C 1102	N 466	O 472	0	0

• Molecule 19 is a protein called Negative elongation factor C/D.

Mol	Chain	Residues		At	AltConf	Trace			
19	W	508	Total 3854	C 2468	N 654	О 713	S 19	0	0

• Molecule 20 is a protein called Negative elongation factor E.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
20	Х	22	Total 110	C 66	N 22	O 22	0	0

• Molecule 21 is a protein called Transcription elongation factor SPT5.

Mol	Chain	Residues		At	AltConf	Trace			
21	Z	273	Total 2174	C 1369	N 392	O 402	S 11	0	0

• Molecule 22 is a protein called Integrator complex subunit 1.

Mol	Chain	Residues		А	AltConf	Trace			
22	a	1227	Total 8337	C 5233	N 1513	O 1550	S 41	0	0

• Molecule 23 is a protein called Integrator complex subunit 2.

Mol	Chain	Residues		Α	AltConf	Trace			
02	h	1047	Total	С	Ν	Ο	\mathbf{S}	0	0
23	D	1047	7926	5085	1332	1447	62	0	0

• Molecule 24 is a protein called Integrator complex subunit 4.

Mol	Chain	Residues		Α	AltConf	Trace			
24	d	820	Total 6410	C 4090	N 1093	0 1193	S 34	0	0

• Molecule 25 is a protein called Integrator complex subunit 5.

Mol	Chain	Residues		At	AltConf	Trace			
25	е	649	Total 4671	C 2973	N 857	O 824	S 17	0	0

• Molecule 26 is a protein called Integrator complex subunit 6.

Mol	Chain	Residues		At	AltConf	Trace			
26	f	536	Total 4075	C 2617	N 692	0 743	S 23	0	0

• Molecule 27 is a protein called Integrator complex subunit 7.

Mol	Chain	Residues		Α	AltConf	Trace			
27	g	886	Total 6710	C 4250	N 1163	0 1257	S 40	0	0

• Molecule 28 is a protein called Integrator complex subunit 8.

Mol	Chain	Residues		Α	AltConf	Trace			
28	h	887	Total 6749	C 4332	N 1156	O 1223	S 38	0	0

• Molecule 29 is a protein called Integrator complex subunit 9.

Mol	Chain	Residues		At	AltConf	Trace			
29	i	550	Total 4249	C 2741	N 689	O 788	S 31	0	0

• Molecule 30 is a protein called Integrator complex subunit 11.

Mol	Chain	Residues		At	AltConf	Trace			
30	k	458	Total 3336	C 2143	N 575	O 593	$\begin{array}{c} \mathrm{S} \\ \mathrm{25} \end{array}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
k	487	GLU	ASP	conflict	UNP Q5TA45

• Molecule 31 is a protein called Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform.

Mol	Chain	Residues	Atoms			AltConf	Trace		
31	р	575	Total 4388	C 2795	N 748	O 818	S 27	0	0

• Molecule 32 is a protein called Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform.

Mol	Chain	Residues	Atoms			AltConf	Trace		
32	q	290	Total 2322	C 1467	N 403	O 437	S 15	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
q	88	ASN	ASP	conflict	UNP P67775

• Molecule 33 is a protein called Unknown.

Mol	Chain	Residues	Atoms			AltConf	Trace	
33	u	27	Total 144	C 89	N 28	O 27	0	0

• Molecule 34 is MAGNESIUM ION (three-letter code: MG) (formula: Mg) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
34	А	1	Total Mg 1 1	0

• Molecule 35 is ZINC ION (three-letter code: ZN) (formula: Zn) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
35	А	2	Total Zn 2 2	0
35	В	1	Total Zn 1 1	0
35	С	1	Total Zn 1 1	0
35	Ι	2	Total Zn 2 2	0
35	J	1	Total Zn 1 1	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
35	L	1	Total Zn 1 1	0
35	k	2	Total Zn 2 2	0

• Molecule 36 is MANGANESE (II) ION (three-letter code: MN) (formula: Mn) (labeled as "Ligand of Interest" by depositor).

Mol	Chain Residues		Atoms	AltConf
36	q	2	Total Mn 2 2	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: DNA-directed RNA polymerase subunit

SER ASP GLU GLU ASN

• Molecule 2: DNA-directed RNA polymerase subunit beta

Chain B:

• Molecule 3: DNA-directed RNA polymerase II subunit RPB3

Chain C:	95%	5%
MET P2 Y3 D80 T89 M1 34	ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	
• Molecule 4:	RNA polymerase II subunit D	
Chain D:	89% 11	%
MET ALA ALA GLY GLY SER SER PRO PRO ALA	GLY ASP VAL E14 550 649 550 655 656 656 656 655 6123 0124 6125 6125 6125 6125 6125 6125 6125 6125	
• Molecule 5:	DNA-directed RNA polymerase II subunit E	
Chain E:	99%	
MET D2 R52 R162 Q210		
• Molecule 6:	DNA-directed RNA polymerase II subunit F	
Chain F:	61% 39%	_
MET SER ASP ASN GLU ASP ASP PHE ASN ASP CLV ASP	ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	L83 E84 G85 D127
• Molecule 7:	DNA-directed RNA polymerase II subunit RPB7	
Chain G:	99%	
M1 51 15 01 20 11 20 11 20 81 22 81 23 81 23	T130	
• Molecule 8:	DNA-directed RNA polymerases I, II, and III subunit RF	PABC3
Chain H:	99%	·

• Molecule 9: DNA-directed RNA polymerase II subunit RPB9

Chain I:	94%	6%
MET RRD RRD ASP CLIY TTRR TTRR CLIU P GLU B 125 E125		

• Molecule 10: DNA-directed RNA polymerases I, II, and III subunit RPABC5

Chain J:
• Molecule 11: RNA_pol_L_2 domain-containing protein
Chain K: 98% ·
M1 G15 P109 C115 G115 OLU OLU
• Molecule 12: RNA polymerase II subunit K
Chain L: 79% 21%
ASP THR CIVS CIN CIN CIN CIN CIN CIN CIN CIN
• Molecule 13: RPBI C-terminal domain peptide
Chain M: 100%
There are no outlier residues recorded for this chain.
• Molecule 14: Non-template DNA
Chain N: 50% 50%
• Molecule 15: TAR RNA
Chain P: 59% 41%

• Molecule 16: DNA Template

• Molecule 19:	Negative elongation factor	C/D		
Chain W:	82%		18%	
X57 X60 X63 X63 X65 X65 X65 X14 X14	X87 THR MET MET MET ALA ALA ALA ALA ALA MET MET MET ASP GLU CLY CLY	ALA ALA ALA ALA GLU GLU GLU GLU GLU GLU GLU	ASP ASP SER GLY GLU ASP ASP ALA CLU CLU	VAL GLN GLU CTS
LEU HIS LYS PHE SER SER ARG ARG ARG ARG ARG ART	PR.C. SER PILE PILE ASN ASN THR THR THR CLU ASN GLY SER ASN SER ASN	VAL VAL CLN CLN CLN CLU CLU CLU CLU AG AG AG AG AG	4105 4103 4108 4110 4110 4126 4126 5127	P129
S134 T137 E138 E138 E140 E141 T142 P143	A1 44 E1 64 A1 65 P1 67 P1 67 P1 67 P2 26 R2 73 A2 73 M3 20 M3 20 M3 20	K371 K372 N373 V376 S377 S377 A404 ALA ALA ALA ALA	1566 LYS THR GLU GLU HIS ASP ASP P574	F586 ILE MET VAL ASN
• Molecule 20: 1	Negative elongation factor	Ε		
Chain X:	10	00%		
There are no ou	tlier residues recorded for	this chain.		
• Molecule 21:	Transcription elongation fa	actor SPT5		
Chain Z:	25%	75%		
MET SER SER ASP GLU ASP ASP PHE SER SER CLU	CLU ASP CLU ASP CLU ARG CLU ARG CLU ALA ACA CLU CLU CLU CLU CLU ARG	SER ALA ALA ALA GLY GLU GLU CLU CLU CLU CLU CLU CLU CLU CLU	GLU GLU GLU GLU GLU GLU ASP GLU GLU	GLU GLU GLU
GLU ASP ASP ASP ASP ASP PRO PRO LYS LYS PRO PRO	ALA CLY CLY CLY CLY CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	TRIP COLU ASP ALA ALA ALA ALA ALA CLU CLU CLU CLU CLU CLU CLU CLU CLU	ALA SER ASN ASN 1LE ASN VAL VAL VAL LEU ASP	GLU ASP ARG SER
GLY ALA ARG ARG CLU CLU CLU CLU TRP ASN ASP ASP	ARG GLU GLU GLU GLU CLEU CLEU CLEU CLEV CLYS CLYS TYR TYR TYS CLYS SER CLYS SER CLYS SER	GLU THR TTR TTYR TTYR GLY GLY GLY GLU LEU SER ASP SER ASP TTLE	LILL GLN GLN GLN LEU PRO GLY VAL LYS ASP	PRO ASN LEU TRP
THR VAL LYS CYS CYS CYS LYS TLZ GLU GLU ARG ALA	ALA ALA SER SER SER LEU MET LEU ALA THR THR THR THR THR THR THR THR THR THR	11LE LYS SER SER SER VAL VAL ALA PRO CLU VAL CLU CLU CLU CLYS CLY CLYS CLYS CLYS CLYS CLYS CLYS	VAL VAL GLU TYR LYS GLN THR HIS VAL LYS	GLN ALA TLLE GLU
GLY VAL GLY ASN ASN LEU LEU LEU CLEU CLEU ASN ASN	CLUM CLUM CLUM CLUM CLUM CLUM CLUM CLUM	ASN LEU LRU PRO PRO LYS SER TRP ARG LEU LEU LLEU LLEU CLY	LTR LYS ASP ASP TLE ALA GLN VAL ASP VAL VAL VAL	GLU SER GLN
ASN THR ILE SEC LEU MET LYS MET TLE PRO ARG	TYR TYR ASP ASP TLE LYS ALA ALA ALA CYS TRP PHE TRP PHE CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	PHE LYS LYS PRO PRO PRO ARG ARG ALA ASP ALA ALA ALA ALA CLU CYS	SER LEU GLY GLY ASP VAL ALA SER ASP GLY	ASP PHE LEU ILEU
PHE GLU ASN ASN ARG ARG SER ARG CLY CLY CLY	PHE PHE LYNS SER PHE MET MET ALA ALA ALA ALA ALA ALA ALA ALA CLU CLU CLU CLU CLU CLU CLU CLU	dLU CLEU CLU CLU CLU CLU ASP CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	VAL VAL THR GLU SER THR GLY GLY GLU	E430 6431 E432
N446 K447 K458 K458 B459 G527 VAL	VAL CLY CLY GLY GLN HIS GLU B566 B566 C506 V570 V570 H572 H772 H	V575 F583 A584 A584 B590 B591 N592 N592 H595 H595	V596 K597 D598 V600 V600 V602 L603	S608 C609 V644 L645 ▲646 GLY GLY SER LYS SER LYS PR0
ARG ASP VAL THR ASN PHE THR VAL CLY CLY	PRO MET NET SER PRO PRO PRO SER SER PRO PRO SER SER CITY CITY CITY	GLY PHE CLY CLY SER SER GLY GLY GLY MET SER SER SER ANG	ARC ARC ARC ARC ARC ASP ASP E729 E729	V753 V753 GLY SER

MET LYS ASP GLN GLN THR VAL THR MET THR GLU GLU CYS SER LYS GGLY GGLY GCLY GCLY GCLY CGLY CGLY VAL LEU VAL LEU VAL LEU CGLN HIS

• Molecule 30: Integrator complex subunit 11

Chair	ı k	•											76'	%														2	24%	6			-			
MET P2 Y206	ALA THR	THR ILE	ARG ASP	S213	R231	C SCN	2021	N315	P316	G 326	MET	H329	, C		TYR	CYS VAL	GLN	GLY THR	VAL	GLY HIS	LYS	TEU	SER. GL.Y	GLN	ARG	TEU	GLU	GLU	GLY ARG	GLN	VAL	CTU	VAL	M382	L470	GLU
ALA Lys Lys P476	L502	GLY LEU	ALA GLU	HIS	TEU	PHE	THR	ARG	VAL HIS	LEU	ASP	THR	ARG I VS	GLU	GLN	THR	ALA	ARG	VAL TVR	SER	HIS	LYS	SER VAL	LEU	ASP	SIH	VAL	GLN	LEU	PRO	ASP GLY	SER	VAL THR	VAL GLU	SER	ALL
LEU LEU GLN ALA	ALA ALA	PRO SER	GLU ASP	PRO CI V	THR	VAL	LEU	VAL	SER TRP	THR	TYR GLN	ASP	GLU GLU	LEU	GLY	PHE	LEU	SER	LEU	LYS	CLY GLY	LEU	PRO GLN	ALA	SER											

 \bullet Molecule 31: Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform

Chain p:			97	7%		·
MET ALA ALA ALA ALA GLY ASP ASP	D57 THR ILE TYR ASP GLU D63	q233 ♦ E238 ♦ L411	S587 LEU ALA			
1 1 1	aa a : //	, .		1 1	2 A	 1 .

• Molecule 32: Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform

Chain q:	94%	6%
MET ASP GLV LTS CLTS CLTS F6 F7 F7 ARG CLV PRC ARG ARG CLV PRC ARG THR THR THR THR THR THR THR THR THR THR		
• Molecule 33: Unknown		
Chain u:	100%	

There are no outlier residues recorded for this chain.

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	614283	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TITAN	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	46.18	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K3 (6k x 4k)	Depositor
Maximum map value	0.203	Depositor
Minimum map value	-0.056	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.006	Depositor
Recommended contour level	0.025	Depositor
Map size (Å)	503.99997, 503.99997, 503.99997	wwPDB
Map dimensions	480, 480, 480	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.05, 1.05, 1.05	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, ZN, MN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles			
	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5		
1	А	0.28	0/11210	0.54	0/15130		
2	В	0.31	0/9076	0.55	0/12250		
3	С	0.33	0/2139	0.53	0/2906		
4	D	0.27	0/988	0.62	0/1333		
5	Е	0.28	0/1752	0.54	0/2366		
6	F	0.30	0/637	0.56	0/859		
7	G	0.28	0/1347	0.55	1/1833~(0.1%)		
8	Н	0.31	0/1207	0.56	0/1628		
9	Ι	0.30	0/967	0.58	0/1309		
10	J	0.33	0/542	0.57	0/730		
11	Κ	0.31	0/939	0.53	0/1271		
12	L	0.35	0/389	0.67	0/517		
13	М	0.29	0/100	0.42	0/139		
14	Ν	0.52	0/547	0.93	0/838		
15	Р	0.28	0/403	0.94	0/625		
16	Т	0.52	0/764	0.98	0/1179		
17	U	0.26	0/1422	0.56	0/1933		
18	V	0.23	0/1912	0.45	0/2453		
19	W	0.26	0/3812	0.52	1/5186~(0.0%)		
21	Ζ	0.26	0/2206	0.54	0/2968		
22	a	0.27	0/8430	0.58	2/11494~(0.0%)		
23	b	0.28	0/8065	0.53	0/10992		
24	d	0.28	0/6535	0.53	0/8877		
25	е	0.28	0/4775	0.53	1/6511~(0.0%)		
26	f	0.29	0/4179	0.55	1/5705~(0.0%)		
27	g	0.29	0/6817	0.54	2/9246~(0.0%)		
28	h	0.29	0/6867	0.51	0/9329		
29	i	0.31	0/4360	0.54	1/5957~(0.0%)		
30	k	0.29	0/3408	0.53	0/4632		
31	р	0.27	0/4460	0.57	1/6064~(0.0%)		
32	q	0.30	0/2378	0.54	0/3228		
33	u	0.24	0/15	0.26	0/20		

Mol	Chain	Bond	lengths	Bond angles				
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5			
All	All	0.29	0/102648	0.55	10/139508~(0.0%)			

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
22	a	0	1

There are no bond length outliers.

All ((10)	bond	angle	outliers	are	listed	below:
\	. — ~ <i>/</i>						

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
27	g	687	ASP	CB-CG-OD2	7.46	125.01	118.30
22	a	1036	LEU	CA-CB-CG	7.46	132.45	115.30
22	a	1173	LEU	CA-CB-CG	7.37	132.25	115.30
19	W	209	LEU	CA-CB-CG	7.21	131.87	115.30
31	р	411	LEU	CA-CB-CG	7.01	131.43	115.30
27	g	98	LEU	CA-CB-CG	6.48	130.20	115.30
7	G	120	ASP	CB-CG-OD1	5.52	123.27	118.30
29	i	220	LEU	CA-CB-CG	5.41	127.75	115.30
25	е	436	ASP	CB-CG-OD1	5.25	123.02	118.30
26	f	392	LEU	CA-CB-CG	5.14	127.12	115.30

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
$\overline{22}$	a	1033	LEU	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	1378/1970~(70%)	1351 (98%)	27 (2%)	0	100	100
2	В	1096/1174~(93%)	1066~(97%)	30 (3%)	0	100	100
3	С	257/275~(94%)	252 (98%)	5 (2%)	0	100	100
4	D	124/142~(87%)	119 (96%)	5 (4%)	0	100	100
5	Е	207/210~(99%)	202 (98%)	5 (2%)	0	100	100
6	F	76/127~(60%)	76~(100%)	0	0	100	100
7	G	169/172~(98%)	155~(92%)	14 (8%)	0	100	100
8	Н	146/150~(97%)	143 (98%)	3 (2%)	0	100	100
9	Ι	115/125~(92%)	109 (95%)	6 (5%)	0	100	100
10	J	65/67~(97%)	65 (100%)	0	0	100	100
11	Κ	113/117~(97%)	110 (97%)	3 (3%)	0	100	100
12	L	44/58~(76%)	39~(89%)	5 (11%)	0	100	100
13	М	11/13~(85%)	11 (100%)	0	0	100	100
17	U	181/528~(34%)	174 (96%)	7 (4%)	0	100	100
18	V	400/614~(65%)	366 (92%)	34 (8%)	0	100	100
19	W	476/616~(77%)	455 (96%)	21 (4%)	0	100	100
21	Z	265/1087~(24%)	250 (94%)	15 (6%)	0	100	100
22	a	1177/2190~(54%)	1103 (94%)	69 (6%)	5~(0%)	34	71
23	b	1027/1204~(85%)	977~(95%)	50 (5%)	0	100	100
24	d	810/963~(84%)	784 (97%)	26 (3%)	0	100	100
25	е	633/1019~(62%)	609 (96%)	24 (4%)	0	100	100
26	f	524/887~(59%)	506 (97%)	18 (3%)	0	100	100
27	g	$\overline{876/962} \ (91\%)$	842 (96%)	34 (4%)	0	100	100
28	h	$\overline{865/995}~(87\%)$	825 (95%)	40 (5%)	0	100	100
29	i	544/658~(83%)	516 (95%)	28 (5%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
30	k	448/600~(75%)	423 (94%)	25~(6%)	0	100	100
31	р	571/589~(97%)	556~(97%)	15 (3%)	0	100	100
32	q	288/309~(93%)	276~(96%)	12 (4%)	0	100	100
33	u	1/27~(4%)	1 (100%)	0	0	100	100
All	All	12887/17848~(72%)	12361 (96%)	521 (4%)	5~(0%)	100	100

Continued from previous page...

All (5) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
22	a	631	PRO
22	a	761	PRO
22	a	415	LYS
22	a	1215	LEU
22	a	752	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percent	tiles
1	А	1223/1749~(70%)	1221 (100%)	2 (0%)	93	98
2	В	978/1027~(95%)	978~(100%)	0	100	100
3	\mathbf{C}	238/252~(94%)	238~(100%)	0	100	100
4	D	101/126~(80%)	101 (100%)	0	100	100
5	Ε	191/192~(100%)	189~(99%)	2 (1%)	76	88
6	F	68/111~(61%)	68~(100%)	0	100	100
7	G	141/153~(92%)	141 (100%)	0	100	100
8	Н	129/131~(98%)	129 (100%)	0	100	100
9	Ι	104/112~(93%)	104 (100%)	0	100	100
10	J	56/56~(100%)	55~(98%)	1 (2%)	59	81
11	Κ	104/106~(98%)	104 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
12	L	42/55~(76%)	42 (100%)	0	100	100
13	М	13/13~(100%)	13~(100%)	0	100	100
17	U	155/451~(34%)	154~(99%)	1 (1%)	86	94
18	V	49/515~(10%)	48 (98%)	1 (2%)	55	79
19	W	398/514~(77%)	397 (100%)	1 (0%)	92	97
21	Ζ	243/940~(26%)	243 (100%)	0	100	100
22	a	684/1907~(36%)	682 (100%)	2(0%)	92	97
23	b	859/1072~(80%)	858 (100%)	1 (0%)	93	98
24	d	704/845~(83%)	703 (100%)	1 (0%)	93	98
25	е	444/812~(55%)	444 (100%)	0	100	100
26	f	431/796~(54%)	431 (100%)	0	100	100
27	g	719/840~(86%)	718 (100%)	1 (0%)	93	98
28	h	700/896~(78%)	699 (100%)	1 (0%)	93	98
29	i	482/600~(80%)	482 (100%)	0	100	100
30	k	317/520~(61%)	317 (100%)	0	100	100
31	р	480/512~(94%)	480 (100%)	0	100	100
32	q	251/274~(92%)	250 (100%)	1 (0%)	91	97
33	u	$1/1 \ (100\%)$	1 (100%)	0	100	100
All	All	10305/15578~(66%)	10290 (100%)	15 (0%)	93	98

Continued from previous page...

All (15) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	16	ARG
1	А	914	LYS
5	Е	52	ARG
5	Е	162	ARG
10	J	47	ARG
17	U	175	ARG
18	V	238	ARG
19	W	125	LYS
22	а	1222	ARG
22	a	1746	ARG
23	b	461	LYS
24	d	122	LYS
$\overline{27}$	g	31	LYS

 $Continued \ from \ previous \ page...$

Mol	Chain	Res	Type
28	h	475	LYS
32	q	144	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (4) such sidechains are listed below:

Mol	Chain	Res	Type
3	С	260	GLN
19	W	95	ASN
23	b	622	GLN
28	h	988	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
15	Р	16/17~(94%)	6 (37%)	1 (6%)

All (6) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
15	Р	31	А
15	Р	33	С
15	Р	34	U
15	Р	36	G
15	Р	37	G
15	Р	39	А

All (1) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
15	Р	38	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 13 ligands modelled in this entry, 13 are monoatomic - leaving 0 for Mogul analysis. There are no bond length outliers. There are no bond angle outliers. There are no chirality outliers. There are no torsion outliers. There are no ring outliers. No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-13479. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 240

Y Index: 240

Z Index: 240

6.2.2 Raw map

X Index: 240

Y Index: 240

Z Index: 240

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 244

Y Index: 211

Z Index: 243

6.3.2 Raw map

X Index: 244

Y Index: 211

Z Index: 244

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.025. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.5

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

emd_13479_msk_1.map (i) 6.5.1

Υ

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 2154 nm^3 ; this corresponds to an approximate mass of 1946 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.278 $\mathrm{\AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.278 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{Bosolution ostimato}(\mathbf{\hat{A}})$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.60	-	-
Author-provided FSC curve	-	-	-
Unmasked-calculated*	3.80	6.41	3.90

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-13479 and PDB model 7PKS. Per-residue inclusion information can be found in section 3 on page 11.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.025 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Atom inclusion (i)

At the recommended contour level, 97% of all backbone atoms, 94% of all non-hydrogen atoms, are inside the map.

