

May 13, 2024 - 02:55 pm BST

PDB ID 80YU : EMDB ID : EMD-17296 Stabilised BA.1 SARS-CoV-2 spike with H6 nanobodies in '2 up 1 down' RBD Title : conformation Authors : Weckener, M.; Naismith, J.H.; Owens, R.J. 2023-05-05 Deposited on : 4.00 Å(reported) Resolution : Based on initial models 7Q07, 80WV :

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev92
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 4.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motria	Whole archive	EM structures		
Metric	$(\# { m Entries})$	$(\# {\rm Entries})$		
Clashscore	158937	4297		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain						
1	А	1254	62%	24%	• 12%				
1	В	1254	61%	26%	13%				
1	С	1254	61%	25%	• 12%				
2	D	126	7%		29%				
2	Е	126	75%		23% •				
3	F	2	100%						
3	G	2	100%						
3	Н	2	50%	50%					

Mol	Chain	Length	Quality of chain						
3	Ι	2	50% 50%						
3	J	2	100%						
3	K	2	100%						
3	L	2	100%						
3	М	2	50% 50%						
3	Ν	2	100%						
3	0	2	50% 50%						
3	Р	2	100%						

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 28223 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	А	1098	Total 8596	C 5496	N 1435	O 1626	S 39	0	0
1	В	1096	Total 8589	C 5492	N 1433	O 1625	S 39	0	0
1	С	1098	Total 8596	C 5496	N 1435	O 1626	S 39	0	0

• Molecule 1 is a protein called Spike glycoprotein, Fibritin.

Chain	Residue	Modelled	Actual	Comment	Reference
А	67	VAL	ALA	variant	UNP P0DTC2
А	?	-	HIS	deletion	UNP P0DTC2
А	?	-	VAL	deletion	UNP P0DTC2
А	93	ILE	THR	variant	UNP P0DTC2
А	?	-	GLY	deletion	UNP P0DTC2
А	?	-	VAL	deletion	UNP P0DTC2
А	?	-	TYR	deletion	UNP P0DTC2
А	140	ASP	TYR	variant	UNP P0DTC2
А	206	ILE	ASN	variant	UNP P0DTC2
А	207	VAL	LEU	variant	UNP P0DTC2
А	208	ARG	VAL	variant	UNP P0DTC2
А	209	GLU	ARG	variant	UNP P0DTC2
А	210	PRO	-	insertion	UNP P0DTC2
А	211	GLU	-	insertion	UNP P0DTC2
А	336	ASP	GLY	variant	UNP P0DTC2
A	368	LEU	SER	variant	UNP P0DTC2
А	370	PRO	SER	variant	UNP P0DTC2
А	372	PHE	SER	variant	UNP P0DTC2
А	414	ASN	LYS	variant	UNP P0DTC2
А	437	LYS	ASN	variant	UNP P0DTC2
А	443	SER	GLY	variant	UNP P0DTC2
A	474	ASN	SER	variant	UNP P0DTC2
A	475	LYS	THR	variant	UNP P0DTC2
A	481	ALA	GLU	variant	UNP P0DTC2

There are 216 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Reference	
А	490	LYS	GLN	variant	UNP P0DTC2
А	493	SER	GLY	variant	UNP P0DTC2
А	495	ARG	GLN	variant	UNP P0DTC2
А	498	TYR	ASN	variant	UNP P0DTC2
А	502	HIS	TYR	variant	UNP P0DTC2
А	544	LYS	THR	variant	UNP P0DTC2
А	611	GLY	ASP	variant	UNP P0DTC2
А	652	TYR	HIS	variant	UNP P0DTC2
А	676	LYS	ASN	variant	UNP P0DTC2
А	678	HIS	PRO	variant	UNP P0DTC2
А	679	GLY	ARG	engineered mutation	UNP P0DTC2
А	680	SER	ARG	engineered mutation	UNP P0DTC2
А	682	SER	ARG	engineered mutation	UNP P0DTC2
А	761	LYS	ASN	variant	UNP P0DTC2
А	793	TYR	ASP	variant	UNP P0DTC2
А	814	PRO	PHE	engineered mutation	UNP P0DTC2
А	853	LYS	ASN	variant	UNP P0DTC2
А	889	PRO	ALA	engineered mutation	UNP P0DTC2
А	896	PRO	ALA	engineered mutation	UNP P0DTC2
А	939	PRO	ALA	engineered mutation	UNP P0DTC2
А	951	HIS	GLN	variant	UNP P0DTC2
А	966	LYS	ASN	variant	UNP P0DTC2
А	978	PHE	LEU	variant	UNP P0DTC2
А	983	PRO	LYS	engineered mutation	UNP P0DTC2
А	984	PRO	VAL	engineered mutation	UNP P0DTC2
А	1206	GLY	-	linker	UNP P0DTC2
А	1207	SER	-	linker	UNP P0DTC2
А	1229	LEU	PHE	engineered mutation	UNP P10104
А	1235	GLY	-	expression tag	UNP P10104
A	1236	ARG	-	expression tag	UNP P10104
A	1237	SER	-	expression tag	UNP P10104
A	1238	LEU	-	expression tag	UNP P10104
А	1239	GLU	-	expression tag	UNP P10104
A	1240	VAL	-	expression tag	UNP P10104
А	1241	LEU	-	expression tag	UNP P10104
A	1242	PHE	-	expression tag	UNP P10104
A	1243	GLN	-	expression tag	UNP P10104
A	1244	GLY	-	expression tag	UNP P10104
A	1245	PRO	-	expression tag	UNP P10104
A	1246	GLY	-	expression tag	UNP P10104
A	1247	HIS	-	expression tag	UNP P10104
А	1248	HIS	-	expression tag	UNP P10104

Chain	Residue	Modelled	Actual	Comment	Reference
А	1249	HIS	-	expression tag	UNP P10104
А	1250	HIS	-	expression tag	UNP P10104
А	1251	HIS	-	expression tag	UNP P10104
А	1252	HIS	-	expression tag	UNP P10104
А	1253	HIS	-	expression tag	UNP P10104
А	1254	HIS	-	expression tag	UNP P10104
В	67	VAL	ALA	variant	UNP P0DTC2
В	?	-	HIS	deletion	UNP P0DTC2
В	?	-	VAL	deletion	UNP P0DTC2
В	93	ILE	THR	variant	UNP P0DTC2
В	?	-	GLY	deletion	UNP P0DTC2
В	?	-	VAL	deletion	UNP P0DTC2
В	?	-	TYR	deletion	UNP P0DTC2
В	140	ASP	TYR	variant	UNP P0DTC2
В	206	ILE	ASN	variant	UNP P0DTC2
В	207	VAL	LEU	variant	UNP P0DTC2
В	208	ARG	VAL	variant	UNP P0DTC2
В	209	GLU	ARG	variant	UNP P0DTC2
В	210	PRO	-	insertion	UNP P0DTC2
В	211	GLU	-	insertion	UNP P0DTC2
В	336	ASP	GLY	variant	UNP P0DTC2
В	368	LEU	SER	variant	UNP P0DTC2
В	370	PRO	SER	variant	UNP P0DTC2
В	372	PHE	SER	variant	UNP P0DTC2
В	414	ASN	LYS	variant	UNP P0DTC2
В	437	LYS	ASN	variant	UNP P0DTC2
В	443	SER	GLY	variant	UNP P0DTC2
В	474	ASN	SER	variant	UNP P0DTC2
В	475	LYS	THR	variant	UNP P0DTC2
В	481	ALA	GLU	variant	UNP P0DTC2
В	490	LYS	GLN	variant	UNP P0DTC2
В	493	SER	GLY	variant	UNP P0DTC2
В	495	ARG	GLN	variant	UNP P0DTC2
В	498	TYR	ASN	variant	UNP P0DTC2
В	502	HIS	TYR	variant	UNP P0DTC2
В	544	LYS	THR	variant	UNP P0DTC2
В	611	GLY	ASP	variant	UNP P0DTC2
В	652	TYR	HIS	variant	UNP P0DTC2
В	676	LYS	ASN	variant	UNP P0DTC2
В	678	HIS	PRO	variant	UNP P0DTC2
В	679	GLY	ARG	engineered mutation	UNP P0DTC2
В	680	SER	ARG	engineered mutation	UNP P0DTC2

Chain	Residue	Modelled	Actual	Reference	
В	682	SER	ARG	engineered mutation	UNP P0DTC2
В	761	LYS	ASN	variant	UNP P0DTC2
В	793	TYR	ASP	variant	UNP P0DTC2
В	814	PRO	PHE	engineered mutation	UNP P0DTC2
В	853	LYS	ASN	variant	UNP P0DTC2
В	889	PRO	ALA	engineered mutation	UNP P0DTC2
В	896	PRO	ALA	engineered mutation	UNP P0DTC2
В	939	PRO	ALA	engineered mutation	UNP P0DTC2
В	951	HIS	GLN	variant	UNP P0DTC2
В	966	LYS	ASN	variant	UNP P0DTC2
В	978	PHE	LEU	variant	UNP P0DTC2
В	983	PRO	LYS	engineered mutation	UNP P0DTC2
В	984	PRO	VAL	engineered mutation	UNP P0DTC2
В	1206	GLY	-	linker	UNP P0DTC2
В	1207	SER	-	linker	UNP P0DTC2
В	1229	LEU	PHE	engineered mutation	UNP P10104
В	1235	GLY	-	expression tag	UNP P10104
В	1236	ARG	-	expression tag	UNP P10104
В	1237	SER	-	expression tag	UNP P10104
В	1238	LEU	-	expression tag	UNP P10104
В	1239	GLU	-	expression tag	UNP P10104
В	1240	VAL	-	expression tag	UNP P10104
В	1241	LEU	-	expression tag	UNP P10104
В	1242	PHE	-	expression tag	UNP P10104
В	1243	GLN	-	expression tag	UNP P10104
В	1244	GLY	-	expression tag	UNP P10104
В	1245	PRO	-	expression tag	UNP P10104
В	1246	GLY	-	expression tag	UNP P10104
В	1247	HIS	-	expression tag	UNP P10104
В	1248	HIS	-	expression tag	UNP P10104
В	1249	HIS	-	expression tag	UNP P10104
В	1250	HIS	-	expression tag	UNP P10104
В	1251	HIS	-	expression tag	UNP P10104
В	1252	HIS	-	expression tag	UNP P10104
В	1253	HIS	-	expression tag	UNP P10104
В	1254	HIS	-	expression tag	UNP P10104
С	67	VAL	ALA	variant	UNP P0DTC2
C	?	-	HIS	deletion	UNP P0DTC2
C	?	-	VAL	deletion	UNP P0DTC2
C	93	ILE	THR	variant	UNP P0DTC2
C	?	-	GLY	deletion	UNP PODTC2
C	?	-	VAL	deletion	UNP P0DTC2

Chain	Residue	Modelled	Actual	Comment	Reference
С	?	-	TYR	deletion	UNP P0DTC2
С	140	ASP	TYR	variant	UNP P0DTC2
С	206	ILE	ASN	variant	UNP P0DTC2
С	207	VAL	LEU	variant	UNP P0DTC2
С	208	ARG	VAL	variant	UNP P0DTC2
С	209	GLU	ARG	variant	UNP P0DTC2
С	210	PRO	_	insertion	UNP P0DTC2
С	211	GLU	-	insertion	UNP P0DTC2
С	336	ASP	GLY	variant	UNP P0DTC2
С	368	LEU	SER	variant	UNP P0DTC2
С	370	PRO	SER	variant	UNP P0DTC2
С	372	PHE	SER	variant	UNP P0DTC2
С	414	ASN	LYS	variant	UNP P0DTC2
С	437	LYS	ASN	variant	UNP P0DTC2
С	443	SER	GLY	variant	UNP P0DTC2
С	474	ASN	SER	variant	UNP P0DTC2
С	475	LYS	THR	variant	UNP P0DTC2
С	481	ALA	GLU	variant	UNP P0DTC2
С	490	LYS	GLN	variant	UNP P0DTC2
С	493	SER	GLY	variant	UNP P0DTC2
С	495	ARG	GLN	variant	UNP P0DTC2
С	498	TYR	ASN	variant	UNP P0DTC2
С	502	HIS	TYR	variant	UNP P0DTC2
С	544	LYS	THR	variant	UNP P0DTC2
С	611	GLY	ASP	variant	UNP P0DTC2
С	652	TYR	HIS	variant	UNP P0DTC2
С	676	LYS	ASN	variant	UNP P0DTC2
С	678	HIS	PRO	variant	UNP P0DTC2
С	679	GLY	ARG	engineered mutation	UNP P0DTC2
С	680	SER	ARG	engineered mutation	UNP P0DTC2
С	682	SER	ARG	engineered mutation	UNP P0DTC2
С	761	LYS	ASN	variant	UNP P0DTC2
С	793	TYR	ASP	variant	UNP P0DTC2
С	814	PRO	PHE	engineered mutation	UNP P0DTC2
С	853	LYS	ASN	variant	UNP P0DTC2
С	889	PRO	ALA	engineered mutation	UNP P0DTC2
С	896	PRO	ALA	engineered mutation	UNP P0DTC2
C	939	PRO	ALA	engineered mutation	UNP PODTC2
C	951	HIS	GLN	variant	UNP P0DTC2
C	966	LYS	ASN	variant	UNP P0DTC2
C	978	PHE	LEU	variant	UNP PODTC2
С	983	PRO	LYS	engineered mutation	UNP P0DTC2

Chain	Residue	Modelled	Actual	Comment	Reference
С	984	PRO	VAL	engineered mutation	UNP P0DTC2
С	1206	GLY	-	linker	UNP P0DTC2
С	1207	SER	-	linker	UNP P0DTC2
С	1229	LEU	PHE	engineered mutation	UNP P10104
С	1235	GLY	-	expression tag	UNP P10104
С	1236	ARG	-	expression tag	UNP P10104
С	1237	SER	-	expression tag	UNP P10104
С	1238	LEU	-	expression tag	UNP P10104
С	1239	GLU	-	expression tag	UNP P10104
С	1240	VAL	-	expression tag	UNP P10104
С	1241	LEU	-	expression tag	UNP P10104
С	1242	PHE	-	expression tag	UNP P10104
С	1243	GLN	-	expression tag	UNP P10104
С	1244	GLY	-	expression tag	UNP P10104
С	1245	PRO	-	expression tag	UNP P10104
С	1246	GLY	-	expression tag	UNP P10104
С	1247	HIS	-	expression tag	UNP P10104
С	1248	HIS	-	expression tag	UNP P10104
С	1249	HIS	-	expression tag	UNP P10104
С	1250	HIS	-	expression tag	UNP P10104
С	1251	HIS	-	expression tag	UNP P10104
С	1252	HIS	-	expression tag	UNP P10104
С	1253	HIS	-	expression tag	UNP P10104
C	1254	HIS	-	expression tag	UNP P10104

• Molecule 2 is a protein called H6 nanobody.

Mol	Chain	Residues	Atoms				AltConf	Trace	
2	Е	126	Total 962	C 597	N 167	0 192	S 6	2	0
2	D	126	Total 962	C 597	N 167	0 192	S 6	2	0

• Molecule 3 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	AltConf	Trace		
3	F	2	Total C N O 28 16 2 10	0	0		
3	G	2	ZSIOZIOTotalCNO	0	0		
		_	28 16 2 10				
3	Н	2	Total C N O	0	0		
			28 10 2 10				
3	Ι	2	Iotal C N U	0	0		
			28 16 2 10				
3	J	2	Total C N O	0	0		
		-	28 16 2 10		Ŭ		
3	K	2	Total C N O	0	0		
0	11		28 16 2 10		0		
9	т	т	т	0	Total C N O	0	0
3	L	2	28 16 2 10	0	0		
9	М	0	Total C N O	0	0		
3	IVI	2	28 16 2 10	0	0		
9	N	0	Total C N O	0	0		
3	IN	2	28 16 2 10	0	0		
9	2 0	0	Total C N O	0	0		
3	U		28 16 2 10	U			
2	D	2	Total C N O	0	0		
3	Г		28 16 2 10	U			

• Molecule 4 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	Atoms		AltConf
4	А	1	Total C N	1 O 5	0
4	А	1	Total C N		0
			$\frac{14 8 1}{\text{Total} C N}$	$\frac{5}{1}$	
4	А	1	14 8 1	5	0
4	В	1	Total C N 14 8 1	1 O 5	0
4	В	1	Total C N 14 8 1	0 5	0
4	В	1	Total C N		0
4	В	1	Total C N 14 8 1	0 1 0 5	0
4	С	1	Total C N 14 8 1	0 1 0 5	0
4	С	1	Total C N 14 8 1	I O 5	0
4	С	1	Total C N 14 8 1	I O 5	0
4	С	1	Total C N 14 8 1	I O 5	0
4	С	1	Total C N 14 8 1	1 O 5	0
4	С	1	Total C N 14 8 1	I O 5	0
4	С	1	Total C N 14 8 1	I O 5	0
4	С	1	Total C N 14 8 1	I O 5	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Spike glycoprotein, Fibritin

• Molecule 1: Spike glycoprotein,Fibritin

Chain B:	61%	26%	13%
MET PHE VAL PHE LEU LEU LEU LEU LEU VAL VAL SER SER SER SER SER	CYS VAL ASN ASN ASN ASN 129 R21 R21 R21 R21 R21 R21 R32 R33 R33 R34 R34 R34 R34 R34 R34 R34 R34	155 156 156 158 158 158 164 173 174 174 174 177 178 177 178 177 178	L82 193 E94 E94 K95 S96 N97 N100 T100 T108 T107 T108
N119 N126 126 126 126 126 128 131 133	D140 H141 K145 K145 K145 S146 T149 E149 E149 E149 E149 E149 E149 E149 E	Y165 Y165 9167 9169 9169 9169 9169 1171 1171 1171	(194 (195 (195 (196 (199 (199 (199 (199 (199 (199 (199
0212 0216 0216 1220 1226 1226 0229 0229 8234 8234	1236 1237 1237 1240 1241 1241 1241 1244 1244 1244 1244	N255 1256 N270 N277 N277 1258 10278 10281 12281 12281 12281 12281 12281	0291 2292 12995 12995 12995 1308 1308 1308 1308 1308 1311 1328 1328 1328
1323 F326 1329 F339 F333 F343 F343 F344 F344	R353 R355 1355 1355 V359 V359 V364 R371 F371 F371 F371 F372 F371	L387 C388 C388 C388 F393 F393 A393 A393 A393 A393 A393 A393	K421 L422 L422 Q428 W433 N434 S435 S435 D439 C439 S440
N445 1445 1440 14450 14450 14450 14454 1453 7455 7455 7455 1465 1465 1465	C477 N478 0479 0479 0479 0479 0481 6482 6482 6482 1488 1488 1488 1490 8491 1488 1490 8491 1493 8491 1493	F494 R495 F495 F498 F960 F605 F605 F600 F610 F612	P518 A519 1520 1520 0523 6523 6523 8524 8526 8526 8526 8526 8531
V536 C547 V548 L549 F555 F555 F555 F555 F555 F555 F555 F	A567 R574 R574 R574 1578 L579 L582 L582 L582 L582 C587 C587 C587 C587	616 616 617 621 621 621 623 663 663 663 663 663 1648	8656 7657 7657 7659 7659 7666 1661 1661 7666 7665 73 7673
GLN THR LYS LYS SER HIS GLY SER SER SER SER SER SE8 S686 S685	I690 4691 7692 7693 7694 8695 8695 8701 8701 7702 4702 7704 1711	F715 T716 V719 M728 M728 V733 D734 C735 T735 T735 T735 T735	C740 C746 S747 N748 N748 Q752 K783 K783 Q784
1791 F794 F794 F799 F799 F799 F799 F799 F799	V823 V823 D836 C837 LEU LEU AR7 AR5 AR5 AR6 AR6 AR6 AR6 AR6 AR6 AR6 AR6 AR6 AR6	R 853 R 853 R 855 R 855	A900 1901 1902 1903 1904 1905 1906 1906 1913 1913
N916 A927 A927 1931 1932 1932 1935 1942 N952	L956 L959 K966 C968 A969 L977 L981 L981 L981 L981 L982 L983 C988 C988 C988 C988	1990 1991 1994 1994 1997 1999 1999 1999 1001 1001 1001 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000	11006 41007 41009 11009 11009 11009 11031 11031 11031 11033 11039
Y1044 H1045 L1046 M1047 S1048 S1048 H1061 Y1062 Y1065 P1065 P1066	N1071 N1071 C1079 C1079 D1081 D1081 C1083 F1083 F1083 F1083 F1083 F1083 F1083 F1083 F1083 F1083 H1098 H1098	V1119 81120 81120 1123 V1126 V1129 V1130 P1130 P1130	S1144 PHE LYS GLU GLU GLU LYS LYS TYR PHE LYS ASN HHE HYS
THR SER PRO ASP ASP VAL LEU GLY GLY ASP CLY TLE SER GLY TLE	ALA SER VAL VAL VAL ALE CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	ASN ASN ASN ASN ALEU ASP LLEU CLU CLU CLU CLU CLU CLU CLU CLU CLU CL	GLU GLN GLN GLY SER SER GLY TYR TLE PRO GLU ALA ARG ASP
GLY CLN CLN CLN TTR VAL ARC CLY CLY CLU CLU CLU LEU	SER THE PHE LEU LEU CLU CLU CLU CLU CLU CLU CLU CLU CLU CL	STH STH STH STH STH STH	

 \bullet Molecule 1: Spike glycoprotein, Fibritin

Chain C: 61% 25% · 12%

100%

Chain F:

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

Chain G:

100%

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain H:		
	50%	50%

50%

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

50%

α	•	т	
Ch	am		
~	CULL	. .	

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

Chain J: 100%

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain K:

100%

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain L:	10	0%	
NAG1 NAG2			
• Molecule 3: opyranose	2-acetamido-2-deoxy-beta-I	D-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
Chain M:	50%	50%	
NAG1 NAG2			
• Molecule 3: opyranose	2-acetamido-2-deoxy-beta-I	D-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
Chain N:	10	00%	
NAG1 NAG2			
• Molecule 3: opyranose	2-acetamido-2-deoxy-beta-I	D-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
Chain O:	50%	50%	
NAG1 NAG2			
• Molecule 3: opyranose	2-acetamido-2-deoxy-beta-I	D-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
Chain P:	10	00%	

NAG1 NAG2

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	131621	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	TFS KRIOS	Depositor
Voltage (kV)	200	Depositor
Electron dose $(e^-/\text{\AA}^2)$	40.5	Depositor
Minimum defocus (nm)	1500	Depositor
Maximum defocus (nm)	3000	Depositor
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	0.154	Depositor
Minimum map value	-0.078	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.004	Depositor
Recommended contour level	0.004	Depositor
Map size (Å)	360.0, 360.0, 360.0	wwPDB
Map dimensions	300, 300, 300	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.2, 1.2, 1.2	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bo	nd lengths	Bond angles		
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.27	0/8802	0.51	1/11976~(0.0%)	
1	В	0.26	0/8796	0.50	1/11969~(0.0%)	
1	С	0.26	0/8802	0.50	1/11976~(0.0%)	
2	D	0.26	0/990	0.55	0/1347	
2	Е	1.05	3/990~(0.3%)	0.96	6/1347~(0.4%)	
All	All	0.32	3/28380~(0.0%)	0.53	9/38615~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	С	0	1

All (3) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
2	Ε	32	PRO	CG-CD	-26.57	0.62	1.50
2	Е	32	PRO	CB-CG	12.19	2.10	1.50
2	Е	32	PRO	N-CD	11.20	1.63	1.47

All (9) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	Е	32	PRO	CA-N-CD	-15.59	89.68	111.50
2	Е	32	PRO	N-CD-CG	-13.58	82.83	103.20
2	Е	32	PRO	CB-CG-CD	-10.59	65.19	106.50
2	Е	32	PRO	N-CA-CB	-10.40	90.82	103.30
2	Е	32	PRO	CA-CB-CG	-10.21	84.61	104.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	25	PRO	CA-N-CD	-8.35	99.81	111.50
2	Е	31	ALA	C-N-CD	6.89	142.87	128.40
1	В	798	ASN	C-N-CA	6.07	136.88	121.70
1	С	760	LEU	CA-CB-CG	5.77	128.57	115.30

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	С	323	ILE	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	8596	0	8391	242	0
1	В	8589	0	8397	222	0
1	С	8596	0	8387	230	0
2	D	962	0	920	23	0
2	Е	962	0	920	36	0
3	F	28	0	25	0	0
3	G	28	0	25	0	0
3	Н	28	0	25	1	0
3	Ι	28	0	25	3	0
3	J	28	0	25	0	0
3	Κ	28	0	25	4	0
3	L	28	0	25	0	0
3	М	28	0	25	4	0
3	Ν	28	0	25	3	0
3	0	28	0	25	0	0
3	Р	28	0	25	1	0
4	A	42	0	39	3	0
4	В	56	0	52	4	0
4	С	112	0	104	2	0
All	All	28223	0	27485	728	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including

hydrogen atoms). The all-atom clashscore for this structure is 13.

All (728) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom_2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:E:32:PRO:CG	2:E:32:PRO:N	1.67	1.50
2:E:32:PRO:CG	2:E:32:PRO:CB	2.10	1.27
2:E:32:PRO:CG	2:E:32:PRO:CA	2.45	0.95
2:E:32:PRO:N	2:E:32:PRO:HG3	1.48	0.94
1:A:525:LYS:HD3	1:A:526:LYS:H	1.35	0.91
2:E:32:PRO:CD	2:E:32:PRO:HG2	1.39	0.90
2:E:32:PRO:CG	2:E:32:PRO:HD2	1.37	0.89
2:E:32:PRO:HG3	2:E:32:PRO:CD	1.39	0.89
2:E:32:PRO:CG	2:E:32:PRO:HD3	1.37	0.88
2:E:72:THR:HB	2:E:85:GLN:HB3	1.63	0.79
1:B:968:GLY:H	1:C:752:GLN:HE22	1.31	0.79
1:A:522:CYS:SG	1:A:523:GLY:N	2.57	0.78
1:B:354:ARG:NH2	1:C:227:PRO:O	2.15	0.77
1:B:710:ALA:HB3	1:C:891:LEU:HB3	1.66	0.77
1:A:704:TYR:HA	1:B:892:GLN:HG3	1.67	0.75
1:B:489:LEU:HD12	1:B:490:LYS:HG3	1.69	0.75
1:C:449:LEU:HD21	1:C:489:LEU:HA	1.70	0.73
1:A:1048:SER:OG	1:A:1061:HIS:ND1	2.22	0.73
1:A:196:PHE:HB2	1:A:226:LEU:HB3	1.71	0.73
1:A:1025:LYS:NZ	1:A:1039:PHE:O	2.21	0.73
1:C:739:ILE:HD11	1:C:994:ILE:HA	1.72	0.71
1:B:477:CYS:HB3	1:B:483:PHE:HB2	1.72	0.71
1:C:168:GLN:NE2	1:C:169:PRO:O	2.22	0.71
1:C:1048:SER:OG	1:C:1061:HIS:ND1	2.23	0.71
1:A:454:ARG:HH12	1:A:458:LEU:HG	1.54	0.70
1:A:34:ARG:HH12	1:A:216:GLY:H	1.37	0.70
1:C:753:TYR:HB3	1:C:756:PHE:HE2	1.57	0.70
1:A:103:ILE:HG12	1:A:116:LEU:HD13	1.74	0.70
1:B:1098:HIS:H	3:M:1:NAG:H81	1.57	0.70
1:C:528:THR:HG22	1:C:529:ASN:H	1.56	0.69
2:E:31:ALA:C	2:E:32:PRO:HG3	2.13	0.69
1:A:319:PRO:HB3	1:A:536:VAL:HA	1.74	0.69
1:B:141:HIS:HB3	1:B:240:ALA:HB1	1.73	0.69
1:C:714:ASN:HB2	1:C:1068:GLN:HB2	1.73	0.69
1:A:390:THR:HB	1:A:519:ALA:HA	1.74	0.69
1:B:967:PHE:O	1:B:992:ARG:NH1	2.26	0.69
1:C:1025:LYS:NZ	1:C:1039:PHE:O	2.26	0.69
1:B:894:PRO:HB2	1:B:897:MET:HG2	1.72	0.68

	••• F •• 0	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:1025:LYS:NZ	1:B:1039:PHE:O	2.25	0.68
2:D:21:LEU:HD12	2:D:84:LEU:HD23	1.76	0.68
1:A:525:LYS:HD3	1:A:526:LYS:N	2.07	0.68
1:A:910:GLN:HE21	1:C:1086:PHE:HB3	1.60	0.67
1:A:408:ALA:HA	1:A:422:LEU:HD12	1.76	0.67
1:C:454:ARG:HH12	1:C:458:LEU:HG	1.60	0.67
1:A:700:ASN:ND2	1:B:784:GLN:OE1	2.27	0.67
1:A:449:LEU:HD21	1:A:489:LEU:HA	1.78	0.66
1:B:493:SER:HA	1:B:495:ARG:HH22	1.60	0.66
1:B:798:ASN:OD1	1:B:798:ASN:N	2.27	0.66
1:A:526:LYS:HD3	1:A:543:LEU:HB2	1.78	0.66
1:B:798:ASN:HB3	3:K:1:NAG:HN2	1.61	0.66
1:C:491:SER:OG	1:C:495:ARG:NH2	2.28	0.66
1:B:480:VAL:HA	1:B:485:CYS:HB2	1.78	0.66
1:A:352:ARG:HH11	1:A:463:ARG:HH21	1.44	0.66
2:E:66:SER:O	2:E:70:ARG:NH2	2.29	0.66
1:A:83:PRO:HA	1:A:234:ARG:HA	1.78	0.65
2:E:2:GLN:NE2	2:E:28:SER:OG	2.27	0.65
1:A:969:ALA:HA	1:A:992:ARG:HH21	1.60	0.65
1:A:1031:LEU:HB3	1:C:1037:VAL:HG11	1.78	0.65
1:B:182:LYS:HG2	1:B:208:ARG:HD3	1.76	0.65
1:C:421:LYS:HB3	1:C:458:LEU:HD13	1.78	0.65
1:C:525:LYS:NZ	1:C:527:SER:O	2.28	0.65
1:B:639:VAL:HG12	1:B:648:ILE:HG12	1.78	0.64
1:A:205:ILE:O	1:A:208:ARG:NH2	2.30	0.64
1:A:548:VAL:N	1:A:585:THR:O	2.30	0.64
2:E:30:LEU:O	2:E:75:ARG:NH2	2.30	0.64
1:C:413:GLY:H	1:C:416:ALA:HB3	1.61	0.64
1:A:973:VAL:HG12	1:A:976:ASP:H	1.62	0.64
1:C:421:LYS:HD3	1:C:458:LEU:HD22	1.79	0.64
1:A:739:ILE:O	1:A:997:ARG:NH1	2.31	0.64
1:B:348:TYR:HB2	1:B:464:ASP:HB3	1.80	0.64
2:D:30:LEU:O	2:D:75:ARG:NH2	2.31	0.64
1:C:333:CYS:HB3	1:C:360:ALA:HB2	1.80	0.64
1:B:557:LEU:HB2	1:B:560:GLN:HG3	1.79	0.63
1:B:968:GLY:N	1:C:752:GLN:HE22	1.97	0.63
1:C:205:ILE:O	1:C:208:ARG:NH2	2.29	0.63
1:C:767:ILE:HD11	1:C:1009:LEU:HD23	1.78	0.63
1:A:1097:THR:OG1	1:A:1098:HIS:ND1	2.32	0.63
1:B:277:ASN:HB2	4:B:1303:NAG:H81	1.80	0.63
1:B:999:GLN:OE1	1:B:1002:GLN:NE2	2.31	0.63

	••• F •• J ••• •	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:524:PRO:HG2	1:A:541:ASN:HA	1.80	0.63
1:A:528:THR:HA	1:A:543:LEU:HD23	1.80	0.63
1:B:435:SER:HB3	1:B:439:ASP:HB2	1.81	0.63
1:C:115:LEU:HD11	1:C:128:VAL:HG22	1.81	0.63
1:B:126:ILE:N	1:B:165:TYR:O	2.31	0.62
1:B:241:LEU:HB3	1:B:255:TRP:HB3	1.80	0.62
2:E:32:PRO:CG	2:E:32:PRO:CD	0.63	0.62
1:B:82:LEU:O	1:B:235:PHE:N	2.30	0.62
1:C:970:ILE:HD12	1:C:981:LEU:HD11	1.80	0.62
1:B:1111:ILE:O	1:B:1116:ASN:ND2	2.32	0.62
1:B:798:ASN:HB3	3:K:1:NAG:N2	2.14	0.62
1:A:375:LYS:HA	1:A:381:PRO:HB3	1.82	0.62
1:B:449:LEU:HD22	1:B:489:LEU:HD13	1.79	0.62
1:B:79:ASN:ND2	1:B:237:THR:O	2.34	0.61
1:B:93:ILE:O	1:B:208:ARG:NH1	2.33	0.61
1:B:148:MET:SD	1:B:149:GLU:N	2.72	0.61
1:B:959:LEU:HD21	1:B:1004:TYR:HB2	1.83	0.61
1:A:95:LYS:NZ	1:A:175:GLU:OE2	2.29	0.61
1:C:756:PHE:HA	1:C:759:GLN:NE2	2.15	0.61
1:A:760:LEU:HG	1:A:1005:VAL:HG21	1.81	0.61
1:A:325:ARG:HH11	1:A:531:VAL:HG23	1.66	0.60
1:B:196:PHE:HB2	1:B:226:LEU:HB2	1.82	0.60
1:B:716:THR:N	1:B:1065:VAL:O	2.33	0.60
1:C:95:LYS:NZ	1:C:175:GLU:OE2	2.31	0.60
1:A:1113:THR:OG1	1:A:1115:ASP:OD2	2.20	0.60
1:C:408:ALA:HA	1:C:422:LEU:HD12	1.82	0.60
1:C:454:ARG:HH22	1:C:458:LEU:HG	1.66	0.60
1:A:716:THR:N	1:A:1065:VAL:O	2.34	0.60
1:B:386:ASP:O	1:B:525:LYS:NZ	2.35	0.60
1:B:1097:THR:N	3:M:1:NAG:O7	2.34	0.60
2:E:34:ARG:NH2	2:E:111:ASN:OD1	2.31	0.60
1:A:773:LYS:O	1:A:776:GLN:HG2	2.02	0.60
1:B:173:ASP:HB2	1:B:185:ARG:HH21	1.66	0.60
1:C:172:MET:SD	1:C:172:MET:N	2.71	0.60
1:B:388:CYS:SG	1:B:523:GLY:N	2.70	0.60
2:E:30:LEU:N	2:E:80:ASN:OD1	2.24	0.59
1:C:67:VAL:HB	1:C:260:ALA:HB3	1.83	0.59
1:C:83:PRO:HA	1:C:234:ARG:HA	1.82	0.59
1:A:910:GLN:HE22	1:C:1087:PRO:HD2	1.68	0.59
1:B:927:ALA:HA	1:B:930:LYS:HD2	1.84	0.59
1:B:739:ILE:O	1:B:997:ARG:NH1	2.34	0.59

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:894:PRO:HB2	1:A:897:MET:HG2	1.84	0.59
1:B:409:PRO:HB3	1:B:422:LEU:HD22	1.84	0.59
1:C:345:ALA:HB3	1:C:396:SER:HB2	1.83	0.59
1:C:1111:ILE:O	1:C:1116:ASN:ND2	2.35	0.59
1:B:738:TYR:CE2	1:B:1001:LEU:HD21	2.38	0.59
1:C:140:ASP:OD1	1:C:153:ARG:NH2	2.34	0.59
1:A:727:SER:HG	1:A:1055:HIS:HD1	1.50	0.59
1:A:1111:ILE:O	1:A:1116:ASN:ND2	2.35	0.59
1:B:658:GLU:O	1:B:692:TYR:OH	2.17	0.58
1:C:321:GLU:H	1:C:536:VAL:HG12	1.68	0.58
1:A:574:ARG:NH1	1:A:579:LEU:O	2.35	0.58
1:A:719:VAL:HG22	1:A:1062:VAL:HG12	1.85	0.58
1:B:199:TYR:HB3	1:B:220:LEU:HB3	1.86	0.58
1:B:902:ARG:NH1	1:B:1046:LEU:O	2.36	0.58
2:D:34:ARG:HH22	2:D:112:TYR:HA	1.68	0.58
1:B:465:ILE:HD12	1:B:465:ILE:H	1.68	0.58
1:C:383:LYS:HG2	1:C:386:ASP:HB2	1.86	0.58
1:C:931:ILE:O	1:C:935:LEU:HG	2.04	0.58
1:C:1141:GLU:HG2	1:C:1142:LEU:HD12	1.85	0.58
1:A:531:VAL:H	1:A:549:LEU:HD13	1.68	0.58
1:A:67:VAL:HB	1:A:260:ALA:HB3	1.86	0.58
1:C:34:ARG:HH12	1:C:216:GLY:H	1.51	0.58
1:A:531:VAL:O	1:A:549:LEU:HB2	2.04	0.58
1:B:464:ASP:OD1	1:B:466:SER:OG	2.19	0.58
1:C:21:ARG:HE	1:C:77:PHE:HB3	1.69	0.57
1:B:143:ASN:O	1:B:145:LYS:NZ	2.36	0.57
1:A:1044:TYR:HB2	1:A:1064:TYR:HB3	1.86	0.57
1:B:1044:TYR:HB2	1:B:1064:TYR:HB3	1.85	0.57
1:C:898:GLN:O	1:C:902:ARG:HG3	2.03	0.57
1:B:353:LYS:HB3	1:B:394:ALA:HB3	1.86	0.57
1:C:182:LYS:HG3	1:C:208:ARG:HH11	1.69	0.57
1:C:705:SER:HB3	1:C:708:SER:HB3	1.87	0.57
1:C:1014:GLU:OE1	1:C:1014:GLU:N	2.28	0.57
1:A:352:ARG:NH1	1:A:463:ARG:HH21	2.02	0.57
1:A:518:PRO:HG3	1:B:195:TYR:CZ	2.40	0.57
1:A:974:LEU:HD21	1:A:997:ARG:HH12	1.69	0.57
1:B:277:ASN:OD1	1:B:281:THR:N	2.33	0.57
1:C:770:GLU:OE2	1:C:1016:ARG:NH1	2.38	0.57
1:A:226:LEU:HD12	1:A:227:PRO:HD2	1.86	0.57
1:A:714:ASN:HB3	1:A:1068:GLN:HB2	1.87	0.57
1:B:329:ILE:HB	1:B:359:VAL:HG23	1.85	0.57

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:324:VAL:HG23	1:C:325:ARG:HD2	1.87	0.57
1:A:42:VAL:HG22	1:C:562:PHE:HB2	1.85	0.56
1:A:529:ASN:HB3	1:A:549:LEU:HD21	1.87	0.56
1:C:801:GLN:NE2	1:C:932:GLN:OE1	2.38	0.56
1:A:126:ILE:HB	1:A:165:TYR:HB3	1.87	0.56
1:A:902:ARG:NH1	1:A:1046:LEU:O	2.39	0.56
1:B:1098:HIS:N	3:M:1:NAG:H81	2.19	0.56
1:C:982:ASP:N	1:C:982:ASP:OD1	2.39	0.56
1:A:453:PHE:H	1:A:488:PRO:HB3	1.69	0.56
1:B:1048:SER:OG	1:B:1061:HIS:ND1	2.32	0.56
1:B:1126:VAL:HG13	1:C:914:TYR:HB3	1.87	0.56
1:C:1026:MET:SD	1:C:1027:SER:N	2.79	0.56
3:I:2:NAG:H3	3:I:2:NAG:H83	1.87	0.56
1:A:82:LEU:O	1:A:235:PHE:N	2.34	0.56
2:E:31:ALA:CA	2:E:32:PRO:HG3	2.35	0.56
1:B:353:LYS:N	1:B:394:ALA:O	2.32	0.56
1:A:25:PRO:HD2	1:A:25:PRO:O	2.05	0.56
1:B:142:LYS:HB2	1:B:242:HIS:CG	2.41	0.56
1:B:321:GLU:HG3	1:B:536:VAL:HG23	1.88	0.56
2:E:85:GLN:NE2	2:E:87:ASN:OD1	2.34	0.56
1:A:92:SER:HB3	1:A:185:ARG:HB2	1.88	0.56
2:D:32:PRO:HA	2:D:54:ARG:HD3	1.88	0.55
1:B:243:ARG:NH1	1:B:254:GLY:O	2.39	0.55
1:B:454:ARG:HD3	1:B:455:LYS:H	1.71	0.55
1:A:127:LYS:HG2	1:A:131:PHE:HZ	1.71	0.55
4:A:1302:NAG:H3	4:A:1302:NAG:H83	1.88	0.55
1:B:126:ILE:HB	1:B:165:TYR:HB3	1.88	0.55
1:A:421:LYS:HD3	1:A:458:LEU:HD22	1.89	0.55
1:A:104:PHE:HB3	1:A:232:ILE:HG12	1.87	0.55
1:B:479:GLY:O	1:B:481:ALA:N	2.35	0.55
1:B:798:ASN:HA	1:B:799:PHE:HB2	1.88	0.55
1:A:67:VAL:O	1:A:260:ALA:N	2.37	0.55
1:A:352:ARG:HD2	1:A:393:TYR:OH	2.07	0.55
1:A:423:PRO:HG2	1:A:426:PHE:HA	1.88	0.55
1:A:801:GLN:NE2	1:A:932:GLN:OE1	2.32	0.55
1:A:140:ASP:OD1	1:A:153:ARG:NH2	2.37	0.55
1:B:349:ALA:HA	1:B:463:ARG:HB3	1.89	0.55
1:C:182:LYS:H	1:C:208:ARG:HH12	1.54	0.55
1:A:383:LYS:HG2	1:A:386:ASP:HB2	1.88	0.54
1:A:1030:VAL:HA	1:A:1047:MET:HE1	1.88	0.54
1:B:660:ASP:H	1:B:668:CYS:HB3	1.72	0.54

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:493:SER:HB3	1:C:498:TYR:HD2	1.73	0.54
1:C:314:ASN:HA	1:C:591:GLY:HA2	1.90	0.54
1:C:781:GLN:NE2	1:C:1026:MET:SD	2.80	0.54
1:B:952:ASN:O	1:B:956:LEU:HG	2.07	0.54
1:C:424:ASP:OD1	1:C:424:ASP:N	2.40	0.54
4:A:1302:NAG:H61	1:B:791:ILE:HG21	1.89	0.54
1:C:29:THR:OG1	1:C:212:ASP:OD1	2.25	0.54
1:A:323:ILE:HG22	1:A:325:ARG:HH12	1.71	0.54
1:C:277:ASN:OD1	1:C:281:THR:N	2.39	0.54
2:E:13:VAL:HG21	2:E:89:LEU:HD13	1.88	0.54
1:B:836:ASP:OD1	1:B:836:ASP:N	2.40	0.54
2:E:70:ARG:HG3	2:E:87:ASN:O	2.08	0.54
1:B:419:ASN:OD1	1:B:420:TYR:N	2.41	0.54
1:A:493:SER:HB3	1:A:498:TYR:HD2	1.73	0.54
1:B:449:LEU:HD13	1:B:489:LEU:HB2	1.89	0.54
1:B:19:THR:HG23	1:B:75:LYS:HD3	1.89	0.53
1:B:559:PHE:O	1:B:561:GLN:NE2	2.34	0.53
2:E:75:ARG:NE	2:E:77:ASN:OD1	2.41	0.53
1:A:927:ALA:HA	1:A:930:LYS:HD3	1.90	0.53
1:B:1131:ASN:H	4:B:1301:NAG:H83	1.74	0.53
1:A:182:LYS:H	1:A:208:ARG:HH12	1.54	0.53
1:B:194:GLY:HA2	1:B:229:GLY:HA2	1.90	0.53
1:B:390:THR:HG22	1:B:519:ALA:HA	1.90	0.53
1:C:196:PHE:N	1:C:226:LEU:O	2.41	0.53
1:C:520:THR:HG23	1:C:521:VAL:HG23	1.90	0.53
1:A:714:ASN:HA	3:H:1:NAG:H83	1.91	0.53
1:A:762:ARG:NH1	1:C:954:GLN:OE1	2.41	0.53
1:B:666:GLY:N	1:C:861:LEU:O	2.41	0.53
1:A:1141:GLU:HG2	1:A:1142:LEU:HD12	1.91	0.53
1:A:892:GLN:NE2	1:C:1071:ASN:OD1	2.42	0.53
1:A:734:ASP:HB3	1:A:737:MET:SD	2.49	0.52
1:C:621:ILE:HD12	1:C:625:GLN:HG2	1.90	0.52
1:C:918:LYS:H	1:C:918:LYS:HD3	1.74	0.52
1:A:534:LYS:HD3	1:A:535:CYS:N	2.24	0.52
1:A:977:ILE:HA	1:A:980:ARG:HH21	1.73	0.52
2:E:94:THR:HG23	2:E:124:THR:HA	1.91	0.52
2:E:70:ARG:HG2	2:E:71:PHE:HD1	1.74	0.52
2:D:5:LEU:HD11	2:D:101:THR:HG22	1.90	0.52
1:B:34:ARG:NH1	1:B:216:GLY:O	2.42	0.52
1:C:1098:HIS:CG	3:N:1:NAG:H5	2.44	0.52
1:B:326:PHE:O	1:B:577:GLN:NE2	2.28	0.52

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:494:PHE:HA	1:B:498:TYR:HD2	1.74	0.52
1:C:106:THR:O	1:C:234:ARG:NH1	2.42	0.52
1:C:325:ARG:HA	1:C:325:ARG:CZ	2.40	0.52
1:A:141:HIS:CD2	1:A:242:HIS:H	2.28	0.52
1:A:347:VAL:HG12	1:A:397:PHE:HB2	1.91	0.52
1:C:34:ARG:NH1	1:C:216:GLY:O	2.43	0.52
1:C:327:PRO:HA	1:C:528:THR:HG23	1.91	0.52
1:B:801:GLN:HG3	1:B:932:GLN:NE2	2.24	0.52
1:A:373:THR:OG1	1:A:432:ALA:N	2.43	0.51
1:A:388:CYS:HA	1:A:522:CYS:HB2	1.92	0.51
1:A:794:PHE:HB2	1:A:799:PHE:HE2	1.75	0.51
1:C:127:LYS:HG2	1:C:131:PHE:HZ	1.75	0.51
1:C:423:PRO:HG2	1:C:426:PHE:HA	1.90	0.51
1:C:969:ALA:HA	1:C:992:ARG:HH21	1.74	0.51
1:C:1005:VAL:O	1:C:1009:LEU:HG	2.10	0.51
1:A:21:ARG:HE	1:A:77:PHE:HB3	1.75	0.51
1:C:104:PHE:HB3	1:C:232:ILE:HG12	1.92	0.51
1:A:528:THR:OG1	1:A:529:ASN:N	2.41	0.51
1:B:912:VAL:O	1:B:916:ASN:ND2	2.36	0.51
1:C:42:VAL:HB	1:C:44:ARG:HH21	1.74	0.51
1:C:82:LEU:O	1:C:235:PHE:N	2.38	0.51
1:C:1103:GLN:HE21	1:C:1106:PHE:HB3	1.75	0.51
1:B:560:GLN:O	1:B:574:ARG:NH2	2.42	0.51
2:E:52:ILE:HB	2:E:73:MET:HG3	1.92	0.51
1:A:1094:SER:HB2	1:A:1099:TRP:CD2	2.45	0.51
1:B:125:VAL:HA	1:B:166:VAL:HG22	1.92	0.51
1:B:439:ASP:OD2	1:B:506:ARG:NH2	2.41	0.51
1:B:656:SER:HB3	1:B:695:SER:HB3	1.91	0.51
1:C:116:LEU:HD21	1:C:127:LYS:HB3	1.92	0.51
1:B:291:ASP:OD1	1:B:291:ASP:N	2.44	0.51
1:A:1047:MET:O	1:A:1062:VAL:HG22	2.11	0.51
1:C:421:LYS:NZ	1:C:462:GLU:O	2.31	0.51
2:E:31:ALA:N	2:E:32:PRO:HG3	2.25	0.51
1:A:78:ASP:OD1	1:A:78:ASP:N	2.44	0.51
1:A:421:LYS:HB3	1:A:458:LEU:HD13	1.92	0.51
1:A:520:THR:HG23	1:A:521:VAL:HG23	1.92	0.51
1:B:31:SER:OG	1:B:60:SER:N	2.30	0.51
2:E:70:ARG:HG2	2:E:71:PHE:CD1	2.46	0.51
1:B:95:LYS:HG3	1:B:182:LYS:HE3	1.92	0.51
1:C:347:VAL:HG12	1:C:397:PHE:HB2	1.92	0.51
1:B:124:VAL:HG13	1:B:169:PRO:HA	1.93	0.51

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:977:ILE:O	1:B:981:LEU:HB3	2.11	0.51
1:A:355:ILE:HG22	1:A:521:VAL:HG21	1.93	0.50
1:C:273:LEU:HD22	1:C:303:PHE:HE1	1.75	0.50
1:B:364:VAL:O	1:B:368:LEU:HB2	2.11	0.50
1:C:709:ILE:HD11	1:C:1074:THR:HG21	1.93	0.50
2:D:21:LEU:HB2	2:D:84:LEU:HB3	1.93	0.50
1:B:168:GLN:HG3	1:B:169:PRO:HD2	1.94	0.50
1:B:393:TYR:O	1:B:510:LEU:HA	2.12	0.50
1:A:716:THR:HB	1:A:1065:VAL:HB	1.93	0.50
1:B:353:LYS:O	1:B:394:ALA:N	2.37	0.50
1:C:552:SER:OG	1:C:581:ILE:HG13	2.12	0.50
1:A:663:ILE:HD12	1:A:663:ILE:H	1.77	0.50
1:A:1047:MET:SD	1:A:1048:SER:N	2.81	0.50
1:C:93:ILE:HG22	1:C:182:LYS:HE2	1.93	0.50
1:C:207:VAL:HG22	1:C:209:GLU:H	1.76	0.50
3:M:1:NAG:H83	3:M:1:NAG:H3	1.94	0.50
1:A:243:ARG:NH1	1:A:244:SER:OG	2.45	0.50
1:A:325:ARG:HB2	1:A:530:LEU:HD22	1.94	0.50
1:A:985:GLU:OE2	1:A:989:GLN:HG2	2.11	0.50
2:E:67:VAL:HG12	2:E:70:ARG:HH21	1.77	0.50
1:A:1007:GLN:HA	1:A:1010:ILE:HG12	1.94	0.50
1:A:891:LEU:HB3	1:C:710:ALA:HB3	1.93	0.50
1:A:1002:GLN:O	1:A:1006:THR:HG23	2.12	0.50
1:B:94:GLU:HB3	1:B:96:SER:O	2.12	0.50
1:B:659:CYS:HB2	1:B:694:MET:SD	2.51	0.50
1:A:376:CYS:SG	1:A:381:PRO:HA	2.52	0.49
1:B:140:ASP:HB2	1:B:151:GLU:HG2	1.94	0.49
1:B:348:TYR:O	1:B:464:ASP:N	2.40	0.49
1:B:901:TYR:HA	1:B:904:ASN:HD22	1.77	0.49
2:D:13:VAL:HG21	2:D:19:LEU:HG	1.93	0.49
1:A:480:VAL:HG22	1:A:481:ALA:H	1.76	0.49
1:C:199:TYR:HB3	1:C:220:LEU:HB3	1.93	0.49
1:C:705:SER:OG	1:C:706:ASN:N	2.45	0.49
1:A:421:LYS:NZ	1:A:462:GLU:O	2.37	0.49
1:A:989:GLN:OE1	1:A:992:ARG:NH2	2.43	0.49
1:C:973:VAL:HB	1:C:976:ASP:HB3	1.95	0.49
1:B:129:CYS:HB2	1:B:131:PHE:CE2	2.48	0.49
1:B:344:PHE:CD1	1:B:506:ARG:HG2	2.48	0.49
1:B:1071:ASN:ND2	1:C:892:GLN:HE22	2.10	0.49
1:C:305:VAL:O	1:C:599:THR:N	2.32	0.49
1:A:773:LYS:HG2	1:A:777:GLU:OE1	2.13	0.49

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:139:LEU:O	1:B:241:LEU:N	2.34	0.49
1:B:715:PHE:HA	1:B:1066:PRO:HA	1.95	0.49
1:A:182:LYS:HG3	1:A:208:ARG:HH11	1.78	0.49
1:A:407:ILE:HG22	1:A:416:ALA:HB2	1.94	0.49
1:A:970:ILE:HG12	1:A:989:GLN:HE21	1.78	0.49
1:B:1071:ASN:HD21	1:C:892:GLN:HE22	1.60	0.49
1:C:81:VAL:HG23	1:C:81:VAL:O	2.13	0.49
1:C:637:SER:HB2	1:C:651:GLU:OE1	2.13	0.49
1:A:543:LEU:HD12	1:A:544:LYS:H	1.78	0.49
1:A:1037:VAL:HG11	1:B:1031:LEU:HB3	1.93	0.49
1:A:1046:LEU:HB2	1:A:1062:VAL:HG23	1.95	0.49
1:B:323:ILE:HD13	1:B:531:VAL:H	1.78	0.49
1:C:174:LEU:O	1:C:177:LYS:NZ	2.46	0.49
1:C:639:VAL:HG12	1:C:648:ILE:HG12	1.94	0.49
1:A:32:PHE:HB3	1:A:215:GLN:HE22	1.78	0.48
1:A:658:GLU:O	1:A:692:TYR:OH	2.18	0.48
1:A:1071:ASN:ND2	4:A:1303:NAG:O3	2.45	0.48
1:A:33:THR:HA	1:A:58:PHE:HD1	1.77	0.48
1:C:540:PHE:CE2	1:C:573:VAL:HG11	2.48	0.48
1:C:895:PHE:O	1:C:899:MET:HG2	2.12	0.48
1:A:552:SER:OG	1:A:581:ILE:HG13	2.13	0.48
1:B:205:ILE:O	1:B:207:VAL:N	2.46	0.48
1:B:702:VAL:HG12	1:C:892:GLN:HB3	1.95	0.48
1:C:421:LYS:HE3	1:C:462:GLU:H	1.79	0.48
1:A:184:LEU:HD21	1:A:205:ILE:HD12	1.95	0.48
1:A:895:PHE:O	1:A:899:MET:HE3	2.13	0.48
1:B:277:ASN:ND2	4:B:1303:NAG:O7	2.47	0.48
1:C:480:VAL:HG22	1:C:481:ALA:H	1.77	0.48
1:A:42:VAL:HG11	1:C:564:ARG:HG2	1.95	0.48
1:A:793:TYR:CE2	4:C:1306:NAG:H5	2.47	0.48
1:B:1005:VAL:O	1:B:1009:LEU:HG	2.14	0.48
1:A:81:VAL:HB	1:A:234:ARG:HD3	1.95	0.48
1:A:106:THR:O	1:A:234:ARG:NH1	2.47	0.48
1:A:531:VAL:N	1:A:549:LEU:HD13	2.28	0.48
2:D:34:ARG:NH2	2:D:51:CYS:SG	2.77	0.48
1:A:405:ARG:O	1:A:405:ARG:NE	2.47	0.48
1:A:947:ASP:O	1:A:951:HIS:ND1	2.46	0.48
1:B:343:ARG:HH21	1:B:441:LYS:HD3	1.78	0.48
1:B:799:PHE:HD2	1:B:802:ILE:HD11	1.77	0.48
1:C:127:LYS:HD2	1:C:164:GLU:OE1	2.14	0.48
1:C:989:GLN:OE1	1:C:992:ARG:NH2	2.40	0.48

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:E:19:LEU:HB2	2:E:86:MET:HE1	1.94	0.48
1:A:333:CYS:HB3	1:A:360:ALA:HB2	1.96	0.48
1:B:518:PRO:HD3	1:B:561:GLN:HG3	1.96	0.48
1:A:712:PRO:HA	1:A:1069:GLU:HA	1.96	0.48
1:B:371:PHE:HB3	1:B:433:TRP:HA	1.96	0.48
1:C:407:ILE:HG22	1:C:416:ALA:HB2	1.94	0.48
1:C:454:ARG:NE	1:C:456:SER:O	2.47	0.48
1:A:345:ALA:HB3	1:A:396:SER:HB2	1.96	0.48
1:A:529:ASN:HB3	1:A:549:LEU:HD11	1.96	0.48
1:A:621:ILE:HD12	1:A:625:GLN:HG2	1.96	0.48
1:A:744:THR:O	1:A:747:SER:OG	2.25	0.48
1:A:903:PHE:CD2	1:A:913:LEU:HB2	2.49	0.47
1:B:33:THR:HA	1:B:58:PHE:CD1	2.49	0.47
1:B:97:ASN:HB3	1:B:100:ARG:HH11	1.79	0.47
2:E:30:LEU:HD13	2:E:35:VAL:HG21	1.96	0.47
1:A:34:ARG:NH2	1:A:214:PRO:O	2.46	0.47
1:A:91:ALA:HB3	1:A:263:TYR:HB2	1.96	0.47
1:B:354:ARG:HH12	1:C:228:ILE:HA	1.79	0.47
1:B:389:PHE:N	1:B:521:VAL:O	2.47	0.47
1:B:733:VAL:HA	1:B:854:GLY:O	2.14	0.47
1:C:977:ILE:HD11	1:C:989:GLN:HE21	1.79	0.47
1:B:171:LEU:HD23	1:B:185:ARG:HG2	1.96	0.47
1:C:419:ASN:HD21	1:C:451:ARG:N	2.12	0.47
1:B:966:LYS:HB3	1:C:752:GLN:OE1	2.15	0.47
1:A:471:GLN:NE2	1:A:475:LYS:O	2.47	0.47
1:A:659:CYS:N	1:A:694:MET:SD	2.88	0.47
1:C:753:TYR:HB3	1:C:756:PHE:CE2	2.45	0.47
1:B:704:TYR:HA	1:C:892:GLN:HB2	1.96	0.47
1:C:184:LEU:HD21	1:C:205:ILE:HD12	1.95	0.47
1:C:403:GLU:HG3	1:C:415:ILE:HG22	1.97	0.47
1:C:716:THR:N	1:C:1065:VAL:O	2.47	0.47
1:C:739:ILE:HG23	1:C:740:CYS:SG	2.54	0.47
1:A:30:ASN:OD1	1:A:59:PHE:HA	2.15	0.47
1:A:352:ARG:HH11	1:A:463:ARG:NH2	2.11	0.47
1:A:419:ASN:HD21	1:A:451:ARG:N	2.12	0.47
1:A:1103:GLN:HG2	1:A:1108:GLU:OE1	2.14	0.47
1:B:453:PHE:HB3	1:B:488:PRO:HA	1.97	0.47
1:C:556:PHE:CD2	1:C:581:ILE:HG21	2.49	0.47
1:C:712:PRO:HA	1:C:1069:GLU:HA	1.96	0.47
2:D:53:SER:O	2:D:75:ARG:NH1	2.47	0.47
3:N:1:NAG:H4	3:N:2:NAG:H83	1.95	0.47

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:181:PHE:HA	1:B:206:ILE:HA	1.97	0.47
1:B:900:ALA:O	1:B:904:ASN:ND2	2.48	0.47
1:C:353:LYS:HA	1:C:353:LYS:HD2	1.74	0.47
1:C:529:ASN:OD1	1:C:576:PRO:HD2	2.15	0.47
1:A:226:LEU:HG	1:A:228:ILE:HG12	1.97	0.47
1:A:534:LYS:HG3	1:A:536:VAL:HG13	1.95	0.47
1:A:639:VAL:HG12	1:A:648:ILE:HG12	1.96	0.47
1:B:564:ARG:HB2	1:C:42:VAL:HG11	1.97	0.46
1:B:579:LEU:HD12	1:B:580:GLU:N	2.30	0.46
1:C:124:VAL:HG13	1:C:169:PRO:HA	1.97	0.46
1:C:129:CYS:HB2	1:C:131:PHE:CZ	2.50	0.46
1:A:534:LYS:HD3	1:A:535:CYS:H	1.80	0.46
1:B:734:ASP:HB3	1:B:737:MET:SD	2.56	0.46
1:B:997:ARG:O	1:B:1001:LEU:HG	2.15	0.46
1:A:413:GLY:H	1:A:416:ALA:HB3	1.80	0.46
1:A:659:CYS:HB2	1:A:694:MET:SD	2.54	0.46
1:B:903:PHE:CD2	1:B:913:LEU:HB2	2.50	0.46
1:B:988:VAL:HG13	1:B:989:GLN:HE21	1.79	0.46
1:C:537:ASN:HA	1:C:545:GLY:O	2.15	0.46
2:E:86:MET:HE3	2:E:89:LEU:HD21	1.98	0.46
1:B:107:THR:OG1	1:B:109:ASP:OD1	2.31	0.46
1:C:468:GLU:OE1	1:C:468:GLU:N	2.45	0.46
1:A:30:ASN:HB3	1:A:32:PHE:CE2	2.50	0.46
1:A:212:ASP:OD1	1:A:212:ASP:N	2.48	0.46
1:A:745:GLU:HG3	1:A:978:PHE:CE2	2.50	0.46
1:B:445:ASN:HA	1:B:495:ARG:HH21	1.80	0.46
1:C:561:GLN:HA	1:C:574:ARG:HG3	1.97	0.46
1:B:560:GLN:HA	1:C:41:LYS:HG3	1.97	0.46
1:C:141:HIS:CD2	1:C:242:HIS:H	2.33	0.46
1:C:191:ASN:HB2	1:C:196:PHE:CE1	2.51	0.46
1:C:319:PRO:HB3	1:C:536:VAL:HA	1.97	0.46
1:C:820:PHE:O	1:C:824:THR:HB	2.15	0.46
1:A:32:PHE:HB3	1:A:215:GLN:NE2	2.31	0.46
1:A:403:GLU:O	1:A:407:ILE:HG23	2.16	0.46
1:B:613:ASN:HB3	1:B:616:GLU:OE1	2.16	0.46
1:A:32:PHE:CZ	1:A:212:ASP:HB2	2.51	0.46
1:A:140:ASP:H	1:A:151:GLU:HG2	1.80	0.46
1:A:773:LYS:HB3	1:A:773:LYS:HE2	1.79	0.46
1:B:73:GLY:HA2	1:B:256:THR:HG21	1.97	0.46
1:B:287:ASP:O	1:B:294:SER:HB3	2.16	0.46
1:B:783:LYS:HG3	1:B:784:GLN:HG3	1.97	0.46

A + a 1	At arra 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:21:ARG:H	1:C:21:ARG:HD3	1.81	0.46
1:C:53:ASP:HB3	1:C:55:PHE:CE2	2.51	0.46
1:C:631:ARG:HD3	1:C:631:ARG:H	1.79	0.46
2:D:64[A]:THR:HG22	2:D:67:VAL:HG22	1.97	0.46
1:A:819:LEU:O	1:A:823:VAL:HG23	2.16	0.46
1:A:910:GLN:NE2	1:C:1086:PHE:HB3	2.28	0.46
1:C:827:ASP:N	1:C:827:ASP:OD1	2.46	0.46
1:A:454:ARG:NE	1:A:456:SER:O	2.49	0.46
1:C:402:ASP:O	1:C:405:ARG:NH2	2.48	0.46
1:C:1007:GLN:HA	1:C:1010:ILE:HG12	1.98	0.46
1:C:1051:GLN:N	1:C:1058:VAL:O	2.41	0.46
1:C:43:PHE:CE1	1:C:280:GLY:HA3	2.51	0.45
1:C:277:ASN:HD21	1:C:279:ASN:HB2	1.82	0.45
1:C:547:GLY:HA2	1:C:586:PRO:HA	1.98	0.45
1:A:116:LEU:HG	1:A:118:VAL:HG13	1.98	0.45
1:A:350:TRP:HZ2	1:A:420:TYR:HA	1.81	0.45
1:A:528:THR:CA	1:A:543:LEU:HD23	2.46	0.45
1:A:556:PHE:CZ	1:A:572:ALA:HB3	2.51	0.45
1:B:21:ARG:HH22	1:B:24:LEU:HB2	1.81	0.45
1:B:137:PRO:HB2	1:B:154:VAL:HG12	1.98	0.45
1:A:753:TYR:HB2	1:A:756:PHE:CE2	2.50	0.45
1:C:70:GLY:HA3	1:C:76:ARG:HG3	1.98	0.45
1:C:336:ASP:OD1	1:C:336:ASP:N	2.48	0.45
1:C:706:ASN:OD1	4:C:1306:NAG:N2	2.50	0.45
1:A:561:GLN:HA	1:A:574:ARG:HG3	1.98	0.45
1:A:199:TYR:HB3	1:A:220:LEU:HB3	1.98	0.45
1:A:773:LYS:HA	1:A:776:GLN:CD	2.37	0.45
1:C:33:THR:HA	1:C:58:PHE:CD1	2.52	0.45
1:C:895:PHE:O	1:C:899:MET:HE3	2.17	0.45
2:D:39:ARG:HB2	2:D:95:ALA:HB3	1.98	0.45
3:I:1:NAG:H4	3:I:2:NAG:C7	2.46	0.45
1:A:159:ASN:OD1	1:A:159:ASN:N	2.49	0.45
1:A:548:VAL:HG23	1:A:587:CYS:HB3	1.99	0.45
1:B:651:GLU:HG3	1:B:690:ILE:HG22	1.98	0.45
1:B:739:ILE:HD11	1:B:994:ILE:HA	1.98	0.45
1:B:201:LYS:HG2	1:B:220:LEU:HG	1.99	0.45
2:D:63:TYR:HB3	2:D:67:VAL:HG23	1.99	0.45
1:A:348:TYR:HB2	1:A:464:ASP:O	2.17	0.45
1:A:454:ARG:HH22	1:A:458:LEU:HG	1.81	0.45
1:B:395:ASP:OD1	1:B:509:VAL:N	2.34	0.45
1:B:567:ALA:HA	1:C:961:LYS:NZ	2.32	0.45

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:1086:PHE:CE2	1:B:1120:SER:HB3	2.52	0.45
1:C:33:THR:HA	1:C:58:PHE:HD1	1.81	0.45
1:A:185:ARG:HB3	1:A:187:PHE:CE2	2.52	0.45
1:A:805:ASP:OD1	1:A:805:ASP:N	2.46	0.45
1:B:549:LEU:HB3	1:B:582:LEU:HD21	1.99	0.45
1:B:1003:THR:O	1:B:1007:GLN:HG2	2.17	0.45
1:B:686:SER:OG	1:B:687:GLN:N	2.50	0.44
1:B:791:ILE:H	1:B:791:ILE:HD12	1.81	0.44
1:B:1087:PRO:HD2	1:C:910:GLN:OE1	2.15	0.44
1:C:737:MET:SD	1:C:854:GLY:HA3	2.57	0.44
1:A:129:CYS:HB2	1:A:131:PHE:CZ	2.52	0.44
1:A:353:LYS:HA	1:A:353:LYS:HD2	1.80	0.44
1:A:626:LEU:HD12	1:A:626:LEU:HA	1.85	0.44
1:B:535:CYS:HB2	1:B:587:CYS:HB3	1.55	0.44
1:A:428:GLY:HA3	1:A:510:LEU:O	2.17	0.44
1:B:78:ASP:OD1	1:B:78:ASP:N	2.48	0.44
1:B:616:GLU:OE1	1:B:616:GLU:N	2.51	0.44
1:C:1078:ILE:HD13	1:C:1132:ASN:HD22	1.81	0.44
1:A:21:ARG:H	1:A:21:ARG:HD3	1.83	0.44
1:A:32:PHE:HZ	1:A:212:ASP:HB2	1.82	0.44
1:A:419:ASN:ND2	1:A:450:TYR:HB2	2.33	0.44
1:B:643:ARG:HD3	1:C:833:GLN:HE22	1.83	0.44
1:B:673:THR:HA	1:B:687:GLN:HA	2.00	0.44
1:A:41:LYS:HD2	1:C:559:PHE:O	2.16	0.44
1:A:94:GLU:HB3	1:A:96:SER:O	2.18	0.44
1:B:27:ALA:HB3	1:B:64:TRP:HE1	1.82	0.44
1:B:43:PHE:CE1	1:B:280:GLY:HA3	2.53	0.44
1:B:700:ASN:OD1	1:B:701:SER:N	2.51	0.44
1:C:738:TYR:CE2	1:C:1001:LEU:HD21	2.53	0.44
1:A:617:VAL:HA	1:A:621:ILE:HG21	2.00	0.44
1:B:339:PHE:CE1	1:B:508:VAL:HB	2.52	0.44
1:C:419:ASN:ND2	1:C:450:TYR:HB2	2.32	0.44
1:C:451:ARG:HH12	1:C:467:THR:HG23	1.83	0.44
2:D:39:ARG:NH2	2:D:66:SER:OG	2.50	0.44
1:A:801:GLN:O	1:A:815:ILE:HG12	2.17	0.44
1:B:354:ARG:NH2	1:B:393:TYR:OH	2.44	0.44
1:C:198:ILE:HG23	1:C:223:LEU:HB2	1.98	0.44
1:C:403:GLU:O	1:C:407:ILE:HG23	2.18	0.44
2:D:86:MET:SD	2:D:89:LEU:HD21	2.57	0.44
1:A:54:LEU:HA	1:A:269:PRO:HA	1.98	0.44
1:A:794:PHE:HB2	1:A:799:PHE:CE2	2.51	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:935:LEU:HD23	1:A:935:LEU:HA	1.87	0.44
1:B:174:LEU:H	1:B:174:LEU:HD23	1.82	0.44
1:B:740:CYS:HB3	1:B:746:CYS:HB3	1.90	0.44
1:C:1044:TYR:HB2	1:C:1064:TYR:HB3	2.00	0.44
2:E:63:TYR:HB2	2:E:68:LYS:HG2	2.00	0.44
1:B:348:TYR:CE1	1:B:449:LEU:HD21	2.52	0.43
1:C:243:ARG:NH1	1:C:244:SER:OG	2.52	0.43
1:C:418:TYR:HA	1:C:454:ARG:NH2	2.32	0.43
1:B:308:GLY:HA2	1:B:661:ILE:HG12	2.00	0.43
1:B:712:PRO:HA	1:B:1069:GLU:HA	2.00	0.43
1:B:748:ASN:HA	1:B:751:LEU:HG	2.00	0.43
1:C:570:THR:HG22	1:C:584:ILE:HG21	1.99	0.43
1:C:819:LEU:O	1:C:823:VAL:HG23	2.18	0.43
2:D:114:ARG:HD2	2:D:117:TRP:HE1	1.83	0.43
1:B:556:PHE:HB3	1:B:574:ARG:NH2	2.33	0.43
1:B:906:ILE:HG13	1:B:908:VAL:HG23	2.01	0.43
1:C:159:ASN:OD1	1:C:159:ASN:N	2.51	0.43
1:C:436:ASN:HB2	1:C:503:GLN:OE1	2.19	0.43
1:A:127:LYS:HD2	1:A:164:GLU:OE1	2.18	0.43
1:A:402:ASP:OD1	1:A:402:ASP:N	2.52	0.43
1:A:927:ALA:O	1:A:931:ILE:HG12	2.19	0.43
1:B:57:PRO:HG3	1:B:270:ARG:HE	1.84	0.43
1:B:79:ASN:HB3	1:B:236:GLN:HE21	1.84	0.43
1:B:719:VAL:HG22	1:B:1062:VAL:HG13	2.01	0.43
1:C:969:ALA:HA	1:C:992:ARG:NH2	2.33	0.43
1:A:432:ALA:HB2	1:A:507:VAL:HG13	2.00	0.43
1:B:126:ILE:HD12	1:B:165:TYR:HD2	1.83	0.43
1:B:1139:GLN:HG3	1:B:1140:PRO:HD3	2.00	0.43
1:C:142:LYS:HB2	1:C:242:HIS:CG	2.53	0.43
1:C:548:VAL:N	1:C:585:THR:O	2.30	0.43
1:A:1113:THR:HG22	1:A:1135:TYR:HB3	2.00	0.43
1:C:241:LEU:HD22	1:C:256:THR:HA	2.01	0.43
1:C:454:ARG:NH1	1:C:458:LEU:HG	2.30	0.43
1:C:1002:GLN:HA	1:C:1005:VAL:HG12	2.01	0.43
1:A:67:VAL:HA	1:A:76:ARG:HH22	1.83	0.43
1:B:348:TYR:HD1	1:B:449:LEU:HD11	1.84	0.43
1:B:898:GLN:O	1:B:902:ARG:HG3	2.18	0.43
1:C:656:SER:HB3	1:C:695:SER:HB3	2.00	0.43
1:C:734:ASP:HB3	1:C:737:MET:SD	2.59	0.43
1:C:919:LEU:HG	1:C:923:GLN:HE21	1.84	0.43
1:A:34:ARG:NH1	1:A:216:GLY:O	2.52	0.43

	••• F •• G •••	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:93:ILE:HG22	1:A:182:LYS:HE2	2.00	0.43
1:A:324:VAL:HG11	1:A:540:PHE:CE1	2.53	0.43
1:B:1081:ASP:HB2	1:B:1083:LYS:NZ	2.34	0.43
1:B:1083:LYS:HD2	1:B:1119:VAL:HG11	2.00	0.43
1:C:574:ARG:HA	1:C:581:ILE:HG22	2.01	0.43
1:A:305:VAL:HB	1:A:599:THR:HG23	2.01	0.43
1:B:144:ASN:H	1:B:149:GLU:HG2	1.83	0.43
1:C:620:ALA:HA	1:C:622:HIS:CE1	2.53	0.43
2:D:94:THR:OG1	2:D:124:THR:HA	2.19	0.43
1:B:108:LEU:HG	1:B:234:ARG:HH12	1.84	0.42
1:C:400:ARG:NH1	1:C:492:TYR:O	2.52	0.42
2:E:112:TYR:O	2:E:114:ARG:NE	2.42	0.42
1:A:555:LYS:HE2	1:A:555:LYS:HB2	1.89	0.42
1:A:1139:GLN:HG3	1:A:1140:PRO:HD3	2.02	0.42
1:B:163:PHE:CE2	1:B:165:TYR:HB2	2.54	0.42
1:B:284:ASP:HB3	1:B:303:PHE:HE2	1.83	0.42
1:C:305:VAL:N	1:C:599:THR:OG1	2.44	0.42
1:C:918:LYS:H	1:C:918:LYS:CD	2.32	0.42
1:A:970:ILE:HD13	1:A:981:LEU:HD13	2.01	0.42
1:B:927:ALA:O	1:B:931:ILE:HG12	2.20	0.42
1:B:982:ASP:HB2	1:B:984:PRO:HD2	2.01	0.42
1:C:67:VAL:O	1:C:260:ALA:N	2.52	0.42
1:C:658:GLU:O	1:C:692:TYR:OH	2.25	0.42
1:B:805:ASP:OD1	1:B:805:ASP:N	2.46	0.42
3:I:1:NAG:O6	3:I:2:NAG:N2	2.52	0.42
1:A:618:PRO:O	1:A:621:ILE:HG12	2.19	0.42
1:B:512:PHE:HE2	1:C:980:ARG:HH12	1.68	0.42
1:C:19:THR:HG23	1:C:75:LYS:HE2	1.99	0.42
1:C:618:PRO:O	1:C:621:ILE:HG12	2.20	0.42
2:D:79:LYS:NZ	2:D:83:TYR:OH	2.43	0.42
1:A:436:ASN:HB2	1:A:503:GLN:OE1	2.19	0.42
1:A:888:GLY:HA3	1:A:889:PRO:HD3	1.95	0.42
1:B:126:ILE:O	1:B:165:TYR:N	2.52	0.42
1:B:355:ILE:HG22	1:B:521:VAL:HG21	2.02	0.42
1:B:851:LYS:HG3	1:B:852:PHE:H	1.85	0.42
1:C:194:GLY:HA2	1:C:229:GLY:HA2	2.01	0.42
1:C:565:ASP:N	1:C:565:ASP:OD1	2.53	0.42
1:C:757:CYS:O	1:C:760:LEU:HD12	2.20	0.42
1:C:957:ASN:O	1:C:961:LYS:HG2	2.19	0.42
1:A:1108:GLU:N	1:A:1108:GLU:OE2	2.53	0.42
1:B:292:PRO:HG3	1:B:630:TRP:HE1	1.84	0.42

	A targe D	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:728:MET:SD	1:B:729:THR:N	2.92	0.42
1:A:336:ASP:OD1	1:A:336:ASP:N	2.50	0.42
1:A:663:ILE:HD13	1:A:667:ILE:HG22	2.01	0.42
1:C:54:LEU:HA	1:C:269:PRO:HA	2.00	0.42
2:D:34:ARG:NE	2:D:107:CYS:SG	2.91	0.42
3:N:1:NAG:H4	3:N:2:NAG:H2	1.74	0.42
1:A:966:LYS:HB3	1:B:752:GLN:HB2	2.02	0.42
1:B:801:GLN:HE22	3:K:2:NAG:HN2	1.66	0.42
1:B:906:ILE:HD13	1:B:1046:LEU:HD21	2.02	0.42
1:C:78:ASP:N	1:C:78:ASP:OD1	2.41	0.42
1:C:453:PHE:H	1:C:488:PRO:HB3	1.84	0.42
1:C:525:LYS:HD2	1:C:527:SER:H	1.85	0.42
1:C:983:PRO:O	1:C:987:GLU:HG2	2.20	0.42
3:K:1:NAG:H5	3:K:2:NAG:O5	2.20	0.42
1:A:300:LEU:HD12	1:A:305:VAL:HG22	2.02	0.42
1:A:970:ILE:HG12	1:A:989:GLN:NE2	2.34	0.42
1:B:451:ARG:NH2	1:B:488:PRO:O	2.53	0.42
1:C:412:THR:OG1	2:E:54:ARG:NH2	2.53	0.42
1:A:321:GLU:O	1:A:536:VAL:HB	2.20	0.41
1:B:547:GLY:HA2	1:B:586:PRO:HA	2.02	0.41
1:C:151:GLU:HA	1:C:153:ARG:NH1	2.35	0.41
1:C:715:PHE:HA	1:C:1066:PRO:HA	2.02	0.41
1:C:805:ASP:OD1	1:C:805:ASP:N	2.48	0.41
1:A:200:SER:HB3	1:A:223:LEU:HD11	2.01	0.41
1:A:728:MET:N	1:A:771:GLN:OE1	2.43	0.41
1:B:196:PHE:O	1:B:225:ASP:HA	2.20	0.41
1:B:428:GLY:HA2	1:B:512:PHE:CE1	2.55	0.41
1:C:375:LYS:HA	1:C:381:PRO:HB3	2.01	0.41
1:C:794:PHE:HB2	1:C:799:PHE:HE2	1.85	0.41
2:D:5:LEU:HB3	2:D:99:CYS:SG	2.60	0.41
2:D:72:THR:HB	2:D:85:GLN:HB3	2.03	0.41
1:A:241:LEU:HD22	1:A:256:THR:HA	2.02	0.41
1:A:1012:ALA:HA	1:A:1015:ILE:HG22	2.01	0.41
1:A:1045:HIS:HA	1:A:1063:THR:HG22	2.02	0.41
1:B:969:ALA:HA	1:B:992:ARG:HH22	1.85	0.41
1:C:1139:GLN:HG3	1:C:1140:PRO:HD3	2.02	0.41
2:E:86:MET:CE	2:E:89:LEU:HD21	2.50	0.41
1:A:23:GLN:HA	1:A:77:PHE:CZ	2.55	0.41
1:A:801:GLN:O	1:A:814:PRO:HD2	2.19	0.41
1:B:400:ARG:HD3	1:B:492:TYR:CE1	2.56	0.41
1:C:97:ASN:HD21	1:C:100:ARG:HD2	1.86	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:373:THR:OG1	1:C:432:ALA:N	2.53	0.41
1:C:471:GLN:HE22	1:C:476:PRO:HA	1.84	0.41
1:A:33:THR:HA	1:A:58:PHE:CD1	2.54	0.41
1:A:113:GLN:HA	1:A:130:GLU:HG3	2.02	0.41
1:A:1064:TYR:HE1	1:A:1066:PRO:HG3	1.86	0.41
1:B:1123:CYS:HB2	1:B:1129:ILE:HD13	2.02	0.41
1:C:182:LYS:HG3	1:C:208:ARG:NH1	2.34	0.41
1:C:206:ILE:HD12	1:C:206:ILE:H	1.84	0.41
1:C:773:LYS:HB3	1:C:773:LYS:HE2	1.76	0.41
1:C:797:PHE:HD1	1:C:924:PHE:CD2	2.37	0.41
1:B:311:GLN:NE2	1:B:592:VAL:O	2.53	0.41
1:C:113:GLN:HA	1:C:130:GLU:HG3	2.03	0.41
1:C:126:ILE:HB	1:C:165:TYR:HB3	2.01	0.41
1:C:455:LYS:HD2	1:C:456:SER:H	1.86	0.41
1:C:555:LYS:HE2	1:C:555:LYS:HB2	1.89	0.41
3:P:1:NAG:H4	3:P:2:NAG:H2	1.73	0.41
1:A:197:LYS:HE2	1:A:197:LYS:HB2	1.92	0.41
1:A:449:LEU:HA	1:A:492:TYR:CE1	2.56	0.41
1:A:565:ASP:OD2	1:A:569:THR:OG1	2.39	0.41
1:B:154:VAL:HG23	1:B:155:TYR:HD1	1.86	0.41
1:B:505:TYR:O	1:B:507:VAL:HG23	2.20	0.41
1:B:794:PHE:O	1:B:797:PHE:HB2	2.19	0.41
1:C:611:GLY:N	1:C:644:ALA:O	2.49	0.41
1:A:476:PRO:HB2	1:A:478:ASN:OD1	2.21	0.41
1:A:827:ASP:N	1:A:827:ASP:OD1	2.53	0.41
1:B:659:CYS:SG	1:B:660:ASP:N	2.93	0.41
1:B:753:TYR:OH	1:B:991:ASP:OD1	2.20	0.41
1:B:859:PRO:HA	1:B:860:PRO:HD3	1.99	0.41
1:C:725:PRO:HD3	1:C:944:LYS:HE3	2.02	0.41
1:C:985:GLU:OE1	1:C:989:GLN:HG2	2.20	0.41
1:A:53:ASP:HB3	1:A:55:PHE:CE2	2.55	0.41
1:A:208:ARG:HD3	1:A:208:ARG:HA	1.88	0.41
1:A:418:TYR:HA	1:A:454:ARG:NH2	2.36	0.41
1:A:528:THR:HB	1:A:570:THR:HG21	2.02	0.41
1:A:821:ASN:O	1:A:824:THR:HG22	2.21	0.41
1:A:866:MET:H	1:A:866:MET:HG3	1.55	0.41
1:B:823:VAL:HG22	1:B:942:LEU:HD13	2.03	0.41
1:C:94:GLU:HB3	1:C:96:SER:O	2.21	0.41
1:C:122:THR:O	1:C:169:PRO:HD3	2.21	0.41
1:C:749:LEU:O	1:C:752:GLN:HG3	2.20	0.41
2:D:30:LEU:HD13	2:D:35:VAL:HG21	2.03	0.41

	1	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:172:MET:SD	1:A:172:MET:N	2.93	0.40
1:A:471:GLN:HE22	1:A:476:PRO:HA	1.85	0.40
1:A:773:LYS:O	1:A:774:ASN:C	2.59	0.40
1:B:278:GLU:H	4:B:1303:NAG:H82	1.86	0.40
1:B:735:CYS:O	1:B:739:ILE:HG22	2.20	0.40
1:B:1079:CYS:HB2	1:B:1123:CYS:HB2	1.83	0.40
1:C:142:LYS:O	1:C:242:HIS:ND1	2.54	0.40
1:C:836:ASP:OD1	1:C:836:ASP:N	2.52	0.40
2:E:13:VAL:HG11	2:E:19:LEU:HG	2.03	0.40
1:A:529:ASN:ND2	1:A:536:VAL:O	2.54	0.40
1:A:1073:THR:O	1:A:1094:SER:N	2.54	0.40
1:B:400:ARG:HD3	1:B:492:TYR:CD1	2.55	0.40
1:B:822:LYS:HE3	1:B:935:LEU:O	2.21	0.40
1:C:292:PRO:HA	1:C:630:TRP:CZ2	2.56	0.40
2:D:76:ASP:OD2	2:D:76:ASP:N	2.54	0.40
1:A:879:ILE:HD12	1:A:879:ILE:HA	1.82	0.40
1:A:881:SER:HB3	1:A:884:THR:OG1	2.21	0.40
1:B:992:ARG:HG2	1:B:992:ARG:HH11	1.86	0.40
1:C:53:ASP:OD1	1:C:54:LEU:N	2.50	0.40
1:C:97:ASN:ND2	1:C:100:ARG:HD2	2.36	0.40
1:C:1023:ALA:HA	1:C:1026:MET:HG3	2.04	0.40
1:A:19:THR:HG23	1:A:75:LYS:HE2	2.03	0.40
1:A:50:SER:HA	1:A:273:LEU:HA	2.03	0.40
1:A:127:LYS:HG2	1:A:131:PHE:CZ	2.54	0.40
1:A:140:ASP:CG	1:A:153:ARG:HH22	2.24	0.40
1:B:32:PHE:HE2	1:B:212:ASP:HB2	1.85	0.40
1:B:617:VAL:HG13	1:B:621:ILE:HD11	2.04	0.40
1:B:866:MET:H	1:B:866:MET:HG3	1.57	0.40
1:C:967:PHE:HB2	1:C:993:LEU:HD23	2.04	0.40
1:C:1026:MET:HB3	1:C:1059:PHE:CZ	2.57	0.40
1:A:971:SER:OG	1:A:980:ARG:NH2	2.50	0.40
1:C:100:ARG:HG2	1:C:119:ASN:HB3	2.03	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM

entries.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	1086/1254~(87%)	1015 (94%)	67~(6%)	4 (0%)	34 71
1	В	1086/1254~(87%)	1004 (92%)	78 (7%)	4 (0%)	34 71
1	С	1086/1254~(87%)	1035 (95%)	47 (4%)	4 (0%)	34 71
2	D	126/126~(100%)	121 (96%)	5 (4%)	0	100 100
2	Е	126/126~(100%)	124 (98%)	2(2%)	0	100 100
All	All	3510/4014 (87%)	3299 (94%)	199 (6%)	12 (0%)	44 75

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

All (12) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	В	373	THR
1	С	531	VAL
1	А	480	VAL
1	А	528	THR
1	С	480	VAL
1	В	369	ALA
1	В	502	HIS
1	А	160	ASN
1	С	160	ASN
1	А	125	VAL
1	В	206	ILE
1	С	125	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed Rotameric Outliers		Percentiles	
1	А	957/1096~(87%)	937~(98%)	20~(2%)	53 72
1	В	959/1096~(88%)	950~(99%)	9~(1%)	78 88
1	С	957/1096~(87%)	942~(98%)	15 (2%)	62 79

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
2	D	106/104~(102%)	104 (98%)	2~(2%)	57	75
2	Е	106/104~(102%)	106 (100%)	0	100	100
All	All	3085/3496~(88%)	3039~(98%)	46 (2%)	66	80

All (46) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	21	ARG
1	А	64	TRP
1	А	268	GLN
1	А	352	ARG
1	А	375	LYS
1	А	446	TYR
1	А	475	LYS
1	А	522	CYS
1	А	540	PHE
1	А	549	LEU
1	А	631	ARG
1	А	694	MET
1	А	714	ASN
1	А	728	MET
1	А	737	MET
1	А	834	TYR
1	А	855	LEU
1	А	866	MET
1	А	978	PHE
1	А	980	ARG
1	В	119	ASN
1	В	381	PRO
1	В	506	ARG
1	В	526	LYS
1	В	737	MET
1	В	798	ASN
1	В	866	MET
1	В	1035	LYS
1	В	1047	MET
1	С	21	ARG
1	С	89	TYR
1	С	172	MET
1	С	356	SER
1	С	375	LYS

Mol	Chain	Res	Type
1	С	455	LYS
1	С	525	LYS
1	С	529	ASN
1	С	631	ARG
1	С	728	MET
1	С	760	LEU
1	С	966	LYS
1	С	1026	MET
1	С	1107	TYR
1	С	1135	TYR
2	D	33	TYR
2	D	62	TYR

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (10) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	141	HIS
1	А	419	ASN
1	А	610	GLN
1	А	910	GLN
1	В	236	GLN
1	В	801	GLN
1	В	904	ASN
1	С	419	ASN
1	С	752	GLN
2	Е	2	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

22 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dec	Tiple	Bo	ond leng	ths	B	ond ang	gles
	Type	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
3	NAG	F	1	1,3	14,14,15	0.77	1 (7%)	17,19,21	0.71	1 (5%)
3	NAG	F	2	3	14,14,15	1.06	1 (7%)	17,19,21	1.26	1 (5%)
3	NAG	G	1	1,3	14,14,15	0.22	0	17,19,21	0.40	0
3	NAG	G	2	3	14,14,15	0.19	0	17,19,21	0.44	0
3	NAG	Н	1	1,3	14,14,15	0.47	0	17,19,21	1.34	2 (11%)
3	NAG	Н	2	3	14,14,15	0.28	0	17,19,21	0.40	0
3	NAG	Ι	1	1,3	14,14,15	0.27	0	17,19,21	0.38	0
3	NAG	Ι	2	3	14,14,15	0.62	1 (7%)	17,19,21	1.32	2 (11%)
3	NAG	J	1	1,3	14,14,15	1.61	1 (7%)	17,19,21	1.44	1 (5%)
3	NAG	J	2	3	14,14,15	0.40	0	17,19,21	0.70	1 (5%)
3	NAG	K	1	1,3	14,14,15	0.68	1 (7%)	17,19,21	0.86	1 (5%)
3	NAG	K	2	3	14,14,15	0.82	1 (7%)	17,19,21	1.35	1 (5%)
3	NAG	L	1	1,3	14,14,15	0.23	0	17,19,21	0.41	0
3	NAG	L	2	3	14,14,15	0.25	0	17,19,21	0.45	0
3	NAG	М	1	1,3	14,14,15	0.38	0	17,19,21	1.26	2 (11%)
3	NAG	М	2	3	14,14,15	0.21	0	17,19,21	0.46	0
3	NAG	N	1	1,3	14,14,15	0.17	0	17,19,21	0.56	0
3	NAG	N	2	3	14,14,15	0.59	0	17,19,21	0.50	0
3	NAG	0	1	1,3	14,14,15	0.81	1 (7%)	17,19,21	0.81	1 (5%)
3	NAG	0	2	3	14,14,15	0.21	0	17,19,21	0.42	0
3	NAG	Р	1	1,3	14,14,15	0.16	0	17,19,21	0.51	0
3	NAG	Р	2	3	14,14,15	0.50	0	17,19,21	0.51	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	NAG	F	1	1,3	-	4/6/23/26	0/1/1/1
3	NAG	F	2	3	-	3/6/23/26	0/1/1/1
3	NAG	G	1	1,3	-	2/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
	Type	Chan	1005		Cimais		Tungs
3	NAG	G	2	3	-	4/6/23/26	0/1/1/1
3	NAG	Н	1	1,3	-	2/6/23/26	0/1/1/1
3	NAG	Н	2	3	-	0/6/23/26	0/1/1/1
3	NAG	Ι	1	1,3	-	0/6/23/26	0/1/1/1
3	NAG	Ι	2	3	-	5/6/23/26	0/1/1/1
3	NAG	J	1	1,3	-	4/6/23/26	0/1/1/1
3	NAG	J	2	3	-	2/6/23/26	0/1/1/1
3	NAG	K	1	1,3	-	0/6/23/26	0/1/1/1
3	NAG	K	2	3	-	3/6/23/26	0/1/1/1
3	NAG	L	1	1,3	-	1/6/23/26	0/1/1/1
3	NAG	L	2	3	-	0/6/23/26	0/1/1/1
3	NAG	М	1	1,3	-	6/6/23/26	0/1/1/1
3	NAG	М	2	3	-	2/6/23/26	0/1/1/1
3	NAG	N	1	1,3	-	0/6/23/26	0/1/1/1
3	NAG	Ν	2	3	-	3/6/23/26	0/1/1/1
3	NAG	0	1	1,3	-	2/6/23/26	0/1/1/1
3	NAG	Ο	2	3	-	4/6/23/26	0/1/1/1
3	NAG	Р	1	1,3	-	2/6/23/26	0/1/1/1
3	NAG	Р	2	3	-	0/6/23/26	0/1/1/1

All (7) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
3	J	1	NAG	O5-C1	-5.52	1.34	1.43
3	F	2	NAG	O5-C1	3.82	1.49	1.43
3	Κ	2	NAG	O5-C1	2.95	1.48	1.43
3	0	1	NAG	O5-C1	-2.82	1.39	1.43
3	F	1	NAG	O5-C1	-2.66	1.39	1.43
3	Κ	1	NAG	O5-C1	-2.43	1.39	1.43
3	Ι	2	NAG	C1-C2	2.15	1.55	1.52

All (13) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	Κ	2	NAG	C1-O5-C5	5.19	119.23	112.19
3	F	2	NAG	C1-O5-C5	4.81	118.72	112.19
3	J	1	NAG	C3-C4-C5	4.55	118.35	110.24
3	Ι	2	NAG	C2-N2-C7	4.22	128.91	122.90
3	М	1	NAG	C2-N2-C7	4.12	128.77	122.90

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	Н	1	NAG	C1-O5-C5	3.59	117.05	112.19
3	Н	1	NAG	C3-C4-C5	3.00	115.59	110.24
3	J	2	NAG	C1-O5-C5	2.52	115.60	112.19
3	М	1	NAG	C1-C2-N2	2.37	114.53	110.49
3	0	1	NAG	C3-C4-C5	2.30	114.34	110.24
3	Ι	2	NAG	C1-C2-N2	2.17	114.20	110.49
3	Κ	1	NAG	C3-C4-C5	2.11	114.00	110.24
3	F	1	NAG	C3-C4-C5	2.01	113.83	110.24

There are no chirality outliers.

All (49) torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
3	J	2	NAG	O5-C5-C6-O6
3	F	2	NAG	C4-C5-C6-O6
3	М	2	NAG	C4-C5-C6-O6
3	G	1	NAG	O5-C5-C6-O6
3	0	2	NAG	O5-C5-C6-O6
3	G	2	NAG	O5-C5-C6-O6
3	Ι	2	NAG	O5-C5-C6-O6
3	J	1	NAG	O5-C5-C6-O6
3	F	1	NAG	C4-C5-C6-O6
3	F	2	NAG	O5-C5-C6-O6
3	М	2	NAG	O5-C5-C6-O6
3	G	1	NAG	C4-C5-C6-O6
3	Р	1	NAG	O5-C5-C6-O6
3	J	2	NAG	C4-C5-C6-O6
3	F	1	NAG	C8-C7-N2-C2
3	F	1	NAG	O7-C7-N2-C2
3	G	2	NAG	C8-C7-N2-C2
3	G	2	NAG	O7-C7-N2-C2
3	Ι	2	NAG	C8-C7-N2-C2
3	Ι	2	NAG	O7-C7-N2-C2
3	Κ	2	NAG	C8-C7-N2-C2
3	Κ	2	NAG	O7-C7-N2-C2
3	М	1	NAG	C8-C7-N2-C2
3	М	1	NAG	O7-C7-N2-C2
3	N	2	NAG	C8-C7-N2-C2
3	N	2	NAG	O7-C7-N2-C2
3	0	2	NAG	C8-C7-N2-C2
3	0	2	NAG	O7-C7-N2-C2
3	J	1	NAG	C4-C5-C6-O6

Mol	Chain	Res	Type	Atoms
3	F	1	NAG	O5-C5-C6-O6
3	0	2	NAG	C4-C5-C6-O6
3	Ι	2	NAG	C4-C5-C6-O6
3	Н	1	NAG	O5-C5-C6-O6
3	М	1	NAG	C4-C5-C6-O6
3	L	1	NAG	O5-C5-C6-O6
3	G	2	NAG	C4-C5-C6-O6
3	Р	1	NAG	C4-C5-C6-O6
3	М	1	NAG	O5-C5-C6-O6
3	0	1	NAG	C1-C2-N2-C7
3	F	2	NAG	C3-C2-N2-C7
3	М	1	NAG	C3-C2-N2-C7
3	Ν	2	NAG	O5-C5-C6-O6
3	Κ	2	NAG	C4-C5-C6-O6
3	Н	1	NAG	C3-C2-N2-C7
3	Ι	2	NAG	C3-C2-N2-C7
3	J	1	NAG	C3-C2-N2-C7
3	0	1	NAG	C3-C2-N2-C7
3	J	1	NAG	C1-C2-N2-C7
3	М	1	NAG	C1-C2-N2-C7

There are no ring outliers.

10 monomers are involved in 16 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	K	1	NAG	3	0
3	K	2	NAG	2	0
3	М	1	NAG	4	0
3	Ι	1	NAG	2	0
3	N	2	NAG	2	0
3	Р	1	NAG	1	0
3	N	1	NAG	3	0
3	Ι	2	NAG	3	0
3	Р	2	NAG	1	0
3	Н	1	NAG	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

15 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tinle	Bo	ond leng	ths	В	ond ang	les
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
4	NAG	C	1302	1	14,14,15	0.21	0	17,19,21	0.41	0
4	NAG	В	1302	1	14,14,15	0.39	0	17,19,21	0.57	0
4	NAG	А	1303	-	14,14,15	0.45	0	17,19,21	0.69	0
4	NAG	С	1305	1	14,14,15	0.29	0	17,19,21	0.50	0
4	NAG	В	1301	1	14,14,15	0.24	0	17,19,21	0.34	0
4	NAG	В	1304	1	14,14,15	0.30	0	17,19,21	0.37	0
4	NAG	С	1307	1	14,14,15	0.22	0	17,19,21	0.40	0
4	NAG	С	1304	1	14,14,15	0.20	0	17,19,21	0.41	0
4	NAG	A	1302	1	14,14,15	0.41	0	17,19,21	1.28	2 (11%)
4	NAG	В	1303	1	14,14,15	0.37	0	17,19,21	0.49	0

Mal	Turne	Chain	Dec	Tiple	Bo	ond leng	$_{\rm sths}$	Bond angles		
INIOI	туре	Unain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
4	NAG	А	1301	1	14,14,15	0.27	0	17,19,21	0.63	0
4	NAG	С	1303	1	14,14,15	0.24	0	17,19,21	0.45	0
4	NAG	С	1308	1	14,14,15	0.29	0	17,19,21	0.45	0
4	NAG	С	1301	1	14,14,15	0.20	0	17,19,21	0.44	0
4	NAG	С	1306	1	14,14,15	0.28	0	17,19,21	0.49	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	\mathbf{Res}	Link	Chirals	Torsions	Rings
4	NAG	С	1302	1	-	2/6/23/26	0/1/1/1
4	NAG	В	1302	1	-	2/6/23/26	0/1/1/1
4	NAG	А	1303	-	-	4/6/23/26	0/1/1/1
4	NAG	С	1305	1	-	3/6/23/26	0/1/1/1
4	NAG	В	1301	1	-	4/6/23/26	0/1/1/1
4	NAG	В	1304	1	-	3/6/23/26	0/1/1/1
4	NAG	С	1307	1	-	1/6/23/26	0/1/1/1
4	NAG	С	1304	1	-	2/6/23/26	0/1/1/1
4	NAG	А	1302	1	-	5/6/23/26	0/1/1/1
4	NAG	В	1303	1	-	0/6/23/26	0/1/1/1
4	NAG	А	1301	1	-	4/6/23/26	0/1/1/1
4	NAG	С	1303	1	-	2/6/23/26	0/1/1/1
4	NAG	С	1308	1	-	0/6/23/26	0/1/1/1
4	NAG	С	1301	1	-	2/6/23/26	0/1/1/1
4	NAG	С	1306	1	-	4/6/23/26	0/1/1/1

There are no bond length outliers.

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	А	1302	NAG	C2-N2-C7	4.34	129.09	122.90
4	А	1302	NAG	C1-C2-N2	2.03	113.95	110.49

There are no chirality outliers.

All (38) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	А	1302	NAG	O5-C5-C6-O6
4	А	1301	NAG	C4-C5-C6-O6
4	А	1303	NAG	C4-C5-C6-O6
4	С	1301	NAG	O5-C5-C6-O6
4	С	1303	NAG	C4-C5-C6-O6
4	А	1302	NAG	C4-C5-C6-O6
4	А	1301	NAG	O5-C5-C6-O6
4	В	1301	NAG	O5-C5-C6-O6
4	С	1303	NAG	O5-C5-C6-O6
4	А	1303	NAG	O5-C5-C6-O6
4	В	1301	NAG	C4-C5-C6-O6
4	А	1301	NAG	C8-C7-N2-C2
4	А	1301	NAG	O7-C7-N2-C2
4	А	1302	NAG	C8-C7-N2-C2
4	А	1302	NAG	O7-C7-N2-C2
4	А	1303	NAG	C8-C7-N2-C2
4	А	1303	NAG	O7-C7-N2-C2
4	В	1301	NAG	C8-C7-N2-C2
4	В	1301	NAG	O7-C7-N2-C2
4	В	1302	NAG	C8-C7-N2-C2
4	В	1302	NAG	O7-C7-N2-C2
4	С	1304	NAG	C8-C7-N2-C2
4	С	1304	NAG	O7-C7-N2-C2
4	С	1306	NAG	C8-C7-N2-C2
4	С	1306	NAG	O7-C7-N2-C2
4	С	1301	NAG	C4-C5-C6-O6
4	С	1306	NAG	O5-C5-C6-O6
4	В	1304	NAG	C1-C2-N2-C7
4	С	1302	NAG	O5-C5-C6-O6
4	С	1302	NAG	C4-C5-C6-O6
4	С	1307	NAG	O5-C5-C6-O6
4	В	1304	NAG	O5-C5-C6-O6
4	С	1306	NAG	C4-C5-C6-O6
4	С	1305	NAG	C4-C5-C6-O6
4	С	1305	NAG	O5-C5-C6-O6
4	С	1305	NAG	C3-C2-N2-C7
4	А	1302	NAG	C3-C2-N2-C7
4	В	1304	NAG	C3-C2-N2-C7

There are no ring outliers.

5 monomers are involved in 9 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	А	1303	NAG	1	0
4	В	1301	NAG	1	0
4	А	1302	NAG	2	0
4	В	1303	NAG	3	0
4	С	1306	NAG	2	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-17296. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 150

Y Index: 150

Z Index: 150

6.2.2 Raw map

X Index: 150

Y Index: 150

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 128

Y Index: 176

Z Index: 159

6.3.2 Raw map

X Index: 128

Y Index: 176

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.004. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{17296}msk_{1.map}$ (i) 6.6.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 884 nm^3 ; this corresponds to an approximate mass of 798 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.250 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.250 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estim	Estimation criterion (FSC cut-off)				
resolution estimate (A)	0.143	0.5	Half-bit			
Reported by author	4.00	-	-			
Author-provided FSC curve	3.94	5.13	4.03			
Unmasked-calculated*	5.35	8.38	5.92			

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 5.35 differs from the reported value 4.0 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-17296 and PDB model 80YU. Per-residue inclusion information can be found in section 3 on page 12.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.004 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.004).

9.4 Atom inclusion (i)

At the recommended contour level, 97% of all backbone atoms, 95% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.004) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score	
All	0.9510	0.1450	
А	0.9540	0.1390	
В	0.9620	0.1720	1 0
С	0.9520	0.1510	
D	0.8650	0.0140	
Е	0.8880	0.0220	
F	0.9640	0.1750	
G	0.9640	0.1050	
Н	0.9290	0.2990	
Ι	1.0000	0.2050	
J	0.8930	0.2300	
K	0.9290	0.0910	0.0
L	1.0000	0.2740	<0.0
М	1.0000	0.1750	
N	0.9640	0.1980]
0	0.9640	0.1220	
Р	1.0000	0.2960	

