

Full wwPDB X-ray Structure Validation Report (i)

Jun 22, 2022 – 04:38 pm BST

PDB ID	:	7P81
Title	:	Crystal structure of ClpP from Bacillus subtilis in complex with ADEP2 (com-
		pact state)
Authors	:	Lee, BG.; Kim, L.; Kim, M.K.; Kwon, D.H.; Song, H.K.
Deposited on	:	2021-07-21
Resolution	:	2.79 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.29
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0267
CCP4	:	7.1.010 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.29

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 2.79 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	3140 (2.80-2.80)
Ramachandran outliers	138981	3498 (2.80-2.80)
Sidechain outliers	138945	3500 (2.80-2.80)
RSRZ outliers	127900	3078 (2.80-2.80)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	199	% 8 4%	•	14%
1	В	199	85%		12%
1	С	199	7%81%	6%	14%
1	D	199	<mark>6%</mark> 79%		18%
1	Е	199	9%	5%	13%
1	F	199	% 8 2%	•	15%

Mol	Chain	Length	Quality of chain	
1	C	100	%	
I	G	199	83%	6% 11%
1	Н	199	82%	5% 14%
			9%	2.00
1	Ι	199	84%	• • 11%
1	т	100	4%	
1	J	199	<u> </u>	5% 13%
1	Κ	199	82%	• 14%
			7%	
1	L	199	80%	6% 14%
1	М	100	6% 010/	1.00/
	111	199	12%	• 16%
1	Ν	199	80%	• 16%
	_		3%	
1	0	199	84%	• 13%
1	Р	100		110/
1	I	155	<u>4%</u>	• 11%
1	Q	199	81%	5% 14%
4	D	100	%	
1	R	199	81%	•• 16%
1	S	199	85%	• 13%
	~	100	2%	. 1570
1	Т	199	81%	• 16%
1	TT	100	4%	
	U	199	81%	• 15%
1	V	199	84%	• 12%
			3%	
1	W	199	87%	• 12%
1	v	100	4%	
	Λ	199	7%	•• 15%
1	Y	199	79%	• 17%
			8%	
1	Z	199	80%	•• 15%
1	9	100	% •	1.60/
1	a	155	2%	• 10%
1	b	199	83%	•• 12%
2	с	7	29% 71%	
2	d	7	70 %	
	u	1	29%	
2	е	7	29% 71%	

Mol	Chain	Length	Quality of chain				
2	f	7	14% 29%	71%			
2	g	7	29%	71%			
2	h	7	29%	71%			
2	i	7	29%	71%			
2	j	7	29%	71%			
2	k	7	29%	71%			
2	1	7	29%	71%			
2	m	7	29%	71%			
2	n	7	29%	71%			
2	О	7	29%	71%			
2	р	7	14%	86%			
2	q	7	29%	71%			
2	r	7	29%	71%			
2	t	7	29%	71%			
2	u	7	29%	71%			
2	v	7	29%	71%			
2	W	7	29%	71%			

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 38248 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	А	172	Total 1319	C 841	N 219	0 252	S 7	0	0	0
1	В	176	Total 1354	C 861	N 229	0 257	S 7	0	0	0
1	С	172	Total 1315	C 839	N 219	O 250	S 7	0	0	0
1	D	164	Total 1260	C 801	N 211	0 241	${f S}{7}$	0	0	0
1	Е	174	Total 1323	C 843	N 221	O 252	${f S}{7}$	0	0	0
1	F	169	Total 1292	C 822	N 216	O 247	${f S}7$	0	0	0
1	G	177	Total 1358	C 863	N 228	O 260	S 7	0	0	0
1	Н	172	Total 1317	C 839	N 219	O 252	${ m S} 7$	0	0	0
1	Ι	177	Total 1351	C 859	N 227	O 258	S 7	0	0	0
1	J	173	Total 1318	C 840	N 220	O 251	${ m S} 7$	0	0	0
1	K	171	Total 1311	C 837	N 218	O 249	${f S}{7}$	0	0	0
1	L	171	Total 1311	C 837	N 218	O 249	${f S}7$	0	0	0
1	М	168	Total 1284	C 816	N 215	O 246	${f S}{7}$	0	0	0
1	Ν	168	Total 1294	C 824	N 215	O 248	${ m S} 7$	0	0	0
1	Ο	174	Total 1333	C 851	N 221	0 254	${f S}{7}$	0	0	0
1	Р	177	Total 1362	C 867	N 230	0 258	${f S}{7}$	0	0	0

• Molecule 1 is a protein called ATP-dependent Clp protease proteolytic subunit.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	0	179	Total	С	Ν	0	S	0	0	0
1	Q	172	1317	839	219	252	7	0	0	0
1	D	169	Total	С	Ν	0	S	0	0	0
1	n	108	1293	825	215	246	$\overline{7}$	0	0	0
1	q	174	Total	С	Ν	0	\mathbf{S}	0	0	0
1	G	174	1327	845	221	254	7	0	0	0
1	Т	168	Total	С	Ν	0	\mathbf{S}	0	0	0
T	T	100	1290	822	215	246	7	0	0	0
1	II	170	Total	С	Ν	0	\mathbf{S}	0	0	0
T	U	170	1307	832	219	249	7	0	0	0
1	V	175	Total	С	Ν	Ο	\mathbf{S}	0	0	0
T	v	110	1343	854	223	259	7		0	0
1	W	W 176	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	vv	170	1348	857	229	255	7	0	0	0
1	x	X 160	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1		105	1294	824	216	247	7	0	0	U
1	V	165	Total	С	Ν	Ο	\mathbf{S}	0	0	0
L	1	105	1262	801	212	242	7	0	0	0
1	7	160	Total	С	Ν	Ο	\mathbf{S}	0	0	0
T		105	1292	822	216	247	7	0	0	0
1	2	168	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
1	a	100	1290	822	215	246	7	0	0	0
1	h	175	Total	\mathbf{C}	Ν	0	S	0	0	0
L	U	110	1344	855	226	256	7	U	U	0

There are 224 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	192	LEU	-	expression tag	UNP P80244
А	193	GLU	-	expression tag	UNP P80244
А	194	HIS	-	expression tag	UNP P80244
А	195	HIS	-	expression tag	UNP P80244
А	196	HIS	-	expression tag	UNP P80244
А	197	HIS	-	expression tag	UNP P80244
А	198	HIS	-	expression tag	UNP P80244
А	199	HIS	-	expression tag	UNP P80244
В	192	LEU	-	expression tag	UNP P80244
В	193	GLU	-	expression tag	UNP P80244
В	194	HIS	-	expression tag	UNP P80244
В	195	HIS	-	expression tag	UNP P80244
В	196	HIS	-	expression tag	UNP P80244
В	197	HIS	-	expression tag	UNP P80244
В	198	HIS	-	expression tag	UNP P80244

Contentia		tious puye			
Chain	Residue	Modelled	Actual	Comment	Reference
В	199	HIS	-	expression tag	UNP P80244
С	192	LEU	-	expression tag	UNP P80244
С	193	GLU	-	expression tag	UNP P80244
С	194	HIS	-	expression tag	UNP P80244
С	195	HIS	-	expression tag	UNP P80244
С	196	HIS	-	expression tag	UNP P80244
С	197	HIS	-	expression tag	UNP P80244
С	198	HIS	-	expression tag	UNP P80244
С	199	HIS	-	expression tag	UNP P80244
D	192	LEU	-	expression tag	UNP P80244
D	193	GLU	-	expression tag	UNP P80244
D	194	HIS	-	expression tag	UNP P80244
D	195	HIS	-	expression tag	UNP P80244
D	196	HIS	-	expression tag	UNP P80244
D	197	HIS	-	expression tag	UNP P80244
D	198	HIS	-	expression tag	UNP P80244
D	199	HIS	-	expression tag	UNP P80244
Е	192	LEU	-	expression tag	UNP P80244
Е	193	GLU	-	expression tag	UNP P80244
Е	194	HIS	-	expression tag	UNP P80244
Е	195	HIS	-	expression tag	UNP P80244
Е	196	HIS	-	expression tag	UNP P80244
Е	197	HIS	-	expression tag	UNP P80244
Е	198	HIS	-	expression tag	UNP P80244
Е	199	HIS	-	expression tag	UNP P80244
F	192	LEU	-	expression tag	UNP P80244
F	193	GLU	-	expression tag	UNP P80244
F	194	HIS	-	expression tag	UNP P80244
F	195	HIS	-	expression tag	UNP P80244
F	196	HIS	-	expression tag	UNP P80244
F	197	HIS	-	expression tag	UNP P80244
F	198	HIS	-	expression tag	UNP P80244
F	199	HIS	-	expression tag	UNP P80244
G	192	LEU	-	expression tag	UNP P80244
G	193	GLU	-	expression tag	UNP P80244
G	194	HIS	-	expression tag	UNP P80244
G	195	HIS	-	expression tag	UNP P80244
G	196	HIS	-	expression tag	UNP P80244
G	197	HIS	-	expression tag	UNP P80244
G	198	HIS	-	expression tag	UNP P80244
G	199	HIS	-	expression tag	UNP P80244
Н	192	LEU	-	expression tag	UNP P80244

Chain	Desidue	Modelled	Actual	Commont	Deference
		CLU	Actual	Comment	
	193	GLU	-	expression tag	UNP P80244
H	194	HIS	-	expression tag	UNP P80244
H	195	HIS	-	expression tag	UNP P80244
H	196	HIS	-	expression tag	UNP P80244
H	197	HIS	-	expression tag	UNP P80244
H	198	HIS	-	expression tag	UNP P80244
H	199	HIS	-	expression tag	UNP P80244
I	192	LEU	-	expression tag	UNP P80244
I	193	GLU	-	expression tag	UNP P80244
I	194	HIS	-	expression tag	UNP P80244
I	195	HIS	-	expression tag	UNP P80244
Ι	196	HIS	-	expression tag	UNP P80244
Ι	197	HIS	-	expression tag	UNP P80244
Ι	198	HIS	-	expression tag	UNP P80244
Ι	199	HIS	-	expression tag	UNP P80244
J	192	LEU	-	expression tag	UNP P80244
J	193	GLU	-	expression tag	UNP P80244
J	194	HIS	-	expression tag	UNP P80244
J	195	HIS	-	expression tag	UNP P80244
J	196	HIS	-	expression tag	UNP P80244
J	197	HIS	-	expression tag	UNP P80244
J	198	HIS	-	expression tag	UNP P80244
J	199	HIS	-	expression tag	UNP P80244
K	192	LEU	-	expression tag	UNP P80244
K	193	GLU	-	expression tag	UNP P80244
K	194	HIS	-	expression tag	UNP P80244
К	195	HIS	_	expression tag	UNP P80244
K	196	HIS	-	expression tag	UNP P80244
К	197	HIS	-	expression tag	UNP P80244
К	198	HIS	-	expression tag	UNP P80244
K	199	HIS	-	expression tag	UNP P80244
L	192	LEU	-	expression tag	UNP P80244
L	193	GLU	-	expression tag	UNP P80244
L	194	HIS	-	expression tag	UNP P80244
L	195	HIS	-	expression tag	UNP P80244
L	196	HIS	-	expression tag	UNP P80244
L	197	HIS	-	expression tag	UNP P80244
L	198	HIS	-	expression tag	UNP P80244
L	199	HIS	-	expression tag	UNP P80244
М	192	LEU	-	expression tag	UNP P80244
М	193	GLU	-	expression tag	UNP P80244
М	194	HIS	-	expression tag	UNP P80244

Chain	Residue	Modelled	Actual	Comment	Reference
М	195	HIS	-	expression tag	UNP P80244
М	196	HIS	_	expression tag	UNP P80244
М	197	HIS	-	expression tag	UNP P80244
М	198	HIS	_	expression tag	UNP P80244
М	199	HIS	-	expression tag	UNP P80244
N	192	LEU	-	expression tag	UNP P80244
N	193	GLU	_	expression tag	UNP P80244
N	194	HIS	-	expression tag	UNP P80244
N	195	HIS	-	expression tag	UNP P80244
N	196	HIS	-	expression tag	UNP P80244
N	197	HIS	-	expression tag	UNP P80244
N	198	HIS	-	expression tag	UNP P80244
N	199	HIS	-	expression tag	UNP P80244
0	192	LEU	-	expression tag	UNP P80244
0	193	GLU	-	expression tag	UNP P80244
0	194	HIS	-	expression tag	UNP P80244
0	195	HIS	-	expression tag	UNP P80244
0	196	HIS	-	expression tag	UNP P80244
0	197	HIS	-	expression tag	UNP P80244
0	198	HIS	-	expression tag	UNP P80244
0	199	HIS	-	expression tag	UNP P80244
Р	192	LEU	-	expression tag	UNP P80244
Р	193	GLU	-	expression tag	UNP P80244
Р	194	HIS	-	expression tag	UNP P80244
Р	195	HIS	-	expression tag	UNP P80244
Р	196	HIS	-	expression tag	UNP P80244
Р	197	HIS	-	expression tag	UNP P80244
Р	198	HIS	-	expression tag	UNP P80244
Р	199	HIS	-	expression tag	UNP P80244
Q	192	LEU	-	expression tag	UNP P80244
Q	193	GLU	-	expression tag	UNP P80244
Q	194	HIS	-	expression tag	UNP P80244
Q	195	HIS	-	expression tag	UNP P80244
Q	196	HIS	-	expression tag	UNP P80244
Q	197	HIS	-	expression tag	UNP P80244
Q	198	HIS	-	expression tag	UNP P80244
Q	199	HIS	-	expression tag	UNP P80244
R	192	LEU	-	expression tag	UNP P80244
R	193	GLU	-	expression tag	UNP P80244
R	194	HIS	-	expression tag	UNP P80244
R	195	HIS	-	expression tag	UNP P80244
R	196	HIS	-	expression tag	UNP P80244

Continued from previous page...

Continu	cu jioni pre	tious puge		-	-
Chain	Residue	Modelled	Actual	Comment	Reference
R	197	HIS	-	expression tag	UNP P80244
R	198	HIS	-	expression tag	UNP P80244
R	199	HIS	-	expression tag	UNP P80244
S	192	LEU	-	expression tag	UNP P80244
S	193	GLU	-	expression tag	UNP P80244
S	194	HIS	-	expression tag	UNP P80244
S	195	HIS	-	expression tag	UNP P80244
S	196	HIS	-	expression tag	UNP P80244
S	197	HIS	-	expression tag	UNP P80244
S	198	HIS	-	expression tag	UNP P80244
S	199	HIS	-	expression tag	UNP P80244
Т	192	LEU	-	expression tag	UNP P80244
Т	193	GLU	-	expression tag	UNP P80244
Т	194	HIS	-	expression tag	UNP P80244
Т	195	HIS	-	expression tag	UNP P80244
Т	196	HIS	-	expression tag	UNP P80244
Т	197	HIS	-	expression tag	UNP P80244
Т	198	HIS	-	expression tag	UNP P80244
Т	199	HIS	-	expression tag	UNP P80244
U	192	LEU	-	expression tag	UNP P80244
U	193	GLU	-	expression tag	UNP P80244
U	194	HIS	-	expression tag	UNP P80244
U	195	HIS	-	expression tag	UNP P80244
U	196	HIS	-	expression tag	UNP P80244
U	197	HIS	-	expression tag	UNP P80244
U	198	HIS	-	expression tag	UNP P80244
U	199	HIS	-	expression tag	UNP P80244
V	192	LEU	-	expression tag	UNP P80244
V	193	GLU	-	expression tag	UNP P80244
V	194	HIS	-	expression tag	UNP P80244
V	195	HIS	-	expression tag	UNP P80244
V	196	HIS	-	expression tag	UNP P80244
V	197	HIS	-	expression tag	UNP P80244
V	198	HIS	-	expression tag	UNP P80244
V	199	HIS	-	expression tag	UNP P80244
W	192	LEU	-	expression tag	UNP P80244
W	193	GLU	-	expression tag	UNP P80244
W	194	HIS	-	expression tag	UNP P80244
W	195	HIS	-	expression tag	UNP P80244
W	196	HIS	-	expression tag	UNP P80244
W	197	HIS	-	expression tag	UNP P80244
W	198	HIS	-	expression tag	UNP P80244

Chain	Residue	Modelled	Actual	Comment	Reference
W	199	HIS	-	expression tag	UNP P80244
X	192	LEU	-	expression tag	UNP P80244
X	193	GLU	_	expression tag	UNP P80244
X	194	HIS	_	expression tag	UNP P80244
X	195	HIS	_	expression tag	UNP P80244
X	196	HIS	-	expression tag	UNP P80244
X	197	HIS	-	expression tag	UNP P80244
X	198	HIS	-	expression tag	UNP P80244
X	199	HIS	-	expression tag	UNP P80244
Y	192	LEU	-	expression tag	UNP P80244
Y	193	GLU	-	expression tag	UNP P80244
Y	194	HIS	-	expression tag	UNP P80244
Y	195	HIS	-	expression tag	UNP P80244
Y	196	HIS	-	expression tag	UNP P80244
Y	197	HIS	-	expression tag	UNP P80244
Y	198	HIS	-	expression tag	UNP P80244
Y	199	HIS	-	expression tag	UNP P80244
Z	192	LEU	-	expression tag	UNP P80244
Ζ	193	GLU	-	expression tag	UNP P80244
Ζ	194	HIS	-	expression tag	UNP P80244
Z	195	HIS	-	expression tag	UNP P80244
Ζ	196	HIS	-	expression tag	UNP P80244
Ζ	197	HIS	-	expression tag	UNP P80244
Ζ	198	HIS	-	expression tag	UNP P80244
Ζ	199	HIS	-	expression tag	UNP P80244
a	192	LEU	-	expression tag	UNP P80244
a	193	GLU	-	expression tag	UNP P80244
a	194	HIS	-	expression tag	UNP P80244
a	195	HIS	-	expression tag	UNP P80244
a	196	HIS	-	expression tag	UNP P80244
a	197	HIS	-	expression tag	UNP P80244
a	198	HIS	-	expression tag	UNP P80244
a	199	HIS	-	expression tag	UNP P80244
b	192	LEU	-	expression tag	UNP P80244
b	193	GLU	-	expression tag	UNP P80244
b	194	HIS	-	expression tag	UNP P80244
b	195	HIS	-	expression tag	UNP P80244
b	196	HIS	-	expression tag	UNP P80244
b	197	HIS	-	expression tag	UNP P80244
b	198	HIS	-	expression tag	UNP P80244
b	199	HIS	-	expression tag	UNP P80244

Continued from previous page...

• Molecule 2 is a protein called ADEP2.

7P81	
------	--

Mol	Chain	Residues		Ato	\mathbf{pms}			ZeroOcc	AltConf	Trace
0		7	Total	С	F	Ν	Ο	0	0	0
	С	(57	41	2	6	8	0	0	0
0	J	7	Total	С	F	Ν	Ο	0	0	0
	a	(57	41	2	6	8	0	0	0
0		7	Total	С	F	Ν	Ο	0	0	0
	е	(57	41	2	6	8	0	0	0
0	ſ	7	Total	С	F	Ν	Ο	0	0	0
	1	1	57	41	2	6	8	0	0	0
0		7	Total	С	F	Ν	Ο	0	0	0
	g	1	57	41	2	6	8	0	0	0
9	h	7	Total	С	F	Ν	Ο	0	0	0
	11	1	57	41	2	6	8	0	0	0
2	i	7	Total	С	F	Ν	Ο	0	0	0
2	1	1	57	41	2	6	8	0	0	0
2	i	7	Total	С	\mathbf{F}	Ν	Ο	0	0	0
2	J	1	57	41	2	6	8	0	0	0
2	k	7	Total	\mathbf{C}	F	Ν	Ο	0	0	0
	K	1	57	41	2	6	8	0	0	0
2	1	7	Total	\mathbf{C}	F	Ν	Ο	0	0	0
	1	•	57	41	2	6	8	0	0	
2	m	7	Total	\mathbf{C}	\mathbf{F}	Ν	Ο	0	0	0
	111	1	57	41	2	6	8	0	0	0
2	n	7	Total	\mathbf{C}	F	Ν	Ο	0	0	0
	11	•	57	41	2	6	8	0	0	0
2	0	7	Total	С	\mathbf{F}	Ν	Ο	0	0	0
	0	•	57	41	2	6	8	0	0	0
2	n	7	Total	С	\mathbf{F}	Ν	Ο	0	0	0
	Р	•	57	41	2	6	8	Ŭ	Ŭ	
2	n	7	Total	С	F	Ν	Ο	0	0	0
	Ч	•	57	41	2	6	8	Ŭ		0
2	r	7	Total	С	F	Ν	Ο	0	0	0
	1	•	57	41	2	6	8	Ŭ		
2	t	7	Total	С	F	Ν	Ο	0	0	0
	0	•	57	41	2	6	8	0	0	0
2	11	7	Total	С	F	Ν	Ο	0	0	0
	u	•	57	41	2	6	8			
2	2 v	7	Total	С	F	Ν	Ο	0	0	0
	v	•	57	41	2	6	8		0	0
2	w	7	Total	С	F	Ν	Ο	0	0	0
	, v	•	57	41	2	6	8			

• Molecule 3 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	6	Total O	0	0
3	В	17	0 0 Total O 17 17	0	0
3	С	11	Total O 11 11	0	0
3	D	13	Total O 13 13	0	0
3	Е	16	Total O 16 16	0	0
3	F	10	Total O 10 10	0	0
3	G	17	Total O 17 17	0	0
3	Н	6	Total O 6 6	0	0
3	Ι	3	Total O 3 3	0	0
3	J	9	Total O 9 9	0	0
3	K	19	Total O 19 19	0	0
3	L	13	Total O 13 13	0	0
3	М	11	Total O 11 11	0	0
3	Ν	5	Total O 5 5	0	0
3	0	7	Total O 7 7	0	0
3	Р	6	Total O 6 6	0	0
3	Q	15	Total O 15 15	0	0
3	R	10	Total O 10 10	0	0
3	S	12	Total O 12 12	0	0
3	Т	14	Total O 14 14	0	0
3	U	12	Total O 12 12	0	0
3	V	5	$\begin{array}{cc} \text{Total} & \text{O} \\ 5 & 5 \end{array}$	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	W	9	Total O 9 9	0	0
3	Х	8	Total O 8 8	0	0
3	Y	5	Total O 5 5	0	0
3	Ζ	9	Total O 9 9	0	0
3	a	10	Total O 10 10	0	0
3	b	12	Total O 12 12	0	0
3	f	1	Total O 1 1	0	0
3	g	2	Total O 2 2	0	0
3	h	1	Total O 1 1	0	0
3	j	1	Total O 1 1	0	0
3	m	2	Total O 2 2	0	0
3	О	1	$\begin{array}{cc} \text{Total} & \text{O} \\ 1 & 1 \end{array}$	0	0
3	V	1	Total \overline{O} 1 1	0	0

Continued from previous page...

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: ATP-dependent Clp protease proteolytic subunit

• Molecule 1: ATP-dependent Clp protease proteolytic subunit

SIH

• Molecule 1: ATP-dependent Clp protease proteolytic subunit

• Molecule 1: ATP-dependent Clp protease proteolytic subunit

LLEU GLU HIS HIS HIS HIS HIS HIS HIS

• Molecule 1: ATP-dependent Clp protease proteolytic subunit

GLU HIS HIS HIS HIS HIS HIS

• Molecule 1: ATP-dependent Clp protease proteolytic subunit

• Molecule 1: ATP-dependent Clp protease proteolytic subunit

• Molecule 1: ATP-dependent Clp protease proteolytic subunit

- HIS HIS HIS HIS
- Molecule 1: ATP-dependent Clp protease proteolytic subunit

• Molecule 1: ATP-dependent Clp protease proteolytic subunit

ASN L2 T5 THR ASN ASN GLY	F82 F82 G93 S117 D124 P124	CLY CLY CLY CLY CLY CLY CLY CLY CLY CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU
• Molecule 2:	ADEP2	
Chain c:	29%	71%
CXP1 WFP2 S3 P4 YCP5 A6 P7		
• Molecule 2:	ADEP2	
Chain d:	29%	71%
CXP1 WFP2 S3 P4 YCP5 A6 P7		
• Molecule 2:	ADEP2	
Chain e:	29%	71%
CXP1 WFP2 83 P45 7CP5 A6 P7		
• Molecule 2:	ADEP2	
Chain f:	29%	71%
CXP1 WFP2 S3 P3 P4 YCP5 A6		
• Molecule 2:	ADEP2	
Chain g:	29%	71%
CXP1 WFP2 S3 P4 YCP5 A6 P7		
• Molecule 2:	ADEP2	
Chain h:	29%	71%
CXP1 WFP2 S3 P4 YCP5 A6 P7		
• Molecule 2:	ADEP2	
Chain i:	29%	71%
CXP1 WFP2 S3 P4 YCP5 A6 P7		

• Molecule 2: ADEP2	
Chain j: 29%	71%
CXP1 WFP2 83 P4 P7 P7	
• Molecule 2: ADEP2	
Chain k: 29%	71%
CXP1 WP2 83 P4 P7 P7	
• Molecule 2: ADEP2	
Chain l: 29%	71%
CXP1 WFP2 S3 P4 P7 P7	
• Molecule 2: ADEP2	
Chain m: 29%	71%
CXP1 WFP2 S3 YCP5 YCP5 P4 P7	
• Molecule 2: ADEP2	
Chain n: 29%	71%
CXP1 WFP2 P4 A6 A6 P7	
• Molecule 2: ADEP2	
Chain o: 29%	71%
CXP1 WFP2 S3 P4 P7 P7	
• Molecule 2: ADEP2	
Chain p: 14%	86%
C XP 1 WFP 2 S 3 P 4 P 7 P 7	
• Molecule 2: ADEP2	
Chain q: 29%	71%

CXP1 WFP2 S3 P4 YCP5 A6 P7

 \bullet Molecule 2: ADEP2

Chain r:	29%	71%
CXP1 WFP2 S3 P4 YCP5 A6 P7		
• Molecule	e 2: ADEP2	
Chain t:	29%	71%
CXP1 WFP2 S3 P4 YCP5 A6 P7		
• Molecule	e 2: ADEP2	
Chain u:	29%	71%
CXP1 WFP2 S3 P4 YCP5 A6 P7		
• Molecule	e 2: ADEP2	
Chain v:	29%	71%
CXP1 WFP2 S3 P4 YCP5 A6 P7		
• Molecule	e 2: ADEP2	
Chain w:	29%	71%
CXP1 WFP2 S3 P4 YCP5 A6 P7		

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	112.98Å 173.07Å 160.00Å	Deperitor
a, b, c, α , β , γ	90.00° 91.66° 90.00°	Depositor
$\mathbf{P}_{\text{accolution}}\left(\overset{}{\boldsymbol{\lambda}}\right)$	45.51 - 2.79	Depositor
Resolution (A)	45.51 - 2.79	EDS
% Data completeness	95.8 (45.51-2.79)	Depositor
(in resolution range)	$91.1 \ (45.51 - 2.79)$	EDS
R _{merge}	(Not available)	Depositor
R _{sym}	0.10	Depositor
$< I/\sigma(I) > 1$	$0.65 (at 2.77 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.19.2_4158	Depositor
D D.	0.235 , 0.290	Depositor
Π, Π_{free}	0.235 , 0.291	DCC
R_{free} test set	2019 reflections $(1.38%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	48.5	Xtriage
Anisotropy	0.299	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	(Not available), (Not available)	EDS
L-test for twinning ²	$< L >=0.47, < L^2>=0.30$	Xtriage
Estimated twinning fraction	0.027 for h,-k,-l	Xtriage
F_o, F_c correlation	0.92	EDS
Total number of atoms	38248	wwPDB-VP
Average B, all atoms $(Å^2)$	55.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 28.45 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 1.8373e-03. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MP8, CXP, WFP, YCP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bo	ond angles
1VIOI	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.29	0/1334	0.53	0/1798
1	В	0.32	0/1370	0.55	0/1847
1	С	0.30	0/1330	0.53	0/1793
1	D	0.29	0/1274	0.56	0/1716
1	Е	0.29	0/1338	0.58	0/1805
1	F	0.27	0/1307	0.51	0/1762
1	G	0.33	0/1373	0.54	0/1851
1	Н	0.30	0/1332	0.55	0/1795
1	Ι	0.32	0/1367	0.60	3/1843~(0.2%)
1	J	0.30	0/1333	0.56	0/1798
1	Κ	0.31	0/1326	0.54	0/1788
1	L	0.28	0/1326	0.56	0/1788
1	М	0.33	0/1299	0.56	0/1751
1	Ν	0.27	0/1309	0.52	0/1764
1	0	0.29	0/1348	0.51	0/1818
1	Р	0.31	0/1378	0.54	0/1858
1	Q	0.32	0/1332	0.57	0/1796
1	R	0.32	0/1308	0.60	0/1763
1	S	0.31	0/1342	0.58	0/1810
1	Т	0.28	0/1305	0.51	0/1759
1	U	0.30	0/1321	0.54	0/1779
1	V	0.30	0/1358	0.54	0/1831
1	W	0.27	0/1364	0.52	0/1838
1	Х	0.33	0/1309	0.57	0/1764
1	Y	0.32	0/1276	0.57	0/1719
1	Ζ	0.33	0/1307	0.55	0/1762
1	a	0.26	0/1305	0.51	0/1759
1	b	0.37	1/1359~(0.1%)	0.59	2/1831~(0.1%)
2	с	4.20	3/17~(17.6%)	1.41	0/21
2	d	4.22	3/17~(17.6%)	1.23	0/21
2	e	4.41	5/17~(29.4%)	1.40	0/21
2	f	4.31	4/17~(23.5%)	1.16	0/21

age 2	<u> </u>			Structur		
		Bo	ond lengths	Bond angles		
Mol	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
2	g	4.24	4/17~(23.5%)	1.55	0/21	
2	h	4.43	5/17~(29.4%)	1.59	0/21	
2	i	4.35	4/17~(23.5%)	1.10	0/21	
2	j	4.34	4/17~(23.5%)	1.27	0/21	
2	k	4.41	4/17~(23.5%)	1.09	0/21	
2	1	4.51	5/17~(29.4%)	1.26	0/21	
2	m	4.41	3/17~(17.6%)	1.43	0/21	
2	n	4.42	3/17~(17.6%)	1.26	0/21	
2	0	4.40	3/17~(17.6%)	1.24	0/21	
2	р	4.26	4/17~(23.5%)	1.70	1/21 (4.8%)	
2	q	4.42	4/17~(23.5%)	1.26	0/21	
2	r	4.39	4/17~(23.5%)	1.34	0/21	
2	t	4.25	4/17~(23.5%)	1.27	0/21	
2	u	4.31	4/17~(23.5%)	1.15	0/21	
2	V	4.21	3/17~(17.6%)	1.46	0/21	
2	W	4.40	4/17~(23.5%)	1.30	0/21	
All	All	0.51	78/37570~(0.2%)	0.56	6/50606 (0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	В	0	1
1	G	0	1
1	J	0	1
1	Q	0	1
1	U	0	2
1	Х	0	2
1	Y	0	1
1	Ζ	0	1
1	b	0	1
All	All	0	11

	All ((78)	bond	length	outliers	are	listed	below:
--	-------	------	------	--------	----------	-----	--------	--------

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	f	4	PRO	N-CD	12.28	1.65	1.47
2	h	4	PRO	N-CD	12.11	1.64	1.47
2	1	4	PRO	N-CD	11.99	1.64	1.47
2	r	4	PRO	N-CD	11.82	1.64	1.47

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	k	4	PRO	N-CD	11.72	1.64	1.47
2	W	4	PRO	N-CD	11.69	1.64	1.47
2	j	4	PRO	N-CD	11.65	1.64	1.47
2	е	4	PRO	N-CD	11.54	1.64	1.47
2	i	4	PRO	N-CD	11.54	1.64	1.47
2	р	4	PRO	N-CD	11.52	1.64	1.47
2	q	4	PRO	N-CD	11.46	1.63	1.47
2	с	4	PRO	N-CD	11.41	1.63	1.47
2	u	4	PRO	N-CD	11.40	1.63	1.47
2	d	4	PRO	N-CD	11.35	1.63	1.47
2	t	4	PRO	N-CD	11.31	1.63	1.47
2	V	4	PRO	N-CD	11.22	1.63	1.47
2	0	4	PRO	N-CD	11.20	1.63	1.47
2	m	4	PRO	N-CD	11.17	1.63	1.47
2	n	4	PRO	N-CD	11.11	1.63	1.47
2	g	4	PRO	N-CD	10.92	1.63	1.47
2	n	4	PRO	N-CA	-8.77	1.32	1.47
2	0	4	PRO	N-CA	-8.70	1.32	1.47
2	W	4	PRO	N-CA	-8.27	1.33	1.47
2	r	4	PRO	N-CA	-8.23	1.33	1.47
2	g	4	PRO	N-CA	-8.21	1.33	1.47
2	1	4	PRO	N-CA	-8.20	1.33	1.47
2	k	4	PRO	N-CA	-8.17	1.33	1.47
2	q	4	PRO	N-CA	-8.14	1.33	1.47
2	t	4	PRO	N-CA	-7.96	1.33	1.47
2	j	4	PRO	N-CA	-7.91	1.33	1.47
2	i	4	PRO	N-CA	-7.85	1.33	1.47
2	h	4	PRO	N-CA	-7.83	1.33	1.47
2	р	4	PRO	N-CA	-7.77	1.34	1.47
2	u	4	PRO	N-CA	-7.75	1.34	1.47
2	с	4	PRO	N-CA	-7.73	1.34	1.47
1	b	124	PRO	N-CD	7.72	1.58	1.47
2	m	4	PRO	N-CA	-7.66	1.34	1.47
2	d	4	PRO	N-CA	-7.49	1.34	1.47
2	V	4	PRO	N-CA	-7.36	1.34	1.47
2	f	4	PRO	N-CA	-7.18	1.35	1.47
2	е	4	PRO	N-CA	-7.09	1.35	1.47
2	m	3	SER	CB-OG	6.49	1.50	1.42
2	е	3	SER	C-N	6.46	1.46	1.34
2	q	3	SER	CB-OG	6.45	1.50	1.42
2	n	3	SER	CB-OG	6.26	1.50	1.42
2	1	3	SER	CB-OG	6.07	1.50	1.42

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
2	u	3	SER	CB-OG	5.92	1.50	1.42
2	d	3	SER	C-N	5.91	1.45	1.34
2	h	3	SER	C-N	5.79	1.45	1.34
2	k	3	SER	CB-OG	5.76	1.49	1.42
2	g	3	SER	CB-OG	5.76	1.49	1.42
2	с	3	SER	C-N	5.71	1.45	1.34
2	0	3	SER	CB-OG	5.66	1.49	1.42
2	l	3	SER	C-N	5.62	1.45	1.34
2	i	3	SER	CB-OG	5.59	1.49	1.42
2	r	3	SER	CB-OG	5.55	1.49	1.42
2	е	3	SER	CB-OG	5.54	1.49	1.42
2	j	3	SER	CB-OG	5.47	1.49	1.42
2	t	3	SER	CB-OG	5.40	1.49	1.42
2	t	3	SER	C-N	5.39	1.44	1.34
2	q	3	SER	C-N	5.36	1.44	1.34
2	i	3	SER	C-N	5.34	1.44	1.34
2	f	3	SER	C-N	5.33	1.44	1.34
2	W	3	SER	CB-OG	5.33	1.49	1.42
2	р	3	SER	C-N	5.32	1.44	1.34
2	р	4	PRO	CA-CB	5.28	1.64	1.53
2	h	3	SER	CB-OG	5.24	1.49	1.42
2	j	3	SER	C-N	5.22	1.44	1.34
2	k	4	PRO	CA-CB	5.20	1.64	1.53
2	е	4	PRO	CA-CB	5.15	1.63	1.53
2	1	4	PRO	CA-CB	5.14	1.63	1.53
2	h	4	PRO	CA-CB	5.14	1.63	1.53
2	u	4	PRO	CA-CB	5.14	1.63	1.53
2	r	3	SER	C-N	5.13	1.44	1.34
2	f	4	PRO	CA-CB	5.13	1.63	1.53
2	W	4	PRO	CA-CB	5.12	1.63	1.53
2	V	3	SER	CB-OG	5.03	1.48	1.42
2	g	3	SER	C-N	5.01	1.43	1.34

All (6) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	b	125	LEU	N-CA-CB	-8.64	93.12	110.40
1	Ι	124	PRO	N-CA-CB	-7.40	94.42	103.30
1	Ι	124	PRO	CB-CA-C	-5.74	97.65	112.00
2	р	6	ALA	N-CA-CB	-5.73	102.08	110.10
1	Ι	124	PRO	N-CA-C	5.60	126.66	112.10
1	b	124	PRO	N-CA-C	-5.54	97.69	112.10

There are no chirality outliers.

Mol	Chain	Res	Type	Group
1	В	170	ARG	Sidechain
1	G	146	ARG	Sidechain
1	J	141	ARG	Sidechain
1	Q	141	ARG	Sidechain
1	U	141	ARG	Sidechain
1	U	156	ARG	Sidechain
1	Х	141	ARG	Sidechain
1	Х	156	ARG	Sidechain
1	Y	22	ARG	Sidechain
1	Ζ	156	ARG	Sidechain
1	b	141	ARG	Sidechain

All (11) planarity outliers are listed below:

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	166/199~(83%)	157~(95%)	7 (4%)	2(1%)	13	39
1	В	170/199~(85%)	162 (95%)	6 (4%)	2(1%)	13	39
1	С	166/199~(83%)	155~(93%)	10 (6%)	1 (1%)	25	56
1	D	158/199~(79%)	145~(92%)	13 (8%)	0	100	100
1	Е	168/199~(84%)	151 (90%)	17 (10%)	0	100	100
1	F	163/199~(82%)	154 (94%)	8 (5%)	1 (1%)	25	56
1	G	171/199~(86%)	162 (95%)	7 (4%)	2 (1%)	13	39
1	Н	166/199~(83%)	157 (95%)	8 (5%)	1 (1%)	25	56

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	Ι	171/199~(86%)	159~(93%)	11 (6%)	1 (1%)	25	56
1	J	167/199~(84%)	156 (93%)	10 (6%)	1 (1%)	25	56
1	Κ	165/199~(83%)	155 (94%)	8 (5%)	2(1%)	13	39
1	L	165/199~(83%)	153 (93%)	12 (7%)	0	100	100
1	М	162/199~(81%)	152 (94%)	9 (6%)	1 (1%)	25	56
1	Ν	162/199~(81%)	155 (96%)	5 (3%)	2(1%)	13	39
1	Ο	168/199~(84%)	159 (95%)	6 (4%)	3~(2%)	8	28
1	Р	171/199~(86%)	160 (94%)	10 (6%)	1 (1%)	25	56
1	Q	166/199~(83%)	152 (92%)	13 (8%)	1 (1%)	25	56
1	R	162/199~(81%)	153 (94%)	7 (4%)	2(1%)	13	39
1	S	168/199~(84%)	157 (94%)	11 (6%)	0	100	100
1	Т	162/199~(81%)	153 (94%)	8 (5%)	1 (1%)	25	56
1	U	164/199~(82%)	156 (95%)	8 (5%)	0	100	100
1	V	169/199~(85%)	163 (96%)	4 (2%)	2 (1%)	13	39
1	W	170/199~(85%)	158 (93%)	12 (7%)	0	100	100
1	Х	163/199~(82%)	155~(95%)	6 (4%)	2(1%)	13	39
1	Y	159/199~(80%)	150 (94%)	8 (5%)	1 (1%)	25	56
1	Ζ	163/199~(82%)	150 (92%)	13 (8%)	0	100	100
1	a	162/199~(81%)	153 (94%)	8 (5%)	1 (1%)	25	56
1	b	169/199~(85%)	162 (96%)	5(3%)	2(1%)	13	39
2	с	3/7~(43%)	2(67%)	1 (33%)	0	100	100
2	d	3/7~(43%)	2~(67%)	1 (33%)	0	100	100
2	е	3/7~(43%)	2~(67%)	1 (33%)	0	100	100
2	f	3/7~(43%)	2(67%)	1 (33%)	0	100	100
2	g	3/7~(43%)	2(67%)	1 (33%)	0	100	100
2	h	3/7~(43%)	2~(67%)	1 (33%)	0	100	100
2	i	3/7~(43%)	2 (67%)	1 (33%)	0	100	100
2	j	3/7~(43%)	2 (67%)	1 (33%)	0	100	100
2	k	3/7~(43%)	2 (67%)	1 (33%)	0	100	100
2	1	3/7~(43%)	2 (67%)	1 (33%)	0	100	100
2	m	3/7~(43%)	2(67%)	1 (33%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
2	n	3/7~(43%)	2~(67%)	1 (33%)	0	100 100
2	0	3/7~(43%)	2~(67%)	1 (33%)	0	100 100
2	р	3/7~(43%)	2~(67%)	1 (33%)	0	100 100
2	q	3/7~(43%)	2~(67%)	1 (33%)	0	100 100
2	r	3/7~(43%)	2~(67%)	1 (33%)	0	100 100
2	t	3/7~(43%)	2~(67%)	1 (33%)	0	100 100
2	u	3/7~(43%)	2~(67%)	1 (33%)	0	100 100
2	v	3/7~(43%)	2~(67%)	1 (33%)	0	100 100
2	W	3/7~(43%)	2(67%)	1 (33%)	0	100 100
All	All	4696/5712 (82%)	4394 (94%)	270 (6%)	32 (1%)	22 53

All (32) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	Ι	124	PRO
1	К	4	PRO
1	0	4	PRO
1	0	135	ILE
1	А	93	GLY
1	G	124	PRO
1	Н	93	GLY
1	J	93	GLY
1	V	93	GLY
1	Х	139	ALA
1	F	93	GLY
1	Ν	189	LEU
1	Q	93	GLY
1	R	106	GLY
1	Х	93	GLY
1	А	4	PRO
1	В	67	GLY
1	С	93	GLY
1	Р	67	GLY
1	V	4	PRO
1	К	106	GLY
1	0	93	GLY
1	R	3	ILE
1	Т	93	GLY
1	Y	106	GLY

Continued from previous page...

Mol	Chain	Res	Type
1	b	93	GLY
1	b	123	GLN
1	G	93	GLY
1	М	93	GLY
1	N	93	GLY
1	а	93	GLY
1	В	93	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	142/165~(86%)	139~(98%)	3~(2%)	53	84
1	В	145/165~(88%)	141 (97%)	4 (3%)	43	77
1	С	141/165~(86%)	131 (93%)	10 (7%)	14	39
1	D	137/165~(83%)	131 (96%)	6 (4%)	28	61
1	Ε	140/165~(85%)	130~(93%)	10 (7%)	14	39
1	F	138/165~(84%)	134 (97%)	4 (3%)	42	76
1	G	145/165~(88%)	136 (94%)	9 (6%)	18	47
1	Н	141/165~(86%)	133 (94%)	8 (6%)	20	50
1	Ι	144/165~(87%)	135 (94%)	9~(6%)	18	46
1	J	140/165~(85%)	133~(95%)	7 (5%)	24	56
1	К	141/165~(86%)	136 (96%)	5 (4%)	36	70
1	L	141/165~(86%)	130 (92%)	11 (8%)	12	35
1	М	137/165~(83%)	132 (96%)	5 (4%)	35	69
1	Ν	140/165~(85%)	134 (96%)	6 (4%)	29	62
1	Ο	143/165~(87%)	140 (98%)	3 (2%)	53	84
1	Р	146/165~(88%)	139 (95%)	7 (5%)	25	58
1	Q	141/165~(86%)	133 (94%)	8 (6%)	20	50
1	R	140/165~(85%)	134 (96%)	6 (4%)	29	62

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	S	141/165~(86%)	136~(96%)	5(4%)	36	70
1	Т	139/165~(84%)	134~(96%)	5 (4%)	35	69
1	U	140/165~(85%)	134 (96%)	6 (4%)	29	62
1	V	145/165~(88%)	140 (97%)	5(3%)	37	71
1	W	144/165~(87%)	141 (98%)	3 (2%)	53	84
1	Х	139/165~(84%)	136 (98%)	3 (2%)	52	83
1	Y	136/165~(82%)	131 (96%)	5 (4%)	34	68
1	Ζ	138/165 (84%)	129 (94%)	9 (6%)	17	44
1	a	139/165~(84%)	136 (98%)	3 (2%)	52	83
1	b	144/165~(87%)	137~(95%)	7 (5%)	25	57
2	с	2/2~(100%)	2 (100%)	0	100	100
2	d	2/2~(100%)	2 (100%)	0	100	100
2	е	2/2~(100%)	2 (100%)	0	100	100
2	f	2/2~(100%)	2 (100%)	0	100	100
2	g	2/2~(100%)	2 (100%)	0	100	100
2	h	2/2~(100%)	2 (100%)	0	100	100
2	i	2/2~(100%)	2 (100%)	0	100	100
2	j	2/2~(100%)	2 (100%)	0	100	100
2	k	2/2~(100%)	2 (100%)	0	100	100
2	1	2/2~(100%)	2 (100%)	0	100	100
2	m	2/2~(100%)	2 (100%)	0	100	100
2	n	2/2~(100%)	2 (100%)	0	100	100
2	О	2/2~(100%)	2 (100%)	0	100	100
2	р	2/2~(100%)	2 (100%)	0	100	100
2	q	2/2~(100%)	2 (100%)	0	100	100
2	r	2/2~(100%)	2 (100%)	0	100	100
2	\mathbf{t}	2/2~(100%)	2 (100%)	0	100	100
2	u	2/2~(100%)	2 (100%)	0	100	100
2	V	2/2~(100%)	2 (100%)	0	100	100
2	W	2/2~(100%)	2 (100%)	0	100	100
All	All	3987/4660~(86%)	3815 (96%)	172 (4%)	29	62

Mol	Chain	Res	Type
1	А	53	GLU
1	А	144	LEU
1	А	181	GLU
1	В	1	ASN
1	В	120	MET
1	В	168	THR
1	В	172	ASN
1	С	5	THR
1	С	18	ASP
1	С	33	SER
1	С	36	ASP
1	С	56	GLU
1	С	69	SER
1	С	78	ASP
1	С	82	PHE
1	С	123	GLN
1	С	169	ASP
1	D	5	THR
1	D	29	ILE
1	D	37	ASP
1	D	60	SER
1	D	97	SER
1	D	155	GLU
1	Е	5	THR
1	Е	17	TYR
1	Е	81	GLN
1	Е	120	MET
1	Е	122	HIS
1	Е	141	ARG
1	Е	153	LEU
1	Е	167	ASP
1	Е	169	ASP
1	Е	182	TYR
1	F	5	THR
1	F	26	ASP
1	F	170	ARG
1	F	172	ASN
1	G	2	LEU
1	G	18	ASP
1	G	21	SER
1	G	82	PHE
T	<u> </u>		

All (172) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	G	144	LEU
1	G	147	ASP
1	G	149	LEU
1	G	169	ASP
1	Н	81	GLN
1	Н	107	GLU
1	Н	108	LYS
1	Н	118	GLU
1	Н	147	ASP
1	Н	148	LYS
1	Н	174	LYS
1	Н	185	ILE
1	Ι	22	ARG
1	Ι	57	LYS
1	Ι	88	SER
1	Ι	117	SER
1	Ι	120	MET
1	Ι	124	PRO
1	Ι	125	LEU
1	Ι	165	GLU
1	Ι	169	ASP
1	J	36	ASP
1	J	41	ASN
1	J	43	ILE
1	J	140	LYS
1	J	143	LEU
1	J	156	ARG
1	J	159	GLN
1	K	28	ILE
1	К	37	ASP
1	K	69	SER
1	Κ	84	LYS
1	Κ	147	ASP
1	L	5	THR
1	L	17	TYR
1	L	94	MET
1	L	97	SER
1	L	116	ASN
1	L	141	ARG
1	L	159	GLN
1	L	168	THR
1	L	171	ASP

Mol	Chain	Res	Type
1	L	180	LEU
1	L	181	GLU
1	М	17	TYR
1	М	77	TYR
1	М	97	SER
1	М	120	MET
1	М	148	LYS
1	Ν	5	THR
1	Ν	30	MET
1	Ν	60	SER
1	Ν	82	PHE
1	Ν	144	LEU
1	Ν	159	GLN
1	Ο	31	LEU
1	0	149	LEU
1	0	173	PHE
1	Р	31	LEU
1	Р	120	MET
1	Р	140	LYS
1	Р	152	VAL
1	Р	165	GLU
1	Р	166	ARG
1	Р	169	ASP
1	Q	33	SER
1	Q	36	ASP
1	Q	43	ILE
1	Q	56	GLU
1	Q	146	ARG
1	Q	147	ASP
1	Q	156	ARG
1	Q	162	GLU
1	R	3	ILE
1	R	5	THR
1	R	60	SER
1	R	147	ASP
1	R	169	ASP
1	R	172	ASN
1	S	5	THR
1	S	17	TYR
1	S	84	LYS
1	S	116	ASN
1	S	180	LEU

Mol	Chain	Res	Type
1	Т	2	LEU
1	Т	5	THR
1	Т	57	LYS
1	Т	84	LYS
1	Т	151	LYS
1	U	2	LEU
1	U	5	THR
1	U	15	ARG
1	U	21	SER
1	U	82	PHE
1	U	169	ASP
1	V	25	LYS
1	V	30	MET
1	V	147	ASP
1	V	166	ARG
1	V	173	PHE
1	W	2	LEU
1	W	86	LYS
1	W	147	ASP
1	Х	141	ARG
1	Х	151	LYS
1	Х	169	ASP
1	Y	18	ASP
1	Y	57	LYS
1	Y	144	LEU
1	Y	155	GLU
1	Y	175	SER
1	Ζ	5	THR
1	Z	17	TYR
1	Ζ	22	ARG
1	Z	140	LYS
1	Z	141	ARG
1	Z	151	LYS
1	Z	156	ARG
1	Ζ	175	SER
1	Z	182	TYR
1	a	26	ASP
1	a	155	GLU
1	a	175	SER
1	b	2	LEU
1	b	5	THR
1	b	82	PHE

Continued from previous page...

Mol	Chain	Res	Type
1	b	117	SER
1	b	123	GLN
1	b	141	ARG
1	b	147	ASP

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

60 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Bos	Link	Bo	ond leng	ths	B	ond ang	les
WIOI	Type	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	WFP	u	2	2	12,13,14	0.98	0	14,17,19	2.24	6 (42%)
2	WFP	i	2	2	12,13,14	0.99	0	14,17,19	1.87	5 (35%)
2	WFP	t	2	2	12,13,14	0.94	0	14,17,19	1.61	4 (28%)
2	YCP	d	5	2	6,8,9	1.59	1 (16%)	5,9,11	3.02	3 (60%)
2	WFP	r	2	2	12,13,14	0.88	0	14,17,19	2.27	6 (42%)
2	WFP	v	2	2	12,13,14	1.01	0	14,17,19	1.72	4 (28%)
2	WFP	f	2	2	12,13,14	0.92	0	14,17,19	2.21	6 (42%)
2	WFP	j	2	2	12,13,14	1.05	1 (8%)	14,17,19	2.18	6 (42%)
2	WFP	q	2	2	12,13,14	0.81	0	14,17,19	1.95	6 (42%)
2	YCP	i	5	2	6,8,9	1.52	1 (16%)	5,9,11	3.02	3 (60%)
2	MP8	е	7	2	5,8,9	<mark>5.79</mark>	3 (60%)	3,10,12	1.59	1 (33%)
2	MP8	1	7	2	5,8,9	5.83	3 (60%)	3,10,12	1.77	1 (33%)
2	MP8	r	7	2	5,8,9	5.68	3 (60%)	3,10,12	1.43	1 (33%)

Mal	Turne	Chain	Dec	Timle	Bo	Bond lengths		Bond angles		
NIOI	туре	Chain	Res	LINK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
2	MP8	g	7	2	$5,\!8,\!9$	<mark>5.69</mark>	3 (60%)	3,10,12	1.95	1 (33%)
2	MP8	m	7	2	5, 8, 9	5.71	3 (60%)	3,10,12	0.84	0
2	MP8	с	7	2	$5,\!8,\!9$	5.77	3 (60%)	3,10,12	1.32	0
2	WFP	d	2	2	12,13,14	1.10	0	14,17,19	1.64	4 (28%)
2	WFP	р	2	2	12,13,14	1.03	0	14,17,19	1.62	2 (14%)
2	WFP	W	2	2	12,13,14	1.00	0	14,17,19	1.55	3 (21%)
2	MP8	h	7	2	5,8,9	<mark>5.91</mark>	3 (60%)	3,10,12	1.02	0
2	MP8	n	7	2	5,8,9	5.70	3 (60%)	3,10,12	1.44	1 (33%)
2	MP8	t	7	2	5, 8, 9	5.82	3 (60%)	3,10,12	1.56	1 (33%)
2	YCP	r	5	2	6,8,9	1.48	1 (16%)	5,9,11	3.08	3 (60%)
2	MP8	j	7	2	5, 8, 9	<mark>5.83</mark>	3 (60%)	3,10,12	2.05	2 (66%)
2	MP8	V	7	2	5, 8, 9	5.75	3 (60%)	3,10,12	0.67	0
2	YCP	j	5	2	6,8,9	1.77	1 (16%)	5,9,11	1.50	2 (40%)
2	YCP	h	5	2	6,8,9	1.56	1 (16%)	5,9,11	2.48	3 (60%)
2	YCP	t	5	2	6,8,9	1.56	1 (16%)	5,9,11	2.63	2 (40%)
2	WFP	0	2	2	12,13,14	0.82	0	14,17,19	2.23	6 (42%)
2	WFP	е	2	2	12,13,14	1.19	1 (8%)	14,17,19	2.07	5 (35%)
2	YCP	u	5	2	6,8,9	1.76	2 (33%)	5,9,11	1.55	1 (20%)
2	WFP	h	2	2	12,13,14	1.10	0	14,17,19	1.74	6 (42%)
2	YCP	W	5	2	6,8,9	1.56	1 (16%)	5,9,11	2.09	2 (40%)
2	YCP	n	5	2	6,8,9	1.63	1 (16%)	5,9,11	1.74	2 (40%)
2	MP8	i	7	2	5,8,9	5.76	3 (60%)	3,10,12	1.51	1 (33%)
2	MP8	d	7	2	5, 8, 9	5.82	3 (60%)	3,10,12	1.37	1 (33%)
2	YCP	V	5	2	6,8,9	1.79	2 (33%)	5,9,11	0.92	0
2	YCP	q	5	2	6,8,9	1.52	1 (16%)	5,9,11	3.04	3 (60%)
2	WFP	1	2	2	12,13,14	1.15	1 (8%)	14,17,19	2.83	9 (64%)
2	YCP	р	5	2	6,8,9	1.76	2 (33%)	5,9,11	1.86	1 (20%)
2	YCP	k	5	2	6,8,9	1.66	1 (16%)	5,9,11	1.77	2 (40%)
2	WFP	n	2	2	12,13,14	0.89	0	14,17,19	1.78	7 (50%)
2	YCP	m	5	2	6,8,9	1.61	1 (16%)	5,9,11	2.26	2 (40%)
2	YCP	с	5	2	6,8,9	1.68	1 (16%)	5,9,11	2.02	3 (60%)
2	YCP	е	5	2	6,8,9	1.66	2 (33%)	5,9,11	1.54	1 (20%)
2	WFP	с	2	2	12,13,14	0.91	1 (8%)	14,17,19	2.82	8 (57%)
2	MP8	W	7	2	5,8,9	5.85	3 (60%)	3,10,12	1.98	2 (66%)
2	YCP	О	5	2	6,8,9	1.72	1 (16%)	5,9,11	1.92	2 (40%)

Mal	Tuno	ma Chain Bag Link		Bo	Bond lengths			Bond angles		
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
2	MP8	u	7	2	$5,\!8,\!9$	5.90	3 (60%)	3,10,12	2.16	2 (66%)
2	YCP	g	5	2	$6,\!8,\!9$	1.55	1 (16%)	5, 9, 11	2.80	2 (40%)
2	YCP	1	5	2	$6,\!8,\!9$	1.58	1 (16%)	5, 9, 11	2.43	3 (60%)
2	WFP	k	2	2	12,13,14	0.87	0	14,17,19	1.80	4 (28%)
2	WFP	m	2	2	12,13,14	0.83	1 (8%)	14,17,19	1.93	5 (35%)
2	MP8	f	7	2	$5,\!8,\!9$	<mark>5.93</mark>	3 (60%)	3,10,12	1.31	1 (33%)
2	MP8	k	7	2	$5,\!8,\!9$	5.73	3 (60%)	3,10,12	1.58	1 (33%)
2	MP8	q	7	2	$5,\!8,\!9$	5.81	3 (60%)	3,10,12	1.62	0
2	YCP	f	5	2	6,8,9	1.68	1 (16%)	5,9,11	1.44	1 (20%)
2	WFP	g	2	2	12,13,14	0.81	0	14,17,19	1.51	2 (14%)
2	MP8	р	7	2	$5,\!8,\!9$	5.52	3 (60%)	3,10,12	0.60	0
2	MP8	О	7	2	$5,\!8,\!9$	5.89	3 (60%)	3,10,12	2.06	2 (66%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	WFP	u	2	2	-	0/5/6/8	0/1/1/1
2	WFP	i	2	2	-	2/5/6/8	0/1/1/1
2	WFP	\mathbf{t}	2	2	-	1/5/6/8	0/1/1/1
2	YCP	d	5	2	-	0/1/10/12	0/1/1/1
2	WFP	r	2	2	-	2/5/6/8	0/1/1/1
2	WFP	V	2	2	-	2/5/6/8	0/1/1/1
2	WFP	f	2	2	-	1/5/6/8	0/1/1/1
2	WFP	j	2	2	-	2/5/6/8	0/1/1/1
2	WFP	q	2	2	-	1/5/6/8	0/1/1/1
2	YCP	i	5	2	-	0/1/10/12	0/1/1/1
2	MP8	е	7	2	-	0/0/11/13	0/1/1/1
2	MP8	l	7	2	-	0/0/11/13	0/1/1/1
2	MP8	r	7	2	-	0/0/11/13	0/1/1/1
2	MP8	g	7	2	-	0/0/11/13	0/1/1/1
2	MP8	m	7	2	-	0/0/11/13	0/1/1/1
2	MP8	с	7	2	-	0/0/11/13	0/1/1/1
2	WFP	d	2	2	-	2/5/6/8	0/1/1/1
2	WFP	р	2	2	-	2/5/6/8	0/1/1/1
2	WFP	W	2	2	-	1/5/6/8	0/1/1/1

7	P	8	1

	nuea fro	m previoi	is page	···		— •	D'
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	MP8	h	7	2	-	0/0/11/13	0/1/1/1
2	MP8	n	7	2	-	0/0/11/13	0/1/1/1
2	MP8	t	7	2	-	0/0/11/13	0/1/1/1
2	YCP	r	5	2	-	0/1/10/12	0/1/1/1
2	MP8	j	7	2	-	0/0/11/13	0/1/1/1
2	MP8	V	7	2	-	0/0/11/13	0/1/1/1
2	YCP	j	5	2	-	0/1/10/12	$\frac{1/1}{1/1}$
2	YCP	h	5	2	-	0/1/10/12	0/1/1/1
2	YCP	t	5	2	-	0/1/10/12	0/1/1/1
2	WFP	0	2	2	-	2/5/6/8	0/1/1/1
2	WFP	е	2	2	-	1/5/6/8	0/1/1/1
2	YCP	u	5	2	-	0/1/10/12	1/1/1/1
2	WFP	h	2	2	-	2/5/6/8	0/1/1/1
2	YCP	W	5	2	-	0/1/10/12	0/1/1/1
2	YCP	n	5	2	-	0/1/10/12	0/1/1/1
2	MP8	i	7	2	-	0/0/11/13	0/1/1/1
2	MP8	d	7	2	-	0/0/11/13	0/1/1/1
2	YCP	V	5	2	-	1/1/10/12	1/1/1/1
2	YCP	q	5	2	-	0/1/10/12	0/1/1/1
2	WFP	1	2	2	-	2/5/6/8	0/1/1/1
2	YCP	р	5	2	-	0/1/10/12	1/1/1/1
2	YCP	k	5	2	-	0/1/10/12	1/1/1/1
2	WFP	n	2	2	-	0/5/6/8	0/1/1/1
2	YCP	m	5	2	_	0/1/10/12	0/1/1/1
2	YCP	с	5	2	-	1/1/10/12	0/1/1/1
2	YCP	е	5	2	-	0/1/10/12	1/1/1/1
2	WFP	с	2	2	-	2/5/6/8	0/1/1/1
2	MP8	W	7	2	-	0/0/11/13	0/1/1/1
2	YCP	0	5	2	-	0/1/10/12	1/1/1/1
2	MP8	u	7	2	_	0/0/11/13	0/1/1/1
2	YCP	g	5	2	-	0/1/10/12	0/1/1/1
2	YCP	1	5	2	_	0/1/10/12	0/1/1/1
2	WFP	k	2	2	-	0/5/6/8	0/1/1/1
2	WFP	m	2	2	-	2/5/6/8	0/1/1/1
2	MP8	f	7	2	_	0/0/11/13	0/1/1/1
2	MP8	k	7	2	-	0/0/11/13	0/1/1/1
2	MP8	q	7	2	-	0/0/11/13	0/1/1/1
2	YCP	f	5	2	-	0/1/10/12	1/1/1/1
2	WFP	g	2	2	_	1/5/6/8	0/1/1/1
2	MP8	р	7	2	-	0/0/11/13	0/1/1/1
2	MP8	0	7	2	-	0/0/11/13	0/1/1/1

ntin d fr C

7P81

Mal	Chain	Dec	Tune	Atoma	7	Obcowrod(Å)	Ideal(Å)
	b	nes 7	MD ₀		10.99	1.20	$1 \text{ tueal}(\mathbf{A})$
	11	7	MD9	CD-CA	-10.62	1.30	1.04
	0	7	MP8 MD9	CD-CA	-10.81	1.30	1.04
2	j	1	MP8 MD9	CB-CA	-10.79	1.30	1.54
2	İ	(MP8	CB-CA	-10.78	1.30	1.54
2	W	7	MP8	CB-CA	-10.77	1.30	1.54
2	u	7	MP8	CB-CA	-10.76	1.30	1.54
2	t	7	MP8	CB-CA	-10.63	1.31	1.54
2	q	7	MP8	CB-CA	-10.58	1.31	1.54
2	С	7	MP8	CB-CA	-10.53	1.31	1.54
2	i	7	MP8	CB-CA	-10.53	1.31	1.54
2	е	7	MP8	CB-CA	-10.52	1.31	1.54
2	1	7	MP8	CB-CA	-10.49	1.31	1.54
2	d	7	MP8	CB-CA	-10.46	1.31	1.54
2	V	7	MP8	CB-CA	-10.36	1.31	1.54
2	n	7	MP8	CB-CA	-10.27	1.31	1.54
2	g	7	MP8	CB-CA	-10.25	1.31	1.54
2	m	7	MP8	CB-CA	-10.21	1.32	1.54
2	k	7	MP8	CB-CA	-10.15	1.32	1.54
2	р	7	MP8	CB-CA	-10.08	1.32	1.54
2	r	7	MP8	CB-CA	-10.07	1.32	1.54
2	f	7	MP8	O-C	6.11	1.44	1.19
2	1	7	MP8	O-C	6.11	1.44	1.19
2	d	7	MP8	O-C	6.08	1.44	1.19
2	\mathbf{t}	7	MP8	O-C	6.04	1.44	1.19
2	k	7	MP8	O-C	6.03	1.44	1.19
2	h	7	MP8	O-C	6.00	1.43	1.19
2	е	7	MP8	O-C	5.99	1.43	1.19
2	r	7	MP8	O-C	5.99	1.43	1.19
2	m	7	MP8	O-C	5.98	1.43	1.19
2	u	7	MP8	O-C	5.87	1.43	1.19
2	V	7	MP8	O-C	5.86	1.43	1.19
2	q	7	MP8	O-C	5.86	1.43	1.19
2	i	7	MP8	O-C	5.84	1.43	1.19
2	0	7	MP8	O-C	5.83	1.43	1.19
2	с	7	MP8	O-C	5.78	1.43	1.19
2	g	7	MP8	O-C	5.68	1.42	1.19
2	j	7	MP8	O-C	5.68	1.42	1.19
2	n	7	MP8	O-C	5.63	1.42	1.19
2	W	7	MP8	O-C	5.58	1.42	1.19
2	р	7	MP8	O-C	5.50	1.41	1.19
2	r	7	MP8	CD-N	-4.72	1.30	1.47
2	n	7	MP8	CD-N	-4.70	1.30	1.47

All (89) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	g	7	MP8	CD-N	-4.69	1.30	1.47
2	k	7	MP8	CD-N	-4.66	1.30	1.47
2	u	7	MP8	CD-N	-4.65	1.30	1.47
2	W	7	MP8	CD-N	-4.64	1.30	1.47
2	V	7	MP8	CD-N	-4.58	1.31	1.47
2	0	7	MP8	CD-N	-4.56	1.31	1.47
2	q	7	MP8	CD-N	-4.54	1.31	1.47
2	d	7	MP8	CD-N	-4.52	1.31	1.47
2	1	7	MP8	CD-N	-4.43	1.31	1.47
2	j	7	MP8	CD-N	-4.43	1.31	1.47
2	m	7	MP8	CD-N	-4.39	1.31	1.47
2	h	7	MP8	CD-N	-4.38	1.31	1.47
2	с	7	MP8	CD-N	-4.37	1.31	1.47
2	f	7	MP8	CD-N	-4.36	1.31	1.47
2	е	7	MP8	CD-N	-4.34	1.31	1.47
2	i	7	MP8	CD-N	-4.32	1.32	1.47
2	t	7	MP8	CD-N	-4.24	1.32	1.47
2	р	7	MP8	CD-N	-4.20	1.32	1.47
2	j	5	YCP	CG-CB	-3.49	1.44	1.53
2	0	5	YCP	CG-CB	-3.36	1.44	1.53
2	р	5	YCP	CG-CB	-3.34	1.44	1.53
2	V	5	YCP	CG-CB	-3.33	1.44	1.53
2	u	5	YCP	CG-CB	-3.32	1.44	1.53
2	m	5	YCP	CG-CB	-3.28	1.44	1.53
2	f	5	YCP	CG-CB	-3.26	1.44	1.53
2	с	5	YCP	CG-CB	-3.25	1.44	1.53
2	n	5	YCP	CG-CB	-3.25	1.44	1.53
2	k	5	YCP	CG-CB	-3.18	1.44	1.53
2	е	5	YCP	CG-CB	-3.17	1.44	1.53
2	i	5	YCP	CG-CB	-3.12	1.45	1.53
2	W	5	YCP	CG-CB	-3.08	1.45	1.53
2	g	5	YCP	CG-CB	-3.07	1.45	1.53
2	t	5	YCP	CG-CB	-3.05	1.45	1.53
2	l	5	YCP	CG-CB	-3.05	1.45	1.53
2	r	5	YCP	CG-CB	-3.02	1.45	1.53
2	d	5	YCP	CG-CB	-2.99	1.45	1.53
2	h	5	YCP	CG-CB	-2.96	1.45	1.53
2	q	5	YCP	CG-CB	-2.88	1.45	1.53
2	с	2	WFP	CZ-CE1	2.28	1.41	1.37
2	е	2	WFP	CZ-CE1	2.19	1.41	1.37
2	v	5	YCP	CE-N	2.17	1.53	1.47
2	u	5	YCP	CE-N	2.16	1.53	1.47

7P81	
------	--

• • • • • •	- · · · · · J · · · · · · · · · · · · ·									
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)			
2	j	2	WFP	CZ-CE1	2.05	1.41	1.37			
2	m	2	WFP	CD2-CE2	2.04	1.41	1.37			
2	р	5	YCP	CE-N	2.03	1.52	1.47			
2	l	2	WFP	CZ-CE1	2.00	1.41	1.37			
2	е	5	YCP	CE-N	2.00	1.52	1.47			

All (163) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	с	2	WFP	CG-CB-CA	-6.58	100.77	114.10
2	f	2	WFP	CB-CA-C	-6.03	100.16	111.47
2	j	2	WFP	CG-CB-CA	-5.29	103.40	114.10
2	q	5	YCP	CG-CB-CA	5.05	118.47	110.98
2	u	2	WFP	CG-CB-CA	-4.97	104.04	114.10
2	r	5	YCP	CD-CG-CB	4.89	121.39	111.42
2	i	5	YCP	CD-CG-CB	4.70	121.01	111.42
2	d	5	YCP	CD-CG-CB	4.54	120.68	111.42
2	r	2	WFP	CG-CB-CA	-4.51	104.96	114.10
2	0	2	WFP	CB-CA-C	-4.47	103.09	111.47
2	0	2	WFP	CG-CB-CA	-4.46	105.06	114.10
2	1	2	WFP	CD1-CE1-CZ	-4.35	118.03	123.52
2	r	5	YCP	CG-CB-CA	4.16	117.16	110.98
2	m	5	YCP	CD-CG-CB	4.13	119.83	111.42
2	g	5	YCP	CG-CB-CA	4.11	117.09	110.98
2	1	2	WFP	F2-CE2-CD2	4.09	124.10	118.25
2	g	5	YCP	CD-CG-CB	4.07	119.72	111.42
2	t	5	YCP	CD-CG-CB	4.00	119.57	111.42
2	1	2	WFP	CB-CG-CD1	-3.97	113.63	120.44
2	r	2	WFP	CB-CA-C	-3.96	104.04	111.47
2	i	5	YCP	CG-CB-CA	3.96	116.86	110.98
2	m	2	WFP	CG-CB-CA	-3.92	106.16	114.10
2	q	5	YCP	CD-CG-CB	3.89	119.34	111.42
2	V	2	WFP	CB-CA-C	-3.83	104.29	111.47
2	d	5	YCP	CG-CB-CA	3.83	116.66	110.98
2	k	2	WFP	CG-CB-CA	-3.77	106.47	114.10
2	1	2	WFP	CE2-CZ-CE1	3.77	121.99	116.13
2	i	2	WFP	CG-CB-CA	-3.76	106.48	114.10
2	1	2	WFP	CB-CA-C	-3.75	104.45	111.47
2	l	5	YCP	CD-CG-CB	3.66	118.88	111.42
2	р	2	WFP	CB-CA-C	-3.65	104.63	111.47
2	t	5	YCP	CG-CB-CA	3.51	116.19	110.98
2	е	2	WFP	CE2-CZ-CE1	3.48	121.55	116.13

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
2	е	2	WFP	CD2-CE2-CZ	-3.47	119.14	123.52
2	е	2	WFP	CD1-CE1-CZ	-3.44	119.17	123.52
2	с	2	WFP	CB-CG-CD2	-3.43	114.55	120.44
2	h	5	YCP	CG-CB-CA	3.42	116.06	110.98
2	с	2	WFP	CD2-CE2-CZ	-3.38	119.25	123.52
2	W	5	YCP	CG-CB-CA	3.30	115.89	110.98
2	с	2	WFP	CD2-CG-CD1	3.29	123.49	118.98
2	g	7	MP8	O-C-CA	-3.26	116.23	124.78
2	u	2	WFP	CD2-CE2-CZ	-3.23	119.44	123.52
2	k	2	WFP	CD2-CE2-CZ	-3.21	119.47	123.52
2	h	5	YCP	CD-CG-CB	3.21	117.95	111.42
2	q	2	WFP	CD2-CE2-CZ	-3.09	119.61	123.52
2	h	2	WFP	CG-CB-CA	-3.05	107.92	114.10
2	с	5	YCP	CD-CG-CB	3.03	117.60	111.42
2	m	2	WFP	F2-CE2-CD2	3.01	122.56	118.25
2	р	5	YCP	O-C-CA	-3.00	116.93	124.78
2	с	2	WFP	CB-CA-C	-2.99	105.86	111.47
2	u	2	WFP	CE2-CZ-CE1	2.99	120.79	116.13
2	q	2	WFP	CG-CB-CA	-2.97	108.08	114.10
2	W	5	YCP	CD-CG-CB	2.97	117.46	111.42
2	q	2	WFP	CB-CA-C	-2.89	106.05	111.47
2	с	2	WFP	CG-CD1-CE1	-2.85	116.23	118.81
2	d	2	WFP	CB-CA-C	-2.84	106.14	111.47
2	r	2	WFP	CD2-CE2-CZ	-2.83	119.94	123.52
2	j	2	WFP	CB-CA-C	-2.83	106.17	111.47
2	W	2	WFP	CD2-CE2-CZ	-2.82	119.95	123.52
2	t	2	WFP	CD1-CE1-CZ	-2.82	119.96	123.52
2	l	5	YCP	CG-CB-CA	2.79	115.12	110.98
2	h	5	YCP	O-C-CA	-2.79	117.47	124.78
2	u	2	WFP	CD1-CE1-CZ	-2.78	120.01	123.52
2	с	2	WFP	F2-CE2-CZ	2.78	122.22	118.25
2	m	2	WFP	CB-CA-C	-2.75	106.30	111.47
2	h	2	WFP	F1-CE1-CD1	$2.7\overline{2}$	122.14	118.25
2	0	5	YCP	O-C-CA	-2.71	117.66	124.78
2	1	2	WFP	CD2-CE2-CZ	-2.69	120.12	123.52
2	r	2	WFP	CD2-CG-CD1	2.69	122.67	118.98
2	g	2	WFP	CB-CA-C	-2.66	106.48	111.47
2	u	7	MP8	O-C-CA	-2.66	117.82	124.78
2	k	5	YCP	O-C-CA	-2.65	117.84	124.78
2	t	7	MP8	O-C-CA	-2.63	117.88	124.78
2	n	5	YCP	CD-CG-CB	2.62	116.76	111.42
2	j	2	WFP	CD2-CE2-CZ	-2.62	120.21	123.52

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
2	q	2	WFP	CE2-CZ-CE1	2.61	120.19	116.13
2	f	2	WFP	CD2-CE2-CZ	-2.55	120.29	123.52
2	i	2	WFP	CD2-CE2-CZ	-2.55	120.29	123.52
2	n	2	WFP	CD1-CE1-CZ	-2.55	120.30	123.52
2	u	7	MP8	CE-CG-CB	-2.55	107.61	114.05
2	q	2	WFP	CD2-CG-CD1	2.55	122.48	118.98
2	k	7	MP8	O-C-CA	-2.53	118.16	124.78
2	0	5	YCP	CG-CB-CA	2.52	114.72	110.98
2	r	2	WFP	CE2-CZ-CE1	2.52	120.05	116.13
2	f	2	WFP	CD2-CG-CD1	2.52	122.44	118.98
2	d	2	WFP	CD1-CE1-CZ	-2.51	120.35	123.52
2	0	2	WFP	CD2-CG-CD1	2.50	122.41	118.98
2	j	7	MP8	CE-CG-CB	-2.49	107.75	114.05
2	n	2	WFP	CB-CA-C	-2.49	106.81	111.47
2	j	2	WFP	CD2-CG-CD1	2.46	122.36	118.98
2	0	7	MP8	O-C-CA	-2.46	118.34	124.78
2	n	5	YCP	O-C-CA	-2.45	118.35	124.78
2	r	7	MP8	O-C-CA	-2.45	118.35	124.78
2	V	2	WFP	CD1-CE1-CZ	-2.45	120.43	123.52
2	h	2	WFP	F2-CE2-CD2	2.44	121.74	118.25
2	m	5	YCP	CG-CB-CA	2.44	114.60	110.98
2	\mathbf{t}	2	WFP	CG-CB-CA	-2.44	109.16	114.10
2	1	5	YCP	O-C-CA	-2.44	118.39	124.78
2	m	2	WFP	CB-CG-CD1	-2.43	116.26	120.44
2	0	2	WFP	CD2-CE2-CZ	-2.43	120.45	123.52
2	i	7	MP8	O-C-CA	-2.41	118.45	124.78
2	t	2	WFP	CE2-CZ-CE1	2.40	119.87	116.13
2	u	5	YCP	CG-CB-CA	2.39	114.53	110.98
2	n	2	WFP	F1-CE1-CD1	2.39	121.66	118.25
2	е	5	YCP	O-C-CA	-2.38	118.54	124.78
2	W	7	MP8	CE-CG-CB	-2.38	108.03	114.05
2	i	2	WFP	CB-CA-C	-2.38	107.01	111.47
2	g	2	WFP	CD2-CE2-CZ	-2.37	120.53	123.52
2	1	7	MP8	O-C-CA	-2.36	118.59	124.78
2	d	5	YCP	O-C-CA	-2.36	118.59	124.78
2	0	7	MP8	CE-CG-CB	-2.36	108.08	114.05
2	d	2	WFP	CD2-CE2-CZ	-2.36	120.54	123.52
2	h	2	WFP	CD2-CE2-CZ	-2.36	120.54	123.52
2	1	2	WFP	F1-CE1-CD1	2.35	121.61	118.25
2	j	5	YCP	O-C-CA	-2.34	118.65	124.78
2	r	5	YCP	O-C-CA	-2.34	118.65	124.78
2	с	2	WFP	CE2-CZ-CE1	2.34	119.77	116.13

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	е	2	WFP	CG-CB-CA	-2.33	109.39	114.10
2	i	5	YCP	O-C-CA	-2.32	118.71	124.78
2	n	7	MP8	O-C-CA	-2.32	118.71	124.78
2	k	2	WFP	CE2-CZ-CE1	2.31	119.73	116.13
2	n	2	WFP	CE2-CZ-CE1	2.31	119.73	116.13
2	0	2	WFP	CE2-CZ-CE1	2.31	119.72	116.13
2	i	2	WFP	F1-CE1-CD1	2.31	121.55	118.25
2	V	2	WFP	CD2-CE2-CZ	-2.30	120.62	123.52
2	k	5	YCP	CG-CB-CA	2.29	114.38	110.98
2	j	7	MP8	O-C-CA	-2.28	118.79	124.78
2	р	2	WFP	CD2-CE2-CZ	-2.28	120.64	123.52
2	n	2	WFP	CD2-CG-CD1	2.27	122.10	118.98
2	l	2	WFP	CB-CG-CD2	2.27	124.33	120.44
2	h	2	WFP	CE2-CZ-CE1	2.26	119.65	116.13
2	d	7	MP8	O-C-CA	-2.26	118.86	124.78
2	n	2	WFP	CG-CB-CA	-2.26	109.53	114.10
2	f	2	WFP	CE2-CZ-CE1	2.25	119.64	116.13
2	f	7	MP8	O-C-CA	-2.24	118.90	124.78
2	d	2	WFP	CE2-CZ-CE1	2.23	119.61	116.13
2	0	2	WFP	CD1-CE1-CZ	-2.22	120.71	123.52
2	l	2	WFP	CD2-CG-CD1	2.22	122.03	118.98
2	f	5	YCP	O-C-CA	-2.21	118.99	124.78
2	j	2	WFP	CE2-CZ-CE1	2.21	119.56	116.13
2	u	2	WFP	F1-CE1-CD1	2.21	121.41	118.25
2	t	2	WFP	CD2-CE2-CZ	-2.19	120.75	123.52
2	q	5	YCP	O-C-CA	-2.19	119.04	124.78
2	m	2	WFP	CD2-CE2-CZ	-2.19	120.75	123.52
2	е	2	WFP	CD2-CG-CD1	2.18	121.98	118.98
2	е	7	MP8	O-C-CA	-2.17	119.10	124.78
2	W	7	MP8	O-C-CA	-2.16	119.12	124.78
2	W	2	WFP	CB-CA-C	-2.15	$107.4\overline{3}$	111.47
2	r	2	WFP	CD1-CE1-CZ	-2.13	120.82	123.52
2	f	2	WFP	CD1-CE1-CZ	-2.13	120.83	123.52
2	f	2	WFP	$F2-\overline{CE2}-CZ$	2.11	$1\overline{21.27}$	118.25
2	V	2	WFP	CE2-CZ-CE1	2.11	119.42	116.13
2	n	2	WFP	CD2-CE2-CZ	-2.10	$1\overline{20.87}$	123.52
2	W	2	WFP	CE2-CZ-CE1	2.08	119.37	116.13
2	j	2	WFP	CD1-CE1-CZ	-2.05	120.92	123.52
2	j	5	YCP	CG-CB-CA	2.05	114.03	110.98
2	h	2	WFP	CD1-CE1-CZ	-2.04	120.94	123.52
2	i	2	WFP	CE2-CZ-CE1	2.03	119.29	116.13
2	с	5	YCP	CG-CB-CA	2.02	113.97	110.98

7P81	
------	--

Mol	Chain	Res	Type	Atoms	Ζ	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
2	u	2	WFP	CB-CG-CD2	-2.02	116.97	120.44
2	q	2	WFP	CD1-CE1-CZ	-2.01	120.98	123.52
2	с	5	YCP	O-C-CA	-2.01	119.52	124.78
2	k	2	WFP	F2-CE2-CD2	2.01	121.12	118.25

There are no chirality outliers.

All (30) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	V	5	YCP	O-C-CA-CB
2	с	2	WFP	N-CA-CB-CG
2	е	2	WFP	N-CA-CB-CG
2	g	2	WFP	N-CA-CB-CG
2	h	2	WFP	N-CA-CB-CG
2	m	2	WFP	N-CA-CB-CG
2	q	2	WFP	N-CA-CB-CG
2	1	2	WFP	C-CA-CB-CG
2	m	2	WFP	C-CA-CB-CG
2	с	5	YCP	O-C-CA-CB
2	d	2	WFP	N-CA-CB-CG
2	f	2	WFP	N-CA-CB-CG
2	i	2	WFP	N-CA-CB-CG
2	j	2	WFP	N-CA-CB-CG
2	1	2	WFP	N-CA-CB-CG
2	0	2	WFP	N-CA-CB-CG
2	р	2	WFP	N-CA-CB-CG
2	r	2	WFP	N-CA-CB-CG
2	t	2	WFP	N-CA-CB-CG
2	V	2	WFP	N-CA-CB-CG
2	W	2	WFP	N-CA-CB-CG
2	с	2	WFP	C-CA-CB-CG
2	d	2	WFP	C-CA-CB-CG
2	h	2	WFP	C-CA-CB-CG
2	i	2	WFP	C-CA-CB-CG
2	j	2	WFP	C-CA-CB-CG
2	0	2	WFP	C-CA-CB-CG
2	р	2	WFP	C-CA-CB-CG
2	r	2	WFP	C-CA-CB-CG
2	V	2	WFP	C-CA-CB-CG

All (8) ring outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	0	5	YCP	CA-CB-CD-CE-CG-N
2	р	5	YCP	CA-CB-CD-CE-CG-N
2	k	5	YCP	CA-CB-CD-CE-CG-N
2	j	5	YCP	CA-CB-CD-CE-CG-N
2	V	5	YCP	CA-CB-CD-CE-CG-N
2	е	5	YCP	CA-CB-CD-CE-CG-N
2	f	5	YCP	CA-CB-CD-CE-CG-N
2	u	5	YCP	CA-CB-CD-CE-CG-N

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$<$ RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	Q < 0.9
1	А	172/199~(86%)	0.17	2 (1%) 79 73	30, 45, 71, 78	0
1	В	176/199~(88%)	0.02	0 100 100	30, 44, 70, 87	0
1	С	172/199~(86%)	0.62	14 (8%) 12 6	42, 61, 85, 92	0
1	D	164/199~(82%)	0.68	12 (7%) 15 8	36, 62, 82, 91	0
1	E	174/199~(87%)	0.67	17 (9%) 7 4	42, 67, 84, 88	0
1	F	169/199~(84%)	-0.02	1 (0%) 89 86	30, 42, 61, 73	0
1	G	177/199~(88%)	0.07	2 (1%) 80 75	28, 38, 59, 77	0
1	Н	172/199~(86%)	0.71	14 (8%) 12 6	45, 68, 84, 91	0
1	Ι	177/199~(88%)	0.55	17 (9%) 8 4	30, 59, 79, 95	0
1	J	173/199~(86%)	0.41	7 (4%) 38 28	36, 54, 74, 84	0
1	K	171/199~(85%)	0.21	2 (1%) 79 73	32, 46, 67, 78	0
1	L	171/199~(85%)	0.40	14 (8%) 11 6	42, 57, 84, 98	0
1	М	168/199~(84%)	0.49	11 (6%) 18 11	43, 67, 84, 102	0
1	Ν	168/199~(84%)	0.90	23~(13%) 3 1	49, 72, 87, 96	0
1	Ο	174/199~(87%)	0.22	6 (3%) 45 35	28, 50, 74, 85	0
1	Р	177/199~(88%)	0.03	1 (0%) 89 86	26, 43, 71, 79	0
1	Q	172/199~(86%)	0.22	8 (4%) 31 22	29, 44, 68, 81	0
1	R	168/199~(84%)	0.22	2 (1%) 79 73	29, 41, 63, 72	0
1	S	174/199~(87%)	0.38	12 (6%) 16 10	31, 49, 85, 98	0
1	Т	168/199~(84%)	0.06	3 (1%) 68 61	33, 45, 69, 83	0
1	U	170/199~(85%)	0.18	8 (4%) 31 22	31, 46, 68, 80	0
1	V	$17\overline{5/199}~(87\%)$	0.17	4 (2%) 60 51	35, 47, 69, 84	0
1	W	$17\overline{6/199}~(88\%)$	0.27	6 (3%) 45 35	41, 55, 75, 91	0
1	X	169/199~(84%)	0.46	8 (4%) 31 22	46, 63, 80, 90	0

Conti	nueu jion	i previous page				
Mol	Chain	Analysed	< RSRZ >	$\#RSRZ{>}2$	$OWAB(Å^2)$	Q < 0.9
1	Y	165/199~(82%)	0.68	14 (8%) 10 5	30, 66, 80, 93	0
1	Ζ	169/199~(84%)	0.65	15 (8%) 9 5	43, 67, 86, 99	0
1	a	168/199~(84%)	-0.05	1 (0%) 89 86	33, 45, 63, 77	0
1	b	175/199~(87%)	0.08	3 (1%) 70 63	27, 41, 64, 78	0
2	с	3/7~(42%)	-0.38	0 100 100	40, 40, 46, 50	0
2	d	3/7~(42%)	0.23	0 100 100	53, 53, 60, 62	0
2	е	3/7~(42%)	2.20	2(66%) 0 0	68, 68, 70, 73	0
2	f	3/7~(42%)	0.85	1 (33%) 0 0	55, 55, 56, 71	0
2	g	3/7~(42%)	0.12	0 100 100	47, 47, 49, 53	0
2	h	3/7~(42%)	-0.36	0 100 100	71, 71, 72, 73	0
2	i	3/7~(42%)	0.59	0 100 100	64, 64, 73, 74	0
2	j	3/7~(42%)	-0.14	0 100 100	53, 53, 56, 66	0
2	k	3/7~(42%)	0.26	0 100 100	64, 64, 68, 77	0
2	1	3/7~(42%)	1.45	1 (33%) 0 0	82, 82, 83, 84	0
2	m	3/7~(42%)	-0.19	0 100 100	45, 45, 45, 53	0
2	n	3/7~(42%)	0.25	0 100 100	49, 49, 50, 58	0
2	О	3/7~(42%)	0.00	0 100 100	47, 47, 51, 52	0
2	р	3/7~(42%)	-0.11	0 100 100	45, 45, 51, 56	0
2	q	3/7~(42%)	0.48	0 100 100	52, 52, 52, 56	0
2	r	3/7~(42%)	-0.43	0 100 100	50, 50, 51, 55	0
2	t	3/7~(42%)	0.13	0 100 100	68, 68, 68, 72	0
2	u	3/7~(42%)	0.26	0 100 100	65, 65, 68, 71	0
2	v	3/7~(42%)	0.08	0 100 100	51, 51, 58, 61	0
2	W	3/7~(42%)	-0.38	0 100 100	47, 47, 51, 55	0

All (231) RSRZ outliers are listed below:

4864/5712~(85%)

All

All

Mol	Chain	Res	Type	RSRZ
1	Ν	16	ALA	7.7
1	Y	56	GLU	7.1
1	Н	118	GLU	5.8
1	Y	5	THR	5.7
1	М	155	GLU	5.1

Continued on next page...

0.33

231 (4%)

22

26, 54, 80, 102

0

31

Mol	Chain	Res	Type	RSRZ
1	Ι	161	LEU	5.0
1	S	190	THR	5.0
1	М	56	GLU	4.8
1	Ζ	161	LEU	4.7
1	Y	189	LEU	4.4
1	U	190	THR	4.4
1	Y	86	LYS	4.4
1	Y	158	GLY	4.3
1	N	189	LEU	4.3
1	Ι	14	GLU	4.3
1	U	121	ILE	4.2
1	J	37	ASP	4.0
1	N	190	THR	4.0
1	W	190	THR	4.0
1	С	155	GLU	3.9
1	L	138	ALA	3.9
1	S	162	GLU	3.9
1	М	123	GLN	3.9
1	D	80	MET	3.8
1	Н	190	THR	3.8
1	Q	155	GLU	3.8
1	Е	189	LEU	3.8
1	Ε	92	ILE	3.8
1	D	5	THR	3.8
1	J	17	TYR	3.7
1	Ε	188	ILE	3.7
1	J	137	ILE	3.7
1	Ι	7	ILE	3.7
1	Ν	141	ARG	3.6
1	Ζ	15	ARG	3.6
1	Ζ	190	THR	3.6
1	C	163	VAL	3.6
1	S	173	PHE	3.5
1	Н	185	ILE	3.5
1	Z	167	ASP	3.5
1	W	163	VAL	3.5
1	C	158	GLY	3.5
1	E	86	LYS	3.4
1	Q	$1\overline{2}\overline{4}$	PRO	3.4
1	E	109	GLY	3.4
1	H	112	TYR	3.4
1	Х	87	VAL	3.4

7P81	
------	--

Mol	Chain	Res	Type RSRZ	
1	М	35	ILE	3.4
1	L	173	PHE	3.4
1	Ν	176	ALA	3.3
1	J	123	GLN	3.3
1	Ν	138	ALA	3.3
1	Ζ	158	GLY	3.3
1	А	170	ARG	3.2
1	Q	190	THR	3.2
1	Ι	56	GLU	3.2
1	Ι	15	ARG	3.2
1	С	55	PRO	3.1
1	D	172	ASN	3.1
1	Ζ	145	LEU	3.1
1	Н	187	LYS	3.1
1	U	191	HIS	3.1
1	С	162	GLU	3.1
1	Ι	162	GLU	3.1
1	b	2	LEU	3.1
1	Q	56	GLU	3.1
1	Ν	82	PHE	3.1
1	Ζ	115	PRO	3.1
1	N	172	ASN	3.0
1	Ζ	17	TYR	3.0
1	D	84	LYS	3.0
1	Z	155	GLU	3.0
1	Ι	8	GLU	3.0
1	K	1	ASN	3.0
1	U	172	ASN	3.0
1	Ζ	163	VAL	3.0
1	Y	151	LYS	3.0
1	Е	121	ILE	3.0
2	е	4	PRO	2.9
2	f	4	PRO	2.9
1	V	2	LEU	2.9
1	U	14	GLU	2.9
1	J	108	LYS	2.9
1	Z	146	ARG	2.9
1	J	124	PRO	2.9
1	Z	152	VAL	2.8
1	S	109	GLY	2.8
1	X	158	GLY	2.8
1	Е	115	PRO	2.8

7P81

Mol	Chain	Res Type		RSRZ
1	U	2	LEU	2.8
1	0	121	ILE	2.8
1	W	1	ASN	2.8
1	N	115	PRO	2.8
1	Ν	108	LYS	2.8
1	G	1	ASN	2.7
1	D	86	LYS	2.7
1	Ι	110	LYS	2.7
1	Y	155	GLU	2.7
1	С	87	VAL	2.7
1	L	124	PRO	2.7
1	Е	187	LYS	2.7
1	Н	173	PHE	2.7
1	N	51	ALA	2.7
1	L	15	ARG	2.7
1	S	138	ALA	2.7
1	Ι	121	ILE	2.7
1	S	146	ARG	2.7
1	Ι	191	HIS	2.6
1	Т	144	LEU	2.6
1	С	104	ALA	2.6
1	С	126	GLY	2.6
1	0	158	GLY	2.6
1	W	191	HIS	2.6
1	Y	16	ALA	2.6
1	Е	112	TYR	2.6
1	0	125	LEU	2.6
1	L	167	ASP	2.6
1	Ν	3	ILE	2.6
1	L	17	TYR	2.6
1	D	6	VAL	2.6
1	D	120	MET	2.5
1	L	166	ARG	2.5
1	Е	108	LYS	2.5
1	Q	123	GLN	2.5
1	N	26	ASP	2.5
1	Y	109	GLY	2.5
1	Η	177	GLU	2.5
1	D	190	THR	2.5
1	N	153	LEU	2.5
1	b	124	PRO	2.5
1	Х	104	ALA	2.5

7P81

Mol	Chain	Res	Type	RSRZ
1	D	173	PHE	2.5
1	Е	190	THR	2.5
1	D	58	GLU	2.5
1	Н	4	PRO	2.5
1	Ζ	181	GLU	2.5
1	Q	137	ILE	2.5
1	Ζ	102	LEU	2.5
1	М	50	LEU	2.4
1	Q	107	GLU	2.4
2	1	4	PRO	2.4
1	С	149	LEU	2.4
1	Ι	173	PHE	2.4
1	С	138	ALA	2.4
1	Y	110	LYS	2.4
1	Е	186	ASP	2.4
1	Х	181	GLU	2.4
1	J	56	GLU	2.4
1	V	177	GLU	2.4
1	L	190	THR	2.4
1	F	173	PHE	2.4
1	0	189	LEU	2.4
1	Ν	87	VAL	2.4
1	М	138	ALA	2.3
1	Y	77	TYR	2.3
1	S	125	LEU	2.3
1	N	177	GLU	2.3
1	Е	173	PHE	2.3
1	Е	177	GLU	2.3
1	L	8	GLU	2.3
1	М	139	ALA	2.3
1	Н	188	ILE	2.3
1	L	163	VAL	2.3
1	Y	112	TYR	2.3
2	e	6	ALA	2.3
1	Ν	181	GLU	2.3
1	L	16	ALA	2.3
1	Κ	109	GLY	2.3
1	Е	163	VAL	2.3
1	Ι	166	ARG	2.3
1	Ι	6	VAL	2.3
1	М	36	ASP	2.3
1	U	122	HIS	2.2

7P81	
------	--

Mol	Chain	Res	Type	RSRZ
1	b	181	GLU	2.2
1	М	34	ALA	2.2
1	Q	138	ALA	2.2
1	S	166	ARG	2.2
1	L	162	GLU	2.2
1	М	38	ASN	2.2
1	N	8	GLU	2.2
1	U	189	LEU	2.2
1	G	9	GLN	2.2
1	Ι	126	GLY	2.2
1	Т	2	LEU	2.2
1	Ζ	189	LEU	2.2
1	C	107	GLU	2.2
1	0	162	GLU	2.2
1	N	86	LYS	2.2
1	S	167	ASP	2.2
1	V	109	GLY	2.2
1	L	7	ILE	2.2
1	Н	113	ALA	2.2
1	W	166	ARG	2.2
1	С	112	TYR	2.2
1	S	137	ILE	2.2
1	R	143	LEU	2.2
1	S	189	LEU	2.2
1	V	125	LEU	2.2
1	a	170	ARG	2.2
1	А	181	GLU	2.1
1	S	155	GLU	2.1
1	Х	37	ASP	2.1
1	Е	167	ASP	2.1
1	М	170	ARG	2.1
1	L	160	PRO	2.1
1	E	102	LEU	2.1
1	H	17	TYR	2.1
1	N	77	TYR	2.1
1	X	163	VAL	2.1
1	Ι	16	ALA	2.1
1	Y	139	ALA	2.1
1	Y	18	ASP	2.1
1	X	138	ALA	2.1
1	C	177	GLU	2.1
1	С	157	THR	2.1

Mol	Chain	Res	Type	RSRZ
1	Т	82	PHE	2.1
1	D	109	GLY	2.1
1	Ι	181	GLU	2.1
1	D	143	LEU	2.1
1	0	108	LYS	2.1
1	Н	51	ALA	2.1
1	R	3	ILE	2.0
1	Ν	72	ALA	2.0
1	Ν	154	ALA	2.0
1	Н	22	ARG	2.0
1	Ν	162	GLU	2.0
1	Р	16	ALA	2.0
1	Н	61	LEU	2.0
1	Ι	2	LEU	2.0
1	W	15	ARG	2.0
1	Х	56	GLU	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
2	WFP	1	2	13/14	0.86	0.39	$62,\!76,\!83,\!84$	0
2	MP8	1	7	8/9	0.89	0.30	82,84,89,90	0
2	YCP	1	5	8/9	0.90	0.28	79,84,86,89	0
2	YCP	t	5	8/9	0.90	0.28	69,70,71,73	0
2	MP8	k	7	8/9	0.90	0.21	59,64,70,74	0
2	YCP	е	5	8/9	0.90	0.27	62,65,69,70	0
2	YCP	k	5	8/9	0.91	0.18	$59,\!68,\!70,\!72$	0
2	YCP	h	5	8/9	0.92	0.17	$58,\!67,\!73,\!74$	0
2	YCP	d	5	8/9	0.92	0.25	59,65,71,71	0
2	WFP	е	2	13/14	0.92	0.42	58,64,70,70	0
2	WFP	u	2	13/14	0.93	0.24	$58,\!62,\!69,\!70$	0
2	YCP	u	5	8/9	0.93	0.19	$63,\!68,\!69,\!72$	0
2	MP8	е	7	8/9	0.93	0.18	64,68,69,70	0
2	WFP	h	2	13/14	0.93	0.18	$57,\!60,\!66,\!73$	0
2	YCP	r	5	8/9	0.93	0.20	$5\overline{3},\!56,\!57,\!66$	0
2	MP8	u	7	8/9	0.93	0.28	63,67,71,73	0
2	WFP	t	2	13/14	0.94	0.20	49,57,65,66	0

7P81

Conti	Continued from previous page									
Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q < 0.9		
2	YCP	q	5	8/9	0.94	0.19	$51,\!56,\!58,\!60$	0		
2	MP8	\mathbf{t}	7	8/9	0.94	0.16	$67,\!69,\!71,\!74$	0		
2	MP8	h	7	8/9	0.94	0.16	$69,\!71,\!75,\!75$	0		
2	YCP	n	5	8/9	0.95	0.26	$53,\!58,\!58,\!61$	0		
2	YCP	0	5	8/9	0.95	0.26	$45,\!49,\!53,\!57$	0		
2	MP8	i	7	8/9	0.95	0.17	$56,\!61,\!63,\!65$	0		
2	WFP	i	2	13/14	0.95	0.18	$54,\!61,\!66,\!67$	0		
2	YCP	j	5	8/9	0.95	0.17	$57,\!59,\!61,\!62$	0		
2	MP8	0	7	8/9	0.95	0.16	44,45,57,60	0		
2	MP8	q	7	8/9	0.95	0.16	39,46,53,54	0		
2	MP8	r	7	8/9	0.95	0.17	40,51,54,57	0		
2	WFP	V	2	13/14	0.95	0.17	51,54,60,61	0		
2	YCP	f	5	8/9	0.95	0.18	49,56,58,60	0		
2	MP8	с	7	8/9	0.96	0.16	39,42,44,50	0		
2	MP8	d	7	8/9	0.96	0.14	49,57,59,61	0		
2	WFP	f	2	13/14	0.96	0.16	43,47,59,61	0		
2	MP8	f	7	8/9	0.96	0.16	47,49,52,55	0		
2	YCP	m	5	8/9	0.96	0.17	37,47,50,50	0		
2	WFP	j	2	13/14	0.96	0.18	39,44,48,59	0		
2	YCP	g	5	8/9	0.96	0.21	43,45,47,52	0		
2	WFP	k	2	13/14	0.96	0.23	52,55,62,68	0		
2	MP8	m	7	8/9	0.96	0.15	36,39,43,48	0		
2	YCP	i	5	8/9	0.96	0.25	58,66,68,70	0		
2	YCP	с	5	8/9	0.96	0.18	35,39,44,45	0		
2	WFP	d	2	13/14	0.96	0.20	37,50,53,59	0		
2	YCP	v	5	8/9	0.96	0.14	45,50,52,54	0		
2	YCP	W	5	8/9	0.96	0.13	50,52,55,57	0		
2	MP8	v	7	8/9	0.96	0.17	43,48,51,53	0		
2	MP8	W	7	8/9	0.96	0.17	39,44,49,52	0		
2	WFP	g	2	13/14	0.97	0.15	31,37,48,48	0		
2	WFP	m	2	13/14	0.97	0.17	31,39,47,51	0		
2	WFP	n	2	13/14	0.97	0.20	36,43,49,61	0		
2	MP8	n	7	8/9	0.97	0.14	34,45,46,50	0		
2	YCP	р	5	8/9	0.97	0.18	39,48,49,49	0		
2	MP8	p	7	8/9	0.97	0.16	37,41,44,44	0		
2	WFP	W	2	13/14	0.97	0.17	38,42,44.52	0		
2	WFP	0	2	13/14	0.97	0.18	36,41,46,47	0		
2	MP8	g	7	8/9	0.97	0.16	35,45,49,51	0		
2	WFP	a	2	13/14	0.97	0.16	39,42,46.47	0		
$\frac{1}{2}$	WFP	r r	2	13/14	0.97	0.18	43,45.60.63	0		
2	MP8	i	7	8/9	0.97	0.20	44.51.61.61	0		
2	WFP	, a	2	13/14	0.98	0.16	36.43.47.49	0		
2	WFP	q	2	13/14	0.98	0.16	36,43,47,49	0		

 α 1 L.

Continued from previous page...

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q < 0.9
2	WFP	с	2	13/14	0.98	0.16	26, 39, 42, 43	0

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

