

Full wwPDB NMR Structure Validation Report (i)

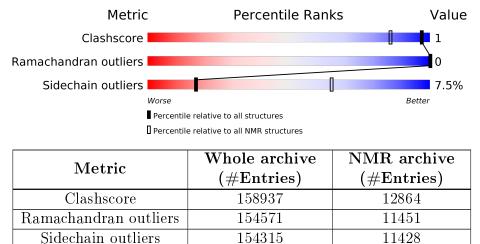
May 28, 2020 – 08:14 pm BST

PDB ID	:	1PCE
Title	:	SOLUTION STRUCTURE AND DYNAMICS OF PEC-60, A PROTEIN OF
		THE KAZAL TYPE INHIBITOR FAMILY, DETERMINED BY NUCLEAR
		MAGNETIC RESONANCE SPECTROSCOPY
Authors	:	Liepinsh, E.; Berndt, K.D.; Sillard, R.; Mutt, V.; Otting, G.
Deposited on	:	1994-02-22

This is a Full wwPDB NMR Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/NMRValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:


Cyrange	:	Kirchner and Güntert (2011)
$\operatorname{NmrClust}$:	Kelley et al. (1996)
$\operatorname{MolProbity}$:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
RCI	:	v_1n_11_5_13_A (Berjanski et al., 2005)
PANAV	:	Wang et al. (2010)
${ m ShiftChecker}$:	2.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.11

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $SOLUTION \ NMR$

The overall completeness of chemical shifts assignment was not calculated.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain		
1	А	60	68%	•	30%

2 Ensemble composition and analysis (i)

This entry contains 20 models. Model 18 is the overall representative, medoid model (most similar to other models).

The following residues are included in the computation of the global validation metrics.

Well-defined (core) protein residues						
Well-defined core	Well-defined coreResidue range (total)Backbone RMSD (Å)Medoid model					
1	A:6-A:10, A:24-A:60 (42)	0.40	18			

Ill-defined regions of proteins are excluded from the global statistics.

Ligands and non-protein polymers are included in the analysis.

The models can be grouped into 4 clusters and 5 single-model clusters were found.

Cluster number	Models
1	4, 6, 12, 16, 18, 20
2	7, 9, 10, 13, 15
3	3, 11
4	5, 19
Single-model clusters	1; 2; 8; 14; 17

3 Entry composition (i)

There is only 1 type of molecule in this entry. The entry contains 923 atoms, of which 451 are hydrogens and 0 are deuteriums.

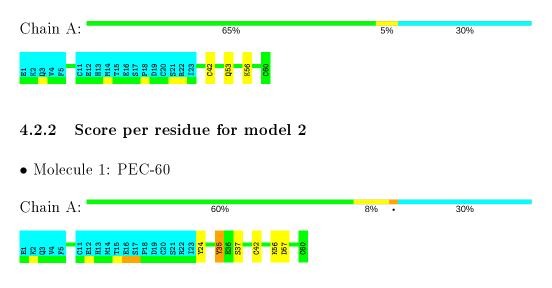
• Molecule 1 is a protein called PEC-60.

Mol	Chain	Residues		Atoms				Trace	
1	Λ	60	Total	С	Η	Ν	Ο	S	0
	A	60	923	287	451	79	98	8	0

4 Residue-property plots (i)

4.1 Average score per residue in the NMR ensemble

These plots are provided for all protein, RNA and DNA chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.


• Molecule 1: PEC-60

4.2 Scores per residue for each member of the ensemble

Colouring as in section 4.1 above.

4.2.1 Score per residue for model 1

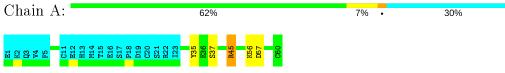
4.2.3 Score per residue for model 3

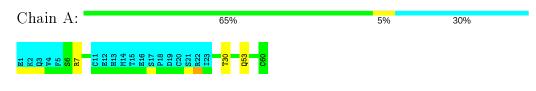
Chain	A:	65%	5%	30%
E1 K2 V4 F5	R 221 R	K49		
4.2.4	Score per residue	for model 4		
• Mole	cule 1: PEC-60			
Chain	A:	63%	7%	30%
E1 K2 74 F5	C11 C11 C11 C11 C11 C11 C11 C11	C42 R45 K66 C60		
4.2.5	Score per residue	for model 5		
• Mole	cule 1: PEC-60			
Chain	A:	63%	5% •	30%
E1 K2 V4 F5	88 88 81 81 81 81 81 81 81 81 81 81 81 8	123 135 135 135 133 133 133 133 133 133 13		
4.2.6	Score per residue	for model 6		
• Mole	cule 1: PEC-60			
Chain	A:	68%	•	30%
면 27 25 25 25 25 25 25 25 25 25 25 25 25 25	211 211 211 211 211 211 211 211 211 211	- <mark>9</mark>		
4.2.7	Score per residue	for model 7		
• Mole	cule 1: PEC-60			
Chain	A:	68%	•	30%
E1 K2 03 F5	C11 E12 E11 E11 E15 E15 E16 C11 C12 C20 C20 C20 C20 C20 C20 C20 C20 C20 C2	80		

E1 K2 V4 F5 F5

4.2.8 Score per residue for model 8

Chain A:	62%	8%	30%
81 82 83 83 81 81 81 81 81 81 81 81 81 82 82 82 82 82 82 82 82 82 82 82 82 82	L41 042 R45 R45 R66		
4.2.9 Score per residue	e for model 9		
• Molecule 1: PEC-60			
Chain A:	63%	7%	30%
E1 K2 K2 K2 K5 K5 K14 K14 K14 K15 K14 K15 K16 K11 K14 K12 K16 K16 K16 K16 K16 K16 K16 K16 K16 K16	123 124 124 057 057 057		
4.2.10 Score per residu	e for model 10		
• Molecule 1: PEC-60			
Chain A:	60%	8% •	30%
81 83 85 85 85 86 81 81 81 81 81 81 81 81 81 81 81 81 81	122 123 124 124 053 050 060		
4.2.11 Score per residu	ie for model 11		
• Molecule 1: PEC-60			
Chain A:	63%	5% •	30%
昭 11 11 11 11 11 11 11 11 11 1	141 145 152 060		
4.2.12 Score per residu	ie for model 12		
• Molecule 1: PEC-60			
Chain A:	62%	8%	30%




4.2.13 Score per residue for model 13

• Molecule 1: PEC-60

Chain A	2004	70/	000/
Ullalli A	63%	7%	30%
E1 K2 Q3 F5	C11 T115 T115 C11 C20 C22 C22 C22 C22 C22 C22 C22 C22 C22		
4.2.14	Score per residue for model 14		
• Molecu	ıle 1: PEC-60		
Chain A	: 60%	8% •	30%
E1 K2 F5 S6 S6	N7 011 011 011 011 011 011 011 011 011 01		
4.2.15	Score per residue for model 15		
• Molecu	ıle 1: PEC-60		
Chain A	: 63%	7%	30%
E1 K2 75 75	C11 1144 1144 1155 1123 123 123 123 123 123 123 123 123 12		
4.2.16	Score per residue for model 16		
• Molecu	ule 1: PEC-60		

4.2.17 Score per residue for model 17

4.2.18 Score per residue for model 18 (medoid)

• Molecule 1: PEC-60

Chain A	: 63%	5% •	30%
E1 K2 V3 F5 S6	R7 115 115 115 115 113 113 113 113 113 113		
4.2.19	Score per residue for model 19		
• Molect	ıle 1: PEC-60		
Chain A	: 60%	8% •	30%
81 K2 V4 75 75	M8 115 115 115 115 115 115 115 115 115 11		
4.2.20	Score per residue for model 20		
• Molect	ıle 1: PEC-60		
Chain A	: 63%	7%	30%

K46 C60

5 Refinement protocol and experimental data overview (i)

Of the ? calculated structures, 20 were deposited, based on the following criterion: ?.

The following table shows the software used for structure solution, optimisation and refinement.

Software name	Classification	Version
DIANA	refinement	
OPAL	refinement	

No chemical shift data was provided. No validations of the models with respect to experimental NMR restraints is performed at this time.

COVALENT-GEOMETRY INFOmissingINFO

5.1 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble.

Mol	Chain	Non-H	H(model)	H(added)	Clashes
1	А	326	315	315	0±1
All	All	6520	6300	6300	8

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 1.

All unique clashes are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Clash(Å)	Distance(Å)	Models	
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
1:A:45:ARG:NH2	1:A:52:ILE:HG22	0.57	2.14	11	1
1:A:45:ARG:NH1	1:A:52:ILE:HD12	0.55	2.16	14	1
1:A:45:ARG:CZ	1:A:52:ILE:HD12	0.51	2.36	14	1
1:A:45:ARG:NH2	1:A:52:ILE:HD12	0.47	2.25	14	1
1:A:41:LEU:HD21	1:A:45:ARG:NH2	0.46	2.24	11	1
1:A:45:ARG:HH22	1:A:52:ILE:HG22	0.42	1.75	11	1
1:A:42:CYS:HA	1:A:45:ARG:CD	0.41	2.46	4	1
1:A:41:LEU:HD23	1:A:45:ARG:HE	0.41	1.76	8	1

5.2 Torsion angles (i)

5.2.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
1	А	41/60~(68%)	$39\pm2~(95\pm4\%)$	$2\pm2~(5\pm4\%)$	0±0 (0±0%)	100	100
All	All	820/1200~(68%)	776~(95%)	44 (5%)	0 (0%)	100	100

There are no Ramachandran outliers.

5.2.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the sidechain conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	38/56~(68%)	$35 \pm 1 (92 \pm 4\%)$	3 ± 1 (8±4%)	17 65
All	All	760/1120~(68%)	703 (92%)	57 (8%)	17 65

All 14 unique residues with a non-rotameric sidechain are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Models (Total)
1	А	56	LYS	9
1	А	60	CYS	7
1	А	57	ASP	6
1	А	53	GLN	5
1	А	42	CYS	5
1	А	8	MET	4
1	А	30	THR	3
1	А	48	ASN	3
1	А	45	ARG	3
1	А	37	SER	3
1	А	40	LYS	3
1	А	24	TYR	2
1	А	49	LYS	2

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type	Models (Total)
1	А	7	ARG	2

5.2.3 RNA (i)

There are no RNA molecules in this entry.

5.3 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.4 Carbohydrates (i)

There are no carbohydrates in this entry.

5.5 Ligand geometry (i)

There are no ligands in this entry.

5.6 Other polymers (i)

There are no such molecules in this entry.

5.7 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Chemical shift validation (i)

No chemical shift data were provided

