

Jan 28, 2023 - 08:11 am GMT

PDB ID	:	70YC
EMDB ID	:	EMD-13113
Title	:	Cryo-EM structure of the Xenopus egg 80S ribosome
Authors	:	Leesch, F.; Lorenzo-Orts, L.; Grishkovskaya, I.; Kandolf, S.; Belacic, K.; Mein-
		hart, A.; Haselbach, D.; Pauli, A.
Deposited on	:	2021-06-24
Resolution	:	2.40 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 43
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.3

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	11	154	49%		12%
2	22	1826	68%	14%	18%
3	51	4115	66%	13%	21%
4	71	120	91%		8% •
5	81	156	81%		13% 6%
6	A1	257	95%		5%
7	A2	306	68%		32%
8	B1	403	98%		•

Mol	Chain	Length	Quality of chain	
9	B2	264	80%	19%
10	C1	401	87%	• 12%
11	C2	281	76%	23%
12	D1	296	98%	·
13	D2	246	90%	9%
14	E1	258	83%	17%
15	E2	263	98%	·
16	F1	246	92%	8%
17	F2	203	• 90%	10%
18	G1	266	79%	21%
19	G2	249	● 89%	11%
20	H1	192	98%	
21	H2	194	94%	
22	I1	215	94%	6%
23	I2	208	95%	5%
24	J1	177	94%	• 6%
25	J2	194	92%	• 7%
26	K2	165	56% 44%	
27	L1	211	94%	6%
28	L2	158	89%	11%
29	M1	138	97%	·
30	N1	204	100%	
31	N2	151	99%	·
32	01	231	86%	14%
33	O2	151	87%	• 12%

Continued from previous page...

Mol	Chain	Length	Quality of chain	
34	P1	184	83%	17%
35	P2	145	80%	20%
36	Q1	188	96%	•
37	Q2	146	91%	• 8%
38	R1	197	84%	16%
39	R2	135	98%	
40	S1	176	i 100%	
41	S2	152	89%	• 11%
42	T1	160	98%	•
43	Τ2	146	94%	6%
44	U1	128	i 76%	24%
45	U2	119	70% •	29%
46	V1	140	92%	8%
47	V2	83	i 100%	
48	W1	155	39% 61%	
49	W2	130	98%	
50	X1	155	• 77%	23%
51	X2	143	96%	• •
52	Y1	145	85%	• 14%
53	Y2	132	93%	7%
54	Z1	136	99%	
55	Z2	125	54% 46%	
56	a1	148	99%	
57	a2	115	85%	15%
58	b1	75	84%	16%

Continued from previous page...

Mol	Chain	Length	Quality of chain	
59	b2	84	96%	·
60	c1	116	81%	19%
61	c2	69		• 14%
62	d1	125	• 84%	• 15%
63	d2	86	64%	36%
64	e1	135	93%	• 7%
65	e2	133	38% 62%	
66	f1	110	97%	·
67	g1	117	87%	• 11%
68	g2	317	• 97%	••
69	h1	123	98%	·
70	i1	105	93%	7%
71	i2	378	13% 87%	
72	j1	97	89%	11%
73	k1	70	97%	•
74	l1	51	98%	·
75	m1	128	39% 61%	
76	n1	25	• 96%	•
77	o1	106	96%	·
78	p1	92	• 98%	••
79	r1	137	86%	14%
80	s1	113	13% 27% 73%	
81	v2	858	۵ % 42% 58%	6

2 Entry composition (i)

There are 83 unique types of molecules in this entry. The entry contains 198947 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Eukaryotic translation initiation factor 5A.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	11	136	Total 1033	C 644	N 178	O 200	S 11	0	0

• Molecule 2 is a RNA chain called 18S rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	22	1495	Total 31922	C 14260	N 5748	O 10420	Р 1494	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
22	287	С	U	conflict	GB X04025.1

• Molecule 3 is a RNA chain called 28S rRNA.

Mol	Chain	Residues			AltConf	Trace			
3	51	3245	Total 69603	C 30999	N 12763	O 22596	Р 3245	0	0

• Molecule 4 is a RNA chain called 5S rRNA.

Mol	Chain	Residues	Atoms				AltConf	Trace	
4	71	119	Total 2538	C 1133	N 457	O 830	Р 118	0	0

• Molecule 5 is a RNA chain called 5.8S rRNA.

Mol	Chain	Residues		Α	toms			AltConf	Trace
5	81	147	Total 3139	C 1399	N 564	O 1029	Р 147	0	0

• Molecule 6 is a protein called 60S ribosomal protein L8.

Mol	Chain	Residues		At	oms			AltConf	Trace
6	A1	245	Total 1868	C 1173	N 378	0 311	S 6	0	0

• Molecule 7 is a protein called 40S ribosomal protein SA.

Mol	Chain	Residues		At	AltConf	Trace			
7	A2	208	Total 1643	C 1046	N 289	O 299	S 9	0	0

• Molecule 8 is a protein called Rpl3-prov protein.

Mol	Chain	Residues		At	AltConf	Trace			
8	B1	394	Total 3170	C 2021	N 594	O 541	S 14	0	0

• Molecule 9 is a protein called 40S ribosomal protein S3a-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
9	B2	213	Total 1734	C 1103	N 309	O 309	S 13	0	0

• Molecule 10 is a protein called 60S ribosomal protein L4-B.

Mol	Chain	Residues		At	Atoms					
10	C1	351	Total 2805	C 1763	N 557	O 469	S 16	0	0	

• Molecule 11 is a protein called 40S ribosomal protein S2.

Mol	Chain	Residues		At	AltConf	Trace			
11	C2	215	Total 1663	C 1077	N 285	O 292	${ m S} 9$	0	0

• Molecule 12 is a protein called Rpl5-b protein.

Mol	Chain	Residues		Ate		AltConf	Trace		
12	D1	289	Total 2348	C 1493	N 427	0 421	S 7	0	0

• Molecule 13 is a protein called DNA-(apurinic or apyrimidinic site) lyase.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	D2	223	Total 1732	C 1103	N 312	O 310	${ m S} 7$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
D2	83	GLY	SER	conflict	UNP Q7ZYT3

• Molecule 14 is a protein called 60S ribosomal protein L6.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	E1	214	Total 1739	C 1123	N 332	O 280	$\frac{S}{4}$	0	0

• Molecule 15 is a protein called 40S ribosomal protein S4.

Mol	Chain	Residues		Ate		AltConf	Trace		
15	E2	258	Total 2055	C 1312	N 384	0 351	S 8	0	0

• Molecule 16 is a protein called MGC130910 protein.

Mol	Chain	Residues		At	AltConf	Trace			
16	F1	227	Total 1877	C 1210	N 358	O 302	${f S}7$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
F1	134	ALA	VAL	conflict	UNP Q3B8I3

• Molecule 17 is a protein called Ribosomal_S7 domain-containing protein.

Mol	Chain	Residues		At	AltConf	Trace			
17	F2	182	Total 1439	C 903	N 271	O 259	S 6	0	0

• Molecule 18 is a protein called 60S ribosomal protein L7a.

Mol	Chain	Residues		Ate	AltConf	Trace			
18	G1	210	Total 1695	C 1088	N 320	0 283	$\frac{S}{4}$	0	0

• Molecule 19 is a protein called 40S ribosomal protein S6.

Mol	Chain	Residues		At	AltConf	Trace			
19	G2	222	Total 1796	C 1120	N 358	0 312	S 6	0	0

• Molecule 20 is a protein called 60S ribosomal protein L9.

Mol	Chain	Residues		At	AltConf	Trace			
20	H1	190	Total 1517	C 955	N 285	O 269	S 8	0	0

• Molecule 21 is a protein called 40S ribosomal protein S7.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	H2	186	Total 1494	C 952	N 277	0 264	S 1	0	0

• Molecule 22 is a protein called Ribosomal_L16 domain-containing protein.

Mol	Chain	Residues		At	AltConf	Trace			
22	I1	202	Total 1639	C 1042	N 316	O 268	S 13	0	0

• Molecule 23 is a protein called 40S ribosomal protein S8.

Mol	Chain	Residues		At	AltConf	Trace			
23	I2	198	Total 1620	C 1017	N 319	0 279	${ m S}{ m 5}$	0	0

• Molecule 24 is a protein called 60S ribosomal protein L11.

Mol	Chain	Residues		At	AltConf	Trace			
24	J1	167	Total 1338	C 848	N 250	0 235	${S \atop 5}$	0	0

• Molecule 25 is a protein called 40S ribosomal protein S9.

Mol	Chain	Residues		At	AltConf	Trace			
25	J2	180	Total 1497	C 955	N 298	0 242	${ m S} { m 2}$	0	0

• Molecule 26 is a protein called 40S ribosomal protein S10.

Mol	Chain	Residues		At	AltConf	Trace			
26	K2	93	Total 779	C 513	N 133	0 128	${ m S}{ m 5}$	0	0

• Molecule 27 is a protein called 60S ribosomal protein L13.

Mol	Chain	Residues		Ate	AltConf	Trace			
27	L1	199	Total 1608	C 1012	N 330	O 262	${S \atop 4}$	0	0

• Molecule 28 is a protein called 40S ribosomal protein S11.

Mol	Chain	Residues	Atoms					AltConf	Trace
28	L2	140	Total 1145	C 726	N 220	0 193	S 6	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
L2	153	ALA	THR	$\operatorname{conflict}$	UNP Q7SZ77

• Molecule 29 is a protein called 60S ribosomal protein L14.

Mol	Chain	Residues	Atoms					AltConf	Trace
29	M1	134	Total 1100	C 700	N 212	0 180	S 8	0	0

• Molecule 30 is a protein called Ribosomal protein L15.

Mol	Chain	Residues	Atoms					AltConf	Trace
30	N1	203	Total 1691	C 1065	N 351	O 269	S 6	0	0

• Molecule 31 is a protein called 40S ribosomal protein S13.

Mol	Chain	Residues	Atoms					AltConf	Trace
31	N2	149	Total 1204	C 770	N 230	O 203	S 1	0	0

• Molecule 32 is a protein called 60S ribosomal protein L13a.

Mol	Chain	Residues		At	AltConf	Trace			
32	01	199	Total 1627	C 1054	N 314	O 255	$\frac{S}{4}$	0	0

• Molecule 33 is a protein called Rps14.

Mol	Chain	Residues	Atoms					AltConf	Trace
33	O2	133	Total 998	C 610	N 196	0 186	S 6	0	0

• Molecule 34 is a protein called 60S ribosomal protein L17.

Mol	Chain	Residues	Atoms					AltConf	Trace
34	P1	152	Total 1234	C 772	N 241	0 212	S 9	0	0

• Molecule 35 is a protein called 40S ribosomal protein S15.

Mol	Chain	Residues	Atoms					AltConf	Trace
35	P2	116	Total 955	C 607	N 177	0 163	S 8	0	0

• Molecule 36 is a protein called Ribosomal_L18e/L15P domain-containing protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
36	Q1	180	Total 1454	C 912	N 299	O 237	S 6	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Q1	116	ALA	SER	conflict	UNP A0A1L8FN04

• Molecule 37 is a protein called Rps16 protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
37	Q2	134	Total 1054	C 671	N 197	0 183	${ m S} { m 3}$	0	0

• Molecule 38 is a protein called 60S ribosomal protein L19.

Mol	Chain	Residues		At	oms			AltConf	Trace
38	R1	166	Total 1382	C 858	N 298	O 217	${ m S} 9$	0	0

• Molecule 39 is a protein called 40S ribosomal protein S17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
39	R2	132	Total 1066	C 669	N 199	0 194	$\frac{S}{4}$	0	0

• Molecule 40 is a protein called 60S ribosomal protein L18a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
40	S1	176	Total 1455	C 934	N 280	0 232	S 9	0	0

• Molecule 41 is a protein called 40S ribosomal protein S18.

Mol	Chain	Residues		At	oms			AltConf	Trace
41	S2	136	Total 1129	C 708	N 228	0 192	S 1	0	0

• Molecule 42 is a protein called 60S ribosomal protein L21.

Mol	Chain	Residues		At	oms			AltConf	Trace
42	T1	157	Total 1291	C 814	N 257	0 215	${ m S}{ m 5}$	0	0

• Molecule 43 is a protein called 40S ribosomal protein S19.

Mol	Chain	Residues		At	oms			AltConf	Trace
43	Τ2	137	Total 1059	C 666	N 199	0 191	${ m S} { m 3}$	0	0

• Molecule 44 is a protein called 60S ribosomal protein L22.

Mol	Chain	Residues		At	oms			AltConf	Trace
44	U1	97	Total 792	C 508	N 139	0 143	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 45 is a protein called 40S ribosomal protein S20.

Mol	Chain	Residues		At	oms			AltConf	Trace
45	U2	85	Total 684	C 429	N 133	O 118	$\frac{S}{4}$	0	0

• Molecule 46 is a protein called 60S ribosomal protein L23.

Mol	Chain	Residues		At	oms	AltConf	Trace		
46	V1	129	Total 968	C 612	N 182	O 169	${ m S}{ m 5}$	0	0

• Molecule 47 is a protein called 40S ribosomal protein S21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
47	V2	83	Total 643	C 396	N 118	0 124	$\frac{S}{5}$	0	0

• Molecule 48 is a protein called TRASH domain-containing protein.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
19	W/1	60	Total	С	N	0	S	0	0
40	VV I	00	502	321	98	81	2	0	0

• Molecule 49 is a protein called 40S ribosomal protein S15a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
49	W2	129	Total 1035	C 659	N 193	0 177	S 6	0	0

• Molecule 50 is a protein called Ribosomal_L23eN domain-containing protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
50	X1	119	Total 976	C 624	N 181	0 170	S 1	0	0

• Molecule 51 is a protein called 40S ribosomal protein S23.

Mol	Chain	Residues		At	oms			AltConf	Trace
51	X2	139	Total 1077	C 679	N 213	0 182	${ m S} { m 3}$	0	0

• Molecule 52 is a protein called KOW domain-containing protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
52	Y1	125	Total 1039	$\begin{array}{c} \mathrm{C} \\ 654 \end{array}$	N 208	0 174	${ m S} { m 3}$	0	0

• Molecule 53 is a protein called 40S ribosomal protein S24.

Mol	Chain	Residues		At	oms	AltConf	Trace		
53	Y2	123	Total 1004	C 637	N 195	0 167	${ m S}{ m 5}$	0	0

• Molecule 54 is a protein called 60S ribosomal protein L27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
54	Z1	135	Total 1109	С 713	N 211	0 182	${ m S} { m 3}$	0	0

• Molecule 55 is a protein called 40S ribosomal protein S25.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
55	79	67	Total	С	N	0	S	0	0
00		07	536	345	98	92	1	0	0

• Molecule 56 is a protein called 60S ribosomal protein L27a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
56	a1	147	Total 1164	С 741	N 233	0 186	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0

• Molecule 57 is a protein called 40S ribosomal protein S26.

Mol	Chain	Residues		At	oms			AltConf	Trace
57	a2	98	Total 780	C 484	N 161	0 130	${ m S}{ m 5}$	0	0

• Molecule 58 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues		At	oms			AltConf	Trace
58	b1	63	Total 527	C 328	N 112	0 84	${ m S} { m 3}$	0	0

• Molecule 59 is a protein called 40S ribosomal protein S27.

Mol	Chain	Residues		At	oms			AltConf	Trace
59	b2	81	Total 631	C 397	N 116	0 111	${ m S} 7$	0	0

• Molecule 60 is a protein called 60S ribosomal protein L30.

Mol	Chain	Residues		At	oms	AltConf	Trace		
60	c1	94	Total 732	C 465	N 130	0 131	S 6	0	0

• Molecule 61 is a protein called 40S ribosomal protein S28.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
61	c2	59	Total 459	C 279	N 89	O 89	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 62 is a protein called 60S ribosomal protein L31.

Mol	Chain	Residues		At	oms			AltConf	Trace
62	d1	106	Total 884	C 558	N 173	O 152	S 1	0	0

• Molecule 63 is a protein called 40S ribosomal protein S29.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
63	d2	55	Total 455	C 282	N 95	0 72	S 6	0	0

• Molecule 64 is a protein called Rpl32.

Mol	Chain	Residues		At	oms			AltConf	Trace
64	e1	126	Total 1037	C 657	N 209	0 166	${f S}{5}$	0	0

• Molecule 65 is a protein called 40S ribosomal protein S30.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
65	e2	51	Total 407	C 250	N 90	O 66	S 1	0	0

• Molecule 66 is a protein called 60S ribosomal protein L35a.

Mol	Chain	Residues		At	oms			AltConf	Trace
66	f1	107	Total 869	$\begin{array}{c} \mathrm{C} \\ 551 \end{array}$	N 174	0 140	${f S}$ 4	0	0

• Molecule 67 is a protein called 60S ribosomal protein L34.

Mol	Chain	Residues		At	oms	AltConf	Trace		
67	g1	104	Total 830	C 520	N 171	0 133	S 6	0	0

• Molecule 68 is a protein called Gnb2l1-prov protein.

Mol	Chain	Residues		At	AltConf	Trace			
68	g2	310	Total 2410	C 1516	N 421	O 460	S 13	0	0

• Molecule 69 is a protein called 60S ribosomal protein L35.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
69	h1	120	Total 995	C 627	N 203	O 165	0	0

• Molecule 70 is a protein called 60S ribosomal protein L36.

Mol	Chain	Residues		At	oms	AltConf	Trace		
70	i1	98	Total 812	C 508	N 174	0 124	S 6	0	0

• Molecule 71 is a protein called HABP4_PAI-RBP1 domain-containing protein.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
71	i2	51	Total 423	C 255	N 85	0 81	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 72 is a protein called Ribosomal protein L37.

Mol	Chain	Residues		At	oms			AltConf	Trace
72	j1	86	Total 699	C 430	N 152	0 112	${ m S}{ m 5}$	0	0

• Molecule 73 is a protein called 60S ribosomal protein L38.

Mol	Chain	Residues	Atoms				AltConf	Trace	
73	k1	68	Total	С	Ν	Ο	\mathbf{S}	0	0
10	N1	00	558	360	99	98	1	0	0

• Molecule 74 is a protein called MGC116452 protein.

Mol	Chain	Residues	Atoms				AltConf	Trace	
74	11	50	Total 441	C 281	N 96	O 63	S 1	0	0

• Molecule 75 is a protein called 60S ribosomal protein L40.

Mol	Chain	Residues	Atoms			AltConf	Trace		
75	m1	50	Total 411	C 254	N 87	O 64	S 6	0	0

• Molecule 76 is a protein called Rpl41.

Mol	Chain	Residues	Atoms			AltConf	Trace		
76	n1	24	Total	C 140	N 62	0 26	S 2	0	0
			231	140	03	20	Z		

• Molecule 77 is a protein called MGC85428 protein.

Mol	Chain	Residues	Atoms				AltConf	Trace	
77	o1	102	Total 835	C 519	N 173	0 137	S 6	0	0

• Molecule 78 is a protein called Rpl37a.

Mol	Chain	Residues	Atoms			AltConf	Trace		
78	p1	91	Total 707	С 447	N 134	0 119	${f S}7$	0	0

• Molecule 79 is a protein called 60S ribosomal protein L28.

Mol	Chain	Residues	Atoms			AltConf	Trace		
79	r1	118	Total 945	C 590	N 193	0 159	${ m S} { m 3}$	0	0

• Molecule 80 is a protein called Death-associated protein-like 1-B.

Mol	Chain	Residues	Atoms			AltConf	Trace		
80	s1	31	Total 251	C 158	N 50	0 42	S 1	0	0

• Molecule 81 is a protein called Eef2-prov protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
81	v2	360	Total 2813	C 1776	N 493	O 530	S 14	0	0

• Molecule 82 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
82	51	123	Total Mg 123 123	0
82	71	2	Total Mg 2 2	0
82	81	2	Total Mg 2 2	0
82	A1	1	Total Mg 1 1	0
82	B1	1	Total Mg 1 1	0
82	C1	1	Total Mg 1 1	0
82	V1	1	Total Mg 1 1	0
82	a1	1	Total Mg 1 1	0
82	e1	1	Total Mg 1 1	0
82	m1	1	Total Mg 1 1	0

• Molecule 83 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
83	a2	1	Total Zn 1 1	0
83	d2	1	Total Zn 1 1	0
83	g1	1	Total Zn 1 1	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
83	j1	1	Total Zn 1 1	0
83	m1	1	Total Zn 1 1	0
83	o1	1	Total Zn 1 1	0
83	p1	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Eukaryotic translation initiation factor 5A

• Molecule 7: 40S ribosomal protein SA

• Molecule 12: Rpl5-b protein

Chain D1:	98% •	
MET GLY F3 P267 Q291 CLN	ALA ASP SER	
• Molecule 2	13: DNA-(apurinic or apyrimidinic site) lyase	
Chain D2:	• 90% 9%	
MET ALA VAL Q4 D32 V72	E212 P215 F215 F215 F216 F216 F216 F216 F216 F226 F226 F226	
• Molecule 1	14: 60S ribosomal protein L6	
Chain E1:	83% 17%	
MET ALA GLY GLU GLU PRO VAL LYS LYS	ALA ALA ARG ARG ARG C12 C12 C12 C12 C12 C12 C12 C12 C12 C12	F266
• Molecule 1	15: 40S ribosomal protein S4	
Chain E2:	98%	
MET A2 K259 GLN SER SER SER GLY		
• Molecule 2	16: MGC130910 protein	
Chain F1:	92% 8%	
MET ALA GLY GLU GLU GLU CLYS LEYS LEVS	PRO SER VAL PRO CIU SER LIYS AR20 R20 R20 R20 R20 R20 R20 R20 R20 R20	
• Molecule	17: Ribosomal_S7 domain-containing protein	
Chain F2:	90% 10%	
MET SER ASP TRP GLU THR VAL PRO VAL	ATA THR THR PRO CLU CLU CLU CLU CLU ARO ARO ARO ARO ARO ARO ARO ARO ARO ARO	
• Molecule 1	18: 60S ribosomal protein L7a	
Chain G1:	79% 21%	
MET PRO LYS GLY LYS LYS LYS LYS GLY	LYS LYS LYS LYS VAL ALA PRO PRO PRO ELY VAL LYS CLU CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	LEU ALA THR LYS

LEU GLY

 \bullet Molecule 19: 40S ribosomal protein S6

Chain G2:	89%	11%
MI F7 BE22 BE22 LVS ARC GLU GLU GLU	ILE LYS ARG ARG ARG ARG ARG ARG ARG ALA ARG ALA ARG ALA AGU SER SER SER SER SER CU SER CU	
• Molecule 20: 60S	ribosomal protein L9	
Chain H1:	98%	••
M1 V104 GLU GLU		
• Molecule 21: 40S	ribosomal protein S7	
Chain H2:	94%	· ·
MET PHE SER SER SER A6 013 E14 E14 E18	G5 4 F7 2 E8 2 E1 94 FH 6 CLN CLN LEU	
• Molecule 22: Ribe	osomal_L16 domain-containing protein	
Chain I1:	94%	6%
MET ALT ALT ALA ALA ALA ALA ALA ALA ALA AL	GLN 113 ALA ALA ALA	
• Molecule 23: 40S	ribosomal protein S8	
Chain I2:	95%	5%
MET 02 12 1102 1172 0LY 0LY 1113 1113 1131	1136 K139 LYS GLY LYS GLY	
• Molecule 24: 60S	ribosomal protein L11	
Chain J1:	94%	• 6%
MET ALA ASP ASP LYS GLU GLU N9 N9 S172 T72	B175 LYS	
• Molecule 25: 40S	ribosomal protein S9	
Chain J2:	92%	• 7%

• Molecule 32: 60S ribosomal protein L13a

Chain O1:	86%	14%
MET ALA GLY GLU GLU ASN LYS LYS LEU MET	ARG ASP ALA ALA ALA ILE SER PRO PRO CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	
• Molecule 33:	: Rps14	
Chain O2:	87%	• 12%
MET ALA PRO ARG LYS GLY CLYS GLU CLYS		
• Molecule 34:	: 60S ribosomal protein L17	
Chain P1:	83%	17%
MET V2 GLU GLU GLU FLE PRO LYS	GLU VAL VAL ALA GLU GLU GLN GLN CLYS CLYS CLYS CLYS CLYS CLYS CLYS CLYS	
• Molecule 35:	: 40S ribosomal protein S15	
Chain P2:	80%	20%
MET ALA GLU GLU GLU GLU GLN LYS LYS ARG	HIK PHE LYS K173 44 ALA ALA ALA ALA ALA ALA ALA ALA ALA	
• Molecule 36:	: Ribosomal_L18e/L15P domain-containing protein	
Chain Q1:	96%	•
MET 62 818 818 818 818 818 918 917 178 178	AUN	
• Molecule 37:	Rps16 protein	
Chain Q2:	91%	• 8%
MET PRO LYS GLY PRO LEU T18 18	Y 14 1 CLN LYS TYR ARG	
• Molecule 38:	: 60S ribosomal protein L19	
Chain R1:	84%	16%
MET 82 82 82 82 81 81 81 81 81 81 81 81 81 81 81 81 81	ALU GLU GLU GLN ARG GLN GLU CLV CLV SER ILYS SER ILE CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	
• Molecule 39:	40S ribosomal protein S17	

Chain R2:	98%	
MET 62 67 6133 C133 7HR VAL		
• Molecule 4	0: 60S ribosomal protein L18a	
Chain S1:	100%	
M1 K21 F176		
• Molecule 4	1: 40S ribosomal protein S18	
Chain S2:	89%	• 11%
MET SER LEU VAL ILE PLC E7 A142	GLY THR VAL GLY VAL SER LYS LYS LYS	
• Molecule 4	2: 60S ribosomal protein L21	
Chain T1:	98%	
MET T2 F158 MET ALA		
• Molecule 4	3: 40S ribosomal protein S19	
Chain T2:	94%	6%
MET PRO GLY VAL THR V7 S143 LYS	CLVS CLAN HIS	
• Molecule 4	4: 60S ribosomal protein L22	
Chain U1:	76%	24%
MET ALA PRO VAL LYS LYS THR VAL THR	CLYS CLYS CLYS CLYS CLYS CLYS CLYS CLN CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	
• Molecule 4	5: 40S ribosomal protein S20	
Chain U2:	70% .	29%
MET ALA PHE LYS ASP PRO GLY ALA	VRIC VRIC ASP CIUN CIUN CIUN CIUN CIUN TGS FRR FRS FRR FRS FRR FRR FRR FRR FRR FR	
• Molecule 4	6: 60S ribosomal protein L23	

Chain V1:	92%	8%
MET SER LYS ARG GLY GLY SER SER SER GLY GLY	41 - 12 - 14 - 14 - 14 - 14 - 14 - 14 -	
• Molecule 47:	40S ribosomal protein S21	
Chain V2:	100%	_
HI D4 F83		
• Molecule 48:	TRASH domain-containing protein	
Chain W1:	39% 61%	_
MET LYS LYS CS GG2 GLU GLU CLU CLU CLU CLU CLU	LYS LYS LYS ARG ARG ARG ARG ARG ARG ARG ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ALA ALA LYS GLU VAL LYS LYS
ALA LYS GLN GLN ALA LYS LYS ALA ALA ALA	LYS PRO SER ALA ALA ALA SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
• Molecule 49:	40S ribosomal protein S15a	
Chain W2:	98%	
MET V2 T105 M111 F130		
• Molecule 50:	Ribosomal_L23eN domain-containing protein	
Chain X1:	77% 23%	_
MET ALA PRO LYS LYS LYS LYS GLU VAL ALA PRO	PRO THR CIVS CIU CIVS CIU CIVS SER ALA ALA ALA ALA ALA ALA CIVS CIVS CIVS SER HIS SER	
• Molecule 51:	40S ribosomal protein S23	
Chain X2:	96%	
MET G2 F105 F105 AR0 AR0 SER SER		
• Molecule 52:	KOW domain-containing protein	
Chain Y1:	85% • 14	%

M1 Y74 V79 S125 ARG	VAL VAL CLVS CLVS CLVS CLVS CLV CLYS CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU		
• Molecule	53: 40S ribosomal protein S24		
Chain Y2:	93%	7%	
MET ASN ASP T4 G126 G126 GLY	LYS LYS ASP		
• Molecule	54: 60S ribosomal protein L27		
Chain Z1:	99%		
MET G2 F136			
• Molecule	55: 40S ribosomal protein S25		
Chain Z2:	54% 46%		
MET PRO PRO LYS ASP ASP LYS LYS	LYSS LYSS ALA ALA ALA ALA ALA ALA ALA ALA ALA A	LINK LYS GLY GLY ASP ALA PRO GLY THR	GLU
SER			
• Molecule	56: 60S ribosomal protein L27a		
Chain a1:	99%		
MET P2 A148			
• Molecule	57: 40S ribosomal protein S26		
Chain a2:	85%	15%	
MET T2 ARG ARG ARG ARG ARG	ALA ALA VAL DRO DRO ALA ALA ALA MET MET MET		
• Molecule	58: 60S ribosomal protein L29		
Chain b1:	84%	16%	
MET A2 N64 ALA ALA SER SER	ALA ALA PILA ALA ALA LYS		
• Molecule	59: 40S ribosomal protein S27		

Chain b2:	96%	•
MET P2 K82 GLN HIS		
• Molecule	60: 60S ribosomal protein L30	
Chain c1:	81%	19%
MET VAL ALA ALA LYS LYS THR LYS	LLYS SER CLU CLU CLU SER MET RET RET CLU CLU CLU CLU CLU	
• Molecule	61: 40S ribosomal protein S28	
Chain c2:	• 84%	14%
MET GLU ALA SER ARG VAL VAL	V32 B37 A65 ARC ARC ARC	
• Molecule	62: 60S ribosomal protein L31	
Chain d1:	84%	15%
MET ALA PRO ALA LYS LYS GLY GLY	CLU LYS LYS CLY ARG ARG ARG V84 V84 C B93 B93 B93 B93 CLU CLU CLU ASN	
• Molecule	63: 40S ribosomal protein S29	
Chain d2:	64% 36%	
MET G2 C56 ASP VAL LEU LEU	ALA PHE GLN FTHR PRO PRO PRO PRO ARG ARG ARG ARG ARG ARG ARG CLEU CLEU CLEU CLEU CLEU CLEU CLEU CLEU	
• Molecule	64: Rpl32	
Chain e1:	93%	• 7%
MET ALA ALA IL4 I58 I129 L129	ARG GLU GLU GLU GLU	
• Molecule	65: 40S ribosomal protein S30	
Chain e2:	38% 62%	
MET GLN LLEU PHE VAL ARG GLY GLN	LEU LEU THR THR THR CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	SER GLU GLU GLU LEU GLN GLN CYS CYS CYS CYS CYS

ASP LEU SER THR LEU LEU ASP VAL ASP ARG	LEU LEU GLY VAL HIS GLY S82 GLY FHE GLY K129 S136 S136	
• Molecule 66:	60S ribosomal protein L35a	
Chain f1:	97% .	
MET SER GLY R4 I110		
• Molecule 67:	60S ribosomal protein L34	
Chain g1:	87% • 11%	
MET A2 Y32 H73 K105 VAL LEU	ALTS GLIN GLIN GLIN GLIN CLYS ALTA LYS	
• Molecule 68:	Gnb2l1-prov protein	
Chain g2:	97%	
MET THR GLU Q4 H64 F113	R118 E144 E144 S161 N181 V274 S276 R28 S276 S276 S276 S276 S276 S276 S276 S277 S276 R14R ARG ARG	
• Molecule 69:	60S ribosomal protein L35	
Chain h1:	98% •	
MET ALA LYS I4 A123		
• Molecule 70:	60S ribosomal protein L36	
Chain i1:	93% 7%	
MET ALA I3 ALA ALA ALA ALA LYS LYS ASP		
• Molecule 71:	HABP4_PAI-RBP1 domain-containing protein	
Chain i2:	87%	
MET ARG LEU GLU GLU THR MET LYS GLN THR PRO	SERVICE SERVIC	GLU GLU
ALA ALA LYS LYS LYS ASN ASN ASN GLN CYS SER SER	LVS LVS SER CLV SER CLV SER ASP ASP ARS ARS CLV VAL VAL VAL THR THR THR THR THR THR THR THR THR THR	VAL LYS VAL

ASP ARG GLU GLU ARG ARG ALA ALA	ARE ARG CLU VAL ARG ASN ASN ASN ARS ALA ARS CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	GLY ARG GLY GLY PHE PRO ARG ASN THR THR GLU
SER ASP ASN ASN LEU LEU GLY K188	P196 P196 F223 SER CLU TLU F223 CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	N202 K268 D272 Q273 ARC ARC SER LYS THR
GLU LEU ASN LEU ARG PRO GLU	SER VAL VAL VAL VAL VAL VAL VAL VAL VAL VAL	TLE ASN PHE GLY SER LEU ARG ARG PRO SER SER
ARG GLY ARG GLY GLY GLY GLY GLY GLY	ARG VAL VAL ARG ARG CLU CLU CLU ALA ALA ALA ALA ALA ALA ALA ALA ALA A	
• Molecule	72: Ribosomal protein L37	
Chain j1:	89%	11%
MET T2 K87 ARG ALA ALA VAL	ALA SER SER SER	
• Molecule	73: 60S ribosomal protein L38	
Chain k1:	97%	·
MET P2 L69 LYS		
• Molecule	74: MGC116452 protein	
Chain l1:	98%	·
MET S2 L51		
• Molecule	75: 60S ribosomal protein L40	
Chain m1:	39% 61%	
MET GLN CLL CLL CLL CLL CLL CLL CLL CLL CLL C	GLYS CLYS THR TTRR TTRR CLVS CLU VAL CLU CLU CLV CLV CLV CLV CLV CLV CLV CLV CLV CLV	GLU ASP GLY GLY ARG LEU SER ASP ASN
ILE GLN CLYS GLU SER LEU LEU HIS	VALU LEU ARG GLY GLY GLY LYS LYS	
• Molecule	76: Rpl41	
Chain n1:	• 96%	·
MET R2 K25		

• Molecule 77: MGC85428 protein
Chain o1: 96% ·
MET V2
• Molecule 78: Rpl37a
Chain p1: 98%
MET A2 A2 A2 A2 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4
• Molecule 79: 60S ribosomal protein L28
Chain r1: 86% 14%
AET S 3 C 1 Y 8 C
• Molecule 80: Death-associated protein-like 1-B
Chain s1: 27% 73%
MET MET FYRR LYSS LYS LYS LYS CLAN SER SER SER SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
LYS MAET ALA ALA AALA ASIN LIEU ALA ASIN LIEU CI13 ASI ASIS ASIS ASIS ASIS ASIS ASIS ASIS
• Molecule 81: Eef2-prov protein
Chain v2: 42% 58%
MET VAL VAL THR ASP ASP ASP ASP ASP MET ASP MET ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP
LYS LYS GLU GLU GLU GLU CYS CYS CYS CYS LITE LITE LITE LEU TYR ALA ALA ALA ASP CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU
VAL VAL ASP ASP ALA ALA ALA ALA VAL VAL VAL AAS VAL AASP AASP ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
HLE VAL ASN VAL ASN VAL ASN ASN ASN ASN THR THR GLY GLY GLY GLY GLY CLU GLY CLU CLY GLY CLU CLY CLU CLY CLU CLY CLU CLY CLU CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY
ALU ALA ALA PR.O ALA PR.O AR.A AR.A AR.C AR.C AR.C AR.C AR.C AR.C
PHE ALA ALA ALA ALA ALA ALA ALA ALA ALA AL

PRIO ALLARU ALLARU CONSTRUCTOR CONSTRUCTOR CONSTRUCTOR CONSTRUCTION CO

VAL THE CONTRACT OF CONTRACT OF CONTRACT CLARK CONTRACT OF CONTRACT OF CONTRACT THE MARK OF CONTRACT O

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	412340	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	40	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	FEI FALCON III (4k x 4k)	Depositor
Maximum map value	6.789	Depositor
Minimum map value	-2.088	Depositor
Average map value	0.046	Depositor
Map value standard deviation	0.188	Depositor
Recommended contour level	0.55	Depositor
Map size (Å)	508.8, 508.8, 508.8	wwPDB
Map dimensions	480, 480, 480	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.06, 1.06, 1.06	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, MG, 5CT

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	E	Bond angles
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	11	0.24	0/1030	0.43	0/1381
2	22	0.19	0/35698	0.71	7/55605~(0.0%)
3	51	0.21	0/77857	0.70	13/121410~(0.0%)
4	71	0.19	0/2837	0.66	0/4422
5	81	0.19	0/3506	0.69	1/5460~(0.0%)
6	A1	0.25	0/1905	0.42	0/2554
7	A2	0.24	0/1680	0.39	0/2283
8	B1	0.25	0/3237	0.41	0/4329
9	B2	0.24	0/1762	0.42	0/2359
10	C1	0.24	0/2857	0.40	0/3836
11	C2	0.24	0/1699	0.40	0/2298
12	D1	0.24	0/2392	0.38	0/3206
13	D2	0.24	0/1760	0.41	0/2370
14	E1	0.24	0/1775	0.40	0/2373
15	E2	0.24	0/2098	0.43	0/2825
16	F1	0.24	0/1911	0.38	0/2549
17	F2	0.23	0/1459	0.38	0/1959
18	G1	0.24	0/1728	0.37	0/2328
19	G2	0.23	0/1820	0.41	0/2427
20	H1	0.24	0/1535	0.42	0/2061
21	H2	0.24	0/1516	0.42	0/2033
22	I1	0.25	0/1676	0.40	0/2238
23	I2	0.23	0/1648	0.40	0/2197
24	J1	0.24	0/1361	0.40	0/1821
25	J2	0.23	0/1522	0.37	0/2033
26	K2	0.24	0/803	0.39	0/1085
27	L1	0.24	0/1638	0.40	0/2192
28	L2	0.24	0/1165	0.42	0/1560
29	M1	0.24	0/1121	0.37	0/1496
30	N1	0.24	0/1732	0.40	0/2314
31	N2	0.23	0/1228	0.38	0/1652
32	01	0.24	0/1659	0.38	0/2221

Mol Chain		Bond lengths		Bond angles		
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5	
33	O2	0.24	0/1011	0.44	0/1355	
34	P1	0.24	0/1260	0.40	0/1691	
35	P2	0.24	0/972	0.38	0/1298	
36	Q1	0.24	0/1476	0.41	0/1970	
37	Q2	0.24	0/1070	0.40	0/1435	
38	R1	0.22	0/1398	0.35	0/1849	
39	R2	0.23	0/1080	0.37	0/1449	
40	S1	0.25	0/1496	0.40	0/2011	
41	S2	0.23	0/1146	0.40	0/1532	
42	T1	0.25	0/1318	0.40	0/1761	
43	Τ2	0.23	0/1078	0.37	0/1447	
44	U1	0.24	0/807	0.42	0/1082	
45	U2	0.22	0/691	0.43	0/924	
46	V1	0.25	0/982	0.43	0/1317	
47	V2	0.26	0/650	0.42	0/870	
48	W1	0.25	0/515	0.40	0/687	
49	W2	0.24	0/1052	0.41	0/1408	
50	X1	0.24	0/993	0.40	0/1335	
51	X2	0.24	0/1093	0.41	0/1460	
52	Y1	0.24	0/1056	0.38	0/1406	
53	Y2	0.24	0/1021	0.42	0/1356	
54	Z1	0.25	0/1131	0.38	0/1508	
55	Z2	0.23	0/542	0.39	0/729	
56	a1	0.24	0/1196	0.40	0/1598	
57	a2	0.24	0/793	0.41	0/1063	
58	b1	0.24	0/538	0.34	0/708	
59	b2	0.24	0/644	0.43	0/864	
60	c1	0.24	0/742	0.39	0/996	
61	c2	0.23	0/461	0.44	0/618	
62	d1	0.23	0/899	0.41	0/1211	
63	d2	0.23	0/466	0.37	0/619	
64	e1	0.24	0/1055	0.40	0/1406	
65	e2	0.24	0/410	0.38	0/537	
66	f1	0.25	0/889	0.42	0/1192	
67	g1	0.24	0/841	0.41	0/1121	
68	g2	0.23	0/2467	0.43	0/3356	
69	h1	0.22	0/1002	0.35	0/1323	
70	i1	0.23	0/823	0.35	0/1089	
71	i2	0.23	0/430	0.38	0/569	
72	j1	0.24	0/713	0.41	0/942	
73	k1	0.24	0/564	0.38	0/748	
74	11	0.23	0/451	0.36	0/596	
75	m1	0.23	0/417	0.41	0/553	

Mal	Chain	Bond	lengths	E	Bond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
76	n1	0.20	0/232	0.32	0/295
77	o1	0.24	0/847	0.41	0/1117
78	p1	0.23	0/717	0.41	0/951
79	r1	0.24	0/959	0.40	0/1283
80	s1	0.41	0/256	0.48	0/344
81	v2	0.24	0/2872	0.42	0/3889
All	All	0.22	0/213137	0.60	21/311745~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
9	B2	0	1

There are no bond length outliers.

All (21) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	51	707	С	C2-N1-C1'	8.67	128.33	118.80
3	51	707	С	N1-C2-O2	8.61	124.07	118.90
2	22	321	С	C2-N1-C1'	8.30	127.92	118.80
2	22	321	С	N1-C2-O2	8.21	123.83	118.90
2	22	321	С	N3-C2-O2	-7.08	116.94	121.90
3	51	707	С	N3-C2-O2	-6.83	117.12	121.90
2	22	321	С	C6-N1-C2	-6.03	117.89	120.30
3	51	707	С	C6-N1-C2	-5.93	117.93	120.30
3	51	707	С	C6-N1-C1'	-5.90	113.72	120.80
3	51	724	С	C2-N1-C1'	5.82	125.21	118.80
3	51	1154	С	C2-N1-C1'	5.64	125.01	118.80
2	22	321	С	C6-N1-C1'	-5.60	114.08	120.80
5	81	111	U	C2-N1-C1'	5.59	124.41	117.70
3	51	4015	С	C2-N1-C1'	5.49	124.84	118.80
3	51	1498	С	C2-N1-C1'	5.49	124.83	118.80
2	22	1520	С	N1-C2-O2	5.22	122.03	118.90
3	51	1152	С	N1-C2-O2	5.21	122.03	118.90
2	22	55	С	C2-N1-C1'	5.20	124.52	118.80
3	51	1152	С	C2-N1-C1'	5.19	124.51	118.80
3	51	3881	С	C2-N1-C1'	5.16	124.48	118.80
3	51	2232	G	P-O3'-C3'	5.13	125.86	119.70

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
9	B2	74	LEU	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	11	131/154~(85%)	123 (94%)	8 (6%)	0	100	100
6	A1	243/257~(95%)	233~(96%)	10 (4%)	0	100	100
7	A2	206/306~(67%)	202~(98%)	4 (2%)	0	100	100
8	B1	392/403~(97%)	378~(96%)	14 (4%)	0	100	100
9	B2	211/264~(80%)	203~(96%)	8 (4%)	0	100	100
10	C1	349/401~(87%)	339~(97%)	10 (3%)	0	100	100
11	C2	213/281~(76%)	211 (99%)	2 (1%)	0	100	100
12	D1	287/296~(97%)	283~(99%)	4 (1%)	0	100	100
13	D2	221/246~(90%)	214 (97%)	7 (3%)	0	100	100
14	E1	206/258~(80%)	202 (98%)	4 (2%)	0	100	100
15	E2	256/263~(97%)	242 (94%)	14 (6%)	0	100	100
16	F1	225/246~(92%)	217 (96%)	8 (4%)	0	100	100
17	F2	178/203~(88%)	170 (96%)	8 (4%)	0	100	100
18	G1	206/266~(77%)	205 (100%)	1 (0%)	0	100	100
19	G2	220/249~(88%)	217 (99%)	3 (1%)	0	100	100
20	H1	188/192~(98%)	184 (98%)	4 (2%)	0	100	100

a 1	0		
Continued	from	nrevious	naae
Contracta	110110	precoudus	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
21	H2	184/194~(95%)	170 (92%)	14 (8%)	0	100	100
22	I1	198/215~(92%)	192 (97%)	6 (3%)	0	100	100
23	I2	194/208~(93%)	190 (98%)	4 (2%)	0	100	100
24	J1	165/177~(93%)	163 (99%)	2 (1%)	0	100	100
25	J2	178/194~(92%)	175 (98%)	3 (2%)	0	100	100
26	K2	91/165~(55%)	86 (94%)	5 (6%)	0	100	100
27	L1	197/211~(93%)	191 (97%)	6 (3%)	0	100	100
28	L2	136/158~(86%)	132 (97%)	4 (3%)	0	100	100
29	M1	132/138~(96%)	130 (98%)	2 (2%)	0	100	100
30	N1	201/204~(98%)	197 (98%)	4 (2%)	0	100	100
31	N2	147/151~(97%)	146 (99%)	1 (1%)	0	100	100
32	01	197/231~(85%)	194 (98%)	3 (2%)	0	100	100
33	O2	131/151 (87%)	125 (95%)	6 (5%)	0	100	100
34	P1	150/184~(82%)	144 (96%)	6 (4%)	0	100	100
35	P2	114/145~(79%)	114 (100%)	0	0	100	100
36	Q1	178/188~(95%)	171 (96%)	7 (4%)	0	100	100
37	Q2	132/146~(90%)	129 (98%)	3 (2%)	0	100	100
38	R1	164/197~(83%)	164 (100%)	0	0	100	100
39	R2	130/135~(96%)	129 (99%)	1 (1%)	0	100	100
40	S1	174/176~(99%)	172 (99%)	2 (1%)	0	100	100
41	S2	134/152~(88%)	129 (96%)	5 (4%)	0	100	100
42	T1	155/160~(97%)	149 (96%)	6 (4%)	0	100	100
43	Τ2	135/146~(92%)	130 (96%)	5 (4%)	0	100	100
44	U1	95/128~(74%)	89 (94%)	6 (6%)	0	100	100
45	U2	81/119 (68%)	80 (99%)	1 (1%)	0	100	100
46	V1	127/140~(91%)	124 (98%)	3 (2%)	0	100	100
47	V2	81/83~(98%)	80 (99%)	1 (1%)	0	100	100
48	W1	58/155~(37%)	58 (100%)	0	0	100	100
49	W2	127/130~(98%)	125 (98%)	2 (2%)	0	100	100
50	X1	117/155~(76%)	115 (98%)	2 (2%)	0	100	100
51	X2	137/143~(96%)	131 (96%)	6 (4%)	0	100	100

$\alpha + 1$	C		
Continued	from	previous	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
52	Y1	123/145~(85%)	122 (99%)	1 (1%)	0	100	100
53	Y2	121/132~(92%)	112 (93%)	9~(7%)	0	100	100
54	Z1	133/136~(98%)	130~(98%)	3~(2%)	0	100	100
55	Z2	65/125~(52%)	64 (98%)	1 (2%)	0	100	100
56	a1	145/148~(98%)	139~(96%)	6 (4%)	0	100	100
57	a2	96/115~(84%)	93~(97%)	3 (3%)	0	100	100
58	b1	61/75~(81%)	57~(93%)	4 (7%)	0	100	100
59	b2	79/84~(94%)	76 (96%)	3 (4%)	0	100	100
60	c1	92/116~(79%)	91 (99%)	1 (1%)	0	100	100
61	c2	57/69~(83%)	55 (96%)	2 (4%)	0	100	100
62	d1	104/125~(83%)	98 (94%)	6 (6%)	0	100	100
63	d2	53/86~(62%)	53 (100%)	0	0	100	100
64	e1	124/135~(92%)	123 (99%)	1 (1%)	0	100	100
65	e2	47/133~(35%)	46 (98%)	1 (2%)	0	100	100
66	f1	105/110~(96%)	104 (99%)	1 (1%)	0	100	100
67	g1	102/117~(87%)	99~(97%)	3 (3%)	0	100	100
68	g2	308/317~(97%)	287 (93%)	21 (7%)	0	100	100
69	h1	118/123~(96%)	115 (98%)	3 (2%)	0	100	100
70	i1	96/105~(91%)	96 (100%)	0	0	100	100
71	i2	47/378 (12%)	44 (94%)	3 (6%)	0	100	100
72	j1	84/97~(87%)	82 (98%)	2 (2%)	0	100	100
73	k1	66/70~(94%)	66 (100%)	0	0	100	100
74	11	48/51~(94%)	47 (98%)	1 (2%)	0	100	100
75	m1	48/128 (38%)	48 (100%)	0	0	100	100
76	n1	22/25~(88%)	22 (100%)	0	0	100	100
77	o1	100/106~(94%)	98~(98%)	2 (2%)	0	100	100
78	p1	89/92~(97%)	88 (99%)	1 (1%)	0	100	100
79	r1	116/137~(85%)	115 (99%)	1 (1%)	0	100	100
80	s1	27/113~(24%)	24 (89%)	3 (11%)	0	100	100
81	v2	358/858~(42%)	339~(95%)	19 (5%)	0	100	100
All	All	11206/13815 (81%)	10880 (97%)	326 (3%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	11	114/129~(88%)	114 (100%)	0	100	100
6	A1	187/198~(94%)	187 (100%)	0	100	100
7	A2	175/252~(69%)	175~(100%)	0	100	100
8	B1	341/348~(98%)	340 (100%)	1 (0%)	92	97
9	B2	194/229~(85%)	193~(100%)	1 (0%)	88	95
10	C1	296/334~(89%)	293~(99%)	3~(1%)	76	88
11	C2	180/218~(83%)	179~(99%)	1 (1%)	86	94
12	D1	243/248~(98%)	243 (100%)	0	100	100
13	D2	186/204~(91%)	185 (100%)	1 (0%)	88	95
14	E1	192/230~(84%)	191 (100%)	1 (0%)	88	95
15	E2	221/225~(98%)	221 (100%)	0	100	100
16	F1	196/213~(92%)	195~(100%)	1 (0%)	88	95
17	F2	154/171~(90%)	154 (100%)	0	100	100
18	G1	182/223~(82%)	182 (100%)	0	100	100
19	G2	196/221~(89%)	195 (100%)	1 (0%)	88	95
20	H1	170/172~(99%)	169~(99%)	1 (1%)	86	94
21	H2	165/174~(95%)	162 (98%)	3~(2%)	59	76
22	I1	174/181~(96%)	174 (100%)	0	100	100
23	I2	171/178~(96%)	170 (99%)	1 (1%)	86	94
24	J1	140/149~(94%)	139 (99%)	1 (1%)	84	92
25	J2	160/168~(95%)	159 (99%)	1 (1%)	86	94
26	K2	$\overline{84/136}\ (62\%)$	84 (100%)	0	100	100
27	L1	169/179~(94%)	168 (99%)	1 (1%)	86	94
28	L2	126/141~(89%)	126 (100%)	0	100	100

$\alpha \cdot \cdot \cdot \cdot$	C		
Continued	trom	premous	naae
00100000000	1.0110	proceed ac	pagem

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
29	M1	115/118~(98%)	115 (100%)	0	100	100
30	N1	172/173~(99%)	172~(100%)	0	100	100
31	N2	130/131~(99%)	130 (100%)	0	100	100
32	O1	171/194~(88%)	171 (100%)	0	100	100
33	O2	104/119~(87%)	103~(99%)	1 (1%)	76	88
34	P1	133/163~(82%)	133 (100%)	0	100	100
35	P2	104/129~(81%)	104 (100%)	0	100	100
36	Q1	157/163~(96%)	157 (100%)	0	100	100
37	Q2	109/119~(92%)	108 (99%)	1 (1%)	78	90
38	R1	147/175~(84%)	147 (100%)	0	100	100
39	R2	118/121 (98%)	118 (100%)	0	100	100
40	S1	155/155~(100%)	155 (100%)	0	100	100
41	S2	118/132~(89%)	117 (99%)	1 (1%)	81	91
42	T1	137/139~(99%)	137 (100%)	0	100	100
43	Τ2	110/118~(93%)	110 (100%)	0	100	100
44	U1	88/117 (75%)	88 (100%)	0	100	100
45	U2	78/106 (74%)	76~(97%)	2(3%)	46	66
46	V1	100/107~(94%)	100 (100%)	0	100	100
47	V2	69/69~(100%)	69 (100%)	0	100	100
48	W1	52/126~(41%)	52 (100%)	0	100	100
49	W2	112/113~(99%)	110 (98%)	2 (2%)	59	76
50	X1	108/136~(79%)	108 (100%)	0	100	100
51	X2	110/114~(96%)	108 (98%)	2(2%)	59	76
52	Y1	117/135~(87%)	115 (98%)	2 (2%)	60	78
53	Y2	107/114~(94%)	107 (100%)	0	100	100
54	Z1	116/117~(99%)	116 (100%)	0	100	100
55	Z2	59/105~(56%)	59 (100%)	0	100	100
56	a1	120/121~(99%)	120 (100%)	0	100	100
57	a2	85/99~(86%)	85 (100%)	0	100	100
58	b1	56/62~(90%)	56 (100%)	0	100	100
59	b2	73/76~(96%)	73 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
60	c1	79/98~(81%)	79~(100%)	0	100	100
61	c2	52/61~(85%)	51~(98%)	1 (2%)	57	75
62	d1	97/110~(88%)	96~(99%)	1 (1%)	76	88
63	d2	48/77~(62%)	48 (100%)	0	100	100
64	e1	114/121~(94%)	113~(99%)	1 (1%)	78	90
65	e2	42/113~(37%)	42 (100%)	0	100	100
66	f1	87/89~(98%)	87~(100%)	0	100	100
67	g1	90/100~(90%)	88~(98%)	2(2%)	52	71
68	g2	270/276~(98%)	266~(98%)	4 (2%)	65	80
69	h1	107/109~(98%)	107~(100%)	0	100	100
70	i1	85/89~(96%)	85 (100%)	0	100	100
71	i2	44/327~(14%)	43~(98%)	1 (2%)	50	70
72	j1	73/80~(91%)	73~(100%)	0	100	100
73	k1	64/66~(97%)	64 (100%)	0	100	100
74	l1	47/48~(98%)	47~(100%)	0	100	100
75	m1	46/116~(40%)	46 (100%)	0	100	100
76	n1	23/24~(96%)	23~(100%)	0	100	100
77	o1	90/94~(96%)	90 (100%)	0	100	100
78	p1	74/75~(99%)	73~(99%)	1 (1%)	67	82
79	r1	103/119~(87%)	103~(100%)	0	100	100
80	s1	27/96(28%)	27 (100%)	0	100	100
81	v2	307/735~(42%)	305~(99%)	2(1%)	84	92
All	All	9815/11810 ($83%$)	9773~(100%)	42 (0%)	91	96

All (42) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
8	B1	346	THR
9	B2	127	VAL
10	C1	69	GLU
10	C1	126	TYR
10	C1	325	ASN
11	C2	222	PHE
13	D2	72	VAL

Mol	Chain	Res	Type
14	E1	153	VAL
16	F1	234	ARG
19	G2	7	PHE
20	H1	104	VAL
21	H2	72	PHE
21	H2	82	GLU
21	H2	166	VAL
23	I2	102	LEU
24	J1	72	THR
25	J2	7	TRP
27	L1	67	HIS
33	O2	34	PHE
37	Q2	18	THR
41	S2	142	ARG
45	U2	65	THR
45	U2	68	THR
49	W2	105	THR
49	W2	111	MET
51	X2	82	THR
51	X2	105	PHE
52	Y1	74	TYR
52	Y1	79	VAL
61	c2	32	VAL
62	d1	84	VAL
64	e1	58	ILE
67	g1	32	TYR
67	g1	73	HIS
68	g2	64	HIS
68	g2	113	PHE
68	g2	118	ARG
68	g2	144	GLU
71	i2	272	ASP
78	p1	52	VAL
81	v2	728	VAL
81	v2	782	PHE

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (166) such sidechains are listed below:

Mol	Chain	Res	Type
1	11	91	GLN
1	11	98	ASN
6	A1	8	GLN

Mol	Chain	Res	Type
6	A1	132	ASN
6	A1	217	GLN
7	A2	111	GLN
7	A2	132	GLN
8	B1	138	GLN
8	B1	167	GLN
8	B1	354	GLN
9	B2	40	ASN
9	B2	159	GLN
9	B2	160	GLN
9	B2	163	GLN
10	C1	54	GLN
10	C1	325	ASN
10	C1	346	GLN
11	C2	258	HIS
12	D1	175	HIS
12	D1	191	ASN
12	D1	198	HIS
12	D1	229	ASN
12	D1	291	GLN
13	D2	145	GLN
13	D2	179	GLN
14	E1	14	HIS
15	E2	36	HIS
15	E2	161	GLN
15	E2	188	ASN
16	F1	22	GLN
16	F1	163	GLN
16	F1	204	ASN
16	F1	233	ASN
17	F2	109	GLN
17	F2	113	ASN
18	G1	38	ASN
18	G1	66	GLN
18	G1	90	GLN
19	G2	13	GLN
19	G2	59	GLN
19	G2	110	ASN
19	G2	197	GLN
19	G2	200	GLN
19	G2	202	ASN
20	H1	106	GLN

Mol	Chain	Res	Type
21	H2	114	GLN
21	H2	162	GLN
22	I1	97	ASN
22	I1	166	HIS
23	I2	64	ASN
23	I2	84	ASN
23	I2	165	GLN
23	I2	168	GLN
23	I2	181	GLN
24	J1	9	ASN
24	J1	41	GLN
24	J1	64	ASN
24	J1	70	HIS
25	J2	111	GLN
26	K2	44	HIS
26	K2	66	HIS
27	L1	19	GLN
27	L1	104	ASN
27	L1	115	GLN
28	L2	5	GLN
28	L2	11	GLN
28	L2	18	GLN
28	L2	19	ASN
28	L2	85	GLN
29	M1	20	HIS
29	M1	33	GLN
30	N1	86	ASN
30	N1	90	ASN
31	N2	13	GLN
31	N2	105	ASN
32	01	33	GLN
32	01	42	HIS
32	01	54	GLN
32	01	91	ASN
32	01	208	GLN
33	O2	32	HIS
33	O2	113	GLN
34	P1	75	GLN
34	P1	97	ASN
34	P1	137	ASN
35	P2	24	GLN
35	P2	32	GLN

Mol	Chain	Res	Type
36	Q1	8	ASN
36	Q1	160	HIS
37	Q2	86	GLN
37	Q2	97	GLN
37	Q2	114	GLN
39	R2	29	HIS
39	R2	93	GLN
40	S1	66	GLN
40	S1	108	GLN
40	S1	163	HIS
41	S2	17	ASN
41	S2	76	GLN
41	S2	87	GLN
42	T1	112	ASN
42	T1	134	GLN
43	Τ2	11	ASN
43	Τ2	52	ASN
43	Τ2	86	ASN
43	Τ2	138	GLN
44	U1	105	ASN
45	U2	81	GLN
46	V1	77	HIS
46	V1	84	GLN
49	W2	24	GLN
49	W2	82	GLN
49	W2	113	HIS
50	X1	93	ASN
50	X1	110	GLN
50	X1	121	GLN
50	X1	124	ASN
51	X2	63	ASN
51	X2	110	HIS
52	Y1	14	ASN
52	Y1	20	ASN
52	Y1	65	GLN
53	Y2	22	GLN
53	Y2	106	GLN
56	a1	14	HIS
56	a1	67	GLN
56	a1	120	GLN
57	a2	8	ASN
58	b1	11	ASN

Mol	Chain	Res	Type
58	b1	50	ASN
58	b1	60	ASN
59	b2	26	GLN
59	b2	65	GLN
60	c1	19	GLN
62	d1	16	ASN
63	d2	45	GLN
64	e1	23	HIS
64	e1	34	ASN
64	e1	68	HIS
64	e1	107	ASN
65	e2	99	GLN
65	e2	114	GLN
65	e2	116	ASN
66	f1	21	GLN
68	g2	20	GLN
68	g2	56	GLN
68	g2	143	GLN
69	h1	63	GLN
70	i1	80	HIS
74	l1	25	GLN
75	m1	84	GLN
75	m1	104	HIS
75	m1	109	ASN
76	n1	22	GLN
77	o1	3	ASN
77	o1	25	GLN
77	o1	45	GLN
78	p1	56	HIS
79	r1	71	GLN
80	s1	89	GLN
81	v2	535	GLN
81	v2	660	ASN
81	v2	684	GLN
81	v2	705	HIS
81	v2	710	HIS
81	v2	715	HIS

5.3.3 RNA (i)

. . .

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
2	22	1476/1826~(80%)	244 (16%)	14 (0%)
3	51	3216/4115~(78%)	512 (15%)	34~(1%)
4	71	118/120~(98%)	10 (8%)	0
5	81	144/156~(92%)	19 (13%)	1 (0%)
All	All	4954/6217~(79%)	785 (15%)	49 (0%)

Continued from previous page...

All (785) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
2	22	2	А
2	22	3	С
2	22	4	С
2	22	25	А
2	22	33	G
2	22	41	G
2	22	44	U
2	22	46	А
2	22	56	G
2	22	65	С
2	22	67	С
2	22	68	А
2	22	71	G
2	22	103	А
2	22	111	А
2	22	113	G
2	22	117	С
2	22	139	С
2	22	140	U
2	22	152	G
2	22	160	U
2	22	165	С
2	22	205	С
2	22	255	G
2	22	260	U
2	22	276	С
2	22	278	G
2	22	280	U
2	22	285	С
2	22	306	А
2	22	307	С
2	22	312	G

Mol	Chain	Res	Type
2	22	325	А
2	22	329	А
2	22	335	G
2	22	347	U
2	22	350	G
2	22	351	С
2	22	365	С
2	22	374	С
2	22	403	G
2	22	413	А
2	22	415	С
2	22	429	А
2	22	430	А
2	22	431	G
2	22	435	G
2	22	436	G
2	22	437	С
2	22	438	А
2	22	447	G
2	22	452	U
2	22	457	С
2	22	458	А
2	22	465	А
2	22	473	А
2	22	482	С
2	22	490	А
2	22	495	U
2	22	524	G
2	22	525	А
2	22	532	А
2	22	548	A
2	22	553	G
2	22	555	A
2	22	556	U
2	22	558	U
2	22	569	A
2	22	571	G
2	22	572	U
2	22	573	С
2	22	579	С
2	22	591	G
2	22	592	U

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mol	Chain	Res	Type
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	593	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	594	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	596	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	608	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	609	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	624	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	625	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	633	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	634	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	636	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	637	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	638	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	652	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	764	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	774	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	784	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	785	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	793	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	797	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	804	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	806	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	809	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	831	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	832	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	834	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	840	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	875	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	882	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	884	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	892	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	895	G
2 22 932 G 2 22 933 G 2 22 940 G 2 22 952 A 2 22 954 A 2 22 961 G 2 22 964 U 2 22 979 U 2 22 985 A 2 22 989 A	2	22	931	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	932	G
2 22 940 G 2 22 952 A 2 22 954 A 2 22 961 G 2 22 964 U 2 22 979 U 2 22 985 A 2 22 989 A	2	22	933	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	940	G
2 22 954 A 2 22 961 G 2 22 964 U 2 22 979 U 2 22 985 A 2 22 989 A	2	22	952	A
2 22 961 G 2 22 964 U 2 22 979 U 2 22 985 A 2 22 989 A	2	22	954	A
2 22 964 U 2 22 979 U 2 22 985 A 2 22 989 A	2	22	961	G
2 22 979 U 2 22 985 A 2 22 989 A	2	22	964	U
2 22 985 A 2 22 989 A	2	22	979	U
2 22 989 A	2	22	985	A
	2	22	989	A

Mol	Chain	Res	Type
2	22	1007	U
2	22	1011	А
2	22	1022	А
2	22	1023	U
2	22	1024	А
2	22	1026	С
2	22	1042	А
2	22	1045	А
2	22	1047	С
2	22	1070	G
2	22	1071	С
2	22	1098	U
2	22	1101	С
2	22	1110	А
2	22	1111	А
2	22	1115	С
2	22	1116	U
2	22	1117	U
2	22	1128	G
2	22	1132	А
2	22	1150	А
2	22	1157	А
2	22	1169	G
2	22	1170	А
2	22	1177	С
2	22	1178	С
2	22	1189	G
2	22	1202	А
2	22	1203	А
2	22	1204	U
2	22	1209	С
2	22	1213	А
2	22	1215	A
2	22	1216	С
2	22	1218	G
2	22	1219	G
2	22	1221	А
2	22	1222	A
2	22	1231	G
2	22	1236	G
2	22	1237	G
2	22	1252	G

Mol	Chain	Res	Type
2	22	1257	А
2	22	1276	U
2	22	1277	U
2	22	1279	U
2	22	1282	G
2	22	1283	G
2	22	1284	G
2	22	1286	G
2	22	1287	G
2	22	1288	U
2	22	1289	G
2	22	1293	С
2	22	1304	U
2	22	1333	U
2	22	1340	A
2	22	1355	U
2	22	1356	С
2	22	1358	А
2	22	1359	U
2	22	1363	А
2	22	1367	А
2	22	1373	G
2	22	1375	G
2	22	1376	А
2	22	1386	G
2	22	1399	U
2	22	1412	А
2	22	1420	U
2	22	1421	U
2	22	1422	С
2	22	1435	U
2	22	1436	С
2	22	1437	G
2	22	1447	A
2	22	1448	G
2	22	1452	U
2	22	1455	G
2	22	1456	A
2	22	1465	G
2	22	1468	G
2	22	1477	U
2	22	1479	С

Mol	Chain	Res	Type
2	22	1480	А
2	22	1482	G
2	22	1491	А
2	22	1493	U
2	22	1494	G
2	22	1502	С
2	22	1533	G
2	22	1537	А
2	22	1538	А
2	22	1545	G
2	22	1546	А
2	22	1553	U
2	22	1554	U
2	22	1557	U
2	22	1558	G
2	22	1559	А
2	22	1561	A
2	22	1579	U
2	22	1581	А
2	22	1606	G
2	22	1623	G
2	22	1641	С
2	22	1645	С
2	22	1653	А
2	22	1654	С
2	22	1657	А
2	22	1673	А
2	22	1679	U
2	22	1680	G
2	22	1687	U
2	22	1705	С
2	22	1706	G
2	22	1761	U
2	22	1765	U
2	22	1783	G
2	22	1786	G
2	22	1788	А
2	22	1795	U
2	22	1806	G
2	22	1808	А
2	22	1818	G
2	22	1819	G

Mol	Chain	Res	Type
2	22	1820	А
2	22	1822	С
3	51	2	С
3	51	3	А
3	51	21	G
3	51	25	А
3	51	33	А
3	51	39	А
3	51	42	А
3	51	48	С
3	51	49	U
3	51	59	А
3	51	64	А
3	51	65	A
3	51	66	A
3	51	71	С
3	51	72	С
3	51	76	А
3	51	91	G
3	51	109	G
3	51	119	G
3	51	140	G
3	51	159	С
3	51	170	А
3	51	173	С
3	51	179	G
3	51	181	G
3	51	182	С
3	51	199	U
3	51	200	С
3	51	208	U
3	51	209	С
3	51	215	С
3	51	216	С
3	51	217	A
3	51	218	G
3	51	219	С
3	51	232	U
3	51	234	A
3	51	244	С
3	51	245	G
3	51	263	А

Mol	Chain	Res	Type
3	51	265	С
3	51	270	С
3	51	271	U
3	51	279	G
3	51	296	U
3	51	305	А
3	51	308	С
3	51	315	U
3	51	333	А
3	51	339	С
3	51	340	G
3	51	353	U
3	51	360	С
3	51	361	A
3	51	362	A
3	51	385	A
3	51	386	G
3	51	409	А
3	51	449	G
3	51	451	G
3	51	452	G
3	51	454	С
3	51	455	С
3	51	464	G
3	51	467	U
3	51	486	С
3	51	487	С
3	51	495	C
3	51	496	C
3	51	502	A
3	51	506	G
3	51	507	G
3	51	508	С
3	51	565	C
3	51	566	G
3	51	568	C
3	51	572	G
3	51	575	G
3	51	576	G
3	51	584	G
3	51	595	G
3	51	596	C

Mol	Chain	Res	Type
3	51	597	А
3	51	603	U
3	51	606	G
3	51	607	С
3	51	613	U
3	51	615	С
3	51	618	С
3	51	640	G
3	51	641	G
3	51	644	A
3	51	648	С
3	51	649	С
3	51	653	G
3	51	657	С
3	51	659	G
3	51	660	G
3	51	694	U
3	51	696	А
3	51	698	A
3	51	703	C
3	51	705	C
3	51	707	C
3	51	708	С
3	51	709	A
3	51	712	C
3	51	713	A
3	51	715	С
3	51	716	A
3	51	722	C
3	51	728	С
3	51	729	G
3	51	730	С
3	51	732	С
3	51	739	G
3	51	740	A
3	51	743	G
3	51	759	С
3	51	764	U
3	51	830	A
3	51	834	G
3	51	840	С
3	51	870	A

Mol	Chain	Res	Type
3	51	879	А
3	51	905	С
3	51	906	G
3	51	908	G
3	51	914	А
3	51	918	С
3	51	920	С
3	51	921	G
3	51	922	С
3	51	924	G
3	51	926	А
3	51	927	G
3	51	930	G
3	51	937	G
3	51	938	U
3	51	940	С
3	51	947	А
3	51	949	G
3	51	950	U
3	51	955	G
3	51	956	U
3	51	957	С
3	51	979	А
3	51	1007	А
3	51	1012	G
3	51	1013	А
3	51	1041	А
3	51	1048	G
3	51	1051	А
3	51	1062	G
3	51	1063	С
3	51	1064	С
3	51	1065	С
3	51	1070	U
3	51	1087	G
3	51	1129	G
3	51	1132	С
3	51	1133	G
3	51	1152	С
3	51	1153	С
3	51	1157	С
3	51	1158	C

Mol	Chain	Res	Type
3	51	1159	С
3	51	1161	U
3	51	1165	G
3	51	1173	А
3	51	1174	G
3	51	1178	G
3	51	1194	A
3	51	1199	А
3	51	1210	А
3	51	1223	А
3	51	1230	A
3	51	1241	А
3	51	1254	U
3	51	1267	U
3	51	1272	U
3	51	1288	G
3	51	1289	A
3	51	1300	G
3	51	1307	А
3	51	1309	G
3	51	1310	А
3	51	1314	А
3	51	1316	С
3	51	1330	G
3	51	1337	С
3	51	1352	С
3	51	1353	U
3	51	1354	С
3	51	1355	А
3	51	1372	U
3	51	1373	С
3	51	1375	G
3	51	1398	G
3	51	1399	A
3	51	1407	G
3	51	1434	С
3	51	1435	С
3	51	1444	A
3	51	1445	A
3	51	1461	A
3	51	1472	G
3	51	1478	U

Mol	Chain	Res	Type
3	51	1480	G
3	51	1490	G
3	51	1494	А
3	51	1499	G
3	51	1503	А
3	51	1504	С
3	51	1505	G
3	51	1514	G
3	51	1528	G
3	51	1529	С
3	51	1549	G
3	51	1550	А
3	51	1556	А
3	51	1577	U
3	51	1578	G
3	51	1579	С
3	51	1580	С
3	51	1581	G
3	51	1584	G
3	51	1590	C
3	51	1591	A
3	51	1599	G
3	51	1600	A
3	51	1607	G
3	51	1619	A
3	51	1620	G
3	51	1681	C
3	51	1684	A
3	51	1685	A
3	51	1705	G
3	51	1707	Ŭ
3	51	1711	G
3	51	1714	G
3	51	1715	G
3	51	1721	C
3	51	1728	A
3	51	1729	U
3	51	1743	C
3	51	1744	G
3	51	1767	C
3	51	1769	A
3	51	1790	C

Mol	Chain Res		Type
3	51	1801	G
3	51	1802	G
3	51	1807	G
3	51	1814	С
3	51	1817	G
3	51	1832	G
3	51	1834	G
3	51	1849	G
3	51	1851	U
3	51	1852	С
3	51	1861	А
3	51	1868	А
3	51	1896	А
3	51	1897	А
3	51	1898	G
3	51	1911	С
3	51	1918	А
3	51	1922	G
3	51	1926	U
3	51	1949	А
3	51	1951	G
3	51	1954	А
3	51	1969	U
3	51	1970	С
3	51	1971	G
3	51	1972	G
3	51	1974	А
3	51	1975	G
3	51	2003	G
3	51	2004	G
3	51	2006	С
3	51	2012	A
3	51	2014	A
3	51	2015	G
3	51	2044	A
3	51	2055	С
3	51	2056	G
3	51	2110	A
3	51	2120	С
3	51	2123	G
3	51	2124	А
3	51	2125	С

Mol	Chain Res		Type
3	51	2155	G
3	51	2164	С
3	51	2175	G
3	51	2189	С
3	51	2190	G
3	51	2191	С
3	51	2207	С
3	51	2212	А
3	51	2213	G
3	51	2224	G
3	51	2225	С
3	51	2232	G
3	51	2233	A
3	51	2234	А
3	51	2241	G
3	51	2250	G
3	51	2252	G
3	51	2259	G
3	51	2264	G
3	51	2280	G
3	51	2281	А
3	51	2300	G
3	51	2306	С
3	51	2307	U
3	51	2308	С
3	51	2325	А
3	51	2326	U
3	51	2332	С
3	51	2351	А
3	51	2352	С
3	51	2364	U
3	51	$2\overline{365}$	G
3	51	2373	A
3	51	2393	G
3	51	2408	А
3	51	2415	G
3	51	2440	G
3	51	2769	A
3	51	2779	G
3	51	2783	С
3	51	2791	G
3	51	2800	A

Mol	Chain Res		Type
3	51	2809	U
3	51	2811	А
3	51	2813	А
3	51	2827	А
3	51	2845	U
3	51	2861	С
3	51	2874	U
3	51	2876	А
3	51	2913	А
3	51	2941	G
3	51	2942	G
3	51	2951	U
3	51	2976	G
3	51	2977	С
3	51	2979	U
3	51	2982	А
3	51	2983	U
3	51	2984	G
3	51	3005	U
3	51	3042	А
3	51	3043	С
3	51	3044	G
3	51	3046	G
3	51	3052	С
3	51	3062	G
3	51	3066	А
3	51	3070	А
3	51	3071	А
3	51	3072	G
3	51	3073	A
3	51	3080	U
3	51	3087	G
3	51	3204	U
3	51	3214	G
3	51	$3\overline{247}$	С
3	51	3248	U
3	51	3255	A
3	51	$3\overline{287}$	C
3	51	3288	U
3	51	3295	A
3	51	3296	С
3	51	3308	G

Mol	Chain	Res	Type
3	51	3309	G
3	51	3316	G
3	51	3328	А
3	51	3347	G
3	51	3354	U
3	51	3358	А
3	51	3374	G
3	51	3379	G
3	51	3393	А
3	51	3398	А
3	51	3405	А
3	51	3406	А
3	51	3413	С
3	51	3416	G
3	51	3429	А
3	51	3430	G
3	51	3431	U
3	51	3455	G
3	51	3457	С
3	51	3462	С
3	51	3476	U
3	51	3479	U
3	51	3502	G
3	51	3503	A
3	51	3504	А
3	51	3507	G
3	51	3512	С
3	51	3516	G
3	51	3519	А
3	51	3546	С
3	51	3547	А
3	51	3549	А
3	51	3551	С
3	51	3563	U
3	51	3569	С
3	51	3573	G
3	51	3574	А
3	51	3577	U
3	51	3578	С
3	51	3589	А
3	51	3590	U
3	51	3601	C

Mol	Chain	Res	Type
3	51	3619	G
3	51	3625	U
3	51	3626	U
3	51	3632	А
3	51	3637	U
3	51	3638	А
3	51	3643	А
3	51	3644	С
3	51	3645	G
3	51	3649	G
3	51	3650	С
3	51	3653	G
3	51	3674	G
3	51	3685	С
3	51	3692	G
3	51	3697	U
3	51	3698	G
3	51	3699	U
3	51	3714	А
3	51	3715	А
3	51	3725	G
3	51	3726	U
3	51	3761	U
3	51	3762	G
3	51	3781	А
3	51	3795	С
3	51	3796	С
3	51	3797	А
3	51	3825	А
3	51	3833	А
3	51	3834	U
3	51	3845	С
3	51	3865	G
3	51	3866	С
3	51	3867	G
3	51	3868	G
3	51	3875	G
3	51	3876	G
3	51	3879	G
3	51	3882	С
3	51	3883	U
3	51	3884	С

Mol	Chain Res		Type		
3	51	3886	G		
3	51	3890	G		
3	51	3912	G		
3	51	3918	G		
3	51	3919	G		
3	51	3920	G		
3	51	3922	А		
3	51	3923	G		
3	51	3930	U		
3	51	3931	С		
3	51	3936	С		
3	51	3938	G		
3	51	3942	С		
3	51	3943	G		
3	51	3945	А		
3	51	3947	С		
3	51	3948	G		
3	51	3956	А		
3	51	3958	G		
3	51	3964	С		
3	51	3965	G		
3	51	3968	U		
3	51	3970	U		
3	51	3971	С		
3	51	3973	С		
3	51	3980	С		
3	51	3982	С		
3	51	3988	А		
3	51	3989	С		
3	51	3994	G		
3	51	4000	А		
3	51	4001	А		
3	51	4002	С		
3	51	4003	С		
3	51	4006	G		
3	51	4010	U		
3	51	4011	A		
3	51	4021	U		
3	51	4024	A		
3	51	4030	U		
3	51	4034	U		
3	51	4035	С		

Mol	Chain Res		Type
3	51	4036	U
3	51	4039	G
3	51	4059	A
3	51	4062	G
3	51	4079	А
3	51	4086	G
3	51	4095	С
3	51	4098	U
3	51	4099	U
3	51	4100	G
4	71	7	G
4	71	22	A
4	71	23	A
4	71	33	U
4	71	53	G
4	71	63	С
4	71	64	G
4	71	74	А
4	71	100	А
4	71	110	G
5	81	2	А
5	81	22	С
5	81	33	U
5	81	34	С
5	81	37	U
5	81	58	А
5	81	62	U
5	81	71	А
5	81	74	G
5	81	78	G
5	81	79	A
5	81	80	С
5	81	93	G
5	81	102	А
5	81	104	С
5	81	114	G
5	81	147	G
5	81	150	G
5	81	156	U

All (49) RNA pucker outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
2	22	110	U
2	22	430	А
2	22	1097	С
2	22	1110	А
2	22	1215	A
2	22	1221	А
2	22	1256	G
2	22	1275	А
2	22	1283	G
2	22	1357	С
2	22	1447	А
2	22	1481	С
2	22	1552	G
2	22	1560	U
3	51	218	G
3	51	244	С
3	51	384	А
3	51	450	С
3	51	454	С
3	51	595	G
3	51	704	С
3	51	731	С
3	51	869	G
3	51	920	С
3	51	1064	С
3	51	1086	С
3	51	1131	G
3	51	1151	G
3	51	1309	G
3	51	1371	G
3	51	1434	С
3	51	1548	U
3	51	1680	G
3	51	1727	С
3	51	1742	C
3	51	1974	A
3	51	2232	G
3	51	2306	С
3	51	2875	G
3	51	3697	U
3	51	3724	A
3	51	3725	G
3	51	3824	U

Continued from previous page...

Mol	Chain	Res	Type
3	51	3865	G
3	51	3866	С
3	51	3946	G
3	51	3970	U
3	51	3972	U
5	81	77	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

1 non-standard protein/DNA/RNA residue is modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	\mathbf{ths}	В	ond ang	gles
	Type	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
1	5CT	11	51	1	$13,\!14,\!15$	0.67	0	$9,\!15,\!17$	1.14	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	5CT	11	51	1	-	7/13/14/16	-

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (7) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	11	51	5CT	NZ-C1-C2-C3
1	11	51	5CT	NZ-C1-C2-O1
1	11	51	5CT	C-CA-CB-CG

Mol	Chain	Res	Type	Atoms
1	11	51	5CT	CA-CB-CG-CD
1	11	51	5CT	CD-CE-NZ-C1
1	11	51	5CT	CG-CD-CE-NZ
1	11	51	5CT	O1-C2-C3-C4

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 141 ligands modelled in this entry, 141 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
2	22	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	22	1268:U	O3'	1269:U	Р	4.01

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-13113. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 240

Y Index: 240

Z Index: 240

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 223

Y Index: 235

Z Index: 193

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.55. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 2175 $\rm nm^3;$ this corresponds to an approximate mass of 1964 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.417 \AA^{-1}

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-13113 and PDB model 70YC. Per-residue inclusion information can be found in section 3 on page 20.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.55 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.55).

9.4 Atom inclusion (i)

At the recommended contour level, 97% of all backbone atoms, 94% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.55) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.9431	0.5570
11	0.4090	0.4890
22	0.9746	0.5620
51	0.9797	0.5630
71	0.9965	0.5760
81	0.9860	0.5640
A1	0.9415	0.5890
A2	0.9363	0.5690
B1	0.9361	0.5720
B2	0.8990	0.5410
C1	0.9554	0.5780
$\overline{C2}$	0.9098	0.5690
D1	0.9466	0.5510
D2	0.8022	0.5210
E1	0.9432	0.5480
E2	0.9311	0.5610
F1	0.9383	0.5720
F2	0.8468	0.5130
G1	0.9375	0.5570
G2	0.8668	0.4930
H1	0.9222	0.5620
H2	0.8659	0.5030
I1	0.9327	0.5610
I2	0.8589	0.5200
J1	0.9005	0.5260
J2	0.9375	0.5630
K2	0.8966	0.5240
L1	0.9386	0.5630
L2	0.8879	0.5510
M1	0.9597	0.5670
N1	0.9740	0.6000
N2	0.9160	0.5610
01	0.9651	0.5800
O2	0.9030	0.5480
P1	0.9599	0.5730

0.0 <0.0

1.0

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
P2	0.8781	0.5190
Q1	0.9491	0.5810
Q2	0.9296	0.5570
R1	0.9063	0.5500
R2	0.8523	0.5280
S1	0.9587	0.5840
S2	0.8612	0.5120
T1	0.9271	0.5630
T2	0.9245	0.5460
U1	0.8747	0.4780
U2	0.8688	0.5220
V1	0.8976	0.5760
V2	0.9156	0.5580
W1	0.9110	0.5770
W2	0.9228	0.5770
X1	0.8948	0.5530
X2	0.8869	0.5600
Y1	0.9442	0.5620
Y2	0.9180	0.5320
Z1	0.9320	0.5490
Z2	0.8489	0.5020
a1	0.9781	0.5970
a2	0.9282	0.5680
b1	0.9223	0.5480
b2	0.9128	0.5190
c1	0.9301	0.5440
c2	0.7573	0.4720
d1	0.9188	0.5400
d2	0.9429	0.5740
e1	0.9404	0.5780
e2	0.8648	0.5310
f1	0.9580	0.5840
g1	0.9572	0.5810
<u>g2</u>	0.8567	0.4900
h1	0.9125	0.5490
i1	0.9278	0.5450
i2	0.6806	0.4760
j1	0.9611	0.5910
k1	0.8777	0.5280
<u>l1</u>	0.9336	0.5750
1	0.9674	0.5830
n1	0.8095	0.5400

Continued on next page...

α \cdot	C C		
Continued	trom	nremous	naae
Contracta	110110	proceeduo	pagom

Chain	Atom inclusion	Q-score
o1	0.9331	0.5650
p1	0.8826	0.5700
r1	0.9541	0.5730
s1	0.4735	0.4860
v2	0.6433	0.4830

