

Full wwPDB X-ray Structure Validation Report (i)

Jun 14, 2020 - 05:22 pm BST

PDB ID	:	2P6F
Title	:	Crystal structures of Saccharomyces cerevisiae N-myristoyltransferase with
		bound myristoyl-CoA and inhibitors
Authors	:	Wu, J.; Ding, J.
Deposited on	:	2007-03-18
$\operatorname{Resolution}$:	3.10 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.11
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.11

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 3.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	1094 (3.10-3.10)
Clashscore	141614	1184 (3.10-3.10)
Ramachandran outliers	138981	1141 (3.10-3.10)
Sidechain outliers	138945	1141 (3.10-3.10)
RSRZ outliers	127900	1067 (3.10-3.10)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain			
-1		155				
	A	455	68%	24%	•	•
	_					
1	В	455	69%	24%	•	•
1	C	455	68%	25%	·	•
1	D	455	68%	23%	5%	•
1	E	455	69%	24%	•	•
$\mid 1$	F	455	71%	22%	•	•

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
2	MYA	А	601	Х	-	-	-
2	MYA	В	602	Х	-	-	-
2	MYA	С	603	Х	-	-	-
2	MYA	D	604	Х	-	-	-
2	MYA	Е	605	Х	-	-	-
2	MYA	F	606	Х	-	-	-
3	GN8	D	704	-	-	-	Х
3	GN8	Е	705	-	-	-	Х

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 21988 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
1	Δ	426	Total	С	Ν	Ο	S	0	0	0
	1 11	430	3578	2318	596	655	9	0	0	0
1	р	426	Total	С	Ν	Ο	S	0	0	0
	D	430	3578	2318	596	655	9	0	0	0
1	C	426	Total	С	Ν	Ο	S	0	0	0
		430	3578	2318	596	655	9	0	0	0
1	р	426	Total	С	Ν	Ο	S	0	0	0
		430	3578	2318	596	655	9	0	0	0
1	F	426	Total	С	Ν	Ο	S	0	0	0
		430	3578	2318	596	655	9	0	0	0
1	Б	425	Total	С	Ν	Ο	S	0	0	0
	r	400	3570	2314	595	652	9		U	U

• Molecule 1 is a protein called Glycylpeptide N-tetradecanoyltransferase.

• Molecule 2 is TETRADECANOYL-COA (three-letter code: MYA) (formula: $C_{35}H_{62}N_7O_{17}P_3S$).

Mol	Chain	Residues		A	ton	ıs			ZeroOcc	AltConf
2	Λ	1	Total	С	Ν	Ο	Р	S	0	0
	L	63	35	7	17	3	1	0	0	
2	В	1	Total	С	Ν	Ο	Р	S	0	0
	D	T	63	35	7	17	3	1	0	0
2	С	1	Total	С	Ν	Ο	Р	S	0	0
2	U	T	63	35	7	17	3	1	0	0
2	п	1	Total	С	Ν	Ο	Р	S	0	0
2	D	T	63	35	7	17	3	1	0	0
2	F	1	Total	С	Ν	Ο	Р	S	0	0
	Ľ	L L	63	35	7	17	3	1	0	0
2	F	1	Total	С	Ν	Ο	Р	S	0	0
			63	35	7	17	3	1		

• Molecule 3 is (Z)-3-BENZYL-5-(2-HYDROXY-3-NITROBENZYLIDENE)-2-THIOXOTHI AZOLIDIN-4-ONE (three-letter code: GN8) (formula: C₁₇H₁₂N₂O₄S₂).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	Total C N O S	0	0
	11	Ŧ	25 17 2 4 2	0	0
2	В	1	Total C N O S	0	0
	D	T	25 17 2 4 2	0	0
2	С	1	Total C N O S	0	0
J J	U	L	25 17 2 4 2	0	0
2	п	1	Total C N O S	0	0
J J	D	L	25 17 2 4 2	0	0
2	F	1	Total C N O S	0	0
0	Ľ		25 17 2 4 2	0	0

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	
3	F	1	Total	С	Ν	Ο	\mathbf{S}	0	0
	-	-	25	17	2	4	2		

3 Residue-property plots (i)

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Glycylpeptide N-tetradecanoyltransferase

• Molecule 1: Glycylpeptide N-tetradecanoyltransferase

Chain F:

71%

22%

MET GLU GLU M21 ASP ASP SER SER SER LYS GLU GLU GLU GLU GLU CYS LYS ASP ASP ASP ASP ASP ASP 159 D60 F96 <mark>V97</mark> L98 L99 W41 R42 K89 K90 Q91 V53 E56 P45 D67 <mark>/146</mark> 4147 7148 1149 3150 28 L145 D245 G136 TM P367 K368 D394 V395 F396 F396 C402 D403 D403 D403 L406 F407 F407 F407 D417 N426 Y427 R428 A429 K430 P431 P431 N437 N437 <mark>G451</mark> V452 L387 A388 L455 F413

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	188.76Å 151.49Å 133.94Å	Depositor
a, b, c, α , β , γ	90.00° 107.46° 90.00°	Depositor
$\mathbf{B}_{\mathrm{ascolution}}(\mathbf{\hat{A}})$	20.00 - 3.10	Depositor
Resolution (A)	14.98 - 2.89	EDS
% Data completeness	97.2 (20.00-3.10)	Depositor
(in resolution range)	97.4 (14.98-2.89)	EDS
R_{merge}	0.15	Depositor
R _{sym}	0.15	Depositor
$< I/\sigma(I) > 1$	$2.42 (at 2.91 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.2.0019	Depositor
D D.	0.270 , 0.332	Depositor
Π, Π_{free}	0.270 , 0.266	DCC
R_{free} test set	3881 reflections $(5.01%)$	wwPDB-VP
Wilson B-factor (Å ²)	34.5	Xtriage
Anisotropy	0.435	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.27, 12.0	EDS
L-test for twinning ²	$ < L >=0.40, < L^2>=0.23$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.87	EDS
Total number of atoms	21988	wwPDB-VP
Average B, all atoms $(Å^2)$	36.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 44.18 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 1.5840e-04. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MYA, $\mathrm{GN8}$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles			
WIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5		
1	А	0.38	0/3666	0.51	0/4957		
1	В	0.38	0/3666	0.51	0/4957		
1	С	0.39	0/3666	0.53	1/4957~(0.0%)		
1	D	0.38	0/3666	0.53	1/4957~(0.0%)		
1	Е	0.38	0/3666	0.52	0/4957		
1	F	0.38	0/3658	0.52	0/4946		
All	All	0.38	0/21988	0.52	2/29731~(0.0%)		

There are no bond length outliers.

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	D	177	LEU	CA-CB-CG	5.51	127.98	115.30
1	С	177	LEU	CA-CB-CG	5.09	127.00	115.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3578	0	3573	73	0
1	В	3578	0	3573	68	0
1	С	3578	0	3573	78	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	D	3578	0	3573	75	0
1	Е	3578	0	3573	64	0
1	F	3570	0	3569	61	0
2	А	63	0	58	1	0
2	В	63	0	58	6	0
2	С	63	0	58	3	0
2	D	63	0	58	7	0
2	Е	63	0	58	3	0
2	F	63	0	58	2	0
3	А	25	0	11	3	0
3	В	25	0	12	1	0
3	С	25	0	12	2	0
3	D	25	0	12	1	0
3	Е	25	0	12	1	0
3	F	25	0	12	1	0
All	All	21988	0	21853	429	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 10.

All (429) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:C:703:GN8:HAK	3:C:703:GN8:SAP	1.92	1.09
1:A:278:ARG:HG3	1:A:278:ARG:HH11	1.16	1.05
1:A:212:ALA:H	1:A:213:PRO:HD3	1.18	1.02
3:B:702:GN8:HAK	3:B:702:GN8:SAP	2.09	0.93
3:F:706:GN8:HAK	3:F:706:GN8:SAP	2.10	0.92
3:A:701:GN8:HAK	3:A:701:GN8:SAP	2.13	0.89
1:C:192:ARG:HG2	1:C:192:ARG:HH11	1.37	0.89
1:E:336:ILE:HD11	1:E:345:LEU:HB2	1.57	0.86
3:D:704:GN8:SAP	3:D:704:GN8:HAK	2.15	0.86
1:C:60:ASP:H	1:C:426:ASN:HD21	1.25	0.84
1:C:181:ARG:HH11	1:C:181:ARG:HB3	1.44	0.83
1:D:339:ASN:HD22	1:D:342:TYR:H	1.26	0.82
1:A:278:ARG:NH1	1:A:278:ARG:HG3	1.95	0.80
1:E:149:ILE:HD11	1:E:168:ILE:HG23	1.65	0.79
1:B:60:ASP:H	1:B:426:ASN:HD21	1.32	0.78
1:A:60:ASP:H	1:A:426:ASN:HD21	1.31	0.77
1:E:70:ASP:HB3	1:E:196:LYS:HE3	1.66	0.77
1:B:297:ASN:HD21	1:B:351:TYR:HE2	1.34	0.75

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:388:ALA:O	1:A:393:MET:HG3	1.86	0.75
1:A:18:GLN:HE22	1:A:421:ASN:HD21	1.35	0.75
1:B:137:VAL:HB	1:B:147:ALA:HB3	1.66	0.75
1:D:325:ASP:HB3	1:D:380:LEU:HD11	1.67	0.74
1:B:187:ILE:HG23	2:B:602:MYA:H9MA	1.68	0.74
3:E:705:GN8:SAP	3:E:705:GN8:HAK	2.28	0.74
1:F:60:ASP:N	1:F:426:ASN:HD21	1.88	0.72
1:B:202:ALA:HB2	2:B:602:MYA:HEM	1.71	0.71
1:B:282:ARG:HH12	1:B:373:LEU:HD11	1.55	0.71
1:A:20:ASN:HD21	1:A:417:ASP:HB3	1.55	0.71
1:D:445:LYS:HD2	1:D:445:LYS:H	1.53	0.71
1:A:406:LEU:HG	1:A:447:ARG:HD3	1.73	0.71
1:A:266:LYS:HD2	1:A:269:ILE:HD12	1.73	0.70
1:A:212:ALA:H	1:A:213:PRO:CD	1.99	0.70
1:B:156:LEU:HD11	1:B:203:LEU:HB2	1.74	0.70
1:C:181:ARG:HH11	1:C:181:ARG:CB	2.05	0.69
1:F:41:TRP:HB3	1:F:211:PRO:HG3	1.74	0.69
1:B:278:ARG:HH11	1:B:278:ARG:CG	2.05	0.69
1:F:210:LEU:HB3	1:F:211:PRO:HD2	1.74	0.68
1:B:278:ARG:HH11	1:B:278:ARG:HG3	1.56	0.68
1:B:183:THR:HB	1:B:184:PRO:HD3	1.74	0.68
1:D:443:ASP:OD1	1:D:446:ARG:HG3	1.93	0.68
1:C:339:ASN:HD22	1:C:342:TYR:H	1.40	0.67
1:D:404:ASN:HD22	1:D:407:PHE:HZ	1.42	0.67
1:C:88:ASN:HB3	1:C:91:GLN:HB2	1.77	0.67
1:D:151:ALA:HB1	1:D:166:VAL:HG21	1.77	0.67
1:E:212:ALA:H	1:E:213:PRO:HD2	1.60	0.67
1:F:60:ASP:H	1:F:426:ASN:HD21	1.41	0.67
1:A:212:ALA:N	1:A:213:PRO:HD3	2.02	0.67
1:D:388:ALA:O	1:D:393:MET:HG3	1.93	0.67
1:F:408:LEU:O	1:F:413:PHE:HB2	1.96	0.66
1:C:183:THR:O	1:C:187:ILE:HG12	1.95	0.66
1:A:229:LEU:HD23	1:A:234:PHE:HB3	1.78	0.66
1:B:336:ILE:HD11	1:B:345:LEU:HB2	1.76	0.66
1:D:161:LYS:HG2	1:D:162:GLN:H	1.61	0.65
1:A:39:LYS:HG3	1:A:181:ARG:NH2	2.11	0.65
1:B:404:ASN:HA	1:B:407:PHE:CE2	2.30	0.65
1:E:232:VAL:O	1:E:232:VAL:HG12	1.96	0.65
1:D:405:THR:HG21	1:D:443:ASP:O	1.97	0.64
1:C:181:ARG:HH11	1:C:181:ARG:CG	2.11	0.64
1:E:202:ALA:HB3	1:E:425:PHE:HB3	1.79	0.64

	h	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:60:ASP:H	1:D:426:ASN:HD21	1.46	0.64
1:E:212:ALA:H	1:E:213:PRO:CD	2.11	0.63
1:B:278:ARG:HG3	1:B:278:ARG:NH1	2.13	0.63
1:C:339:ASN:ND2	1:C:342:TYR:H	1.96	0.63
1:F:437:ASN:HB3	1:F:438:PRO:CD	2.28	0.63
1:D:165:SER:HA	1:D:199:ILE:HG23	1.80	0.63
1:E:205:THR:HG21	1:E:454:MET:HG3	1.81	0.62
1:D:53:VAL:HG13	1:D:430:LYS:HD3	1.81	0.62
1:E:325:ASP:HB3	1:E:380:LEU:HD11	1.81	0.62
1:E:210:LEU:O	1:E:213:PRO:HD3	2.00	0.62
1:E:68:ILE:HG22	1:E:196:LYS:HE2	1.81	0.62
1:D:60:ASP:N	1:D:426:ASN:HD21	1.98	0.62
1:F:263:LYS:HE3	1:F:263:LYS:H	1.65	0.62
1:C:151:ALA:HA	1:C:167:GLU:O	2.00	0.61
1:E:106:ASP:HB3	1:E:109:ALA:HB2	1.83	0.61
1:E:294:PHE:O	1:E:298:PHE:HD1	1.84	0.61
1:F:242:THR:H	1:F:245:ASP:HB2	1.66	0.60
1:D:405:THR:CG2	1:D:444:ILE:HA	2.32	0.60
1:E:211:PRO:O	1:E:212:ALA:HB2	2.01	0.60
1:C:192:ARG:NH1	1:C:192:ARG:HG2	2.13	0.60
1:A:382:TYR:O	1:A:386:ILE:HD12	2.02	0.60
1:B:68:ILE:HG13	1:B:195:ASN:HB3	1.84	0.60
1:D:305:PRO:HG2	1:D:308:LYS:HD3	1.83	0.60
1:E:137:VAL:HB	1:E:147:ALA:HB3	1.84	0.60
1:E:211:PRO:O	1:E:212:ALA:CB	2.50	0.59
1:A:14:LEU:HA	1:A:17:LEU:HD23	1.84	0.59
1:D:263:LYS:HD3	1:D:263:LYS:H	1.66	0.59
1:E:88:ASN:HD22	1:E:88:ASN:C	2.06	0.59
1:A:211:PRO:O	1:A:212:ALA:HB2	2.03	0.59
1:E:6:LYS:HD3	1:E:6:LYS:H	1.68	0.59
1:A:229:LEU:HD11	1:A:395:VAL:HB	1.85	0.59
1:D:96:PHE:HE2	1:D:117:LYS:HB3	1.68	0.59
1:E:388:ALA:O	1:E:393:MET:HG3	2.02	0.58
1:F:147:ALA:HB1	1:F:186:LEU:HD11	1.85	0.58
1:A:405:THR:CG2	1:A:444:ILE:HA	2.33	0.58
1:B:99:LEU:O	1:B:103:TYR:HB2	2.04	0.58
1:B:217:CYS:HB3	1:B:399:LEU:O	2.04	0.58
1:A:161:LYS:HG3	1:A:162:GLN:N	2.19	0.58
1:B:117:LYS:O	1:B:121:ASN:HB2	2.03	0.58
1:D:148:PHE:CZ	1:D:150:SER:HB3	2.37	0.58
1:F:356:ASP:HA	1:F:359:PHE:CD2	2.38	0.58

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	$distance ({ m \AA})$	overlap (Å)
1:F:404:ASN:HA	1:F:407:PHE:CE2	2.38	0.58
1:B:324:THR:HG23	1:B:356:ASP:OD1	2.04	0.57
1:F:286:ILE:HG22	1:F:451:GLY:HA3	1.85	0.57
1:A:347:ILE:HG23	1:A:395:VAL:HG13	1.87	0.57
1:F:339:ASN:HD22	1:F:341:LYS:H	1.51	0.57
1:C:430:LYS:HG3	1:C:431:PRO:HD2	1.87	0.57
3:C:703:GN8:CAK	3:C:703:GN8:SAP	2.76	0.57
1:F:208:ILE:HD13	1:F:208:ILE:H	1.68	0.57
1:A:166:VAL:HG11	1:A:194:VAL:HG11	1.86	0.57
1:A:137:VAL:HB	1:A:147:ALA:HB3	1.86	0.57
1:A:405:THR:HG21	1:A:443:ASP:O	2.05	0.57
1:D:232:VAL:O	1:D:232:VAL:HG12	2.05	0.57
1:E:56:GLU:HG2	1:E:429:ALA:HA	1.87	0.57
1:B:159:ARG:NH2	1:B:430:LYS:HB2	2.19	0.57
1:D:212:ALA:H	1:D:213:PRO:HD3	1.70	0.57
1:B:444:ILE:H	1:B:444:ILE:HD13	1.69	0.57
1:C:232:VAL:HG12	1:C:232:VAL:O	2.04	0.57
1:E:373:LEU:HD22	1:E:377:LEU:HG	1.86	0.57
1:A:318:GLN:HG2	1:A:324:THR:OG1	2.04	0.56
1:B:229:LEU:HB3	1:B:235:THR:HG22	1.85	0.56
1:B:411:LEU:O	1:B:412:LYS:HB2	2.05	0.56
1:C:224:LEU:HD11	1:C:396:PHE:HB2	1.87	0.56
1:B:106:ASP:HB3	1:B:109:ALA:HB2	1.86	0.56
1:D:278:ARG:HD2	1:D:359:PHE:CE1	2.41	0.56
1:B:58:PRO:HB3	1:B:201:HIS:HE1	1.70	0.56
1:D:218:ARG:HB3	1:D:436:LEU:HD21	1.86	0.56
1:C:286:ILE:HG22	1:C:451:GLY:HA3	1.87	0.56
1:D:211:PRO:O	1:D:212:ALA:CB	2.53	0.56
1:C:202:ALA:HB2	2:C:603:MYA:HDMA	1.87	0.56
1:C:174:HIS:HB3	1:C:177:LEU:HD22	1.88	0.55
1:D:212:ALA:N	1:D:213:PRO:HD3	2.22	0.55
1:C:6:LYS:HE2	1:C:9:LYS:HD3	1.89	0.55
1:B:38:HIS:HA	2:B:602:MYA:P3X	2.47	0.55
1:D:242:THR:HG22	1:D:244:GLU:H	1.70	0.55
1:F:403:ASP:HB3	1:F:406:LEU:HD12	1.87	0.55
1:A:20:ASN:ND2	1:A:417:ASP:HB3	2.20	0.55
1:E:149:ILE:HD11	1:E:168:ILE:CG2	2.36	0.55
1:D:41:TRP:HH2	2:D:604:MYA:H8MA	1.72	0.55
1:D:211:PRO:O	1:D:212:ALA:HB3	2.06	0.55
1:B:102:ASN:HA	1:B:175:LYS:HE3	1.89	0.55
1:B:202:ALA:HB3	1:B:425:PHE:HB3	1.87	0.55

	• • · · · · · · · · · · · · · · · · · ·	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:365:PHE:HE2	1:D:446:ARG:HA	1.71	0.55
1:D:406:LEU:HG	1:D:447:ARG:HD3	1.89	0.55
1:D:174:HIS:CD2	1:D:176:GLN:HB2	2.43	0.54
1:E:305:PRO:HG2	1:E:308:LYS:HG3	1.89	0.54
1:C:106:ASP:HB3	1:C:109:ALA:HB2	1.90	0.54
1:A:363:ASP:HB3	1:A:366:ASP:HB2	1.89	0.54
1:A:39:LYS:HG3	1:A:181:ARG:HH21	1.73	0.53
1:C:149:ILE:HD12	1:C:171:LEU:HD13	1.90	0.53
1:F:20:ASN:HB2	1:F:417:ASP:HB2	1.90	0.53
1:A:325:ASP:HB3	1:A:355:THR:HA	1.89	0.53
1:B:47:LYS:HB3	1:B:212:ALA:CB	2.38	0.53
1:D:45:PRO:HB2	1:D:426:ASN:HD22	1.73	0.53
1:C:60:ASP:H	1:C:426:ASN:ND2	2.01	0.53
1:D:127:PRO:HG2	1:D:293:GLU:HA	1.88	0.53
1:F:121:ASN:O	1:F:125:LYS:HB2	2.09	0.53
1:C:98:LEU:HD22	1:C:145:LEU:HG	1.91	0.53
1:D:183:THR:HB	1:D:184:PRO:HD3	1.91	0.53
1:E:205:THR:CG2	1:E:454:MET:HG3	2.39	0.53
1:F:88:ASN:HD22	1:F:89:LYS:N	2.06	0.53
1:B:269:ILE:HD11	1:B:299:ILE:HD13	1.90	0.52
1:B:175:LYS:HA	1:B:178:ARG:HG3	1.91	0.52
1:C:285:LEU:HB2	1:C:432:ILE:HD13	1.90	0.52
1:C:408:LEU:O	1:C:413:PHE:HB2	2.09	0.52
1:F:64:THR:HB	1:F:65:PRO:HD2	1.91	0.52
1:B:111:PHE:HA	1:B:335:THR:O	2.09	0.52
1:E:443:ASP:OD2	1:E:446:ARG:NH2	2.43	0.52
3:A:701:GN8:CAK	3:A:701:GN8:SAP	2.93	0.52
1:C:156:LEU:HD11	1:C:203:LEU:HB2	1.91	0.52
1:C:202:ALA:HB3	1:C:425:PHE:HB3	1.90	0.52
1:E:212:ALA:N	1:E:213:PRO:CD	2.72	0.52
1:C:242:THR:HG22	1:C:244:GLU:H	1.73	0.52
1:C:61:LYS:H	1:C:61:LYS:HD3	1.75	0.52
1:A:151:ALA:HB1	1:A:166:VAL:CG2	2.40	0.52
1:C:20:ASN:HB2	1:C:417:ASP:HB2	1.92	0.51
1:E:243:GLU:O	1:E:247:ILE:HG12	2.10	0.51
1:B:378:CYS:HA	1:B:411:LEU:HD11	1.90	0.51
1:F:315:VAL:HG13	1:F:323:ILE:HG23	1.92	0.51
1:F:336:ILE:HD13	1:F:345:LEU:HB2	1.93	0.51
1:F:290:THR:C	1:F:292:GLU:H	2.13	0.51
1:D:217:CYS:HB3	1:D:399:LEU:O	2.11	0.51
1:E:86:VAL:HG23	1:E:92:LEU:HD13	1.93	0.51

	t i o	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:156:LEU:HG	1:C:165:SER:OG	2.10	0.51
1:D:336:ILE:H	1:D:344:ASP:HA	1.76	0.51
1:D:165:SER:HA	1:D:199:ILE:CG2	2.41	0.51
1:D:398:ALA:CB	1:D:408:LEU:HD21	2.41	0.50
1:A:205:THR:HB	1:A:420:LEU:HD22	1.93	0.50
1:C:405:THR:HG23	1:C:442:ASN:HB3	1.92	0.50
1:C:192:ARG:HH11	1:C:192:ARG:CG	2.17	0.50
1:A:405:THR:HG22	1:A:444:ILE:HA	1.94	0.50
1:B:186:LEU:O	1:B:190:ILE:HG22	2.12	0.50
1:C:403:ASP:HB3	1:C:406:LEU:HD12	1.94	0.50
1:F:114:ASN:HD22	1:F:114:ASN:C	2.14	0.50
1:E:360:GLN:HE21	1:E:360:GLN:HA	1.76	0.50
2:F:606:MYA:H2AA	2:F:606:MYA:H6M	1.93	0.50
1:A:134:HIS:ND1	1:A:150:SER:HB2	2.27	0.50
1:C:174:HIS:HB3	1:C:177:LEU:CD2	2.42	0.50
1:D:263:LYS:CD	1:D:263:LYS:H	2.25	0.50
1:C:330:TYR:CE2	1:C:349:TYR:HB2	2.47	0.49
1:E:298:PHE:HA	1:E:311:ILE:HG12	1.94	0.49
1:E:432:ILE:HG23	1:E:449:ASN:HB2	1.94	0.49
1:B:262:ARG:HG2	1:B:263:LYS:N	2.28	0.49
1:A:211:PRO:O	1:A:212:ALA:CB	2.61	0.49
1:E:83:SER:OG	1:E:132:ASP:OD2	2.26	0.49
1:F:59:ILE:HA	1:F:428:ARG:HH12	1.77	0.49
1:C:183:THR:HB	1:C:184:PRO:HD3	1.95	0.49
1:F:278:ARG:HD2	1:F:359:PHE:HE1	1.77	0.49
1:F:437:ASN:HB3	1:F:438:PRO:HD2	1.94	0.49
1:A:202:ALA:HB3	1:A:425:PHE:HB3	1.94	0.49
1:A:405:THR:HG21	1:A:443:ASP:C	2.33	0.49
1:A:84:ILE:HG23	1:A:91:GLN:HB3	1.94	0.49
1:B:229:LEU:HB3	1:B:235:THR:CG2	2.43	0.48
1:E:405:THR:HG21	1:E:443:ASP:O	2.12	0.48
1:A:99:LEU:HB3	1:A:115:TYR:HD1	1.77	0.48
1:D:411:LEU:O	1:D:412:LYS:HB2	2.13	0.48
1:D:171:LEU:HD22	2:D:604:MYA:H5MA	1.94	0.48
1:A:399:LEU:C	1:A:401:SER:H	2.17	0.48
1:B:305:PRO:HG2	1:B:308:LYS:HD2	1.96	0.48
1:F:382:TYR:O	1:F:386:ILE:HD12	2.13	0.48
1:D:149:ILE:HD12	1:D:171:LEU:HD13	1.96	0.48
1:A:154:VAL:HG21	1:A:167:GLU:HG3	1.96	0.48
1:B:205:THR:HB	1:B:420:LEU:HD22	1.96	0.48
1:C:282:ARG:HD3	1:C:364:ARG:HD2	1.95	0.48

A 4 1	A 4 0	Interatomic	Clash
Atom-1	Atom-2	$distance (m \AA)$	overlap (Å)
1:C:187:ILE:HD12	2:C:603:MYA:H6MA	1.96	0.48
1:D:405:THR:HG21	1:D:444:ILE:HA	1.94	0.48
2:E:605:MYA:H6M	2:E:605:MYA:H2AA	1.95	0.48
1:B:93:GLU:HA	1:B:96:PHE:CZ	2.49	0.48
1:B:286:ILE:HG22	1:B:451:GLY:HA3	1.96	0.48
1:E:99:LEU:O	1:E:103:TYR:HB2	2.13	0.48
1:D:168:ILE:HG21	2:D:604:MYA:H7MA	1.95	0.48
1:A:271:GLN:HB3	1:A:323:ILE:HD12	1.96	0.47
1:A:115:TYR:CE2	1:A:332:LEU:HD21	2.49	0.47
1:F:149:ILE:HB	1:F:186:LEU:HD22	1.95	0.47
1:E:8:LYS:O	1:E:10:LEU:N	2.47	0.47
1:C:404:ASN:HA	1:C:407:PHE:CE2	2.49	0.47
1:F:353:TYR:HE2	1:F:404:ASN:HD21	1.62	0.47
1:B:165:SER:HB3	1:B:201:HIS:HB2	1.95	0.47
1:D:96:PHE:CD1	1:D:96:PHE:C	2.88	0.47
1:A:127:PRO:HG2	1:A:293:GLU:HA	1.96	0.47
1:C:40:PHE:HE1	1:C:188:LYS:HE3	1.79	0.47
1:D:99:LEU:HD13	1:D:103:TYR:CD1	2.49	0.47
1:C:232:VAL:O	1:C:232:VAL:CG1	2.63	0.47
1:E:187:ILE:HG23	2:E:605:MYA:H9M	1.97	0.47
1:E:65:PRO:HD3	1:E:198:ASP:OD2	2.15	0.47
1:A:142:THR:O	1:A:143:GLN:HB2	2.14	0.47
1:D:191:THR:HA	2:D:604:MYA:HDMA	1.97	0.47
1:A:258:THR:HG21	1:A:379:GLU:HB3	1.95	0.46
1:C:290:THR:H	1:C:293:GLU:HG2	1.79	0.46
1:E:222:ARG:NH1	1:E:223:PRO:O	2.47	0.46
1:C:282:ARG:HH22	1:C:358:ASP:CG	2.19	0.46
1:D:312:PHE:HB3	1:D:314:TYR:CE1	2.50	0.46
1:F:174:HIS:HD2	1:F:176:GLN:H	1.63	0.46
1:E:232:VAL:O	1:E:232:VAL:CG1	2.63	0.46
1:E:135:ILE:HG12	1:E:190:ILE:HD13	1.97	0.46
1:A:332:LEU:HB3	1:A:349:TYR:CE1	2.51	0.46
1:E:47:LYS:HG2	1:E:48:ASP:N	2.30	0.46
1:A:276:PHE:CE1	1:A:352:TYR:HB3	2.50	0.46
1:B:47:LYS:HB3	1:B:212:ALA:HB1	1.96	0.46
1:A:87:ASP:OD2	1:A:125:LYS:HE2	2.16	0.46
1:C:84:ILE:HG21	1:C:95:VAL:HG21	1.98	0.46
1:F:339:ASN:ND2	1:F:341:LYS:H	2.14	0.46
1:B:297:ASN:ND2	1:B:351:TYR:HE2	2.07	0.46
1:B:60:ASP:H	1:B:426:ASN:ND2	2.08	0.46
1:E:237:LEU:HA	1:E:238:PRO:HD3	1.84	0.46

		Interatomic	Clash
Atom-1	Atom-2	$distance (m \AA)$	overlap (Å)
1:E:339:ASN:ND2	1:E:342:TYR:H	2.13	0.46
1:B:151:ALA:HA	1:B:167:GLU:O	2.16	0.46
1:C:40:PHE:CE1	1:C:188:LYS:HE3	2.51	0.45
1:E:411:LEU:O	1:E:412:LYS:HB2	2.14	0.45
1:F:99:LEU:O	1:F:103:TYR:HB2	2.16	0.45
1:F:191:THR:HA	2:F:606:MYA:HDM	1.97	0.45
1:A:366:ASP:HB3	1:A:369:ALA:HB3	1.98	0.45
1:C:122:TRP:CZ3	1:C:455:LEU:HD21	2.51	0.45
1:F:229:LEU:HB3	1:F:235:THR:HG22	1.98	0.45
1:A:159:ARG:NH2	1:A:430:LYS:O	2.49	0.45
1:A:191:THR:HA	2:A:601:MYA:HDMA	1.97	0.45
1:C:337:LEU:O	1:C:339:ASN:N	2.41	0.45
1:B:435:GLY:HA2	1:B:447:ARG:O	2.17	0.45
1:C:117:LYS:O	1:C:121:ASN:HB2	2.16	0.45
1:D:212:ALA:H	1:D:213:PRO:CD	2.29	0.45
1:B:191:THR:HA	2:B:602:MYA:HDM	1.97	0.45
1:E:93:GLU:HA	1:E:96:PHE:CE2	2.52	0.45
1:F:232:VAL:O	1:F:232:VAL:HG12	2.16	0.45
1:D:154:VAL:HG21	1:D:167:GLU:HG3	1.99	0.45
1:D:315:VAL:HG23	1:D:326:PHE:HB2	1.99	0.45
1:B:325:ASP:HB3	1:B:380:LEU:HD11	1.98	0.45
1:B:88:ASN:HB3	1:B:91:GLN:HB2	1.99	0.45
1:E:218:ARG:HH21	1:E:415:PRO:HB2	1.82	0.45
1:A:19:LEU:HD11	1:B:177:LEU:HD22	1.98	0.45
1:B:298:PHE:HA	1:B:311:ILE:HG12	1.97	0.45
1:D:113:PHE:HD2	1:D:332:LEU:HD21	1.81	0.45
1:E:183:THR:HA	1:E:186:LEU:HD12	1.99	0.45
1:F:53:VAL:HG11	1:F:428:ARG:HD3	1.99	0.45
1:F:88:ASN:HB3	1:F:91:GLN:HB2	1.98	0.45
1:D:338:ASN:C	1:D:338:ASN:HD22	2.21	0.45
1:D:398:ALA:HB3	1:D:408:LEU:HD21	1.98	0.45
1:A:258:THR:CG2	1:A:379:GLU:HB3	2.47	0.44
1:F:178:ARG:C	1:F:180:LYS:H	2.21	0.44
1:C:122:TRP:HZ3	1:C:455:LEU:HD21	1.82	0.44
1:E:71:LYS:O	1:E:71:LYS:HG2	2.17	0.44
1:C:40:PHE:CD1	1:C:184:PRO:HB3	2.52	0.44
1:E:283:PHE:CE2	1:E:402:GLN:HA	2.52	0.44
1:A:183:THR:HB	1:A:184:PRO:HD3	1.99	0.44
1:C:105:GLU:HG3	1:C:178:ARG:HH12	1.82	0.44
1:F:388:ALA:O	1:F:393:MET:HG3	2.17	0.44
1:B:405:THR:HG21	1:B:447:ARG:HA	2.00	0.44

A 4 1	A 4 0	Interatomic	Clash
Atom-1	Atom-2	${ m distance}~({ m \AA})$	overlap (Å)
1:D:173:VAL:HB	2:D:604:MYA:H14B	2.00	0.44
1:E:264:LEU:HD12	1:E:268:ASP:HB2	2.00	0.44
1:E:272:VAL:HG22	1:E:323:ILE:HG21	1.99	0.44
1:E:362:LYS:H	1:E:362:LYS:HD2	1.81	0.44
1:F:430:LYS:HB3	1:F:431:PRO:HD2	1.99	0.44
1:B:399:LEU:O	1:B:400:THR:OG1	2.34	0.44
1:E:107:ARG:O	1:E:112:ARG:NH2	2.47	0.44
1:F:174:HIS:CD2	1:F:176:GLN:H	2.35	0.44
1:F:174:HIS:HB3	1:F:177:LEU:HD23	1.99	0.44
1:C:181:ARG:HH11	1:C:181:ARG:HG3	1.81	0.44
1:D:187:ILE:HG23	2:D:604:MYA:HAMA	1.98	0.44
1:E:88:ASN:HD22	1:E:89:LYS:N	2.14	0.44
1:A:232:VAL:O	1:A:232:VAL:CG1	2.65	0.43
1:C:154:VAL:HG21	1:C:167:GLU:HG3	1.99	0.43
1:D:228:LYS:O	1:D:232:VAL:HG23	2.18	0.43
1:D:339:ASN:ND2	1:D:342:TYR:H	2.05	0.43
1:B:159:ARG:HG3	1:B:284:GLU:HB3	1.99	0.43
1:D:191:THR:HA	2:D:604:MYA:CDM	2.48	0.43
1:D:272:VAL:HG22	1:D:323:ILE:HG21	1.99	0.43
1:C:195:ASN:C	1:C:197:CYS:H	2.22	0.43
1:C:211:PRO:O	1:C:212:ALA:HB3	2.18	0.43
1:C:93:GLU:HA	1:C:96:PHE:CZ	2.54	0.43
1:E:179:SER:HA	2:E:605:MYA:O2A	2.18	0.43
1:E:405:THR:HG21	1:E:447:ARG:HA	1.99	0.43
1:F:60:ASP:HB2	1:F:426:ASN:ND2	2.34	0.43
1:B:20:ASN:ND2	1:B:417:ASP:HB2	2.34	0.43
1:B:107:ARG:HD2	1:B:175:LYS:HZ3	1.84	0.43
1:C:138:ARG:HG2	1:C:145:LEU:HA	2.00	0.43
1:D:358:ASP:HB3	1:D:373:LEU:HB2	2.00	0.43
1:F:133:TRP:HB3	1:F:151:ALA:HB3	2.01	0.43
1:F:314:TYR:HB2	1:F:327:PHE:CE2	2.53	0.43
1:B:401:SER:O	1:B:404:ASN:HB2	2.19	0.43
1:C:169:ASN:HA	1:C:169:ASN:HD22	1.56	0.43
1:D:128:GLY:O	1:D:153:PRO:HG3	2.19	0.43
1:D:212:ALA:N	1:D:213:PRO:CD	2.81	0.43
1:D:64:THR:C	1:D:66:GLU:H	2.21	0.43
1:A:99:LEU:O	1:A:103:TYR:HB2	2.19	0.42
1:D:266:LYS:HA	1:D:269:ILE:HD12	2.00	0.42
1:E:391:ALA:O	1:E:392:ASN:HB2	2.19	0.42
1:F:277:LYS:HZ1	1:F:288:ILE:HA	1.84	0.42
1:B:40:PHE:CD1	1:B:184:PRO:HB3	2.54	0.42

		Interatomic	Clash
Atom-1	Atom-2	${ m distance}~({ m \AA})$	overlap (Å)
1:C:444:ILE:H	1:C:444:ILE:HD13	1.83	0.42
1:E:64:THR:O	1:E:67:ASP:HB2	2.19	0.42
1:A:165:SER:HB3	1:A:201:HIS:HB2	2.01	0.42
3:A:701:GN8:SAE	3:A:701:GN8:CAS	3.07	0.42
1:C:324:THR:HG23	1:C:356:ASP:OD1	2.20	0.42
1:C:391:ALA:O	1:C:392:ASN:HB2	2.19	0.42
1:D:332:LEU:HB3	1:D:349:TYR:CE1	2.54	0.42
1:D:404:ASN:HA	1:D:407:PHE:CE2	2.54	0.42
1:A:252:LEU:HD21	1:A:385:CYS:HB3	2.00	0.42
1:B:201:HIS:ND1	1:B:426:ASN:O	2.50	0.42
1:B:99:LEU:HD13	1:B:103:TYR:CE1	2.54	0.42
1:D:214:VAL:HG21	1:D:424:LEU:HD12	2.02	0.42
1:A:232:VAL:HG12	1:A:232:VAL:O	2.18	0.42
1:A:278:ARG:CG	1:A:278:ARG:NH1	2.72	0.42
1:A:99:LEU:HD12	1:A:103:TYR:CD1	2.53	0.42
1:B:425:PHE:CG	2:B:602:MYA:HBMA	2.54	0.42
1:F:88:ASN:HD22	1:F:88:ASN:C	2.23	0.42
1:C:352:TYR:CE1	1:C:451:GLY:O	2.73	0.42
1:D:96:PHE:HD1	1:D:96:PHE:C	2.21	0.42
1:E:10:LEU:H	1:E:10:LEU:HD12	1.83	0.42
1:F:148:PHE:CE2	1:F:150:SER:HB2	2.55	0.42
1:A:311:ILE:HD13	1:A:312:PHE:N	2.35	0.42
1:B:301:GLU:HB3	1:B:304:LEU:HD11	2.01	0.42
1:B:445:LYS:HD2	1:B:446:ARG:H	1.85	0.42
1:D:130:LYS:HA	1:D:130:LYS:HE2	2.02	0.42
1:D:178:ARG:O	1:D:179:SER:HB2	2.20	0.42
1:D:311:ILE:HD13	1:D:312:PHE:N	2.34	0.42
1:F:190:ILE:HD13	1:F:190:ILE:HA	1.92	0.42
1:C:352:TYR:HE1	1:C:451:GLY:O	2.03	0.41
1:D:298:PHE:O	1:D:313:SER:HB2	2.18	0.41
1:C:93:GLU:HA	1:C:96:PHE:CE2	2.55	0.41
1:F:59:ILE:HG23	1:F:428:ARG:NH2	2.35	0.41
1:B:256:THR:HB	1:B:383:ASP:OD1	2.20	0.41
1:B:194:VAL:HG11	2:B:602:MYA:HEMA	2.02	0.41
1:F:136:GLY:HA3	1:F:145:LEU:HD11	2.00	0.41
1:C:111:PHE:HA	1:C:335:THR:O	2.19	0.41
1:C:280:GLN:HG3	1:C:286:ILE:HG21	2.00	0.41
1:A:437:ASN:HB3	1:A:438:PRO:HD2	2.02	0.41
1:A:96:PHE:CD1	1:A:96:PHE:C	2.94	0.41
1:B:406:LEU:HD11	1:B:447:ARG:NH1	2.35	0.41
1:C:279:TYR:O	1:C:282:ARG:HG2	2.20	0.41

		Interatomic	Clash
Atom-1	Atom-2	$distance ({ m \AA})$	overlap (Å)
1:C:214:VAL:HG12	1:C:422:PHE:O	2.21	0.41
1:E:86:VAL:HG11	1:E:125:LYS:HG2	2.00	0.41
1:E:271:GLN:OE1	1:E:322:LYS:HG2	2.21	0.41
1:F:311:ILE:HD13	1:F:312:PHE:N	2.36	0.41
1:B:406:LEU:HG	1:B:447:ARG:HD3	2.03	0.41
1:C:302:GLU:HG3	1:C:303:SER:N	2.36	0.41
1:F:230:TYR:HD2	1:F:235:THR:O	2.04	0.41
1:A:86:VAL:HG13	1:A:92:LEU:HD13	2.03	0.41
1:C:192:ARG:NH1	1:C:192:ARG:CG	2.79	0.41
1:C:356:ASP:OD1	1:C:356:ASP:C	2.58	0.41
1:C:400:THR:HA	1:C:408:LEU:HD11	2.02	0.41
1:C:56:GLU:HG2	1:C:429:ALA:HA	2.01	0.41
1:F:396:PHE:HD2	1:F:413:PHE:HZ	1.66	0.41
1:C:181:ARG:HB3	1:C:181:ARG:NH1	2.23	0.41
1:E:149:ILE:HD12	1:E:190:ILE:HG21	2.03	0.41
1:E:217:CYS:HB3	1:E:400:THR:OG1	2.21	0.41
1:F:98:LEU:HD22	1:F:145:LEU:HD23	2.03	0.41
1:F:222:ARG:HB2	1:F:413:PHE:CE2	2.55	0.41
1:A:174:HIS:HD2	1:A:176:GLN:HB2	1.86	0.41
1:A:256:THR:HG21	1:A:387:LEU:HG	2.02	0.41
1:F:183:THR:HB	1:F:184:PRO:HD3	2.03	0.41
1:A:237:LEU:HA	1:A:238:PRO:HD3	1.95	0.41
1:A:60:ASP:H	1:A:426:ASN:ND2	2.09	0.41
1:F:347:ILE:HG23	1:F:395:VAL:HG13	2.03	0.41
1:A:73:LEU:HD23	1:A:74:PRO:HD2	2.03	0.41
1:C:168:ILE:HG21	2:C:603:MYA:H7M	2.02	0.41
1:D:276:PHE:O	1:D:280:GLN:HB2	2.21	0.41
1:E:339:ASN:ND2	1:E:341:LYS:H	2.19	0.41
1:A:426:ASN:O	1:A:427:TYR:HB2	2.21	0.40
1:C:339:ASN:ND2	1:C:341:LYS:H	2.19	0.40
1:F:45:PRO:HB2	1:F:426:ASN:HD22	1.86	0.40
1:A:180:LYS:HA	1:A:180:LYS:HD3	1.86	0.40
1:A:404:ASN:HA	1:A:407:PHE:CE2	2.56	0.40
1:A:73:LEU:HA	1:A:74:PRO:HD3	1.90	0.40
1:B:283:PHE:CE2	1:B:402:GLN:HA	2.57	0.40
1:C:181:ARG:NH1	1:C:181:ARG:CG	2.78	0.40
1:F:404:ASN:C	1:F:406:LEU:H	2.24	0.40
1:C:91:GLN:O	1:C:95:VAL:HG23	2.20	0.40
1:D:210:LEU:HB3	1:D:211:PRO:HD2	2.04	0.40
1:F:401:SER:O	1:F:402:GLN:HB2	2.22	0.40
1:B:306:LEU:HD21	1:B:391:ALA:HA	2.04	0.40

Atom-1	Atom-2	$\begin{array}{c} {\rm Interatomic} \\ {\rm distance} \ ({\rm \AA}) \end{array}$	Clash overlap (Å)
1:D:76:LEU:HB3	1:D:77:SER:H	1.61	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	P	\mathbf{erc}	$\mathbf{entiles}$
1	А	432/455~(95%)	391~(90%)	33 (8%)	8 (2%)		8	33
1	В	432/455~(95%)	382~(88%)	38~(9%)	12 (3%)		5	25
1	С	432/455~(95%)	376~(87%)	50 (12%)	6 (1%)		11	40
1	D	432/455~(95%)	376~(87%)	44 (10%)	12 (3%)		5	25
1	E	432/455~(95%)	391~(90%)	35 (8%)	6 (1%)		11	40
1	F	431/455~(95%)	373~(86%)	52 (12%)	6 (1%)		11	40
All	All	2591/2730~(95%)	2289 (88%)	252 (10%)	50 (2%)		8	33

All (50) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	212	ALA
1	В	78	SER
1	С	302	GLU
1	D	135	ILE
1	D	212	ALA
1	D	301	GLU
1	Е	9	LYS
1	Е	212	ALA
1	В	77	SER
1	В	413	PHE
1	С	78	SER

Mol	Chain	Res	Type
1	D	51	GLU
1	D	77	SER
1	В	88	ASN
1	В	140	LYS
1	В	303	SER
1	С	338	ASN
1	С	427	TYR
1	D	76	LEU
1	D	337	LEU
1	Е	78	SER
1	Е	338	ASN
1	F	56	GLU
1	А	158	VAL
1	В	306	LEU
1	В	321	GLY
1	D	303	SER
1	D	338	ASN
1	D	412	LYS
1	F	42	ARG
1	F	269	ILE
1	F	291	LYS
1	А	65	PRO
1	А	78	SER
1	А	159	ARG
1	В	269	ILE
1	В	291	LYS
1	С	212	ALA
1	С	431	PRO
1	Е	402	GLN
1	Е	412	LYS
1	F	400	THR
1	А	400	THR
1	D	62	PRO
1	A	74	PRO
1	В	211	PRO
1	D	431	PRO
1	В	212	ALA
1	F	367	PRO
1	А	127	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	394/413~(95%)	361~(92%)	33 (8%)	11	38
1	В	394/413~(95%)	361 (92%)	33 (8%)	11	38
1	С	394/413~(95%)	358~(91%)	36~(9%)	9	33
1	D	394/413~(95%)	358~(91%)	36 (9%)	9	33
1	Ε	394/413~(95%)	362~(92%)	32 (8%)	11	39
1	F	393/413~(95%)	359~(91%)	34 (9%)	10	36
All	All	2363/2478~(95%)	2159 (91%)	204 (9%)	10	37

All (204) residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
1	А	17	LEU
1	А	21	ASN
1	А	64	THR
1	А	70	ASP
1	А	73	LEU
1	А	96	PHE
1	А	99	LEU
1	А	108	ASP
1	А	114	ASN
1	А	116	THR
1	А	132	ASP
1	А	135	ILE
1	А	181	ARG
1	А	190	ILE
1	А	220	THR
1	А	222	ARG
1	А	229	LEU
1	А	261	LEU
1	А	278	ARG
1	А	286	ILE
1	А	311	ILE
1	А	320	ASP

Mol	Chain	Res	Type
1	А	325	ASP
1	А	326	PHE
1	А	332	LEU
1	А	335	THR
1	А	338	ASN
1	А	339	ASN
1	А	347	ILE
1	А	351	TYR
1	А	373	LEU
1	А	410	ASP
1	А	438	PRO
1	В	19	LEU
1	В	37	ASP
1	В	71	LYS
1	В	73	LEU
1	В	88	ASN
1	В	99	LEU
1	В	103	TYR
1	В	165	SER
1	В	181	ARG
1	В	208	ILE
1	В	210	LEU
1	В	222	ARG
1	В	229	LEU
1	В	242	THR
1	В	261	LEU
1	В	268	ASP
1	В	270	ASP
1	В	278	ARG
1	В	297	ASN
1	В	320	ASP
1	В	325	ASP
1	В	332	LEU
1	В	339	ASN
1	В	351	TYR
1	В	362	LYS
1	В	371	LYS
1	В	383	ASP
1	В	399	LEU
1	В	410	ASP
1	В	420	LEU

Mol	Chain	Res	Type
1	В	445	LYS
1	В	452	VAL
1	С	6	LYS
1	С	8	LYS
1	С	21	ASN
1	С	48	ASP
1	С	50	ASP
1	С	61	LYS
1	С	71	LYS
1	С	88	ASN
1	С	94	ASP
1	С	135	ILE
1	С	162	GLN
1	С	169	ASN
1	С	177	LEU
1	С	181	ARG
1	С	221	HIS
1	С	222	ARG
1	С	249	GLU
1	С	261	LEU
1	С	278	ARG
1	С	280	GLN
1	С	285	LEU
1	С	311	ILE
1	С	315	VAL
1	С	326	PHE
1	С	344	ASP
1	С	351	TYR
1	С	356	ASP
1	С	362	LYS
1	C	371	LYS
1	C	373	LEU
1	C	386	ILE
1	С	395	VAL
1	C	410	ASP
1	C	420	LEU
1	C	444	ILE
1	С	445	LYS
1	D	12	ASN
1	D	37	ASP
1	D	53	VAL
1	D	87	ASP

Mol	Chain	Res	Type
1	D	94	ASP
1	D	96	PHE
1	D	99	LEU
1	D	116	THR
1	D	130	LYS
1	D	166	VAL
1	D	173	VAL
1	D	176	GLN
1	D	177	LEU
1	D	252	LEU
1	D	263	LYS
1	D	268	ASP
1	D	269	ILE
1	D	278	ARG
1	D	297	ASN
1	D	299	ILE
1	D	311	ILE
1	D	315	VAL
1	D	323	ILE
1	D	326	PHE
1	D	338	ASN
1	D	340	THR
1	D	343	LYS
1	D	362	LYS
1	D	371	LYS
1	D	383	ASP
1	D	399	LEU
1	D	410	ASP
1	D	420	LEU
1	D	421	ASN
1	D	430	LYS
1	D	445	LYS
1	Е	6	LYS
1	Е	53	VAL
1	Е	60	ASP
1	Е	73	LEU
1	E	88	ASN
1	Е	114	ASN
1	E	149	ILE
1	E	152	ILE
1	Е	166	VAL
1	Е	177	LEU

Mol	Chain	Res	Type
1	Е	208	ILE
1	Е	222	ARG
1	Е	234	PHE
1	Е	239	ASP
1	Е	252	LEU
1	Е	256	THR
1	Е	257	LYS
1	Е	261	LEU
1	Е	291	LYS
1	Е	317	GLU
1	Е	332	LEU
1	Е	339	ASN
1	Е	340	THR
1	Е	344	ASP
1	Е	351	TYR
1	Е	360	GLN
1	Е	362	LYS
1	Е	371	LYS
1	Е	373	LEU
1	Е	405	THR
1	Е	420	LEU
1	Е	445	LYS
1	F	9	LYS
1	F	67	ASP
1	F	88	ASN
1	F	96	PHE
1	F	107	ARG
1	F	114	ASN
1	F	117	LYS
1	F	149	ILE
1	F	168	ILE
1	F	182	LEU
1	F	186	LEU
1	F	190	ILE
1	F	208	ILE
1	F	220	THR
1	F	243	GLU
1	F	263	LYS
1	F	268	ASP
1	F	269	ILE
1	F	286	ILE
1	F	291	LYS

Mol	Chain	Res	Type
1	F	295	GLU
1	F	307	ASP
1	F	311	ILE
1	F	315	VAL
1	F	325	ASP
1	F	326	PHE
1	F	327	PHE
1	F	335	THR
1	F	339	ASN
1	F	351	TYR
1	F	368	LYS
1	F	373	LEU
1	F	404	ASN
1	F	452	VAL

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (75) such sidechains are listed below:

Mol	Chain	Res	Type	
1	А	174	HIS	
1	А	195	ASN	
1	А	250	ASN	
1	А	338	ASN	
1	А	339	ASN	
1	А	397	ASN	
1	А	404	ASN	
1	А	421	ASN	
1	А	426	ASN	
1	В	20	ASN	
1	В	88	ASN	
1	В	174	HIS	
1	В	176	GLN	
1	В	195	ASN	
1	В	297	ASN	
1	В	318	GLN	
1	В	339	ASN	
1	В	397	ASN	
1	В	404	ASN	
1	В	421	ASN	
1	В	426	ASN	
1	В	442	ASN	
1	С	20	ASN	
1	С	88	ASN	

Mol	Chain	Res	Type
1	С	91	GLN
1	С	114	ASN
1	С	162	GLN
1	С	169	ASN
1	С	174	HIS
1	С	339	ASN
1	С	397	ASN
1	С	404	ASN
1	С	421	ASN
1	С	426	ASN
1	С	437	ASN
1	D	18	GLN
1	D	20	ASN
1	D	21	ASN
1	D	114	ASN
1	D	176	GLN
1	D	195	ASN
1	D	221	HIS
1	D	241	HIS
1	D	338	ASN
1	D	339	ASN
1	D	397	ASN
1	D	421	ASN
1	D	426	ASN
1	D	442	ASN
1	Е	88	ASN
1	Е	114	ASN
1	Е	121	ASN
1	Е	174	HIS
1	Е	195	ASN
1	Е	339	ASN
1	Е	360	GLN
1	Е	397	ASN
1	Е	404	ASN
1	Е	421	ASN
1	Е	426	ASN
1	Е	437	ASN
1	Е	449	ASN
1	F	88	ASN
1	F	91	GLN
1	F	114	ASN
1	F	174	HIS

	5	1	1 5
Mol	Chain	\mathbf{Res}	Type
1	F	176	GLN
1	F	195	ASN
1	F	296	HIS
1	F	338	ASN
1	F	339	ASN
1	F	397	ASN
1	F	404	ASN
1	F	421	ASN
1	F	426	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no carbohydrates in this entry.

5.6 Ligand geometry (i)

12 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mal True Ch	Chain	Chain Res	n Res	Res	Res	Res	Dag	Dog	Tink	B	ond leng	gths	E	Bond ang	gles
	туре	Chain							Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2		
2	MYA	С	603	-	54,65,65	0.75	1 (1%)	67,91,91	1.46	7 (10%)						
3	GN8	D	704	-	26,27,27	<mark>3.80</mark>	<mark>6 (23%)</mark>	35,38,38	<mark>3.83</mark>	13 (37%)						
2	MYA	D	604	-	54,65,65	0.79	1 (1%)	67,91,91	1.43	9 (13%)						
3	GN8	F	706	-	26,27,27	<mark>3.81</mark>	6 (23%)	35,38,38	<mark>3.69</mark>	14 (40%)						

Mal	Tune	Chain	Dec	Tink	B	ond leng	gths	B	ond ang	gles
	noi Type Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
2	MYA	Е	605	-	$54,\!65,\!65$	0.79	1 (1%)	67,91,91	1.51	9 (13%)
3	GN8	С	703	-	26,27,27	<mark>3.77</mark>	6 (23%)	35,38,38	<mark>3.70</mark>	12 (34%)
2	MYA	А	601	-	54,65,65	0.77	1 (1%)	67,91,91	1.46	8 (11%)
3	GN8	В	702	-	26,27,27	<mark>3.78</mark>	<mark>6 (23%)</mark>	35,38,38	<mark>3.76</mark>	14 (40%)
2	MYA	F	606	-	54,65,65	0.77	1 (1%)	67,91,91	1.46	8 (11%)
3	GN8	Е	705	-	26,27,27	<mark>3.98</mark>	10 (38%)	35,38,38	<mark>3.83</mark>	14 (40%)
2	MYA	В	602	-	54,65,65	0.78	1 (1%)	67,91,91	1.55	8 (11%)
3	GN8	А	701	-	26,27,27	<mark>3.82</mark>	6 (23%)	35,38,38	<mark>3.78</mark>	14 (40%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	MYA	С	603	-	1/1/12/14	10/59/80/80	0/3/3/3
3	GN8	D	704	-	-	2/10/28/28	0/3/3/3
2	MYA	D	604	-	1/1/12/14	12/59/80/80	0/3/3/3
3	GN8	F	706	-	-	2/10/28/28	0/3/3/3
2	MYA	Е	605	-	1/1/12/14	17/59/80/80	0/3/3/3
3	GN8	С	703	-	-	2/10/28/28	0/3/3/3
2	MYA	А	601	-	1/1/12/14	20/59/80/80	0/3/3/3
3	GN8	В	702	-	-	2/10/28/28	0/3/3/3
2	MYA	F	606	-	1/1/12/14	19/59/80/80	0/3/3/3
3	GN8	Е	705	-	-	2/10/28/28	0/3/3/3
2	MYA	В	602	-	1/1/12/14	21/59/80/80	0/3/3/3
3	GN8	А	701	-	-	2/10/28/28	0/3/3/3

All (46) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(\text{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
3	Е	705	GN8	CAF-CAW	13.86	1.50	1.34
3	А	701	GN8	CAF-CAW	13.70	1.49	1.34
3	D	704	GN8	CAF-CAW	13.66	1.49	1.34
3	F	706	GN8	CAF-CAW	13.62	1.49	1.34
3	В	702	GN8	CAF-CAW	13.52	1.49	1.34
3	С	703	GN8	CAF-CAW	13.41	1.49	1.34
3	С	703	GN8	OAD-NAY	10.22	1.40	1.22

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	D	704	GN8	OAD-NAY	10.15	1.40	1.22
3	А	701	GN8	OAD-NAY	10.10	1.39	1.22
3	F	706	GN8	OAD-NAY	10.09	1.39	1.22
3	Е	705	GN8	OAD-NAY	10.08	1.39	1.22
3	В	702	GN8	OAD-NAY	10.07	1.39	1.22
3	А	701	GN8	CAT-NAY	-4.89	1.36	1.45
3	F	706	GN8	CAT-NAY	-4.86	1.36	1.45
3	Е	705	GN8	CAU-CAW	-4.83	1.39	1.48
3	В	702	GN8	CAT-NAY	-4.78	1.37	1.45
3	А	701	GN8	CAU-CAW	-4.75	1.39	1.48
3	F	706	GN8	CAU-CAW	-4.70	1.39	1.48
3	Е	705	GN8	CAT-NAY	-4.66	1.37	1.45
3	В	702	GN8	CAU-CAW	-4.65	1.39	1.48
3	С	703	GN8	CAT-NAY	-4.65	1.37	1.45
3	С	703	GN8	CAU-CAW	-4.64	1.39	1.48
3	С	703	GN8	CAV-SAE	4.64	1.78	1.66
3	F	706	GN8	CAV-SAE	4.62	1.78	1.66
3	Е	705	GN8	CAV-SAE	4.62	1.78	1.66
3	D	704	GN8	CAU-CAW	-4.61	1.39	1.48
3	D	704	GN8	CAT-NAY	-4.60	1.37	1.45
3	В	702	GN8	CAV-SAE	4.60	1.77	1.66
3	А	701	GN8	CAV-SAE	4.59	1.77	1.66
3	D	704	GN8	CAV-SAE	4.57	1.77	1.66
2	Е	605	MYA	C2-S1	-3.69	1.76	1.81
2	В	602	MYA	C2-S1	-3.63	1.76	1.81
2	D	604	MYA	C2-S1	-3.63	1.76	1.81
2	А	601	MYA	C2-S1	-3.44	1.77	1.81
3	Е	705	GN8	CAM-CAS	3.40	1.46	1.38
2	С	603	MYA	C2-S1	-3.03	1.77	1.81
3	Е	705	GN8	CAH-CAG	3.03	1.46	1.38
3	D	704	GN8	OAA-CAU	3.02	1.29	1.23
3	С	703	GN8	OAA-CAU	2.97	1.29	1.23
3	В	702	GN8	OAA-CAU	2.93	1.29	1.23
3	F	706	GN8	OAA-CAU	2.92	1.29	1.23
2	F	606	MYA	C2-S1	-2.89	1.77	1.81
3	Е	705	GN8	OAA-CAU	2.81	1.29	1.23
3	А	701	GN8	OAA-CAU	2.81	1.29	1.23
3	Е	705	GN8	CAL-CAS	2.52	1.44	1.38
3	E	705	GN8	CAG-CAI	2.38	1.44	1.38

All (130) bond angle outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	$\begin{tabular}{ c c c c c } Atoms & Z & Observed(^{o}) \end{tabular}$		$Ideal(^{o})$	
3	Е	705	GN8	CAV-NAX-CAU	-9.04	105.77	116.69
3	А	701	GN8	CAV-NAX-CAU	-8.98	105.84	116.69
3	D	704	GN8	CAV-NAX-CAU	-8.84	106.01	116.69
3	В	702	GN8	CAV-NAX-CAU	-8.83	106.01	116.69
3	Е	705	GN8	CAO-NAX-CAV	8.59	132.01	122.26
3	F	706	GN8	CAV-NAX-CAU	-8.57	106.33	116.69
3	С	703	GN8	CAV-NAX-CAU	-8.45	106.48	116.69
3	С	703	GN8	CAF-CAW-CAU	8.39	129.11	120.40
3	В	702	GN8	SAP-CAV-NAX	8.35	118.67	110.21
3	D	704	GN8	SAP-CAV-NAX	8.29	118.60	110.21
3	А	701	GN8	SAP-CAV-NAX	8.29	118.60	110.21
3	Е	705	GN8	CAW-CAU-NAX	8.25	118.89	110.16
3	С	703	GN8	SAP-CAV-NAX	8.18	118.49	110.21
3	F	706	GN8	SAP-CAV-NAX	8.13	118.44	110.21
3	Е	705	GN8	SAP-CAV-NAX	8.11	118.42	110.21
3	D	704	GN8	CAO-NAX-CAV	7.97	131.30	122.26
3	А	701	GN8	CAO-NAX-CAV	7.96	131.29	122.26
3	А	701	GN8	CAW-CAU-NAX	7.82	118.44	110.16
3	В	702	GN8	CAO-NAX-CAV	7.66	130.95	122.26
3	D	704	GN8	CAW-CAU-NAX	7.60	118.20	110.16
3	В	702	GN8	CAW-CAU-NAX	7.54	118.13	110.16
3	F	706	GN8	CAW-CAU-NAX	7.42	118.01	110.16
3	С	703	GN8	CAF-CAW-SAP	-7.30	119.87	129.22
3	А	701	GN8	CAF-CAW-CAU	7.28	127.96	120.40
3	F	706	GN8	CAF-CAW-CAU	7.24	127.92	120.40
3	F	706	GN8	CAO-NAX-CAV	7.23	130.46	122.26
3	В	702	GN8	CAF-CAW-CAU	7.22	127.89	120.40
3	D	704	GN8	CAF-CAW-CAU	7.01	127.68	120.40
3	С	703	GN8	CAW-CAU-NAX	6.99	117.56	110.16
3	В	702	GN8	CAV-SAP-CAW	-6.28	86.33	92.64
3	В	702	GN8	CAF-CAW-SAP	-6.23	121.25	129.22
3	D	704	GN8	CAV-SAP-CAW	-6.22	86.39	92.64
3	А	701	GN8	CAV-SAP-CAW	-6.20	86.41	92.64
2	Е	605	MYA	O2M-C2M-C3M	6.20	120.06	109.02
3	F	706	GN8	CAF-CAW-SAP	-6.19	121.29	129.22
3	F	706	GN8	CAV-SAP-CAW	-6.18	86.43	92.64
3	А	701	GN8	CAF-CAW-SAP	-6.16	121.33	129.22
3	С	703	GN8	CAV-SAP-CAW	-6.16	86.45	92.64
3	Е	705	GN8	CAV-SAP-CAW	-6.09	86.51	92.64
2	С	603	MYA	O2M-C2M-C3M	6.07	119.83	109.02
3	D	704	GN8	CAF-CAW-SAP	-6.01	121.53	129.22
2	F	606	MYA	O2M-C2M-C3M	5.98	119.67	109.02
2	А	601	MYA	O2M-C2M-C3M	5.97	119.65	109.02

Conti Mol	nueu jron	B os	Type	Atoms	7	Observed(0)	Ideal(0)
		705	<u>Type</u>		4		100.40
<u>う</u>	E	702	GN8 CN9	CAP-CAW-CAU	5.79	120.42	120.40
<u>う</u>		704	GN8 CN9	$\begin{array}{c} UAUUAUAAUAV\\ \hline CANCATCACAO\\ \end{array}$	0.72	128.75	122.20
<u>う</u>		604		UAN-UAI-UAQ	-0.00	119.11	121.84
2	D	604	MYA	O2M-C2M-C3M	5.59	118.98	109.02
2	В	602	MYA	O2M-C2M-C3M	5.51	118.83	109.02
3	E	705	GN8	CAN-CAT-CAQ	-5.40	119.23	121.84
2	B	602	MYA	N3A-C2A-N1A	-5.07	120.75	128.68
3	E	705	GN8	CAR-CAQ-CAT	4.89	120.79	117.11
2	C	603	MYA	N3A-C2A-N1A	-4.88	121.05	128.68
2	D	604	MYA	N3A-C2A-N1A	-4.84	121.11	128.68
3	F	706	GN8	CAN-CAT-CAQ	-4.82	119.52	121.84
2	F	606	MYA	N3A-C2A-N1A	-4.79	121.20	128.68
2	A	601	MYA	N3A-C2A-N1A	-4.74	121.26	128.68
2	E	605	MYA	N3A-C2A-N1A	-4.74	121.27	128.68
3	D	704	GN8	CAR-CAQ-CAT	4.72	120.66	117.11
3	Ε	705	GN8	CAF-CAW-SAP	-4.72	123.18	129.22
3	В	702	GN8	CAN-CAT-CAQ	-4.59	119.62	121.84
3	А	701	GN8	CAR-CAQ-CAT	4.56	120.54	117.11
3	С	703	GN8	CAN-CAT-CAQ	-4.53	119.66	121.84
3	F	706	GN8	CAR-CAQ-CAT	4.51	120.50	117.11
3	С	703	GN8	CAR-CAQ-CAT	4.37	120.40	117.11
3	В	702	GN8	CAR-CAQ-CAT	4.35	120.38	117.11
3	Е	705	GN8	OAA-CAU-CAW	-4.33	119.73	126.46
3	А	701	GN8	CAN-CAT-CAQ	-4.23	119.80	121.84
2	В	602	MYA	C7-N8-C9	4.12	129.94	122.59
3	А	701	GN8	OAA-CAU-CAW	-4.02	120.22	126.46
3	Е	705	GN8	CAS-CAO-NAX	3.99	119.35	113.15
3	D	704	GN8	OAA-CAU-CAW	-3.97	120.28	126.46
2	Е	605	MYA	C2-C3-N4	-3.85	104.32	112.42
3	С	703	GN8	OAA-CAU-CAW	-3.84	120.48	126.46
3	D	704	GN8	CAS-CAO-NAX	3.83	119.11	113.15
3	F	706	GN8	OAA-CAU-CAW	-3.83	120.51	126.46
3	В	702	GN8	OAA-CAU-CAW	-3.82	120.52	126.46
3	С	703	GN8	CAR-CAF-CAW	-3.71	123.46	130.32
3	A	701	GN8	SAP-CAV-SAE	-3.64	116.26	123.00
3	D	704	GN8	SAP-CAV-SAE	-3.59	116.34	123.00
2	В	602	MYA	C6-C7-N8	-3.57	104.69	111.90
3	С	703	GN8	SAP-CAV-SAE	-3.55	116.42	123.00
3	F	706	GN8	SAP-CAV-SAE	-3.54	116.44	123.00
3	В	702	GN8	SAP-CAV-SAE	-3.44	116.63	123.00
2	С	603	MYA	C2-C3-N4	-3.39	105.28	112.42
2	В	602	MYA	C2-C3-N4	-3.39	105.30	112.42

 C_{c} ntia $d f_{a}$. . .

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	Ideal(°)
3	E	705	GN8	SAP-CAV-SAE	-3.38	116.73	123.00
3	B	702	GN8	CAS-CAO-NAX	3.30	118.29	113.15
2	Е	605	MYA	C6-C7-N8	-3.29	105.25	111.90
2	F	606	MYA	C2-C3-N4	-3.20	105.70	112.42
2	D	604	MYA	C7-N8-C9	3.17	128.25	122.59
2	A	601	MYA	P2A-O3A-P1A	-3.17	121.95	132.83
2	A	601	MYA	C2-C3-N4	-3.14	105.81	112.42
2	В	602	MYA	P2A-O3A-P1A	-3.02	122.47	132.83
3	А	701	GN8	CAS-CAO-NAX	2.98	117.79	113.15
2	F	606	MYA	C7-N8-C9	2.96	127.86	122.59
2	Е	605	MYA	P2A-O3A-P1A	-2.93	122.77	132.83
2	В	602	MYA	C14-C11-C10	2.92	113.89	108.82
2	Е	605	MYA	C7-N8-C9	2.80	127.59	122.59
3	D	704	GN8	CAN-CAT-NAY	2.79	119.45	116.47
2	С	603	MYA	C7-N8-C9	2.79	127.56	122.59
2	А	601	MYA	C7-N8-C9	2.74	127.48	122.59
2	D	604	MYA	P2A-O3A-P1A	-2.73	123.47	132.83
2	А	601	MYA	C14-C11-C10	2.71	113.51	108.82
2	F	606	MYA	C6-C7-N8	-2.62	106.60	111.90
2	D	604	MYA	C14-C11-C10	2.62	113.37	108.82
3	Е	705	GN8	CAN-CAT-NAY	2.59	119.24	116.47
2	D	604	MYA	C6-C7-N8	-2.58	106.69	111.90
2	Е	605	MYA	C3-N4-C5	2.55	127.57	122.84
2	С	603	MYA	C6-C7-N8	-2.53	106.80	111.90
2	F	606	MYA	P2A-O3A-P1A	-2.52	124.17	132.83
2	D	604	MYA	C2-C3-N4	-2.52	107.13	112.42
2	C	603	MYA	P2A-O3A-P1A	-2.50	124.24	132.83
3	В	702	GN8	CAR-CAF-CAW	-2.50	125.70	130.32
3	E	705	GN8	CAM-CAS-CAL	2.48	122.07	118.17
2	С	603	MYA	C3-N4-C5	2.48	127.44	122.84
2	A	601	MYA	C3-N4-C5	2.43	127.34	122.84
3	F	706	GN8	CAR-CAF-CAW	-2.43	125.83	130.32
2	В	602	MYA	C3-N4-C5	2.38	127.25	122.84
3	F	706	GN8	CAS-CAO-NAX	2.32	116.75	113.15
3	A	701	GN8	CAR-CAF-CAW	-2.26	126.14	130.32
2	F	606	MYA	C3-N4-C5	2.22	126.96	122.84
2	E	605	MYA	C14-C11-C10	2.22	112.66	108.82
2	F	606	MYA	C14-C11-C10	2.13	112.51	108.82
3	A	701	GN8	CAN-CAT-NAY	2.12	118.74	116.47
2	E	605	MYA	C3X-C2X-C1X	2.09	104.52	99.89
2	D	604	MYA	C2-S1-C2M	2.07	104.09	100.16
2	A	601	MYA	C6-C7-N8	-2.07	107.72	111.90

Contin $d f_{2}$

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	F	706	GN8	CAN-CAT-NAY	2.03	118.64	116.47
3	В	702	GN8	CAN-CAT-NAY	2.03	118.64	116.47
2	D	604	MYA	C3-N4-C5	2.01	126.57	122.84

All (6) chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
2	С	603	MYA	C10
2	D	604	MYA	C10
2	Е	605	MYA	C10
2	А	601	MYA	C10
2	F	606	MYA	C10
2	В	602	MYA	C10

All (111) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	С	603	MYA	S1-C2-C3-N4
2	С	603	MYA	S1-C2M-C3M-C4M
3	D	704	GN8	CAS-CAO-NAX-CAU
3	D	704	GN8	CAS-CAO-NAX-CAV
2	D	604	MYA	C3X-O3X-P3X-O9A
3	F	706	GN8	CAS-CAO-NAX-CAU
3	F	706	GN8	CAS-CAO-NAX-CAV
2	Е	605	MYA	S1-C2M-C3M-C4M
2	Е	605	MYA	C3X-O3X-P3X-O9A
2	А	601	MYA	C12-O6A-P2A-O3A
3	В	702	GN8	CAS-CAO-NAX-CAU
3	В	702	GN8	CAS-CAO-NAX-CAV
2	F	606	MYA	O10-C10-C11-C14
2	F	606	MYA	C12-O6A-P2A-O4A
3	Е	705	GN8	CAS-CAO-NAX-CAU
2	В	602	MYA	C3M-C2M-S1-C2
2	В	602	MYA	C5-C6-C7-N8
2	В	602	MYA	C5X-O5X-P1A-O2A
2	В	602	MYA	C5X-O5X-P1A-O3A
2	В	602	MYA	S1-C2M-C3M-C4M
2	В	602	MYA	C3X-O3X-P3X-O9A
3	A	701	GN8	CAS-CAO-NAX-CAU
3	A	701	GN8	CAS-CAO-NAX-CAV
3	С	703	GN8	CAS-CAO-NAX-CAU
2	D	604	MYA	C4M-C5M-C6M-C7M

Mol	Chain	Res	Type	Atoms
2	В	602	MYA	C3M-C4M-C5M-C6M
2	D	604	MYA	C7M-C8M-C9M-CAM
2	D	604	MYA	C9M-CAM-CBM-CCM
2	В	602	MYA	CBM-CCM-CDM-CEM
2	Е	605	MYA	C5M-C6M-C7M-C8M
2	Е	605	MYA	CAM-CBM-CCM-CDM
2	F	606	MYA	C7M-C8M-C9M-CAM
2	В	602	MYA	C7M-C8M-C9M-CAM
2	Е	605	MYA	C4M-C5M-C6M-C7M
2	А	601	MYA	CAM-CBM-CCM-CDM
2	В	602	MYA	C9M-CAM-CBM-CCM
2	D	604	MYA	O2M-C2M-C3M-C4M
2	F	606	MYA	O2M-C2M-C3M-C4M
2	В	602	MYA	O2M-C2M-C3M-C4M
2	Е	605	MYA	C8M-C9M-CAM-CBM
2	D	604	MYA	C3M-C4M-C5M-C6M
2	А	601	MYA	C8M-C9M-CAM-CBM
2	D	604	MYA	CBM-CCM-CDM-CEM
2	С	603	MYA	CBM-CCM-CDM-CEM
2	А	601	MYA	C5-C6-C7-N8
2	F	606	MYA	C3M-C4M-C5M-C6M
2	С	603	MYA	C8M-C9M-CAM-CBM
2	Е	605	MYA	C3M-C4M-C5M-C6M
2	F	606	MYA	CAM-CBM-CCM-CDM
2	В	602	MYA	C6M-C7M-C8M-C9M
2	В	602	MYA	O10-C10-C9-O9
3	С	703	GN8	CAS-CAO-NAX-CAV
3	Е	705	GN8	CAS-CAO-NAX-CAV
2	F	606	MYA	O10-C10-C11-C13
2	В	602	MYA	O10-C10-C11-C13
2	D	604	MYA	C5M-C6M-C7M-C8M
2	A	601	MYA	C5M-C6M-C7M-C8M
2	A	601	MYA	CCM-CDM-CEM-CFM
$2^{$	E	$60\overline{5}$	MYA	S1-C2-C3-N4
2	F	606	MYA	C5M-C6M-C7M-C8M
2	A	601	MYA	C11-C10-C9-N8
2	F	606	MYA	CCM-CDM-CEM-CFM
2	E	605	MYA	C13-C11-C12-O6A
$\overline{2}$	F	606	MYA	C12-O6A-P2A-O3A
2	С	603	MYA	P1A-O3A-P2A-O4A
2	D	604	MYA	C2M-C3M-C4M-C5M
2	A	601	MYA	C12-O6A-P2A-O4A

Continued from previous page...

Mol	Chain	Res	Type	Atoms
2	А	601	MYA	C12-O6A-P2A-O5A
2	F	606	MYA	C12-O6A-P2A-O5A
2	А	601	MYA	S1-C2M-C3M-C4M
2	F	606	MYA	O10-C10-C11-C12
2	А	601	MYA	O10-C10-C9-O9
2	В	602	MYA	C3X-C4X-C5X-O5X
2	Е	605	MYA	C14-C11-C12-O6A
2	С	603	MYA	O5-C5-C6-C7
2	В	602	MYA	O10-C10-C11-C14
2	В	602	MYA	C8M-C9M-CAM-CBM
2	С	603	MYA	CAM-CBM-CCM-CDM
2	А	601	MYA	S1-C2-C3-N4
2	Е	605	MYA	O5-C5-C6-C7
2	A	601	MYA	C14-C11-C12-O6A
2	F	606	MYA	C2M-C3M-C4M-C5M
2	С	603	MYA	N4-C5-C6-C7
2	С	603	MYA	C7M-C8M-C9M-CAM
2	F	606	MYA	C8M-C9M-CAM-CBM
2	С	603	MYA	P1A-O3A-P2A-O5A
2	F	606	MYA	P1A-O3A-P2A-O4A
2	D	604	MYA	C8M-C9M-CAM-CBM
2	Ε	605	MYA	N4-C5-C6-C7
2	D	604	MYA	O10-C10-C9-O9
2	Ε	605	MYA	O10-C10-C9-O9
2	А	601	MYA	C9M-CAM-CBM-CCM
2	А	601	MYA	O5-C5-C6-C7
2	A	601	MYA	O10-C10-C9-N8
2	В	602	MYA	O10-C10-C9-N8
2	A	601	MYA	C13-C11-C12-O6A
2	D	604	MYA	C5-C6-C7-N8
2	F	606	MYA	C9-C10-C11-C14
2	A	601	MYA	C6M-C7M-C8M-C9M
2	E	605	MYA	C5X-O5X-P1A-O3A
2	Е	605	MYA	C3X-O3X-P3X-O7A
2	В	602	MYA	C3X-O3X-P3X-O8A
2	E	605	MYA	P1A-O3A-P2A-O5A
2	F	606	MYA	P2A-O3A-P1A-O2A
2	F	606	MYA	P1A-O3A-P2A-O5A
2	В	602	MYA	P1A-O3A-P2A-O4A
2	Е	605	MYA	C5X-O5X-P1A-O2A
2	В	602	MYA	C2M-C3M-C4M-C5M
2	A	601	MYA	C11-C10-C9-O9

Continued from previous page...

Mol	Chain	Res	Type	Atoms
2	F	606	MYA	O5-C5-C6-C7
2	А	601	MYA	N4-C5-C6-C7

There are no ring outliers.

12 monomers are involved in 31 short contacts:

Mol	Chain	\mathbf{Res}	Type	Clashes	Symm-Clashes
2	С	603	MYA	3	0
3	D	704	GN8	1	0
2	D	604	MYA	7	0
3	F	706	GN8	1	0
2	Е	605	MYA	3	0
3	С	703	GN8	2	0
2	А	601	MYA	1	0
3	В	702	GN8	1	0
2	F	606	MYA	2	0
3	Ε	705	GN8	1	0
2	В	602	MYA	6	0
3	А	701	GN8	3	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$\mathbf{OWAB}(\mathrm{\AA}^2)$	Q<0.9
1	А	436/455~(95%)	-0.54	0 100 100	16, 31, 54, 69	0
1	В	436/455~(95%)	-0.60	0 100 100	15, 29, 56, 66	0
1	С	436/455~(95%)	-0.38	1 (0%) 95 90	15, 42, 65, 104	0
1	D	436/455~(95%)	-0.51	1 (0%) 95 90	17, 34, 54, 69	0
1	Е	436/455~(95%)	-0.62	0 100 100	15, 26, 48, 65	0
1	F	435/455~(95%)	-0.31	2 (0%) 91 81	17, 47, 66, 106	0
All	All	2615/2730 (95%)	-0.49	4 (0%) 95 90	15, 34, 61, 106	0

All (4) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	F	5	ASP	2.3
1	D	69	SER	2.3
1	F	198	ASP	2.1
1	С	198	ASP	2.1

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no carbohydrates in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum,

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
3	GN8	D	704	25/25	0.63	0.42	$59,\!68,\!77,\!78$	0
3	GN8	В	702	25/25	0.66	0.38	67,72,78,78	0
3	GN8	А	701	25/25	0.67	0.36	50,62,72,73	0
3	GN8	E	705	25/25	0.72	0.42	62,67,73,74	0
3	GN8	F	706	25/25	0.75	0.38	$65,\!72,\!76,\!78$	0
3	GN8	C	703	25/25	0.76	0.35	$60,\!66,\!73,\!74$	0
2	MYA	C	603	63/63	0.89	0.21	$47,\!50,\!55,\!55$	0
2	MYA	F	606	63/63	0.90	0.20	$53,\!60,\!65,\!66$	0
2	MYA	D	604	63/63	0.94	0.16	$25,\!39,\!43,\!43$	0
2	MYA	E	605	63/63	0.95	0.14	13,25,30,32	0
2	MYA	В	602	63/63	0.95	0.13	$16,\!26,\!29,\!31$	0
2	MYA	A	601	63/63	0.95	0.13	21,31,44,46	0

median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

