

Full wwPDB X-ray Structure Validation Report (i)

May 28, 2020 – 08:15 pm BST

PDB ID	:	10VL
Title	:	Crystal Structure of Nurr1 LBD
Authors	:	Wang, Z.; Liu, J.; Walker, N.
Deposited on	:	2003-03-26
Resolution	:	2.20 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	NOT EXECUTED
EDS	:	NOT EXECUTED
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.11

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries},{ m resolution\ range}({ m \AA}))$
Clashscore	141614	5594(2.20-2.20)
Ramachandran outliers	138981	5503(2.20-2.20)
Sidechain outliers	138945	5504 (2.20-2.20)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Note EDS was not executed.

Mol	Chain	Length	Quality of a	chain	
1	А	271	59%	23%	• 16%
1	D	271	52%	30%	• 15%
2	В	271	63%	22%	• 13%
2	С	271	52%	28%	• 17%
2	Е	271	58%	30%	• 8%
2	F	271	55%	26%	• 18%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
4	BR	Ε	815	-	-	Х	-

10VL

2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 11703 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Orphan nuclear receptor NURR1 (MSE 414, 496, 511).

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace	
1	Δ	222	Total	С	Ν	Ο	\mathbf{S}	\mathbf{Se}	0	0	0
	Л	220	1819	1169	310	331	7	2	0		
1	а	020	Total	С	Ν	Ο	S	Se	0	0	0
	D	230	1834	1178	312	335	7	2	0	0	0

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	496	MSE	MET	MODIFIED RESIDUE	UNP P43354
А	511	MSE	MET	MODIFIED RESIDUE	UNP P43354
D	496	MSE	MET	MODIFIED RESIDUE	UNP P43354
D	511	MSE	MET	MODIFIED RESIDUE	UNP P43354

• Molecule 2 is a protein called Orphan nuclear receptor NURR1 (MSE 496, 511).

Mol	Chain	Residues		A	Atom	5			ZeroOcc	AltConf	Trace
9	В	226	Total	С	Ν	Ο	S	Se	0	0	0
	D	230	1881	1206	319	346	7	3	0	0	0
0	C	226	Total	С	Ν	Ο	S	Se	0	0	0
		220	1803	1160	304	330	6	3	0	0	0
0	F	250	Total	С	Ν	Ο	S	Se	0	0	0
		230	1992	1271	346	365	7	3	0	0	0
0	Б	222	Total	С	Ν	Ο	S	Se	0	0	0
	Ľ	223	1784	1149	301	325	6	3	0	0	0

There are 12 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
В	414	MSE	MET	MODIFIED RESIDUE	UNP P43354
В	496	MSE	MET	MODIFIED RESIDUE	UNP P43354
В	511	MSE	MET	MODIFIED RESIDUE	UNP P43354
С	414	MSE	MET	MODIFIED RESIDUE	UNP P43354

Chain	Residue	Modelled	Actual	Comment	Reference
С	496	MSE	MET	MODIFIED RESIDUE	UNP P43354
С	511	MSE	MET	MODIFIED RESIDUE	UNP P43354
Ε	414	MSE	MET	MODIFIED RESIDUE	UNP P43354
Е	496	MSE	MET	MODIFIED RESIDUE	UNP P43354
Ε	511	MSE	MET	MODIFIED RESIDUE	UNP P43354
F	414	MSE	MET	MODIFIED RESIDUE	UNP P43354
F	496	MSE	MET	MODIFIED RESIDUE	UNP P43354
F	511	MSE	MET	MODIFIED RESIDUE	UNP P43354

• Molecule 3 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	В	3	Total K 3 3	0	0
3	А	1	Total K 1 1	0	0
3	D	2	Total K 2 2	0	0
3	F	1	Total K 1 1	0	0
3	E	1	Total K 1 1	0	0

• Molecule 4 is BROMIDE ION (three-letter code: BR) (formula: Br).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	D	4	Total Br 4 4	0	0
4	Е	7	Total Br 7 7	0	0
4	В	1	Total Br 1 1	0	0
4	С	1	Total Br 1 1	0	0
4	А	4	Total Br 4 4	0	0
4	F	2	Total Br 2 2	0	0

• Molecule 5 is IODIDE ION (three-letter code: IOD) (formula: I).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	В	1	Total I 1 1	0	0

• Molecule 6 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	А	88	Total O 88 88	0	0
6	В	100	Total O 100 100	0	0
6	С	68	Total O 68 68	0	0
6	D	107	Total O 107 107	0	0
6	Ε	114	Total O 114 114	0	0
6	F	85	Total O 85 85	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are colorcoded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Note EDS was not executed.

• Molecule 1: Orphan nuclear receptor NURR1 (MSE 414, 496, 511)

Chain A:	59%	23%	• 16%
MET VAL LYS CLU CLU VAL VAL ARG ARG ARG ASP SER SER LEU	LYYS GALY ARG ARA ARA ARA ARA ARA ARA ARA ARA ARA	VAL 3363 1368 1368 1368 1376 1376 1380 1380 1380	4288 4389 4389 457 7178 457 7113 90 450 450 450 450 450 4501
H402 1403 F 406 Y 407 T 411 H411 B414 B414	R418 K423 D436 D436 L437 E445 E445 E445 R454 N468 V468 V468 V468 V468 V468 V468 V468 V	Q474 C475 V477 N427 N422 I483 I483 S490 Q494	L518 L527 L527 Q528 N529 N532 N532 N550 Y551 Y551 L552
L555 L1556 0557 0557 0557 0556 1563 1564 1565 0565 0565 0565 0565	0568 1570 1570 0671 1577 1577 1577 1577 1588 1578 1588 158		
• Molecule 1: 0	Orphan nuclear receptor NURR	1 (MSE 414, 49	5, 511)
Chain D:	52%	30%	• 15%
MET VAL LYS GLU VAL VAL ARG THR ARG THR SER SER LEU	LYS ARG ARG ARG ARG ARG ARG ARG ARG PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	VAL S363 S363 1365 1365 L368 N376 L382 D383	5385 7386 7386 7386 7389 7389 7389 7389 7392 7392 7392 7392 7392 7392 7392 739
D399 7400 7401 1402 1402 1405 1406 1406 1406 1405 1406 1406 1405 1406 1406 1406 1406 1406 1406 1406 1406 1406 1406 1406 1406 1406 1406 1406 1406 1406 1406 1406 1408 1408 1409	M414 E415 1416 1416 1416 6423 6428 6428 1438 1438 1438 7428 1438 7443 7443 7443 7443 7444 7444 7444 7	A452 P453 P453 P454 P464 P464 P466 Q467 V468	L470 H471 R477 L473 Q474 Q474 C475 R477 R477 H477 F490 S490
Q494 N497 N498 D499 M511 L518 L518 L518 L527	4528 1551 1551 1551 1553 1553 1553 1554 1556 1556 1556 1556 1556 1556 1556	L559 P560 L566 L570 L570 L581 V582 V582 P582	P584 P586 P586 P585 P585 1587 1588 P589 F593 F593 F593 F593 F593 F595 F595 F59
F 598			
• Molecule 2: 0	Orphan nuclear receptor NURR	1 (MSE 496, 51	1)
Chain B:	63%	22%	• 13%
MET VAL LYS GLU VAL VAL ARG ARG ASP SER LEU	LYNS ARG ARG ARG ARG ARG CALY PRO PRO GLU FRO GLU FRO FRO FRO FRO FRO	VAL S363 1364 1364 1365 1365 1365 1365 1365 1365 1365 1365	R 238 R

• Molecule 2: Orphan nuclear receptor NURR1 (MSE 496, 511)

Chain C:	52%	28%	• 17%
MET VAL VAL VAL LIYS CLU VAL VAL ARG SER ARG CLY CLY ARG ARG ARG	LLEU SFER SFER SFER SFER FRO FRO FRO FRO FRO FRO FRO FRO FRO FR	1365 1365 1365 1365 1365 1365 1376 1377 1380	2381 1382 1383 1388 1388 1388 1388 1388
G397 D398 D398 D399 D399 D401 H402 H402 H442 B422 B422 P425 P425	L437 L437 L438 L438 L444 N448 N448 R454 R454 R454 R451 L463 R465 R465 R465 R465 R465 R465 R465 R465	V469 L470 H471 R472 L473 L473 Q474 R477	4482 8490 8490 1494 1496 1496 1496 1496 1496 1496 1496
16 19 15 19 15 10 15 11 15 11 15 11 15 11 15 11 15 11 15 11 15 11 15 11 15 11 15 11 15 12 15 12 15 12 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15	V539 V539 V539 V539 V53 V53 V53 V551 V551 V555 V555 V555 V5	E66 1565 1565 1570 1570	1578 1581 1581 1582 1583 1583 1584 1583 1584 1591 1591 1595 1595 1595
14597 15598			
• Molecule 2: Orphan	nuclear receptor NURR1	(MSE 496, 5	11)
Chain E:	58%	30%	• 8%
MET VAL VAL LYS GJU VAL VAL VAL VAL VAL VAL VAL VAL VAL VAL	S347 LYS LYS LYS SER FRO GJU GJU GJU FRO FRO FRO FRO FRO FRO FRO FRO FRO FRO	L368 V369 R370 R376 R378 A378 M378	1380 1386 1386 1388 1388 1388 1388 1388 1389 1399 1399
T400 L400 L400 L411 M414 M414 A421 E427 E427 E427 E427 E427 E427	E440 E446 E445 E4455 E4455 R4555 R4555 R4555 R4556 R456 R465 R465	H471 H471 L473 Q474 W482 E488 B488	0499 M5 11 V6 12 V6 12 V6 12 K5 23 K5 23 K5 23 K5 23 K5 23 K5 23 K5 23 N5 29
K530 1531 V532 V532 V532 C534 C534 F541 N533 C534 C534 C545 C545 C545 C545 C545 C	L555 C557 C557 C557 C556 C556 P563 P566 C566 C566 C566 C566 C566 C566 C566	D580 D580 V582 P584 P584 P585 P585	D689 K500 L591 L594 T595 F598
• Molecule 2: Orphan	nuclear receptor NURR1	(MSE 496, 5	11)
Chain F:	55%	26%	• 18%
MET VAL VAL LYS CLU CLU VAL VAL ARG ARG CLY ARG ARG ARG	LEU SPRO SPRO SPRO SPRO FPRO PPRO SPRO SPRO PPRO PPRO SPRO SPRO S	L364 1365 L368 N376 N376	NS90 PR0 PR0 CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN
1411 1414 1414 1421 1434 1434 1435 1435 1435 1445 1444 1444	R45.4 R45.4 R46.6 R46.6 V46.8 V46.8 V46.8 R47.7 R47.7 R47.7 R47.7 R47.7 R47.7 R47.7 R47.7 R47.7 R47.7 R47.7 R47.7 R47.7 R47.7 R47.7 R47.7 R47.7 R47.8 R47.7 R47.8 R47.7 R47.8	1486 V487 S501 1506 L509 A510	M511 1518 1518 1518 1518 1519 1520 1522 1527 1527 1527 1527 1527 1527 1527
C534 L535 K536 K536 H538 V539 V539 C15 C15 C15 C15 C15 C15 C15 C15 C15 C15	L552 L555 L556 C557 L559 L570 L570 L570 L570 L578 L578	L581 V582 P583 P584 P584 L587 L591 L591	1595 1596 15997 19997

4 Data and refinement statistics (i)

Xtriage (Phenix) and EDS were not executed - this section is therefore incomplete.

Property	Value	Source
Space group	P 31	Depositor
Cell constants	80.38Å 80.38Å 227.37Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 120.00°	Depositor
Resolution (Å)	500.00 - 2.20	Depositor
% Data completeness	98.7 (500.00-2.20)	Depositor
(in resolution range)	50.1 (500.00 2.20)	Depositor
R_{merge}	(Not available)	Depositor
R _{sym}	0.07	Depositor
Refinement program	CNX	Depositor
R, R_{free}	0.217 , 0.259	Depositor
Estimated twinning fraction	No twinning to report.	Xtriage
Total number of atoms	11703	wwPDB-VP
Average B, all atoms $(Å^2)$	37.0	wwPDB-VP

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: K, IOD, BR

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles	
		RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.35	0/1854	0.54	0/2505
1	D	0.34	0/1870	0.56	0/2528
2	В	0.36	0/1918	0.56	0/2592
2	С	0.34	1/1837~(0.1%)	0.53	0/2480
2	Е	0.35	0/2029	0.55	0/2737
2	F	0.33	0/1817	0.51	0/2452
All	All	0.35	1/11325~(0.0%)	0.54	0/15294

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
2	С	465	CYS	CB-SG	5.29	1.91	1.82

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1819	0	1837	70	0
1	D	1834	0	1848	80	0
2	В	1881	0	1887	57	0
2	С	1803	0	1815	81	0

1	Ο	V	L

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	Е	1992	0	2007	82	0
2	F	1784	0	1801	61	0
3	А	1	0	0	0	0
3	В	3	0	0	0	0
3	D	2	0	0	0	0
3	Ε	1	0	0	0	0
3	F	1	0	0	0	0
4	А	4	0	0	0	0
4	В	1	0	0	0	0
4	С	1	0	0	0	0
4	D	4	0	0	1	0
4	Е	7	0	0	2	0
4	F	2	0	0	0	0
5	В	1	0	0	1	0
6	А	88	0	0	11	0
6	В	100	0	0	4	0
6	С	68	0	0	2	0
6	D	107	0	0	4	0
6	Е	114	0	0	4	0
6	F	85	0	0	5	0
All	All	11703	0	11195	420	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 19.

All (420) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:F:471:HIS:H	2:F:474:GLN:HE21	0.98	0.95
2:E:365:ILE:HG13	2:E:534:CYS:SG	2.10	0.91
2:B:388:GLN:HE21	2:B:390:ASN:H	1.21	0.89
2:C:472:ARG:HH11	2:C:472:ARG:HG3	1.40	0.87
2:E:563:ARG:HH11	2:E:563:ARG:HB2	1.38	0.87
2:C:522:LYS:H	2:C:522:LYS:HD3	1.40	0.86
2:B:471:HIS:H	2:B:474:GLN:HE21	1.24	0.84
2:F:471:HIS:H	2:F:474:GLN:NE2	1.77	0.82
2:E:437:LEU:HD13	2:E:518:LEU:HD12	1.62	0.82
2:B:472:ARG:HH11	2:B:472:ARG:HG3	1.45	0.81
2:B:518:LEU:HD21	2:B:524:VAL:HG21	1.61	0.81
1:D:365:ILE:HB	1:D:534:CYS:SG	2.23	0.79
2:F:522:LYS:H	2:F:522:LYS:HD3	1.49	0.77

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:E:581:LEU:HD12	2:E:582:VAL:HG23	1.67	0.76
1:A:466:ASN:ND2	1:A:468:VAL:H	1.82	0.75
2:B:471:HIS:H	2:B:474:GLN:NE2	1.84	0.75
4:E:815:BR:BR	6:E:923:HOH:O	2.60	0.74
2:C:528:GLN:O	2:C:532:VAL:HG23	1.86	0.74
2:E:334:ARG:HB3	2:E:334:ARG:NH1	2.03	0.74
2:B:466:ASN:ND2	2:B:468:VAL:H	1.85	0.74
2:C:471:HIS:H	2:C:474:GLN:HE21	1.36	0.73
2:B:365:ILE:HD11	2:B:501:SER:HB3	1.69	0.73
1:D:471:HIS:HD2	1:D:473:LEU:H	1.37	0.73
2:E:563:ARG:NH1	2:E:563:ARG:HB2	2.02	0.73
1:D:570:LEU:HD21	1:D:595:THR:HB	1.71	0.72
2:B:395:MET:HE1	2:B:477:ARG:HD3	1.71	0.72
2:F:581:LEU:HD22	2:F:582:VAL:HG12	1.71	0.72
2:C:532:VAL:HG12	2:C:536:LYS:HE3	1.72	0.71
2:C:386:ARG:HH22	2:C:468:VAL:HG21	1.54	0.71
1:D:448:VAL:HG11	1:D:565:LEU:HD13	1.73	0.71
2:C:518:LEU:HD23	2:C:524:VAL:HG21	1.73	0.70
2:C:552:LEU:O	2:C:556:LEU:HD13	1.92	0.70
1:D:559:LEU:HB2	1:D:560:PRO:HD3	1.72	0.70
2:F:472:ARG:NH2	2:F:487:VAL:HG11	2.07	0.69
2:F:471:HIS:N	2:F:474:GLN:HE21	1.83	0.69
1:A:378:ALA:C	1:A:380:THR:H	1.95	0.69
2:E:529:ASN:HA	2:E:532:VAL:HG22	1.75	0.69
1:A:466:ASN:HD22	1:A:466:ASN:C	1.95	0.68
2:B:376:ASN:HD22	2:B:454:ARG:HE	1.42	0.68
1:A:376:ASN:ND2	1:A:454:ARG:HH21	1.92	0.68
2:C:388:GLN:H	2:C:474:GLN:NE2	1.93	0.67
2:C:559:LEU:HB2	2:C:560:PRO:HD3	1.76	0.67
1:D:554:LYS:NZ	4:D:805:BR:BR	2.76	0.67
2:F:515:ARG:O	2:F:518:LEU:HD23	1.94	0.67
2:E:334:ARG:HH11	2:E:335:THR:N	1.93	0.66
1:A:388:GLN:H	1:A:474:GLN:NE2	1.94	0.66
2:E:376:ASN:HD22	2:E:454:ARG:HE	1.44	0.65
1:A:473:LEU:O	1:A:476:VAL:HG12	1.96	0.65
2:C:490:SER:O	2:C:494:GLN:HG3	1.95	0.65
2:B:418:ARG:O	2:B:422:GLU:HG3	1.97	0.65
1:D:471:HIS:CD2	1:D:473:LEU:H	2.15	0.64
2:C:468:VAL:HG12	2:C:470:LEU:HD13	1.80	0.64
2:C:471:HIS:H	2:C:474:GLN:NE2	1.95	0.64
2:E:471:HIS:H	2:E:474:GLN:NE2	1.96	0.64

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:D:388:GLN:O	1:D:389:ALA:HB3	1.97	0.64
1:D:376:ASN:ND2	1:D:454:ARG:HH21	1.96	0.64
1:D:466:ASN:ND2	1:D:468:VAL:H	1.94	0.64
2:E:334:ARG:NH1	2:E:335:THR:N	2.45	0.64
2:E:364:LEU:O	2:E:368:LEU:HD13	1.98	0.63
2:F:522:LYS:N	2:F:522:LYS:HD3	2.13	0.63
1:A:570:LEU:HD21	1:A:595:THR:HB	1.79	0.63
2:B:395:MET:CE	2:B:477:ARG:HD3	2.29	0.63
2:B:466:ASN:ND2	2:B:468:VAL:HG23	2.13	0.63
2:C:520:GLU:HA	2:C:522:LYS:NZ	2.14	0.62
2:E:334:ARG:HB3	2:E:334:ARG:HH11	1.63	0.62
2:E:418:ARG:O	2:E:422:GLU:HG3	1.98	0.62
2:B:482:TRP:HE1	2:B:565:LEU:HD22	1.64	0.62
1:D:591:LEU:HD23	1:D:591:LEU:O	1.98	0.62
2:C:522:LYS:CD	2:C:522:LYS:H	2.12	0.62
2:E:334:ARG:NH1	2:E:335:THR:H	1.98	0.62
2:C:398:ASP:HB3	2:C:400:THR:HG22	1.81	0.61
2:F:414:MSE:HE1	6:F:853:HOH:O	2.01	0.61
2:E:552:LEU:HD13	2:E:556:LEU:HD22	1.81	0.61
2:F:552:LEU:HD13	2:F:552:LEU:O	2.00	0.61
2:E:334:ARG:HH11	2:E:335:THR:H	1.47	0.61
2:C:471:HIS:CD2	2:C:473:LEU:H	2.17	0.61
2:C:388:GLN:H	2:C:474:GLN:HE22	1.45	0.61
2:E:436:ASP:O	2:E:440:GLU:HG3	2.00	0.61
2:B:444:LEU:HD12	2:B:566:CYS:HB3	1.83	0.60
2:C:459:GLU:CB	2:C:461:LYS:HE2	2.31	0.60
2:F:557:GLY:O	2:F:560:PRO:HD2	2.00	0.60
2:B:471:HIS:CD2	2:B:473:LEU:H	2.18	0.60
1:D:547:ASN:HD22	2:E:543:ASN:ND2	2.00	0.60
2:E:398:ASP:OD1	2:E:400:THR:HG23	2.02	0.60
2:B:550:ASN:HB2	5:B:900:IOD:I	2.72	0.59
2:B:436:ASP:O	2:B:440:GLU:HG3	2.02	0.59
2:C:535:LEU:O	2:C:539:VAL:HG23	2.01	0.59
2:E:482:TRP:HE1	2:E:565:LEU:HD22	1.66	0.59
2:F:535:LEU:O	2:F:539:VAL:HG23	2.03	0.59
2:B:472:ARG:HD3	2:B:484:ASP:OD1	2.03	0.59
1:A:399:ASP:HB2	1:A:477:ARG:HH21	1.68	0.59
2:F:421:ALA:HB1	2:F:511:MSE:HE1	1.84	0.59
1:A:466:ASN:ND2	1:A:468:VAL:HG23	2.18	0.59
2:B:471:HIS:HD2	2:B:473:LEU:H	1.48	0.59
2:E:376:ASN:ND2	2:E:454:ARG:HH21	2.00	0.59

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:376:ASN:HD22	1:A:454:ARG:HE	1.49	0.59
2:C:570:LEU:HD21	2:C:595:THR:HB	1.83	0.59
2:B:570:LEU:HD21	2:B:595:THR:HB	1.85	0.58
2:B:388:GLN:H	2:B:474:GLN:NE2	2.00	0.58
1:D:482:TRP:HE1	1:D:565:LEU:HD22	1.67	0.58
1:A:376:ASN:HD21	1:A:454:ARG:HH21	1.51	0.58
1:A:490:SER:O	1:A:494:GLN:HG3	2.03	0.58
1:A:388:GLN:H	1:A:474:GLN:HE22	1.50	0.58
2:C:496:MSE:CE	2:C:554:LYS:HG3	2.34	0.58
1:A:401:GLN:HG3	1:A:402:HIS:ND1	2.19	0.58
1:D:471:HIS:H	1:D:474:GLN:HE21	1.51	0.57
2:E:574:PHE:O	2:E:577:LYS:HG2	2.04	0.57
1:D:591:LEU:HD23	1:D:591:LEU:C	2.25	0.57
1:D:580:ASP:OD1	1:D:583:PRO:HG3	2.04	0.57
2:C:471:HIS:HD2	2:C:473:LEU:H	1.50	0.57
1:A:468:VAL:HG12	1:A:470:LEU:HD22	1.86	0.57
2:C:403:ILE:HG21	2:C:582:VAL:HG13	1.86	0.57
2:C:459:GLU:HB2	2:C:461:LYS:HE2	1.87	0.57
2:E:386:ARG:HG3	2:E:386:ARG:HH11	1.69	0.57
2:E:437:LEU:HD13	2:E:518:LEU:CD1	2.35	0.57
2:F:466:ASN:ND2	2:F:468:VAL:H	2.03	0.57
2:F:448:VAL:HG11	2:F:565:LEU:HD12	1.87	0.57
2:E:378:ALA:C	2:E:380:THR:H	2.08	0.57
2:B:390:ASN:O	2:B:394:GLN:HG2	2.05	0.56
1:A:399:ASP:HB2	1:A:477:ARG:NH2	2.21	0.56
1:D:581:LEU:HD23	1:D:581:LEU:O	2.04	0.56
1:D:423:LYS:HE2	6:D:839:HOH:O	2.03	0.56
2:B:466:ASN:HD22	2:B:466:ASN:C	2.09	0.56
1:D:437:LEU:O	1:D:437:LEU:HD23	2.05	0.56
1:D:475:CYS:HB3	1:D:483:ILE:HG13	1.87	0.56
2:E:411:THR:HA	2:E:414:MSE:HE3	1.88	0.56
2:F:520:GLU:HA	2:F:522:LYS:NZ	2.20	0.56
2:F:592:PHE:O	2:F:596:LEU:HD13	2.06	0.56
1:A:414:MET:HG2	1:A:443:PHE:CZ	2.41	0.55
2:E:334:ARG:HH11	2:E:334:ARG:CB	2.20	0.55
1:D:547:ASN:HD22	2:E:543:ASN:HD21	1.55	0.55
1:D:437:LEU:HD23	1:D:437:LEU:C	2.27	0.55
2:E:581:LEU:CD1	2:E:582:VAL:HG23	2.36	0.55
2:B:378:ALA:C	2:B:380:THR:H	2.09	0.55
2:C:522:LYS:N	2:C:522:LYS:HD3	2.16	0.55
2:B:472:ARG:CG	2:B:472:ARG:HH11	2.16	0.55

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:C:425:PRO:O	2:C:527:LEU:HD21	2.08	0.54	
2:F:522:LYS:H	2:F:522:LYS:CD	2.17	0.54	
2:B:573:ILE:O	2:B:577:LYS:HG3	2.06	0.54	
2:E:337:SER:O	2:E:341:ARG:HG3	2.07	0.54	
2:C:386:ARG:NH2	2:C:468:VAL:HG21	2.20	0.54	
1:A:581:LEU:O	1:A:581:LEU:HD23	2.07	0.54	
2:C:543:ASN:OD1	2:C:549:PRO:HG2	2.08	0.54	
2:C:379:MET:HE3	2:C:382:LEU:HD11	1.88	0.54	
1:D:490:SER:O	1:D:494:GLN:HG3	2.08	0.54	
1:D:596:LEU:C	1:D:598:PHE:H	2.11	0.54	
1:A:403:ILE:HG21	1:A:582:VAL:CG1	2.38	0.54	
1:A:579:GLU:HG2	1:A:581:LEU:HB2	1.90	0.53	
2:E:341:ARG:O	2:E:344:ARG:HD3	2.08	0.53	
2:F:365:ILE:HD11	2:F:501:SER:HB3	1.89	0.53	
2:F:559:LEU:HB2	2:F:560:PRO:HD3	1.89	0.53	
2:E:427:PHE:CE1	2:E:511:MSE:HE3	2.44	0.53	
2:E:391:PRO:O	2:E:394:GLN:HG2	2.09	0.53	
1:A:466:ASN:C	1:A:466:ASN:ND2	2.61	0.53	
1:D:382:LEU:HB2	1:D:384:TYR:CE1	2.43	0.53	
1:A:563:ARG:HD2	6:A:836:HOH:O	2.09	0.53	
1:A:591:LEU:O	1:A:591:LEU:HD23	2.09	0.53	
2:C:472:ARG:HG3	2:C:472:ARG:NH1	2.15	0.53	
1:D:475:CYS:CB	1:D:483:ILE:HG13	2.38	0.53	
1:D:452:ALA:HB1	1:D:490:SER:HA	1.91	0.52	
2:F:421:ALA:CB	2:F:511:MSE:HE1	2.39	0.52	
2:C:472:ARG:HH11	2:C:472:ARG:CG	2.15	0.52	
2:E:388:GLN:H	2:E:474:GLN:NE2	2.08	0.52	
2:E:444:LEU:HD13	2:E:566:CYS:HB3	1.92	0.52	
2:F:445:GLU:HG3	6:F:811:HOH:O	2.08	0.52	
2:B:363:SER:HB3	6:B:938:HOH:O	2.10	0.52	
2:C:496:MSE:HE3	2:C:554:LYS:HG3	1.91	0.52	
2:E:570:LEU:HD21	2:E:595:THR:HB	1.90	0.52	
2:B:444:LEU:O	2:B:448:VAL:HG23	2.09	0.52	
2:C:418:ARG:O	2:C:422:GLU:HG3	2.10	0.52	
1:D:536:LYS:O	1:D:540:THR:HG23	2.10	0.52	
1:A:407:TYR:OH	1:A:584:PRO:HG3	2.09	0.52	
2:C:596:LEU:O	2:E:339:LYS:HE2	2.10	0.52	
2:E:559:LEU:HB2	2:E:560:PRO:HD3	1.92	0.52	
2:F:399:ASP:N	2:F:477:ARG:HH11	2.09	0.51	
2:B:464:PHE:C	2:B:466:ASN:H	2.14	0.51	
1:D:399:ASP:HB3	1:D:401:GLN:HG2	1.91	0.51	

Interatomic Clash					
Atom-1	Atom-2	distance $(Å)$	overlap (Å)		
1:D:388:GLN:O	1:D:389:ALA:CB	2.58	0.51		
1:D:539:VAL:HA	1:D:543:ASN:HB2	1.91	0.51		
2:E:482:TRP:CD1	2:E:568:GLN:HB3	2.45	0.51		
2:F:376:ASN:ND2	2:F:454:ARG:HH21	2.07	0.51		
1:A:436:ASP:O	1:A:440:GLU:HG3	2.11	0.51		
1:D:382:LEU:HB2	1:D:384:TYR:HE1	1.75	0.51		
1:D:466:ASN:HD21	1:D:468:VAL:HB	1.75	0.51		
2:F:506:ILE:HD13	2:F:509:LEU:HD12	1.93	0.51		
1:A:471:HIS:CD2	1:A:473:LEU:H	2.28	0.51		
2:C:398:ASP:HB3	2:C:400:THR:CG2	2.41	0.51		
2:F:570:LEU:HD21	2:F:595:THR:HB	1.92	0.51		
1:A:378:ALA:C	1:A:380:THR:N	2.63	0.51		
2:C:520:GLU:HA	2:C:522:LYS:HZ1	1.76	0.51		
2:B:559:LEU:HB2	2:B:560:PRO:HD3	1.92	0.51		
1:A:466:ASN:HD22	1:A:468:VAL:H	1.54	0.51		
1:D:468:VAL:HG12	1:D:470:LEU:HD22	1.92	0.51		
1:A:468:VAL:HG12	1:A:470:LEU:CD2	2.40	0.51		
2:E:515:ARG:O	2:E:518:LEU:HD13	2.11	0.51		
2:F:471:HIS:CD2	2:F:473:LEU:H	2.29	0.51		
2:F:471:HIS:HD2	2:F:473:LEU:HB2	1.76	0.50		
2:C:580:ASP:OD1	2:C:583:PRO:HG3	2.11	0.50		
1:D:528:GLN:O	1:D:532:VAL:HG13	2.11	0.50		
2:E:550:ASN:HB2	4:E:815:BR:BR	2.67	0.50		
2:F:414:MSE:HE2	6:F:826:HOH:O	2.12	0.50		
1:A:528:GLN:O	1:A:532:VAL:HG13	2.12	0.50		
2:C:512:VAL:HG11	2:C:527:LEU:HB3	1.93	0.50		
1:D:445:GLU:HG3	6:D:819:HOH:O	2.11	0.50		
1:D:386:ARG:HD2	1:D:470:LEU:HD11	1.94	0.50		
2:B:557:GLY:O	2:B:560:PRO:HD2	2.12	0.50		
2:F:403:ILE:HG21	2:F:582:VAL:HG13	1.93	0.50		
2:C:472:ARG:CG	2:C:472:ARG:NH1	2.75	0.49		
1:A:557:GLY:O	1:A:560:PRO:HD2	2.11	0.49		
2:B:466:ASN:HD21	2:B:468:VAL:HG23	1.78	0.49		
2:E:488:GLU:HA	6:E:874:HOH:O	2.12	0.49		
2:F:574:PHE:CE1	2:F:578:LEU:HD11	2.48	0.49		
2:C:402:HIS:CD2	2:C:477:ARG:HB3	2.48	0.49		
2:B:466:ASN:ND2	2:B:466:ASN:C	2.65	0.49		
2:C:518:LEU:CD2	2:C:524:VAL:HG21	2.41	0.49		
2:C:589:ASP:O	2:C:592:PHE:HB3	2.13	0.49		
1:D:399:ASP:N	1:D:477:ARG:HH21	2.10	0.49		
1:A:378:ALA:HB3	1:A:381:SER:HB3	1.93	0.49		

		Interatomic	Clash	
Atom-1	Atom-2	distance $(Å)$	overlap (Å)	
2:F:407:TYR:OH	2:F:584:PRO:HG3	2.13	0.49	
2:F:587:ILE:HG13	6:F:853:HOH:O	2.12	0.49	
1:D:482:TRP:HE1	1:D:565:LEU:CD2	2.25	0.49	
1:D:586:ALA:O	1:D:590:LYS:HB2	2.12	0.49	
1:A:378:ALA:O	1:A:380:THR:N	2.45	0.49	
2:C:403:ILE:HG21	2:C:582:VAL:CG1	2.43	0.49	
2:E:466:ASN:HD22	2:E:466:ASN:C	2.15	0.49	
1:D:596:LEU:O	1:D:598:PHE:N	2.45	0.49	
2:E:421:ALA:HB1	2:E:511:MSE:HE1	1.94	0.49	
2:F:468:VAL:HG12	2:F:470:LEU:HD22	1.93	0.49	
2:F:520:GLU:HA	2:F:522:LYS:HZ3	1.77	0.49	
1:A:591:LEU:HD23	1:A:591:LEU:C	2.33	0.49	
2:C:471:HIS:HB3	2:C:474:GLN:HG3	1.95	0.49	
1:D:401:GLN:HG3	1:D:402:HIS:ND1	2.28	0.49	
1:D:414:MET:HG2	1:D:443:PHE:CE1	2.48	0.49	
2:F:528:GLN:O	2:F:532:VAL:HG23	2.13	0.49	
2:B:472:ARG:CG	2:B:472:ARG:NH1	2.76	0.48	
1:D:389:ALA:HA	1:D:471:HIS:CG	2.48	0.48	
2:E:523:ARG:HG3	2:E:523:ARG:HH11	1.77	0.48	
1:D:538:HIS:HD2	6:D:872:HOH:O	1.95	0.48	
2:B:386:ARG:HH21	2:B:468:VAL:HG11	1.78	0.48	
1:D:386:ARG:HH11	1:D:405:GLN:HE21	1.61	0.48	
2:E:529:ASN:HA	2:E:532:VAL:CG2	2.43	0.48	
2:F:376:ASN:HD22	2:F:454:ARG:HE	1.62	0.48	
1:A:466:ASN:HD22	1:A:467:GLY:N	2.10	0.48	
2:E:466:ASN:ND2	2:E:468:VAL:H	2.12	0.48	
2:B:466:ASN:HD22	2:B:467:GLY:N	2.11	0.48	
2:C:421:ALA:HB1	2:C:511:MSE:HE1	1.94	0.48	
2:E:557:GLY:O	2:E:560:PRO:HD2	2.14	0.48	
1:A:552:LEU:C	1:A:552:LEU:HD13	2.34	0.48	
2:C:574:PHE:CE1	2:C:578:LEU:HD11	2.48	0.48	
1:A:376:ASN:HB3	6:A:895:HOH:O	2.12	0.48	
1:D:587:ILE:O	1:D:590:LYS:HB3	2.14	0.48	
2:C:549:PRO:O	2:C:550:ASN:HB2	2.14	0.47	
1:D:399:ASP:HB2	1:D:477:ARG:NH2	2.29	0.47	
1:D:399:ASP:OD2	1:D:400:THR:N	2.46	0.47	
2:F:581:LEU:HD23	2:F:581:LEU:C	2.35	0.47	
2:F:407:TYR:O	2:F:411:THR:HG23	2.13	0.47	
2:C:591:LEU:HD13	2:C:591:LEU:C	2.35	0.47	
1:D:399:ASP:HB2	1:D:477:ARG:HH22	1.78	0.47	
2:C:382:LEU:HB2	2:C:384:TYR:CE1	2.49	0.47	

Interatomic Clash				
Atom-1	Atom-2	distance $(Å)$	overlap (Å)	
2:C:532:VAL:CG1	2:C:536:LYS:HE3	2.44	0.47	
2:B:472:ARG:HG3	2:B:472:ARG:NH1	2.22	0.47	
2:B:464:PHE:O	2:B:466:ASN:N	2.47	0.47	
2:E:456:ASN:HB3	2:E:461:LYS:HB2	1.97	0.47	
1:D:376:ASN:HD22	1:D:454:ARG:HE	1.61	0.47	
1:A:414:MET:HA	1:A:443:PHE:CE1	2.50	0.47	
1:A:445:GLU:HG3	6:A:819:HOH:O	2.13	0.47	
1:D:444:LEU:HD12	1:D:595:THR:HG21	1.97	0.47	
2:E:397:GLY:O	2:E:398:ASP:HB3	2.16	0.46	
2:C:496:MSE:HE1	2:C:555:LEU:HD12	1.96	0.46	
1:D:589:ASP:O	1:D:592:PHE:HB3	2.15	0.46	
1:A:403:ILE:HG21	1:A:582:VAL:HG11	1.97	0.46	
2:E:580:ASP:OD1	2:E:583:PRO:HG3	2.16	0.46	
2:C:421:ALA:CB	2:C:511:MSE:HE1	2.46	0.46	
1:D:546:LEU:HB2	2:E:336:ASP:OD1	2.15	0.46	
1:A:414:MET:HB3	6:A:877:HOH:O	2.15	0.46	
1:A:423:LYS:HE2	6:A:892:HOH:O	2.16	0.46	
1:A:411:THR:HA	1:A:414:MET:HG3	1.98	0.46	
1:A:445:GLU:HA	1:A:566:CYS:SG	2.55	0.46	
1:A:532:VAL:HG21	6:A:901:HOH:O	2.16	0.46	
2:B:468:VAL:HG12	2:B:470:LEU:HD22	1.97	0.46	
2:C:520:GLU:HA	2:C:522:LYS:HZ3	1.81	0.45	
2:E:529:ASN:O	2:E:532:VAL:HG22	2.16	0.45	
2:F:472:ARG:HH22	2:F:487:VAL:HG11	1.77	0.45	
2:E:529:ASN:CA	2:E:532:VAL:HG22	2.44	0.45	
1:A:529:ASN:O	1:A:532:VAL:HG22	2.17	0.45	
2:C:378:ALA:C	2:C:380:THR:H	2.19	0.45	
1:D:407:TYR:OH	1:D:584:PRO:HG3	2.16	0.45	
2:E:471:HIS:CD2	2:E:473:LEU:H	2.34	0.45	
2:F:386:ARG:HH22	2:F:468:VAL:HG21	1.81	0.45	
1:D:386:ARG:HD3	1:D:405:GLN:NE2	2.30	0.45	
1:D:409:LEU:HD13	1:D:464:PHE:CE2	2.52	0.45	
2:E:338:LEU:HD21	2:F:596:LEU:CD2	2.46	0.45	
2:F:538:HIS:HD2	6:F:876:HOH:O	1.99	0.45	
1:A:407:TYR:O	1:A:411:THR:HG23	2.16	0.45	
2:C:448:VAL:HG11	2:C:565:LEU:HD13	1.97	0.45	
1:A:401:GLN:HG2	1:A:401:GLN:H	1.61	0.45	
2:C:386:ARG:HD3	6:C:864:HOH:O	2.17	0.45	
2:B:464:PHE:C	2:B:466:ASN:N	2.70	0.45	
2:B:583:PRO:HA	2:B:584:PRO:HD3	1.83	0.44	
1:D:596:LEU:C	1:D:598:PHE:N	2.71	0.44	

Interatomic Clash				
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:F:434:ASP:OD1	2:F:519:LYS:HB2	2.17	0.44	
2:E:583:PRO:HA	2:E:584:PRO:HD3	1.90	0.44	
2:F:364:LEU:HD23	2:F:534:CYS:HB2	1.99	0.44	
2:B:365:ILE:HB	2:B:534:CYS:SG	2.57	0.44	
2:C:556:LEU:CD1	2:C:556:LEU:N	2.80	0.44	
1:D:527:LEU:O	1:D:531:ILE:HG13	2.17	0.44	
1:A:552:LEU:HD13	1:A:556:LEU:HD22	1.99	0.44	
2:F:364:LEU:HG	2:F:368:LEU:HD22	1.99	0.44	
2:C:365:ILE:HG23	2:C:366:SER:N	2.32	0.44	
1:D:598:PHE:N	1:D:598:PHE:CD1	2.84	0.44	
2:E:522:LYS:O	2:E:522:LYS:HD3	2.17	0.44	
1:A:471:HIS:CD2	1:A:473:LEU:HG	2.53	0.44	
2:F:549:PRO:O	2:F:550:ASN:HB2	2.18	0.44	
1:A:550:ASN:HA	6:A:822:HOH:O	2.17	0.44	
2:B:414:MSE:HA	2:B:443:PHE:CE1	2.53	0.44	
1:A:403:ILE:O	1:A:406:PHE:HB3	2.18	0.44	
1:A:466:ASN:HD21	1:A:468:VAL:HB	1.83	0.44	
2:B:376:ASN:ND2	2:B:454:ARG:HE	2.11	0.44	
2:C:533:ASN:HD22	2:C:536:LYS:HD2	1.83	0.44	
1:D:427:PHE:CE1	1:D:511:MSE:HE3	2.53	0.44	
2:B:363:SER:HB2	6:B:979:HOH:O	2.18	0.43	
2:B:392:ASP:C	2:B:394:GLN:H	2.21	0.43	
1:A:583:PRO:HA	1:A:584:PRO:HD3	1.85	0.43	
1:D:399:ASP:OD2	1:D:400:THR:HG22	2.16	0.43	
1:D:403:ILE:HG21	1:D:582:VAL:HG13	1.99	0.43	
2:F:436:ASP:HB3	2:F:440:GLU:OE2	2.18	0.43	
1:A:482:TRP:CD1	1:A:568:GLN:HB2	2.53	0.43	
2:C:459:GLU:HB3	2:C:461:LYS:HE2	2.00	0.43	
1:D:466:ASN:HD22	1:D:467:GLY:N	2.16	0.43	
1:D:540:THR:HG23	6:D:887:HOH:O	2.18	0.43	
2:F:386:ARG:NH2	2:F:468:VAL:HG21	2.33	0.43	
2:E:409:LEU:HD13	2:E:464:PHE:CE2	2.54	0.43	
2:F:486:ILE:HG12	2:F:565:LEU:HD11	1.99	0.43	
2:C:583:PRO:HA	2:C:584:PRO:HD3	1.84	0.43	
2:E:378:ALA:C	2:E:380:THR:N	2.71	0.43	
2:F:444:LEU:HD13	2:F:566:CYS:HB3	1.99	0.43	
2:C:518:LEU:O	2:C:521:PRO:HD3	2.18	0.43	
2:C:581:LEU:HD23	2:C:581:LEU:O	2.18	0.43	
1:D:462:LEU:HD22	1:D:462:LEU:N	2.33	0.43	
1:D:591:LEU:HA	1:D:594:ASP:HB2	2.00	0.43	
2:E:590:LYS:HG2	2:E:594:ASP:OD2	2.18	0.43	

Interatomic Clash					
Atom-1	Atom-2	distance (Å)	overlap (Å)		
2:B:471:HIS:N	2:B:474:GLN:HE21	::B:474:GLN:HE21 2.04			
2:C:582:VAL:HG22	2:C:582:VAL:O	2.18	0.43		
2:B:577:LYS:HG2	2:B:584:PRO:HG2	2.01	0.43		
2:C:482:TRP:HE1	2:C:565:LEU:HD22	1.84	0.43		
1:D:384:TYR:C	1:D:386:ARG:H	2.22	0.43		
2:E:585:PRO:HG2	2:E:588:ILE:HG12	2.00	0.43		
2:F:536:LYS:O	2:F:540:THR:HG23	2.19	0.43		
1:A:415:GLU:HG2	6:A:878:HOH:O	2.18	0.43		
2:C:437:LEU:O	2:C:437:LEU:HD13	2.19	0.43		
1:A:466:ASN:HD21	1:A:468:VAL:CB	2.32	0.42		
2:B:582:VAL:HG22	6:B:965:HOH:O	2.19	0.42		
2:C:523:ARG:HG3	2:C:523:ARG:HH11	1.84	0.42		
2:C:563:ARG:HB2	2:C:563:ARG:HE	1.58	0.42		
2:C:543:ASN:HD22	2:C:543:ASN:C	2.22	0.42		
1:D:466:ASN:C	1:D:466:ASN:HD22	2.22	0.42		
1:D:403:ILE:HG21	1:D:582:VAL:CG1	2.49	0.42		
2:C:552:LEU:HD13	2:C:552:LEU:C	2.40	0.42		
1:D:426:GLY:HA2	1:D:429:ASP:OD2	2.20	0.42		
1:D:499:ASP:OD2	1:D:538:HIS:HE1	2.02	0.42		
1:A:471:HIS:CB	1:A:474:GLN:HE21	2.31	0.42		
2:C:496:MSE:CE	2:C:555:LEU:HD12	2.49	0.42		
2:E:388:GLN:HE21	2:E:390:ASN:H	1.65	0.42		
1:A:483:ILE:HD13	1:A:483:ILE:O	2.19	0.42		
1:A:567:THR:O	1:A:571:GLN:HG3	2.20	0.42		
2:B:411:THR:HA	2:B:414:MSE:HG3	2.01	0.42		
2:E:512:VAL:HG11	2:E:527:LEU:HB3	2.01	0.42		
1:D:546:LEU:O	1:D:549:PRO:HD3	2.19	0.42		
2:F:466:ASN:HD21	2:F:468:VAL:HB	1.84	0.42		
2:F:518:LEU:HB2	2:F:521:PRO:HG3	2.02	0.42		
2:F:583:PRO:HA	2:F:584:PRO:HD3	1.92	0.42		
1:A:574:PHE:CZ	1:A:578:LEU:HD11	2.55	0.42		
1:A:577:LYS:HG3	6:A:905:HOH:O	2.19	0.42		
2:C:376:ASN:HD22	2:C:454:ARG:HE	1.68	0.42		
2:F:448:VAL:HG11	2:F:565:LEU:CD1	2.49	0.42		
2:F:472:ARG:NH1	2:F:484:ASP:OD1	2.52	0.42		
1:A:376:ASN:ND2	1:A:454:ARG:HE	2.17	0.42		
1:A:471:HIS:H	1:A:474:GLN:NE2	2.17	0.42		
1:A:548:ARG:HB2	1:A:551:TYR:HB2	2.02	0.42		
2:B:394:GLN:HA	2:B:394:GLN:OE1	2.20	0.42		
2:E:365:ILE:O	2:E:369:VAL:HG23	2.19	0.42		
1:A:418:ARG:NH1	6:A:878:HOH:O	2.52	0.41		

	lo uo pugom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:466:ASN:HD21	1:A:468:VAL:HG23	1.83	0.41
2:F:403:ILE:O	2:F:406:PHE:HB3	2.20	0.41
2:E:471:HIS:H	2:E:474:GLN:HE21	1.65	0.41
2:E:471:HIS:HD2	2:E:473:LEU:H	1.68	0.41
2:B:378:ALA:O	2:B:380:THR:N	2.53	0.41
2:B:559:LEU:HD12	6:B:950:HOH:O	2.19	0.41
2:E:530:LYS:HB2	2:E:530:LYS:HE3	1.84	0.41
1:A:466:ASN:HD21	1:A:468:VAL:CG2	2.33	0.41
1:D:547:ASN:OD1	2:E:341:ARG:HD3	2.21	0.41
2:E:445:GLU:OE1	2:E:563:ARG:NH1	2.52	0.41
1:D:546:LEU:H	2:E:336:ASP:CG	2.24	0.41
2:B:473:LEU:O	2:B:476:VAL:HG12	2.20	0.41
2:C:533:ASN:HA	2:C:536:LYS:HD2	2.02	0.41
2:E:445:GLU:HG3	6:E:821:HOH:O	2.21	0.41
2:B:399:ASP:O	2:B:402:HIS:N	2.53	0.41
2:B:420:TRP:CZ2	2:B:424:ILE:HD11	2.56	0.41
2:C:431:PRO:HD3	2:C:520:GLU:OE1	2.21	0.41
2:C:379:MET:HE3	2:C:463:ILE:HD13	2.03	0.41
1:D:417:ILE:HG22	1:D:439:PHE:HE1	1.85	0.41
2:C:517:GLY:HA2	2:E:554:LYS:NZ	2.36	0.41
1:A:437:LEU:HD13	1:A:518:LEU:HD13	2.02	0.41
2:C:472:ARG:NH1	6:C:843:HOH:O	2.53	0.41
2:F:469:VAL:O	2:F:470:LEU:HD13	2.21	0.41
2:C:400:THR:HG23	2:C:401:GLN:N	2.36	0.41
2:B:466:ASN:HD21	2:B:468:VAL:CG2	2.34	0.41
1:D:497:ASN:HB3	2:E:541:PHE:CE2	2.55	0.41
2:E:388:GLN:H	2:E:474:GLN:HE22	1.67	0.41
2:F:482:TRP:CD1	2:F:568:GLN:HB3	2.56	0.41
1:A:411:THR:HG21	6:A:848:HOH:O	2.21	0.40
1:D:476:VAL:O	1:D:476:VAL:HG22	2.21	0.40
2:C:438:LEU:HD23	2:C:515:ARG:HG3	2.02	0.40
1:D:546:LEU:HD13	2:E:336:ASP:OD2	2.21	0.40
2:C:365:ILE:CG2	2:C:366:SER:N	2.84	0.40
1:D:376:ASN:O	2:E:370:ARG:NH2	2.55	0.40
2:E:557:GLY:C	2:E:560:PRO:HD2	2.42	0.40
2:E:338:LEU:HD21	2:F:596:LEU:HD23	2.04	0.40
2:E:466:ASN:ND2	2:E:466:ASN:C	2.75	0.40
2:E:545:GLY:HA2	6:E:854:HOH:O	2.22	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	224/271~(83%)	216~(96%)	7(3%)	1 (0%)	34	37
1	D	226/271~(83%)	215~(95%)	8 (4%)	3 (1%)	12	9
2	В	234/271~(86%)	225~(96%)	5 (2%)	4 (2%)	9	6
2	С	220/271~(81%)	209~(95%)	11 (5%)	0	100	100
2	Е	246/271~(91%)	236~(96%)	6 (2%)	4 (2%)	9	7
2	F	217/271~(80%)	209~(96%)	8 (4%)	0	100	100
All	All	1367/1626~(84%)	1310 (96%)	45(3%)	12 (1%)	17	16

All (12) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	379	MET
2	В	465	CYS
2	Е	395	MET
2	Ε	396	SER
2	В	379	MET
2	В	398	ASP
1	D	385	SER
1	D	597	PRO
2	Е	379	MET
2	B	393	TYR
1	D	391	PRO
2	Е	397	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	202/240~(84%)	191~(95%)	11 (5%)	22 26
1	D	204/240~(85%)	192 (94%)	12 (6%)	19 23
2	В	209/239~(87%)	198~(95%)	11 (5%)	22 27
2	С	201/239~(84%)	190 (94%)	11 (6%)	21 26
2	Е	221/239~(92%)	206~(93%)	15 (7%)	16 17
2	F	199/239~(83%)	191 (96%)	8 (4%)	31 40
All	All	1236/1436~(86%)	1168 (94%)	68 (6%)	21 26

analysed, and the total number of residues.

All (68) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	368	LEU
1	А	437	LEU
1	А	444	LEU
1	А	466	ASN
1	А	483	ILE
1	А	518	LEU
1	А	527	LEU
1	А	555	LEU
1	А	556	LEU
1	А	563	ARG
1	А	565	LEU
2	В	368	LEU
2	В	395	MET
2	В	437	LEU
2	В	466	ASN
2	В	472	ARG
2	В	527	LEU
2	В	534	CYS
2	В	552	LEU
2	В	556	LEU
2	В	563	ARG
2	В	565	LEU
2	С	398	ASP
2	С	444	LEU
2	С	466	ASN
2	C	472	ARG
2	С	477	ARG
2	C	526	GLU

Mol	Chain	Res	Type
2	С	543	ASN
2	С	556	LEU
2	С	565	LEU
2	С	596	LEU
2	С	598	PHE
1	D	368	LEU
1	D	415	GLU
1	D	466	ASN
1	D	483	ILE
1	D	497	ASN
1	D	518	LEU
1	D	527	LEU
1	D	532	VAL
1	D	556	LEU
1	D	565	LEU
1	D	594	ASP
1	D	598	PHE
2	Ε	334	ARG
2	Ε	399	ASP
2	Ε	400	THR
2	Ε	437	LEU
2	Ε	444	LEU
2	E	466	ASN
2	Е	470	LEU
2	E	499	ASP
2	E	527	LEU
2	Е	556	LEU
2	E	563	ARG
2	E	565	LEU
2	E	568	GLN
2	Е	591	LEU
2	E	596	LEU
2	F	368	LEU
2	F	444	LEU
2	F	466	ASN
2	F	527	LEU
2	F	543	ASN
2	F	556	LEU
2	F	582	VAL
2	F	591	LEU

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (65) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	376	ASN
1	А	401	GLN
1	А	466	ASN
1	А	471	HIS
1	А	474	GLN
1	А	528	GLN
1	А	529	ASN
1	А	533	ASN
1	А	547	ASN
1	А	568	GLN
1	А	571	GLN
2	В	376	ASN
2	В	388	GLN
2	В	401	GLN
2	В	466	ASN
2	В	471	HIS
2	В	474	GLN
2	В	497	ASN
2	В	529	ASN
2	В	533	ASN
2	В	543	ASN
2	В	571	GLN
2	С	376	ASN
2	С	402	HIS
2	С	466	ASN
2	С	471	HIS
2	С	474	GLN
2	С	529	ASN
2	C	533	ASN
2	С	542	ASN
2	C	543	ASN
2	С	550	ASN
2	С	571	GLN
1	D	376	ASN
1	D	388	GLN
1	D	401	GLN
1	D	404	GLN
1	D	405	GLN
1	D	456	ASN
1	D	466	ASN
1	D	471	HIS
1	D	474	GLN
1	D	529	ASN

Mol	Chain	Res	Type
1	D	522	ACN
1		000	ASN
1	D	538	HIS
1	D	542	ASN
1	D	568	GLN
2	Е	376	ASN
2	Е	388	GLN
2	Е	466	ASN
2	Е	471	HIS
2	Е	474	GLN
2	Е	528	GLN
2	Е	529	ASN
2	Е	533	ASN
2	Е	543	ASN
2	Е	550	ASN
2	F	376	ASN
2	F	466	ASN
2	F	471	HIS
2	F	474	GLN
2	F	529	ASN
2	F	533	ASN
2	F	543	ASN
2	F	550	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no carbohydrates in this entry.

5.6 Ligand geometry (i)

Of 28 ligands modelled in this entry, 28 are monoatomic - leaving 0 for Mogul analysis. There are no bond length outliers.

There are no bond angle outliers. There are no chirality outliers. There are no torsion outliers. There are no ring outliers. No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

EDS was not executed - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS was not executed - this section is therefore empty.

6.3 Carbohydrates (i)

EDS was not executed - this section is therefore empty.

6.4 Ligands (i)

EDS was not executed - this section is therefore empty.

6.5 Other polymers (i)

EDS was not executed - this section is therefore empty.

