

Full wwPDB X-ray Structure Validation Report (i)

Nov 21, 2023 – 12:53 am GMT

PDB ID	:	8OS6
Title	:	Structure of a GFRA1/GDNF LICAM complex
Authors	:	Houghton, F.M.; Adams, S.E.; Briggs, D.C.; McDonald, N.Q.
Deposited on	:	2023-04-18
Resolution	:	2.66 Å(reported)
Authors Deposited on Resolution	:	Houghton, F.M.; Adams, S.E.; Briggs, D.C.; McDonald, I 2023-04-18 2.66 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.66 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motrie	Whole archive	Similar resolution
WIEUTIC	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R _{free}	130704	1332 (2.68-2.64)
Clashscore	141614	1374(2.68-2.64)
Ramachandran outliers	138981	1349 (2.68-2.64)
Sidechain outliers	138945	1349 (2.68-2.64)
RSRZ outliers	127900	1318 (2.68-2.64)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain								
1	А	260	8%	8%	20%						
	~ ~ ~		6%	0,0	20/2						
1	С	260	71%	7%	22%						
1	Е	260	71%	8%	21%						
1	G	260	7%	90/	220/						
	u	200	3%	0%	22%						
1	Ι	260	69%	8%	23%						

Mol	Chain	Length	Quality of chain	
1	Κ	260	<u>8%</u> 69% 8%	22%
1	М	260	7% 7%	22%
1	О	260	5% 67% 12%	21%
1	Q	260	7% 7%	22%
1	S	260	7% 69% 8%	22%
2	В	99	84%	13% ••
2	D	99	88%	11% •
2	F	99	90%	9% •
2	Н	99	88%	9% •
2	J	99	84%	15% •
2	L	99	8%	18% •
2	N	99	7%85%	10% • •
2	Р	99	7%	12% •
2	R	99	90%	6% •
2	Т	99	78%	17% ••
3	U	2	100%	
3	Y	2	50% 50%	
3	Z	2	50% 50%	
3	b	2	100%	
4	V	3	100%	
4	W	3	100%	
4	X	3	100%	
5	a	2	100%	

2 Entry composition (i)

There are 7 unique types of molecules in this entry. The entry contains 46489 atoms, of which 22664 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues			Aton	ıs			ZeroOcc	AltConf	Trace
1	Δ	207	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0
1	Л	201	3128	981	1530	285	310	22	0	0	0
1	С	204	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0
1	U	204	3071	967	1496	281	305	22	0	0	0
1	1 E	205	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0
1		200	3087	971	1507	281	306	22	0	0	0
1	C	204	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0
1	I G	204	3073	969	1495	281	306	22	0	0	
1	I 901	201	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0
1	L	201	3055	958	1498	278	299	22	0	0	0
1	K	202	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0
1	К	202	3043	959	1483	278	301	22	0	0	0
1	М	204	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0
1	IVI	204	3086	967	1511	281	305	22	0	0	0
1	0	205	Total	С	Η	Ν	0	\mathbf{S}	0	0	0
1	U	200	3084	968	1509	282	303	22	0	0	0
1	0	203	Total	С	Η	Ν	0	\mathbf{S}	0	0	0
	I Q	203	3061	962	1494	279	304	22	0	0	0
1	1 C	203	Total	С	Н	Ν	0	S	0	0	0
L 1	U U	200	3060	964	1491	280	303	22			U

• Molecule 1 is a protein called GDNF family receptor alpha.

There are 30 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	353	GLY	-	expression tag	UNP Q98TT9
А	354	SER	-	expression tag	UNP Q98TT9
A	355	GLU	-	expression tag	UNP Q98TT9
С	353	GLY	-	expression tag	UNP Q98TT9
С	354	SER	-	expression tag	UNP Q98TT9
С	355	GLU	-	expression tag	UNP Q98TT9
E	353	GLY	-	expression tag	UNP Q98TT9
E	354	SER	-	expression tag	UNP Q98TT9
E	355	GLU	-	expression tag	UNP Q98TT9

Chain	Residue	Modelled	Actual	Comment	Reference
G	353	GLY	-	expression tag	UNP Q98TT9
G	354	SER	-	expression tag	UNP Q98TT9
G	355	GLU	-	expression tag	UNP Q98TT9
Ι	353	GLY	-	expression tag	UNP Q98TT9
Ι	354	SER	-	expression tag	UNP Q98TT9
Ι	355	GLU	-	expression tag	UNP Q98TT9
K	353	GLY	-	expression tag	UNP Q98TT9
K	354	SER	-	expression tag	UNP Q98TT9
K	355	GLU	-	expression tag	UNP Q98TT9
М	353	GLY	-	expression tag	UNP Q98TT9
М	354	SER	-	expression tag	UNP Q98TT9
М	355	GLU	-	expression tag	UNP Q98TT9
0	353	GLY	-	expression tag	UNP Q98TT9
0	354	SER	-	expression tag	UNP Q98TT9
0	355	GLU	-	expression tag	UNP Q98TT9
Q	353	GLY	-	expression tag	UNP Q98TT9
Q	354	SER	-	expression tag	UNP Q98TT9
Q	355	GLU	-	expression tag	UNP Q98TT9
S	353	GLY	-	expression tag	UNP Q98TT9
S	354	SER	-	expression tag	UNP Q98TT9
S	355	GLU	-	expression tag	UNP Q98TT9

• Molecule 2 is a protein called Glial cell line-derived neurotrophic factor.

Mol	Chain	Residues			Aton	ıs			ZeroOcc	AltConf	Trace	
9	В	07	Total	С	Н	Ν	0	S	0	0	0	
	D	91	1481	473	720	132	149	7	0	0	0	
9	D	08	Total	С	Н	Ν	Ο	S	0	0	0	
	D	90	1535	485	752	138	153	7	0	0	0	
2	F 98	08	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0	
	Ľ	30	1522	485	741	136	153	7	0	0	0	
2	н	96	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0	
2	11		1500	478	732	133	150	7		0	0	
2	т	98	Total	С	Η	Ν	0	\mathbf{S}	0	0	0	
2	0		1518	483	741	135	152	7	0	0	0	
2	T	96	Total	С	Η	Ν	0	\mathbf{S}	0	0	0	
2		30	1493	475	729	132	150	7	0	0	0	
2	N	95	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0	
	11	50	1502	475	739	132	149	7	0	0	0	
2	р	95	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0	
	2 P	90	1487	472	728	131	149	7		0	0	
2	2 B	05	Total	С	Н	Ν	0	S	0	0	0	
	10	30	1502	475	739	132	149	7		U	U	

Continued from previous page...

Mol	Chain	Residues			Aton	ns	ZeroOcc	AltConf	Trace		
2	Т	95	Total 1503	C 475	Н 740	N 132	0 149	${ m S} 7$	0	1	0

• Molecule 3 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace	
3	3 U	0	Total	С	Η	Ν	0	0	0	0	
3 0	2	40	16	12	2	10	0	0	0		
2	2 V	9	Total	С	Η	Ν	0	0	0	0	
3 Y	I	2	53	16	25	2	10	0			
2	7	2	Total	С	Η	Ν	0	0	0	0	
3 Z			53	16	25	2	10	0	0	U	
2	3 b	0	Total	С	Η	Ν	0	0	0	0	
J		b	b	2	53	16	25	2	10	U	0

• Molecule 4 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[al pha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues		\mathbf{At}	\mathbf{oms}			ZeroOcc	AltConf	Trace
4 V	2	Total	С	Η	Ν	0	0	0	0	
	ں ک	72	22	34	2	14	0	0		
4	W	2	Total	С	Η	Ν	0	0	0	0
4 W	0	72	22	34	2	14	0	0	0	
4		3	Total	С	Η	Ν	0	0	0	0
4 A	Λ		72	22	34	2	14	0		U

• Molecule 5 is an oligosaccharide called alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-bet a-D-glucopyranose.

Mol	Chain	Residues		At	\mathbf{oms}			ZeroOcc	AltConf	Trace
F		n	Total	С	Η	Ν	Ο	0	0	0
5	a	2	46	14	$22 \ 1 \ 9 \ 0 \ 0$	0	0			

• Molecule 6 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	В	1	Total C H N O 27 8 13 1 5	0	0
6	Е	1	Total C N O 14 8 1 5	0	0
6	G	1	Total C H N O 27 8 13 1 5	0	0
6	Ι	1	Total C N O 14 8 1 5	0	0
6	K	1	Total C H N O 27 8 13 1 5	0	0
6	L	1	Total C H N O 27 8 13 1 5	0	0
6	М	1	Total C N O 14 8 1 5	0	0
6	R	1	Total C H N O 27 8 13 1 5	0	0
6	S	1	Total C H N O 27 8 13 1 5	0	0
6	Т	1	Total C N O 14 8 1 5	0	0

• Molecule 7 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	А	3	Total O 3 3	0	0
7	С	2	Total O 2 2	0	0
7	Е	3	Total O 3 3	0	0
7	G	2	Total O 2 2	0	0
7	Ι	1	Total O 1 1	0	0
7	Κ	2	Total O 2 2	0	0
7	М	1	Total O 1 1	0	0
7	Ο	1	Total O 1 1	0	0
7	Q	2	Total O 2 2	0	0
7	S	2	Total O 2 2	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: GDNF family receptor alpha

• Molecule 1: GDNF family r	eceptor alpha		
Chain G:	70%	8%	22%
MET LYS LYS LYS CUS CUS CUS CYS CYS CYS CYS CYS CYS CYS CYS CYS CIS CIS CIS CIS CIS CIS CIS CIS CIS CI	LEU LEU GLU GLU GLU ASP PRO PRO PRO PRO PRO PRO PRO PRO PRO PR	ARG LEU ALA PRO TYR SER GLY	GLU PRO ALA LEU LVS EISO C153 L154 K158 K158
11 74 3182 8185 8185 8185 8185 8185 8185 8185 8	1232 D240 2244 1255 1255 1255 1255 1253 1255 1253 1253	L281 L295 L295 L295 R306 R306	F300 F300 F311 F311 F311 F311 F311 F311
S S S S S S S S S S S S S S S S S S S			
• Molecule 1: GDNF family r	eceptor alpha		
Chain I:	69%	8%	23%
MET LYS LYS GJU GJU GJU GJU ASN ASN ASN TTR TTR TTR TTR TTR TTR TTR TTR TTR CASN CASN CASN CASN CASN CASN CASN CASN	LEU LEU LEU GLU ASP PRO PRO PRO PRO PRO VAL VAL ASP LEU SER ASP LEU PHE	ARG LEU ALA PRO ILE TYR SER GLY	oLU PRO ALA LEU LEU CIS CIS CIS CIS CIS CIS CIS
V186 P217 P217 1218 1218 01.Y ASP ASP ASP ASP ASP 2256 224 ASP ASP ASP 1256 N256 N256 N256 N256 N256 N256 N256 N	1263 1290 1290 1290 1305 1310 1310 1311 1310 1311 1311 131	A339 N3 43 Q3 46 N3 60 N3 50	<mark>G353</mark> SER GLU
• Molecule 1: GDNF family r	eceptor alpha		
Chain K:	69%	8%	22%
MET LYS LYS GJU GJU GJU GJU GJU ASN CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	LEU LEU LEU GLU ASP PRO PRO PRO PRO PRO ASP LEU ASP LEU ASP LEU PHE	ARG LEU ALA PRO ILE TYR SER GLY	GLU PRO ALA LEU LVS E150 E150 K158
L162 1174 1174 1174 1176 1176 1176 1176 1176	P217 D200 D200 C224 S225 E226 E226 E226 C246 C246 C246 L347 S222 S222	N256 Y257 R262 L263 1296	K309 1310 8313 6317 2319 8319 8319 8319 858 8319 858 8319 858 8319 858 8319 858 8319 858 858 858 858 858 858 858 858 858 85
M323 F331 1341 1342 0353 3353 3354 61U			
• Molecule 1: GDNF family r	receptor alpha		
Chain M:	71%	7%	22%
MET LYS LYS CJY CJY CJY CJY ASN CJY TTR TTR TTR TTR TTR CJY CJY CJY CJY CJY CJY CJY CJY CJY CJY	LEU LEU GLU GLU GLU GLU ASP PRO PRO PRO PRO PRO FRO FRO FRO FRO FRO FRO FRO FRO FRO F	ARG LEU ALA PRO TYR SER SER GLY	GLU PRO ALA ALA LEU LEU GLU GLU C153 C153 C154 C154
K158 V181 V186 V186 K202 R229 G219 G219 G219 G219 C219 C219 C219 C219 C219 C219 C219 C	7257 1288 1289 1290 8293 8293 1296 1317 1330 8320	S321 G322 N323 F331 F334 F335 F335	A339 C340 C341 R342 R343 A344 I345 S354 GLU

 \bullet Molecule 1: GDNF family receptor alpha

Chain O:	5%	67%	12%	21%
MET LYS LYS GLU ASN CYS	LEU TYR TYR TYR GLY GLY GLN GLN GLN GLN GLN	LEU LEU GLU GLU ASP PRO PRO PRO PRO PRO PRO PRO CIU ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	ARG LEU ALA PRO TTYR SER SER GLY	PRU ALA ALA LEU ALA ALA ALA ALA ALA CIEO CIEO CIEO CIEO CIEO CIEO CIEO CIEO
S182 E185 V186 R197 R197 0198	F199 1203 1212 1218 1218 1218 1220 1220 1220 1220	1248 1249 1249 1251 1251 1258 1258 1258 1258 1258 1258	2293 V299 N300 8307 8307 K309 K309	114 114 117 117 117 1123 1123 1123
F335 A344 S354 GLU				
• Molecu	le 1: GDNF family	ceceptor alpha		
Chain Q:	7%	71%	7%	22%
MET LYS LYS GLU ASN CYS	LEU LEU TYR TYR TYR TYR GIY CILY GIN GIN GIN ASN	LEU LEU LEU GLU GLU ASP PRO PRO PRO PRO FVR ASR ASR ASR ASR ASP LEU ASP PHE	ARG LEU ALA PRO TYR SER GLY	PRD ALA LEU ALA LEU CLU GLU GLU LI62 Y169
R170 8171 1174 V181	V186 Y13 C216 C216 C216 C216 C216 C22 C224 C224 C224 C224 C225 C224 C225 C224 C225 C226 C226 C226 C226 C226 C226 C226	1232 1232 1285 1285 1285 1285 1285 1283 1288 1288 1283 1288 1283 1288 1288	L305 R306 S311 V312 S313 N323 R323 S323	L1341 1345 7348 7352 3354 610
• Molecu	le 1: GDNF family	receptor alpha		
Chain S:	7%	69%	8% •	22%
MET LYS LYS GLU ASN CYS	LEU LEU TLE TTR TTR TTR GLY GLY GLN GLN GLN GLN GLN	LEU LEU GLU GLU GLU ASP PRO PRO PRO PRO PRO PRO CLEU ASP LEU ASP SER ASP ASP LEU ASP PHE	ARG LEU ALA PRO TTYR SER SER GLY	PRO ALA ALA LEU ALA CLU CLU CLU CLU CLO CLU DIG4
R190 R197 F200	1212 1217 1218 1218 1219 1220 1220 1221 1221 1231 1231	N241 N241 1247 1247 N251 N256 N256 N256 N256 N256 N256 N256 N256	C280 L305 R306 R307 P308 R307 F309 F309	8313 17 17 1345 1345 1345 1345
F348 G349 G350 G351 T352 G353	SER GLU			
• Molecu	le 2: Glial cell line-d	lerived neurotrophic facto	r	
Chain B:	12%	84%		13% ••
GLY GLN GLN L143 L143 L144 K145	H 48 1149 1149 1150 1150 1160 1160 1166 1166 1168 1167 1168	1178 0181 1183 1183 1183 1183 1183 1183 118	A229	
• Molecu	le 2: Glial cell line-d	lerived neurotrophic facto	r	
Chain D:	11%	88%		11% •

Chain R:	6	90%		5% •
GLY GLN GLN GLY ARG G141 H148 V151 V151	T160 K161 L164 H174 L183 L183 L187 L187 L193 L193	T197 T197 F214 F214 L219 L224 V235		
• Molecule 2:	Glial cell line-derived	l neurotrophic facto	or	
10%				
Chain T:	71	8%	17%	•••
GLY GLN GLN GLY G141 G141 L144 H148 H148 H148 H148 N150	V151 V151 V151 V155 V160 K161 V166 V166 V166 V166 V166	V180 1183 1183 1189 1188 1188 1188 1188 1188	R200 D209 D210 S218 L219 L219 V235	
• Molecule 3: opyranose	2-acetamido-2-deoxy	r-beta-D-glucopyrar	nose-(1-4)-2-acet	amido-2-deoxy-beta-D-gluc
Chain U:		100%		
NAG2 NAG2				
• Molecule 3: opyranose	2-acetamido-2-deoxy	r-beta-D-glucopyrar	nose-(1-4)-2-acet	amido-2-deoxy-beta-D-gluc
Chain Y:	50%		50%	
NAG1 NAG2				
• Molecule 3: opyranose	2-acetamido-2-deoxy	r-beta-D-glucopyrar	nose-(1-4)-2-acet	amido-2-deoxy-beta-D-gluc
Chain Z:	50%		50%	
NAG2 NAG2				
• Molecule 3: opyranose	2-acetamido-2-deoxy	r-beta-D-glucopyra	nose-(1-4)-2-acet	amido-2-deoxy-beta-D-gluc
Chain b:		100%		
NAG2 NAG2				
• Molecule 4: tamido-2-deox	2-acetamido-2-deoxy y-beta-D-glucopyran	-beta-D-glucopyrar ose	aose-(1-4)-[alpha	-L-fucopyranose-(1-6)]2-ace

Chain V:

100%

NAG1 NAG2 FUC3

 • Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)] 2-acetamido-2-deoxy-beta-D-glucopyranose

Chain W:

100%

NAG1 NAG2 FUC3

 • Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)] 2-acetamido-2-deoxy-beta-D-glucopyranose

Chain X:

100%

NAG1 NAG2 FUC3

• Molecule 5: alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain a:

100%

NAG 1 FUC2

4 Data and refinement statistics (i)

Property	Value	Source	
Space group	P 1 21 1	Depositor	
Cell constants	114.14Å 170.04Å 130.79Å	Depositor	
a, b, c, α , β , γ	90.00° 96.17° 90.00°	Depositor	
Bosolution(A)	90.45 - 2.66	Depositor	
Resolution (A)	130.03 - 2.66	EDS	
% Data completeness	88.1 (90.45-2.66)	Depositor	
(in resolution range)	88.3(130.03-2.66)	EDS	
R _{merge}	(Not available)	Depositor	
R_{sym}	(Not available)	Depositor	
$< I/\sigma(I) > 1$	$1.07 (at 2.65 \text{\AA})$	Xtriage	
Refinement program	PHENIX 1.20.1_4487	Depositor	
D D.	0.244 , 0.283	Depositor	
n, n_{free}	0.248 , 0.278	DCC	
R_{free} test set	3852 reflections $(3.07%)$	wwPDB-VP	
Wilson B-factor $(Å^2)$	75.8	Xtriage	
Anisotropy	0.414	Xtriage	
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.35 , 42.1	EDS	
L-test for $twinning^2$	$ < L >=0.45, < L^2>=0.28$	Xtriage	
Estimated twinning fraction	No twinning to report.	Xtriage	
F_o, F_c correlation	0.92	EDS	
Total number of atoms	46489	wwPDB-VP	
Average B, all atoms $(Å^2)$	90.0	wwPDB-VP	

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.33% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: FUC, NAG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	$\mathbf{lengths}$	Bond angles			
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5		
1	А	0.25	0/1628	0.47	0/2196		
1	С	0.26	0/1605	0.47	0/2166		
1	Е	0.25	0/1610	0.47	0/2173		
1	G	0.25	0/1608	0.47	0/2170		
1	Ι	0.26	0/1586	0.47	0/2139		
1	К	0.25	0/1589	0.47	0/2145		
1	М	0.26	0/1605	0.47	0/2166		
1	0	0.26	0/1605	0.48	0/2166		
1	Q	0.26	0/1596	0.49	0/2154		
1	S	0.26	0/1599	0.48	0/2158		
2	В	0.26	0/775	0.52	2/1046~(0.2%)		
2	D	0.24	0/797	0.47	0/1073		
2	F	0.23	0/795	0.46	0/1070		
2	Н	0.24	0/782	0.47	0/1053		
2	J	0.24	0/791	0.47	0/1065		
2	L	0.23	0/778	0.46	0/1049		
2	Ν	0.23	0/777	0.46	0/1046		
2	Р	0.24	0/773	0.47	0/1042		
2	R	0.23	0/777	0.46	0/1046		
2	Т	0.24	0/784	0.46	0/1056		
All	All	0.25	0/23860	0.47	2/32179~(0.0%)		

There are no bond length outliers.

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	В	145	LYS	CA-CB-CG	5.36	125.20	113.40
2	В	145	LYS	CB-CA-C	5.19	120.78	110.40

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	${ m H}({ m model})$	H(added)	Clashes	Symm-Clashes
1	А	1598	1530	1533	13	0
1	С	1575	1496	1511	7	0
1	Е	1580	1507	1510	13	0
1	G	1578	1495	1512	12	0
1	Ι	1557	1498	1498	13	0
1	Κ	1560	1483	1488	13	0
1	М	1575	1511	1511	12	0
1	0	1575	1509	1507	16	0
1	Q	1567	1494	1497	12	0
1	S	1569	1491	1506	20	0
2	В	761	720	720	9	0
2	D	783	752	752	7	0
2	F	781	741	752	7	0
2	Н	768	732	741	4	0
2	J	777	741	746	10	0
2	L	764	729	730	17	0
2	Ν	763	739	739	9	0
2	Р	759	728	728	9	0
2	R	763	739	739	6	0
2	Т	763	740	732	11	0
3	U	28	12	25	1	0
3	Y	28	25	25	4	0
3	Ζ	28	25	25	2	0
3	b	28	25	25	0	0
4	V	38	34	34	0	0
4	W	38	34	34	0	0
4	Х	38	34	34	7	0
5	a	24	22	22	0	0
6	В	14	13	13	0	0
6	Е	14	0	13	1	0
6	G	14	13	13	1	0
6	Ι	14	0	13	4	0
6	К	14	13	13	1	0
6	L	14	13	13	1	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
6	М	14	0	13	6	0
6	R	14	13	13	1	0
6	S	14	13	13	4	0
6	Т	14	0	13	2	0
7	А	3	0	0	0	0
7	С	2	0	0	0	0
7	Е	3	0	0	0	0
7	G	2	0	0	0	0
7	Ι	1	0	0	0	0
7	K	2	0	0	0	0
7	М	1	0	0	0	0
7	0	1	0	0	0	0
7	Q	2	0	0	0	0
7	S	2	0	0	0	0
All	All	23825	22664	22806	218	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

All (218)	close	$\operatorname{contacts}$	within	the same	$\operatorname{asymmetric}$	unit	are	listed	below,	sorted	by	their	clash
magnitud	le.												

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
6:I:401:NAG:H83	1:S:323:ASN:HB2	1.18	1.10
6:I:401:NAG:O3	6:I:401:NAG:H82	1.70	0.90
6:I:401:NAG:H83	1:S:323:ASN:CB	2.03	0.89
6:M:401:NAG:H3	6:M:401:NAG:H83	1.55	0.89
6:I:401:NAG:C8	1:S:323:ASN:HB2	2.02	0.88
4:X:2:NAG:H83	4:X:2:NAG:H3	1.63	0.81
1:S:254:LYS:O	1:S:260:ARG:NH2	2.19	0.75
1:S:350:ASN:ND2	6:S:401:NAG:H83	2.05	0.72
6:T:301:NAG:O3	6:T:301:NAG:H82	1.90	0.71
1:S:251:VAL:O	1:S:255:THR:HG23	1.92	0.69
1:C:213:TYR:CE2	1:C:289:LEU:HD22	2.28	0.69
2:D:184:LEU:HD22	2:D:198:PRO:CG	2.24	0.68
1:I:162:LEU:HD21	2:J:148:HIS:NE2	2.10	0.66
1:K:226:GLU:HB3	2:L:219:LEU:HD21	1.78	0.66
1:S:307:SER:OG	1:S:309:LYS:O	2.14	0.65
2:D:184:LEU:HD22	2:D:198:PRO:HG2	1.78	0.65
2:F:184:LEU:O	2:F:188:THR:HG23	1.96	0.65
2:F:184:LEU:HD22	2:F:198:PRO:HG3	1.78	0.65
2:F:184:LEU:HD22	2:F:198:PRO:CG	2.28	0.64

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:I:350:ASN:OD1	1:I:350:ASN:N	2.28	0.64
3:Y:2:NAG:C1	3:Y:2:NAG:H82	2.27	0.63
1:I:240:ASP:OD1	1:I:241:LYS:N	2.31	0.62
2:T:148:HIS:ND1	6:T:301:NAG:O7	2.32	0.62
2:L:144:LEU:HD12	2:L:168:TYR:O	2.00	0.62
2:T:144:LEU:HD12	2:T:168:TYR:O	2.00	0.62
2:F:145:LYS:NZ	2:P:196:ASP:OD2	2.32	0.61
1:S:240:ASP:OD1	1:S:241:LYS:N	2.33	0.61
1:E:213:TYR:CE2	1:E:289:LEU:HD22	2.36	0.61
4:X:1:NAG:H82	4:X:1:NAG:C1	2.31	0.60
1:A:151:ASN:OD1	1:A:151:ASN:N	2.34	0.60
1:A:212:LEU:HD12	1:A:231:THR:HG21	1.83	0.59
1:M:323:ASN:CB	6:S:401:NAG:H82	2.33	0.59
2:L:148:HIS:CD2	6:L:301:NAG:H83	2.38	0.59
1:A:231:THR:HG23	1:A:232:ILE:HG23	1.85	0.59
1:K:224:CYS:SG	1:K:225:SER:N	2.76	0.58
1:G:240:ASP:OD1	1:G:241:LYS:N	2.36	0.58
6:M:401:NAG:H3	6:M:401:NAG:C8	2.31	0.58
1:M:154:LEU:HD21	1:M:158:LYS:HE3	1.85	0.58
6:R:301:NAG:O7	6:R:301:NAG:O3	2.21	0.57
2:P:184:LEU:HD22	2:P:198:PRO:CG	2.35	0.57
2:D:164:LEU:HD12	2:D:165:ILE:N	2.19	0.57
1:M:213:TYR:CE2	1:M:289:LEU:HD22	2.40	0.57
1:A:240:ASP:OD1	1:A:241:LYS:N	2.37	0.56
2:T:160:THR:OG1	2:T:161:LYS:N	2.39	0.56
1:M:323:ASN:HB2	6:S:401:NAG:H82	1.88	0.56
2:T:184:LEU:HD22	2:T:198:PRO:CG	2.36	0.56
1:I:346:GLN:O	1:I:350:ASN:OD1	2.24	0.56
1:A:320:SER:HB3	1:A:324:SER:OG	2.06	0.56
1:M:240:ASP:OD1	1:M:241:LYS:N	2.39	0.55
1:Q:162:LEU:HD21	2:R:148:HIS:HE2	1.71	0.55
2:L:209:ASP:OD1	2:L:210:ASP:N	2.40	0.55
3:Y:2:NAG:C1	3:Y:2:NAG:C8	2.84	0.55
1:C:240:ASP:OD1	1:C:241:LYS:N	2.39	0.55
1:O:326:GLU:OE1	1:O:326:GLU:N	2.39	0.55
2:P:197:THR:HG23	2:P:197:THR:O	2.07	0.55
2:L:184:LEU:HD22	2:L:198:PRO:CG	2.37	0.55
2:L:206:ILE:HD11	2:L:231:LYS:HE2	1.88	0.55
3:Y:1:NAG:O7	3:Y:1:NAG:O3	2.21	0.55
4:X:2:NAG:H82	4:X:3:FUC:C1	2.38	0.54
2:N:147:ILE:CD1	2:N:149:LEU:HD21	2.37	0.54

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:N:184:LEU:HD22	2:N:198:PRO:CG	2.37	0.54
2:D:209:ASP:OD1	2:D:210:ASP:N	2.39	0.54
6:M:401:NAG:H82	6:M:401:NAG:C1	2.36	0.54
2:B:144:LEU:HD12	2:B:168:TYR:O	2.08	0.54
1:S:162:LEU:HD21	2:T:148:HIS:NE2	2.22	0.54
1:Q:218:LEU:H	1:Q:218:LEU:HD23	1.74	0.53
1:A:248:THR:HG22	1:G:348:PHE:CE1	2.44	0.53
1:S:231:THR:HG23	1:S:232:ILE:HG23	1.89	0.53
1:G:305:LEU:HD21	1:G:313:SER:HB3	1.90	0.53
2:N:150:ASN:OD1	3:Z:1:NAG:N2	2.41	0.53
4:X:1:NAG:C1	4:X:1:NAG:C8	2.86	0.53
1:G:154:LEU:HD21	1:G:158:LYS:HE3	1.91	0.52
2:R:197:THR:HG23	2:R:197:THR:O	2.09	0.52
1:G:307:SER:OG	1:G:309:LYS:O	2.27	0.52
2:J:144:LEU:HD21	2:J:167:ARG:HB3	1.90	0.52
2:L:184:LEU:O	2:L:188:THR:HG23	2.09	0.52
1:K:352:THR:HG22	1:K:352:THR:O	2.09	0.52
2:B:181:ASP:OD2	2:B:201:THR:OG1	2.28	0.52
2:D:144:LEU:HD21	2:D:167:ARG:HD3	1.92	0.52
2:P:209:ASP:OD1	2:P:210:ASP:N	2.42	0.52
2:J:209:ASP:OD1	2:J:210:ASP:N	2.41	0.51
2:L:164:LEU:HD12	2:L:165:ILE:N	2.25	0.51
4:X:1:NAG:H61	4:X:2:NAG:H82	1.92	0.51
4:X:2:NAG:H3	4:X:2:NAG:C8	2.36	0.51
2:J:139:GLY:HA2	2:J:175:ASP:OD2	2.11	0.51
1:Q:352:THR:O	1:Q:352:THR:HG22	2.10	0.51
2:J:184:LEU:HD22	2:J:198:PRO:CG	2.40	0.51
1:I:258:ILE:H	1:I:258:ILE:HD12	1.76	0.51
4:X:1:NAG:H3	4:X:1:NAG:H83	1.92	0.51
1:K:154:LEU:HD21	1:K:158:LYS:HE3	1.91	0.50
1:E:354:SER:O	6:E:401:NAG:H82	2.11	0.50
1:I:217:PRO:HD2	1:I:224:CYS:SG	2.52	0.50
2:T:144:LEU:HD11	2:T:167:ARG:HB3	1.93	0.49
2:N:150:ASN:OD1	2:N:150:ASN:N	2.44	0.49
2:J:144:LEU:HD23	2:J:145:LYS:N	2.27	0.49
1:S:305:LEU:HD11	1:S:313:SER:CB	2.43	0.49
1:O:162:LEU:HD21	2:P:148:HIS:CE1	2.48	0.49
1:E:240:ASP:OD1	1:E:241:LYS:N	2.46	0.49
2:L:197:THR:HG23	2:L:197:THR:O	2.13	0.48
1:I:254:LYS:HB2	1:O:290:LEU:HD11	1.95	0.48
2:T:209:ASP:OD1	2:T:210:ASP:N	2.47	0.48

	li ugom	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:P:144:LEU:HD11	2:P:167:ARG:HB3	1.95	0.48	
1:S:212:LEU:HD12	1:S:231:THR:HG21	1.96	0.48	
2:H:144:LEU:HD12	2:H:168:TYR:O	2.14	0.48	
1:O:186:VAL:HG12	1:O:186:VAL:O	2.13	0.47	
1:K:162:LEU:HD21	2:L:148:HIS:CE1	2.49	0.47	
1:A:258:ILE:HD12	1:A:258:ILE:H	1.80	0.47	
2:L:235:VAL:HG23	2:L:235:VAL:OXT	2.15	0.47	
1:S:352:THR:O	1:S:352:THR:HG22	2.14	0.47	
1:K:199:PHE:CE1	1:K:203:VAL:HG21	2.50	0.47	
2:P:184:LEU:HD22	2:P:198:PRO:HG3	1.97	0.47	
1:Q:216:CYS:SG	1:Q:225:SER:N	2.88	0.47	
1:S:305:LEU:HD21	1:S:313:SER:HB3	1.97	0.47	
1:S:226:GLU:HB3	2:T:219:LEU:HD21	1.97	0.47	
2:F:201:THR:HG22	2:P:204:ARG:NH2	2.30	0.46	
1:K:350:ASN:HD22	6:K:401:NAG:H83	1.79	0.46	
1:S:305:LEU:HD11	1:S:313:SER:HB3	1.96	0.46	
2:N:184:LEU:HD22	2:N:198:PRO:HG2	1.97	0.46	
1:O:209:TYR:HE2	1:O:293:SER:HG	1.62	0.46	
1:E:350:ASN:N	1:E:350:ASN:OD1	2.49	0.46	
1:G:251:VAL:O	1:G:255:THR:HG23	2.16	0.46	
2:B:139:GLY:N	2:B:175:ASP:OD1	2.48	0.46	
1:S:228:ARG:O	1:S:231:THR:HG22	2.15	0.46	
1:K:180:ARG:HH22	1:K:186:VAL:HG22	1.80	0.46	
2:L:206:ILE:HD11	2:L:231:LYS:CE	2.46	0.45	
2:B:193:LEU:HD11	2:T:168:TYR:OH	2.16	0.45	
2:H:209:ASP:OD1	2:H:210:ASP:N	2.48	0.45	
1:0:323:ASN:ND2	1:Q:277:LEU:HD21	2.32	0.45	
1:O:307:SER:OG	1:O:309:LYS:O	2.34	0.45	
2:P:184:LEU:HD22	2:P:198:PRO:HG2	1.97	0.45	
2:B:184:LEU:HD22	2:B:198:PRO:CG	2.47	0.45	
2:B:184:LEU:HD22	2:B:198:PRO:HG2	1.99	0.45	
2:N:209:ASP:OD1	2:N:210:ASP:N	2.48	0.45	
1:M:220:ASP:OD1	1:M:220:ASP:N	2.50	0.45	
3:U:2:NAG:O7	3:U:2:NAG:H3	2.16	0.45	
2:F:184:LEU:HD22	2:F:198:PRO:HG2	1.99	0.45	
1:Q:277:LEU:C	1:Q:277:LEU:HD23	2.38	0.44	
1:G:281:LEU:C	1:G:281:LEU:HD23	2.38	0.44	
1:I:226:GLU:HB3	2:J:219:LEU:HD21	1.99	0.44	
1:A:252:SER:HA	1:G:205:PRO:HG3	2.00	0.44	
1:K:217:PRO:HD2	1:K:224:CYS:SG	2.57	0.44	
1:M:258:ILE:HD12	1:M:258:ILE:H	1.82	0.44	

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
6:M:401:NAG:C8	6:M:401:NAG:C1	2.95	0.44
1:A:228:ARG:O	1:A:231:THR:HG22	2.18	0.44
1:M:186:VAL:HG12	1:M:186:VAL:O	2.17	0.44
2:L:164:LEU:HD12	2:L:165:ILE:C	2.39	0.43
1:C:305:LEU:HD12	1:C:311:SER:HB3	1.99	0.43
1:E:186:VAL:O	1:E:186:VAL:HG12	2.18	0.43
1:O:314:PRO:HD3	1:O:335:PHE:CG	2.53	0.43
1:S:350:ASN:CG	6:S:401:NAG:H83	2.38	0.43
1:C:285:TYR:HD1	1:C:344:ALA:HB2	1.83	0.43
1:E:154:LEU:C	1:E:154:LEU:HD23	2.39	0.43
2:D:164:LEU:HD12	2:D:165:ILE:C	2.38	0.43
1:M:154:LEU:C	1:M:154:LEU:HD23	2.39	0.43
1:A:162:LEU:HD21	2:B:148:HIS:NE2	2.34	0.43
2:J:184:LEU:HD22	2:J:198:PRO:HG3	2.00	0.43
2:D:147:ILE:CD1	2:D:149:LEU:HD21	2.49	0.43
2:J:184:LEU:HD22	2:J:198:PRO:HG2	2.01	0.43
1:K:252:SER:O	1:K:255:THR:HG22	2.18	0.43
1:A:324:SER:H	6:G:401:NAG:H81	1.84	0.43
1:E:275:LEU:N	1:E:275:LEU:HD12	2.34	0.43
2:F:211:ASP:OD2	2:F:225:LYS:NZ	2.52	0.43
2:N:184:LEU:HD22	2:N:198:PRO:HG3	2.01	0.43
1:O:218:LEU:N	1:O:218:LEU:HD22	2.34	0.43
2:L:180:TYR:CZ	2:L:184:LEU:HD11	2.54	0.42
1:C:249:LEU:HD11	1:C:299:VAL:HG22	2.02	0.42
1:G:275:LEU:HD12	1:G:275:LEU:N	2.34	0.42
1:M:258:ILE:HD12	1:M:258:ILE:N	2.34	0.42
1:I:339:ALA:O	1:I:343:ASN:ND2	2.52	0.42
2:R:184:LEU:HD22	2:R:198:PRO:CG	2.49	0.42
1:G:199:PHE:CE1	1:G:203:VAL:HG21	2.53	0.42
2:H:197:THR:HG23	2:H:197:THR:O	2.20	0.42
1:O:285:TYR:HD1	1:O:344:ALA:HB2	1.84	0.42
1:O:281:LEU:HD23	1:O:281:LEU:C	2.39	0.42
3:Y:2:NAG:H3	3:Y:2:NAG:H83	2.01	0.42
1:I:305:LEU:HD11	1:I:313:SER:HB3	2.00	0.42
2:L:154:LEU:HD22	2:R:183:ILE:HG23	2.02	0.42
1:Q:162:LEU:HD21	2:R:148:HIS:NE2	2.32	0.42
2:B:168:TYR:CZ	2:T:193:LEU:HD22	2.54	0.42
2:N:147:ILE:HD11	2:N:149:LEU:HD21	2.02	0.42
2:T:180:TYR:CZ	2:T:184:LEU:HD11	2.55	0.42
2:H:184:LEU:HD22	2:H:198:PRO:HB2	2.02	0.42
1:K:154:LEU:C	1:K:154:LEU:HD23	2.39	0.42

Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:M:290:LEU:HD21	1:Q:251:VAL:HG13	2.01	0.42
1:E:222:SER:OG	1:E:223:ALA:N	2.53	0.41
1:E:339:ALA:O	1:E:343:ASN:ND2	2.53	0.41
6:M:401:NAG:HN2	1:Q:323:ASN:HB2	1.85	0.41
1:E:154:LEU:HD21	1:E:158:LYS:HE3	2.03	0.41
1:E:208:SER:HG	1:E:209:TYR:HD1	1.64	0.41
2:N:150:ASN:OD1	3:Z:1:NAG:C2	2.68	0.41
2:L:184:LEU:HD22	2:L:198:PRO:HG3	2.02	0.41
1:O:199:PHE:CD1	1:O:203:VAL:HG21	2.56	0.41
1:C:305:LEU:HD11	1:C:313:SER:CB	2.51	0.41
1:E:154:LEU:HD23	1:E:154:LEU:O	2.20	0.41
1:M:343:ASN:HB3	1:Q:323:ASN:HD21	1.84	0.41
1:O:254:LYS:HB2	1:Q:290:LEU:HD11	2.02	0.41
2:B:144:LEU:HD13	2:B:232:CYS:SG	2.60	0.41
1:O:220:ASP:HA	1:O:308:PRO:HA	2.02	0.41
1:S:258:ILE:HD12	1:S:258:ILE:H	1.86	0.41
1:G:199:PHE:CD1	1:G:203:VAL:HG21	2.55	0.41
2:J:194:ASP:N	2:J:194:ASP:OD1	2.54	0.41
1:O:249:LEU:HD11	1:O:299:VAL:HG12	2.03	0.41
1:Q:305:LEU:HD21	1:Q:313:SER:HB3	2.03	0.41
1:E:348:PHE:O	1:E:352:THR:HG23	2.21	0.41
1:G:186:VAL:HG12	1:G:186:VAL:O	2.20	0.41
1:K:212:LEU:HD21	1:K:296:ILE:HD11	2.03	0.41
2:L:184:LEU:HD22	2:L:198:PRO:HG2	2.03	0.41
1:O:248:THR:O	1:O:251:VAL:HG22	2.20	0.41
2:R:194:ASP:N	2:R:194:ASP:OD1	2.54	0.41
1:S:218:LEU:HD23	1:S:218:LEU:H	1.85	0.41
1:A:186:VAL:HG12	1:A:186:VAL:O	2.20	0.41
1:I:224:CYS:SG	1:I:225:SER:N	2.94	0.41
1:I:186:VAL:O	1:I:186:VAL:HG12	2.22	0.40
6:M:401:NAG:H83	6:M:401:NAG:C3	2.39	0.40
1:C:209:TYR:N	1:C:209:TYR:CD1	2.89	0.40
1:I:305:LEU:HD11	1:I:313:SER:CB	2.51	0.40
1:A:277:LEU:C	1:A:277:LEU:HD23	2.42	0.40
1:K:296:ILE:O	1:K:296:ILE:HG22	2.22	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	205/260~(79%)	194 (95%)	11 (5%)	0	100	100
1	С	202/260~(78%)	191~(95%)	11 (5%)	0	100	100
1	Е	203/260~(78%)	198 (98%)	5(2%)	0	100	100
1	G	202/260~(78%)	193~(96%)	9~(4%)	0	100	100
1	Ι	197/260~(76%)	193 (98%)	4 (2%)	0	100	100
1	К	198/260~(76%)	194 (98%)	4 (2%)	0	100	100
1	М	202/260~(78%)	198 (98%)	3 (2%)	1 (0%)	29	43
1	Ο	203/260~(78%)	194 (96%)	9 (4%)	0	100	100
1	Q	199/260~(76%)	194 (98%)	5 (2%)	0	100	100
1	S	201/260~(77%)	195 (97%)	6(3%)	0	100	100
2	В	95/99~(96%)	93~(98%)	2(2%)	0	100	100
2	D	96/99~(97%)	92~(96%)	4 (4%)	0	100	100
2	F	96/99~(97%)	94 (98%)	2(2%)	0	100	100
2	Н	94/99~(95%)	92~(98%)	2(2%)	0	100	100
2	J	96/99~(97%)	92 (96%)	4 (4%)	0	100	100
2	L	94/99~(95%)	90 (96%)	4 (4%)	0	100	100
2	Ν	93/99~(94%)	88~(95%)	5 (5%)	0	100	100
2	Р	93/99~(94%)	89 (96%)	4 (4%)	0	100	100
2	R	93/99~(94%)	87 (94%)	6 (6%)	0	100	100
2	Т	94/99~(95%)	91~(97%)	3(3%)	0	100	100
All	All	2956/3590~(82%)	2852 (96%)	103 (4%)	1 (0%)	100	100

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	М	322	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	184/232~(79%)	177~(96%)	7 (4%)	33	49
1	С	182/232~(78%)	174 (96%)	8 (4%)	28	43
1	Ε	181/232~(78%)	177 (98%)	4 (2%)	52	70
1	G	182/232~(78%)	178 (98%)	4 (2%)	52	70
1	Ι	180/232~(78%)	174 (97%)	6 (3%)	38	54
1	Κ	179/232~(77%)	174 (97%)	5(3%)	43	61
1	М	182/232~(78%)	175~(96%)	7 (4%)	33	49
1	Ο	180/232~(78%)	174 (97%)	6 (3%)	38	54
1	Q	181/232 (78%)	172 (95%)	9(5%)	24	38
1	S	181/232 (78%)	174 (96%)	7 (4%)	32	48
2	В	85/90~(94%)	82 (96%)	3 (4%)	36	52
2	D	89/90~(99%)	88~(99%)	1 (1%)	73	85
2	F	89/90~(99%)	87~(98%)	2 (2%)	52	70
2	Н	88/90~(98%)	86~(98%)	2(2%)	50	68
2	J	88/90~(98%)	85 (97%)	3 (3%)	37	53
2	L	87/90~(97%)	86 (99%)	1 (1%)	73	85
2	Ν	88/90~(98%)	83 (94%)	5 (6%)	20	31
2	Р	87/90~(97%)	85 (98%)	2 (2%)	50	68
2	R	88/90~(98%)	88 (100%)	0	100	100
2	Т	89/90~(99%)	83 (93%)	6 (7%)	16	25
All	All	2690/3220~(84%)	2602 (97%)	88 (3%)	38	54

All (88) residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	151	ASN
1	А	181	VAL
1	А	197	ARG

\mathbf{Mol}	Chain	Res	Type
1	А	227	ARG
1	А	281	LEU
1	Ā	311	SER
1	A	352	THR
2	B	143	LEU
2	В	145	LYS
2	В	150	ASN
1	С	153	CYS
1	С	182	SER
1	С	229	ARG
1	С	278	SER
1	С	311	SER
1	С	317	ASP
1	С	320	SER
1	С	323	ASN
2	D	197	THR
1	Е	153	CYS
1	Е	239	GLU
1	Е	307	SER
1	Е	350	ASN
2	F	148	HIS
2	F	199	SER
1	G	153	CYS
1	G	182	SER
1	G	222	SER
1	G	225	SER
2	Н	175	ASP
2	Н	188	THR
1	Ι	153	CYS
1	Ι	255	THR
1	Ι	307	SER
1	Ι	317	ASP
1	Ι	320	SER
1	Ι	350	ASN
2	J	188	THR
2	J	201	THR
2	J	225	LYS
1	K	182	SER
1	K	246	CYS
1	Κ	309	LYS
1	Κ	316	CYS
1	Κ	317	ASP

Mol	Chain	Res	Type
2	L	178	THR
1	М	153	CYS
1	М	181	VAL
1	М	220	ASP
1	М	229	ARG
1	М	293	SER
1	М	317	ASP
1	М	320	SER
2	N	150	ASN
2	N	188	THR
2	N	189	HIS
2	N	190	ASN
2	N	195	LYS
1	0	153	CYS
1	0	182	SER
1	0	197	ARG
1	0	221	GLN
1	0	317	ASP
1	0	320	SER
2	Р	150	ASN
2	Р	159	ARG
1	Q	171	SER
1	Q	181	VAL
1	Q	216	CYS
1	Q	224	CYS
1	Q	229	ARG
1	Q	255	THR
1	Q	280	CYS
1	Q	306	ARG
1	Q	311	SER
1	S	197	ARG
1	S	280	CYS
1	S	307	SER
1	S	309	LYS
1	S	317	ASP
1	S	323	ASN
1	S	350	ASN
2	Т	150	ASN
2	Т	160	THR
2	Т	177	GLU
2	Т	188	THR
2	Т	189	HIS

 $Continued \ from \ previous \ page...$

Mol	Chain	Res	Type
2	Т	218	SER

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (13) such sidechains are listed below:

Mol	Chain	Res	Type
1	С	152	ASN
1	С	323	ASN
1	Е	343	ASN
2	F	227	HIS
2	Н	227	HIS
1	Ι	343	ASN
2	L	148	HIS
1	М	152	ASN
2	Р	148	HIS
1	Q	221	GLN
1	Q	323	ASN
1	Q	350	ASN
1	S	323	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

19 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mol Type Chain		Dec	Tink	Bo	ond leng	$_{\rm sths}$	Bond angles		
10101	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
3	NAG	U	1	1,3	14,14,15	0.93	2 (14%)	17,19,21	1.25	2 (11%)
3	NAG	U	2	3	14,14,15	0.26	0	17,19,21	0.50	0
4	NAG	V	1	2,4	14,14,15	0.26	0	17,19,21	0.37	0
4	NAG	V	2	4	14,14,15	0.25	0	17,19,21	0.53	0
4	FUC	V	3	4	10,10,11	0.72	0	14,14,16	0.84	0
4	NAG	W	1	2,4	14,14,15	0.21	0	17,19,21	0.34	0
4	NAG	W	2	4	14,14,15	0.20	0	17,19,21	0.43	0
4	FUC	W	3	4	10,10,11	0.83	0	14,14,16	0.88	0
4	NAG	Х	1	2,4	14,14,15	0.39	0	17,19,21	0.91	1 (5%)
4	NAG	Х	2	4	14,14,15	0.33	0	17,19,21	1.03	2 (11%)
4	FUC	Х	3	4	10,10,11	0.98	1 (10%)	14,14,16	0.82	0
3	NAG	Y	1	2,3	14,14,15	0.43	0	17,19,21	0.46	0
3	NAG	Y	2	3	14,14,15	0.36	0	17,19,21	0.82	1 (5%)
3	NAG	Ζ	1	2,3	14,14,15	0.20	0	17,19,21	0.43	0
3	NAG	Z	2	3	14,14,15	0.21	0	17,19,21	0.52	0
5	NAG	a	1	1,5	14,14,15	0.30	0	17,19,21	0.56	0
5	FUC	a	2	5	10,10,11	0.84	0	14,14,16	0.87	0
3	NAG	b	1	2,3	14,14,15	0.25	0	17,19,21	0.48	0
3	NAG	b	2	3	14,14,15	0.30	0	17,19,21	0.56	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	NAG	U	1	1,3	-	4/6/23/26	0/1/1/1
3	NAG	U	2	3	-	3/6/23/26	0/1/1/1
4	NAG	V	1	2,4	-	0/6/23/26	0/1/1/1
4	NAG	V	2	4	-	0/6/23/26	0/1/1/1
4	FUC	V	3	4	-	-	0/1/1/1
4	NAG	W	1	2,4	-	0/6/23/26	0/1/1/1
4	NAG	W	2	4	-	0/6/23/26	0/1/1/1
4	FUC	W	3	4	-	-	0/1/1/1
4	NAG	Х	1	2,4	-	3/6/23/26	0/1/1/1
4	NAG	Х	2	4	-	3/6/23/26	0/1/1/1
4	FUC	Х	3	4	-	-	0/1/1/1
3	NAG	Y	1	2,3	-	2/6/23/26	0/1/1/1
3	NAG	Y	2	3	-	3/6/23/26	0/1/1/1
3	NAG	Z	1	2,3	-	1/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	NAG	Ζ	2	3	-	0/6/23/26	0/1/1/1
5	NAG	a	1	1,5	-	2/6/23/26	0/1/1/1
5	FUC	a	2	5	-	-	0/1/1/1
3	NAG	b	1	2,3	-	2/6/23/26	0/1/1/1
3	NAG	b	2	3	-	2/6/23/26	0/1/1/1

All (3) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
3	U	1	NAG	O5-C1	2.57	1.47	1.43
3	U	1	NAG	C1-C2	2.22	1.55	1.52
4	Х	3	FUC	C1-C2	2.03	1.56	1.52

All (6) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	U	1	NAG	C1-O5-C5	3.63	117.11	112.19
4	Х	2	NAG	C2-N2-C7	2.78	126.86	122.90
3	Y	2	NAG	C2-N2-C7	2.48	126.43	122.90
4	Х	1	NAG	C2-N2-C7	2.39	126.31	122.90
4	Х	2	NAG	C1-O5-C5	2.32	115.33	112.19
3	U	1	NAG	O4-C4-C5	2.23	114.84	109.30

There are no chirality outliers.

All (25) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	Y	1	NAG	C1-C2-N2-C7
5	a	1	NAG	C4-C5-C6-O6
5	a	1	NAG	O5-C5-C6-O6
3	U	1	NAG	C4-C5-C6-O6
3	U	2	NAG	O5-C5-C6-O6
3	U	1	NAG	C8-C7-N2-C2
3	U	1	NAG	O7-C7-N2-C2
3	Y	2	NAG	C8-C7-N2-C2
3	Y	2	NAG	O7-C7-N2-C2
3	b	1	NAG	C8-C7-N2-C2
3	b	1	NAG	O7-C7-N2-C2
4	Х	1	NAG	C8-C7-N2-C2
4	Х	1	NAG	O7-C7-N2-C2

Mol	Chain	Res	Type	Atoms
4	Х	2	NAG	C8-C7-N2-C2
4	Х	2	NAG	O7-C7-N2-C2
3	U	2	NAG	C4-C5-C6-O6
3	Y	2	NAG	C1-C2-N2-C7
3	U	1	NAG	O5-C5-C6-O6
3	b	2	NAG	O5-C5-C6-O6
4	Х	1	NAG	C1-C2-N2-C7
3	U	2	NAG	C3-C2-N2-C7
3	Y	1	NAG	C3-C2-N2-C7
3	b	2	NAG	C3-C2-N2-C7
4	Х	2	NAG	C3-C2-N2-C7
3	Z	1	NAG	C1-C2-N2-C7

Continued from previous page...

There are no ring outliers.

7 monomers are involved in 14 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	Ζ	1	NAG	2	0
4	Х	1	NAG	4	0
3	U	2	NAG	1	0
3	Y	1	NAG	1	0
3	Y	2	NAG	3	0
4	Х	2	NAG	4	0
4	Х	3	FUC	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

10 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	$_{\rm ths}$	В	ond ang	les
INIOI	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
6	NAG	K	401	1	$14,\!14,\!15$	0.38	0	$17,\!19,\!21$	0.63	0
6	NAG	L	301	2	14,14,15	0.47	0	$17,\!19,\!21$	0.79	1 (5%)
6	NAG	Е	401	1	14,14,15	0.36	0	17,19,21	0.51	0
6	NAG	М	401	1	$14,\!14,\!15$	0.31	0	$17,\!19,\!21$	0.52	0
6	NAG	R	301	2	$14,\!14,\!15$	0.34	0	$17,\!19,\!21$	0.55	0
6	NAG	S	401	1	14,14,15	0.61	0	$17,\!19,\!21$	0.79	2 (11%)
6	NAG	Ι	401	1	14,14,15	0.28	0	17,19,21	0.63	0
6	NAG	G	401	1	14,14,15	0.41	0	17,19,21	0.60	0
6	NAG	В	301	2	14,14,15	0.29	0	17,19,21	0.40	0
6	NAG	Т	301	2	14,14,15	0.38	0	17,19,21	0.50	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
6	NAG	К	401	1	-	2/6/23/26	0/1/1/1
6	NAG	L	301	2	-	1/6/23/26	0/1/1/1
6	NAG	Е	401	1	-	3/6/23/26	0/1/1/1
6	NAG	М	401	1	-	5/6/23/26	0/1/1/1
6	NAG	R	301	2	-	2/6/23/26	0/1/1/1
6	NAG	S	401	1	-	2/6/23/26	0/1/1/1
6	NAG	Ι	401	1	-	5/6/23/26	0/1/1/1
6	NAG	G	401	1	-	2/6/23/26	0/1/1/1
6	NAG	В	301	2	-	1/6/23/26	0/1/1/1
6	NAG	Т	301	2	-	2/6/23/26	0/1/1/1

There are no bond length outliers.

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$\operatorname{Ideal}(^{o})$
6	L	301	NAG	C1-O5-C5	2.92	116.15	112.19
6	S	401	NAG	C2-N2-C7	2.02	125.78	122.90
6	S	401	NAG	C1-O5-C5	2.01	114.92	112.19

All (3) bond angle outliers are listed below:

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
6	Ι	401	NAG	O5-C5-C6-O6
6	R	301	NAG	C1-C2-N2-C7
6	G	401	NAG	C8-C7-N2-C2
6	G	401	NAG	O7-C7-N2-C2
6	Ι	401	NAG	C8-C7-N2-C2
6	Ι	401	NAG	O7-C7-N2-C2
6	Κ	401	NAG	C8-C7-N2-C2
6	Κ	401	NAG	O7-C7-N2-C2
6	М	401	NAG	C8-C7-N2-C2
6	М	401	NAG	O7-C7-N2-C2
6	S	401	NAG	C8-C7-N2-C2
6	S	401	NAG	O7-C7-N2-C2
6	Т	301	NAG	C8-C7-N2-C2
6	Т	301	NAG	O7-C7-N2-C2
6	Е	401	NAG	O5-C5-C6-O6
6	Ι	401	NAG	C4-C5-C6-O6
6	М	401	NAG	C4-C5-C6-O6
6	В	301	NAG	O5-C5-C6-O6
6	М	401	NAG	O5-C5-C6-O6
6	Е	401	NAG	C3-C2-N2-C7
6	L	301	NAG	C3-C2-N2-C7
6	М	401	NAG	C3-C2-N2-C7
6	R	301	NAG	C3-C2-N2-C7
6	Е	401	NAG	C4-C5-C6-O6
6	Ι	401	NAG	C1-C2-N2-C7

All (25) torsion outliers are listed below:

There are no ring outliers.

9 monomers are involved in 21 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
6	K	401	NAG	1	0
6	L	301	NAG	1	0

Mol	Chain	Res	Type	Clashes	Symm-Clashes
6	Е	401	NAG	1	0
6	М	401	NAG	6	0
6	R	301	NAG	1	0
6	S	401	NAG	4	0
6	Ι	401	NAG	4	0
6	G	401	NAG	1	0
6	Т	301	NAG	2	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$OWAB(A^2)$	Q<0.9
1	А	207/260~(79%)	0.96	20 (9%) 7 6	58, 68, 100, 118	0
1	С	204/260~(78%)	0.83	16 (7%) 13 10	60, 72, 103, 120	0
1	Е	205/260~(78%)	1.00	19 (9%) 8 7	65, 75, 112, 141	0
1	G	204/260~(78%)	0.86	17 (8%) 11 9	60, 74, 99, 111	0
1	Ι	201/260~(77%)	0.80	9 (4%) 33 30	61, 76, 104, 135	0
1	K	202/260~(77%)	0.84	20 (9%) 7 5	69, 83, 115, 136	0
1	М	204/260~(78%)	0.81	17 (8%) 11 9	68, 79, 101, 118	0
1	Ο	205/260~(78%)	0.71	13 (6%) 20 17	64, 79, 109, 128	0
1	Q	203/260~(78%)	0.86	19 (9%) 8 6	69, 84, 122, 134	0
1	S	203/260~(78%)	0.82	18 (8%) 9 8	61, 78, 110, 137	0
2	В	97/99~(97%)	0.75	12 (12%) 4 2	64, 85, 114, 118	0
2	D	98/99~(98%)	0.80	11 (11%) 5 3	64, 76, 105, 113	0
2	F	98/99~(98%)	0.81	7 (7%) 16 12	69, 78, 94, 106	0
2	Н	96/99~(96%)	0.74	5 (5%) 27 24	65, 82, 104, 118	0
2	J	98/99~(98%)	0.58	4 (4%) 37 33	72, 80, 106, 126	0
2	L	96/99~(96%)	0.78	8 (8%) 11 9	79, 102, 126, 137	0
2	Ν	95/99~(95%)	0.56	7 (7%) 14 12	73, 85, 103, 111	0
2	Р	95/99~(95%)	0.61	7 (7%) 14 12	69, 81, 99, 108	0
2	R	95/99~(95%)	0.75	12 (12%) 3 2	75, 104, 123, 135	0
2	Т	95/99~(95%)	0.67	10 (10%) 6 4	75, 94, 114, 123	0
All	All	3001/3590 (83%)	0.80	251 (8%) 11 8	58, 80, 112, 141	0

All (251) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	А	355	GLU	5.8
1	Е	321	SER	5.5
1	S	257	TYR	5.4
1	Q	290	LEU	4.7
1	М	218	LEU	4.7
1	Q	352	THR	4.4
1	Е	242	GLU	4.3
1	S	262	ARG	4.2
1	А	218	LEU	4.1
2	Ν	235	VAL	4.0
1	Ι	257	TYR	4.0
2	L	193	LEU	3.9
2	В	219	LEU	3.8
2	D	220	GLU	3.8
2	Ν	183	ILE	3.7
1	М	257	TYR	3.7
1	G	203	VAL	3.6
2	D	219	LEU	3.6
1	Е	185	GLU	3.6
2	Р	219	LEU	3.5
1	Κ	352	THR	3.5
1	А	290	LEU	3.4
1	Κ	247	LEU	3.4
1	Q	324	SER	3.4
2	Т	193	LEU	3.4
1	G	341	LEU	3.4
1	Κ	296	ILE	3.4
2	В	159	ARG	3.4
1	А	246	CYS	3.3
1	Q	305	LEU	3.3
2	Н	235	VAL	3.3
1	Е	341	LEU	3.2
2	L	151	VAL	3.2
1	Ο	300	MET	3.2
1	G	209	TYR	3.2
1	0	258	ILE	3.2
2	R	184	LEU	3.2
1	Ι	221	GLN	3.2
2	R	187	LEU	3.2
1	А	297	GLY	3.2
1	S	220	ASP	3.1
2	R	174	HIS	3.1
1	Е	247	LEU	3.0
1	E	247	LEU	3.0

Mol	Chain	Res	Type	RSRZ
1	K	341	LEU	3.0
2	Р	233	ALA	3.0
1	0	251	VAL	3.0
2	Т	176	ALA	3.0
2	F	219	LEU	3.0
2	В	193	LEU	3.0
2	Р	172	PRO	3.0
1	Ε	320	SER	2.9
2	F	164	LEU	2.9
2	Т	151	VAL	2.9
1	С	251	VAL	2.9
1	Е	348	PHE	2.9
2	R	219	LEU	2.9
1	0	257	TYR	2.9
1	М	219	GLY	2.9
1	G	263	LEU	2.9
2	Н	229	ALA	2.9
1	Q	232	ILE	2.9
1	М	220	ASP	2.9
1	Q	174	ILE	2.8
2	L	183	ILE	2.8
2	J	224	LEU	2.8
1	Κ	185	GLU	2.8
1	Κ	263	LEU	2.8
2	L	154	LEU	2.8
2	R	151	VAL	2.8
1	Q	257	TYR	2.8
1	A	247	LEU	2.8
1	Q	345	ILE	2.8
1	S	351	GLY	2.8
2	Р	173	CYS	2.8
1	Ι	312	VAL	2.7
2	R	164	LEU	2.7
1	С	203	VAL	2.7
2	L	143	LEU	2.7
1	Q	263	LEU	2.7
1	Ι	310	ILE	2.7
1	0	310	ILE	2.7
1	Q	169	TYR	2.7
1	Κ	200	PHE	2.6
1	K	348	PHE	2.6
1	Е	220	ASP	2.6

8OS6

Mol	Chain	Res	Type	RSRZ
2	Т	183	ILE	2.6
2	D	140	ARG	2.6
1	S	258	ILE	2.6
1	М	202	LYS	2.6
1	Q	306	ARG	2.6
1	S	335	PHE	2.6
1	Κ	199	PHE	2.6
2	D	195	LYS	2.6
1	А	352	THR	2.6
1	Е	184	ALA	2.6
2	Ν	219	LEU	2.6
1	М	266	PHE	2.6
2	Ν	233	ALA	2.6
1	G	185	GLU	2.6
1	С	241	LYS	2.5
1	Κ	257	TYR	2.5
1	S	247	LEU	2.5
1	S	190	ARG	2.5
1	С	186	VAL	2.5
2	D	215	LEU	2.5
2	R	224	LEU	2.5
1	Κ	220	ASP	2.5
2	В	189	HIS	2.5
2	L	187	LEU	2.5
1	А	345	ILE	2.5
1	Ι	290	LEU	2.5
1	0	212	LEU	2.5
2	J	215	LEU	2.5
1	Е	311	SER	2.5
1	S	260	ARG	2.5
1	С	258	ILE	2.5
1	Е	323	ASN	2.5
1	C	244	PRO	2.5
1	0	308	PRO	2.5
1	С	249	LEU	2.5
2	N	206	ILE	2.5
1	Κ	206	LYS	2.5
1	A	232	ILE	2.4
2	В	183	ILE	2.4
2	F	154	LEU	2.4
1	Q	348	PHE	2.4
2	R	192	LYS	2.4

80S6

Mol	Chain	Res	Type	RSRZ
1	G	312	VAL	2.4
2	R	235	VAL	2.4
1	K	262	ARG	2.4
2	R	159	ARG	2.4
1	S	200	PHE	2.4
2	В	192	LYS	2.4
1	G	331	PHE	2.4
2	J	219	LEU	2.4
1	Κ	310	ILE	2.4
1	0	186	VAL	2.4
2	D	201	THR	2.4
2	В	161	LYS	2.4
2	В	202	CYS	2.4
1	E	150	GLU	2.4
1	М	335	PHE	2.4
1	Ο	185	GLU	2.4
1	А	154	LEU	2.3
1	М	296	ILE	2.3
1	М	331	PHE	2.3
1	М	340	CYS	2.3
1	S	266	PHE	2.3
1	М	232	ILE	2.3
1	А	181	VAL	2.3
1	S	348	PHE	2.3
2	Р	235	VAL	2.3
1	С	246	CYS	2.3
2	L	174	HIS	2.3
1	С	153	CYS	2.3
1	A	263	LEU	2.3
1	S	217	PRO	2.3
1	E	345	ILE	2.3
2	J	198	PRO	2.3
2	Т	195	LYS	2.3
2	Т	198	PRO	2.3
1	М	341	LEU	2.3
1	Q	341	LEU	2.3
1	Q	213	TYR	2.3
1	S	310	ILE	2.3
1	K	229	ARG	2.3
2	F	151	VAL	2.3
1	C	196	LEU	2.3
1	Ι	263	LEU	2.3

80S6

Mol	Chain	Res	Type	RSRZ	
1	G	310	ILE	2.3	
1	S	345 ILE		2.3	
1	А	320	SER	2.2	
2	L	201	THR	2.2	
2	Р	183	ILE	2.2	
1	Е	302	PRO	2.2	
2	F	160	THR	2.2	
1	G	295	LEU	2.2	
2	F	220	GLU	2.2	
2	Р	214	PHE	2.2	
1	М	312	VAL	2.2	
1	S	164	ASP	2.2	
1	А	266	PHE	2.2	
1	А	335	PHE	2.2	
1	А	258	ILE	2.2	
1	G	232	ILE	2.2	
1	Κ	232	ILE	2.2	
1	Q	186	VAL	2.2	
2	D	183	ILE	2.2	
1	Κ	313	SER	2.2	
2	Н	187	LEU	2.2	
1	С	158	LYS	2.2	
1	Q	226	GLU	2.2	
1	С	199	PHE	2.2	
1	Κ	331	PHE	2.2	
1	Q	251	VAL	2.2	
1	М	345	ILE	2.1	
1	Q	258	ILE	2.1	
1	Ι	331	PHE	2.1	
2	Н	214	PHE	2.1	
1	Е	198	GLN	2.1	
1	Ι	311	SER	2.1	
1	G	186	VAL	2.1	
1	G	196	LEU	2.1	
1	A	314	PRO	2.1	
1	М	250	GLN	2.1	
1	G	262	ARG	2.1	
1	K	169	TYR	2.1	
1	S	232	ILE	2.1	
1	S	341	LEU	2.1	
2	D	159	ARG	2.1	
2	R	161	LYS	2.1	

Mol	Chain	Res	Type	RSRZ	
2	Т	177	GLU	2.1	
1	М	339	ALA	2.1	
1	С	300	MET	2.1	
2	В	178	THR	2.1	
1	А	331	PHE	2.1	
1	0	233	VAL	2.1	
2	Т	164	LEU	2.1	
1	Е	165	THR	2.1	
1	G	266	PHE	2.1	
1	G	267	PHE	2.1	
2	Т	200	ARG	2.1	
1	0	203	VAL	2.1	
2	Н	212	ILE	2.1	
1	С	218	LEU	2.1	
1	Е	221	GLN	2.1	
1	Ι	217	PRO	2.1	
1	G	257	TYR	2.1	
2	В	229	ALA	2.1	
2	В	166	PHE	2.1	
2	Т	154	LEU	2.0	
2	Ν	151	VAL	2.0	
1	Е	254	LYS	2.0	
1	М	334	PHE	2.0	
2	В	149	LEU	2.0	
2	F	143	LEU	2.0	
1	G	174	ILE	2.0	
2	D	172	PRO	2.0	
1	Q	229	ARG	2.0	
2	D	160	THR	2.0	
1	А	250	GLN	2.0	
2	R	214	PHE	2.0	
2	D	187	LEU	2.0	
1	Е	205	PRO	2.0	
1	Ō	260	ARG	2.0	
1	K	174	ILE	2.0	
1	0	209	TYR	2.0	
1	С	324	SER	2.0	
2	N	193	LEU	2.0	
1	A	302	PRO	2.0	
1	C	233	VAL	2.0	

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors($Å^2$)	Q<0.9
5	FUC	a	2	10/11	0.68	0.28	100,105,126,127	0
3	NAG	U	2	14/15	0.73	0.34	93,95,97,97	0
3	NAG	b	1	14/15	0.74	0.21	80,84,101,101	0
3	NAG	b	2	14/15	0.74	0.17	83,86,103,105	0
3	NAG	U	1	14/15	0.74	0.26	86,100,121,121	0
5	NAG	a	1	14/15	0.76	0.20	92,105,121,126	0
4	NAG	W	2	14/15	0.79	0.15	82,87,103,105	0
4	FUC	Х	3	10/11	0.82	0.24	80,83,100,100	0
4	FUC	W	3	10/11	0.83	0.33	83,87,104,105	0
4	FUC	V	3	10/11	0.83	0.23	80,86,104,104	0
3	NAG	Z	1	14/15	0.84	0.19	81,85,102,102	0
3	NAG	Z	2	14/15	0.84	0.13	83,86,102,104	0
4	NAG	Х	1	14/15	0.85	0.24	76,80,97,97	0
4	NAG	W	1	14/15	0.85	0.21	82,87,103,104	0
3	NAG	Y	2	14/15	0.86	0.12	89,91,110,110	0
4	NAG	Х	2	14/15	0.88	0.19	80,82,97,99	0
4	NAG	V	2	14/15	0.90	0.17	76,85,102,107	0
3	NAG	Y	1	14/15	0.91	0.14	84,89,106,106	0
4	NAG	V	1	14/15	0.93	0.18	$69,\!78,\!93,\!93$	0

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
6	NAG	Ι	401	14/15	0.47	0.19	105,112,117,117	0
6	NAG	K	401	14/15	0.47	0.25	96,103,123,125	0
6	NAG	S	401	14/15	0.55	0.21	95,104,123,125	0
6	NAG	М	401	14/15	0.70	0.22	$95,\!99,\!105,\!105$	0
6	NAG	G	401	14/15	0.70	0.17	84,93,117,117	0
6	NAG	Е	401	14/15	0.75	0.19	95,101,103,105	0
6	NAG	В	301	14/15	0.76	0.20	82,86,102,103	0
6	NAG	Т	301	14/15	0.77	0.22	92,96,97,98	0
6	NAG	L	301	14/15	0.78	0.17	96,99,119,120	0
6	NAG	R	301	14/15	0.81	0.18	98,106,128,128	0

6.5 Other polymers (i)

There are no such residues in this entry.

