

Dec 1, 2021 – 04:48 pm GMT

PDB ID	:	70HW
EMDB ID	:	EMD-12911
Title	:	Nog1-TAP associated immature ribosomal particles from S. cerevisiae after
		rpL25 expression shut down, population B
Authors	:	Milkereit, P.; Poell, G.
Deposited on	:	2021-05-11
Resolution	:	3.50 Å(reported)
Based on initial model	:	6EM1

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	$0.0.0.{ m dev}97$
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.23.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	1	3396	• 29% 15% •	52%	
2	2	158	58%	34%	•• 6%
3	3	306	50% 7%	43%	
4	4	278	67%	11%	22%
5	5	463	• 78%	6%	17%
6	6	232	12% 9% 6% 72%		
7	А	291	9% 43% 6%	51%	

Continue contract c	nued fron	n previous	page	
Mol	Chain	Length	Quality of chain	l
8	В	387	6% 68%	17% • 14%
9	С	362	83%	12% 5%
10	D	505	• 77%	9% 13%
11	Е	176	77%	9% 14%
12	F	244	91%	8% •
13	G	256	52% 10%	38%
14	Н	191	77%	13% • 9%
15	J	427	• 14% • 85%	
16	К	376	53% 14%	• 32%
17	L	199	44% 10% ·	46%
18	М	138	85%	12% ••
19	Ν	204	• • 75%	11% 13%
20	Ο	199	82%	17% ••
21	Р	184	67%	7% 26%
22	Q	186	67%	• 30%
23	S	172	86%	12% ••
24	V	137	66%	6% 28%
25	W	236	72%	6% 22%
26	Y	127	95%	•••
27	b	647	39% ·	60%
28	е	130	95%	
29	f	107	99%	
30	h	120	97%	
31	i	100	73%	• 26%
32	j	88	81%	19%

Mol	Chain	Length		Qu	ality of cha	in	
33	m	807	19%		81%	, D	
34	n	605	•	55%		45%)
35	0	220		60%	•		40%
36	r	261	11% 21%		799	%	
37	\mathbf{t}	322	•	73%		•	25%
38	v	231		56%		44%	6
39	x	295	—		89%		• 9%
40	У	245	22%		89%		11%

2 Entry composition (i)

There are 41 unique types of molecules in this entry. The entry contains 171568 atoms, of which 76920 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 25S rRNA.

Mol	Chain	Residues				AltConf	Trace			
1	1	1639	Total 52739	C 15672	Н 17632	N 6362	0 11434	Р 1639	0	0

• Molecule 2 is a RNA chain called 5.8S rRNA.

Mol	Chain	Residues			AltConf	Trace				
2	2	149	Total 4767	C 1416	Н 1601	N 558	O 1043	Р 149	0	0

• Molecule 3 is a protein called Protein MAK16.

Mol	Chain	Residues			AltConf	Trace				
3	3	173	Total 2908	C 901	H 1474	N 274	O 250	S 9	0	0

• Molecule 4 is a protein called Ribosomal RNA-processing protein 1.

Mol	Chain	Residues			AltConf	Trace				
4	4	217	Total 3744	C 1208	Н 1891	N 319	O 323	${ m S} { m 3}$	0	0

• Molecule 5 is a protein called Ribosome biogenesis protein NSA1.

Mol	Chain	Residues			AltConf	Trace				
5	5	385	Total 6170	C 1957	H 3115	N 514	0 573	S 11	0	0

• Molecule 6 is a RNA chain called ITS2.

Mol	Chain	Residues			AltConf	Trace				
6	6	65	Total 2061	C 614	Н 691	N 228	O 463	Р 65	0	0

• Molecule 7 is a protein called Ribosome biogenesis protein BRX1.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
7	А	144	Total	C 775	H 1909	N 217	0	S	0	0
			2411	611	1208	217	209	2		

• Molecule 8 is a protein called 60S ribosomal protein L3.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
8	В	333	Total 5374	C 1680	Н 2728	N 490	0 470	S 6	0	0

• Molecule 9 is a protein called 60S ribosomal protein L4-A.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
9	С	343	Total 5336	C 1643	Н 2725	N 499	0 466	${ m S} { m 3}$	0	0

• Molecule 10 is a protein called ATP-dependent RNA helicase HAS1.

Mol	Chain	Residues			AltConf	Trace				
10	D	437	Total 7106	C 2247	Н 3620	N 600	O 627	S 12	0	0

• Molecule 11 is a protein called 60S ribosomal protein L6-A.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
11	Е	151	Total 2497	C 780	Н 1292	N 215	O 209	S 1	0	0

• Molecule 12 is a protein called 60S ribosomal protein L7-A.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
12	F	241	Total 3969	C 1246	Н 2033	N 351	O 338	S 1	0	0

• Molecule 13 is a protein called 60S ribosomal protein L8-A.

Mol	Chain	Residues			Atom	S			AltConf	Trace
13	G	159	Total 2520	C 794	Н 1289	N 209	O 226	${S \over 2}$	0	0

• Molecule 14 is a protein called 60S ribosomal protein L9-A.

Mol	Chain	Residues			Atom	S			AltConf	Trace
14	Н	174	Total 2862	C 890	Н 1468	N 254	0 247	${ m S} { m 3}$	0	0

• Molecule 15 is a protein called rRNA-processing protein EBP2.

Mol	Chain	Residues			Atom	.S		Atoms							
15	J	63	Total 1035	C 329	Н 506	N 94	0 105	S 1	0	0					

• Molecule 16 is a protein called Proteasome-interacting protein CIC1.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
16	K	257	Total 4230	C 1337	Н 2157	N 341	O 392	${ m S} { m 3}$	0	0

• Molecule 17 is a protein called 60S ribosomal protein L13-A.

Mol	Chain	Residues		А	toms			AltConf	Trace
17	L	108	Total 1782	C 541	Н 918	N 180	O 143	0	0

• Molecule 18 is a protein called 60S ribosomal protein L14-A.

Mol	Chain	Residues			Atom	S			AltConf	Trace
18	М	134	Total 2179	C 668	Н 1138	N 197	0 174	${S \over 2}$	0	0

• Molecule 19 is a protein called 60S ribosomal protein L15-A.

Mol	Chain	Residues			Atom	S			AltConf	Trace
19	N	177	Total 3079	C 948	Н 1566	N 320	0 244	S 1	0	0

• Molecule 20 is a protein called 60S ribosomal protein L16-A.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
20	О	197	Total 3215	C 1003	Н 1660	N 289	O 262	S 1	0	0

• Molecule 21 is a protein called 60S ribosomal protein L17-A.

Mol	Chain	Residues		A	Atoms			AltConf	Trace
21	Р	137	Total 2139	C 666	H 1077	N 198	O 198	0	0

• Molecule 22 is a protein called 60S ribosomal protein L18-A.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
22	Q	131	Total 2101	C 645	Н 1092	N 190	0 173	S 1	0	0

• Molecule 23 is a protein called 60S ribosomal protein L20-A.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
23	S	170	Total 2904	C 922	Н 1472	N 265	O 242	${ m S} { m 3}$	0	0

• Molecule 24 is a protein called 60S ribosomal protein L23-A.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
24	V	98	Total 1498	C 462	Н 760	N 136	0 133	${f S}{7}$	0	0

• Molecule 25 is a protein called Ribosome assembly factor MRT4.

Mol	Chain	Residues			Atom	S			AltConf	Trace
25	W	185	Total 3049	$\begin{array}{c} \mathrm{C} \\ 963 \end{array}$	H 1527	N 263	O 292	$\frac{S}{4}$	0	0

• Molecule 26 is a protein called 60S ribosomal protein L26-A.

Mol	Chain	Residues		A	Atoms			AltConf	Trace
26	Y	125	Total 2060	C 620	H 1076	N 191	0 173	0	0

• Molecule 27 is a protein called Nucleolar GTP-binding protein 1.

Mol	Chain	Residues			AltConf	Trace				
27	b	259	Total 4221	C 1344	Н 2116	N 355	O 395	S 11	0	0

• Molecule 28 is a protein called 60S ribosomal protein L32.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
28	е	125	Total 2090	C 641	Н 1081	N 203	O 164	S 1	0	0

• Molecule 29 is a protein called 60S ribosomal protein L33-A.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
29	f	106	Total 1731	C 540	Н 881	N 165	0 144	S 1	0	0

• Molecule 30 is a protein called 60S ribosomal protein L35-A.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
30	h	119	Total 2048	C 615	Н 1079	N 186	O 167	S 1	0	0

• Molecule 31 is a protein called 60S ribosomal protein L36-A.

Mol	Chain	Residues	Atoms				AltConf	Trace		
31	i	74	Total 1236	C 367	Н 642	N 125	0 101	S 1	0	0

• Molecule 32 is a protein called 60S ribosomal protein L37-A.

Mol	Chain	Residues	Atoms				AltConf	Trace		
32	j	71	Total 1137	C 344	Н 571	N 123	0 94	${ m S}{ m 5}$	0	0

• Molecule 33 is a protein called Ribosome biogenesis protein ERB1.

Mol	Chain	Residues	Atoms				AltConf	Trace		
33	m	156	Total 2643	C 847	Н 1318	N 233	O 241	S 4	0	0

• Molecule 34 is a protein called Pescadillo homolog.

Mol	Chain	Residues	Atoms				AltConf	Trace		
34	n	334	Total 5516	C 1787	Н 2782	N 457	0 482	S 8	0	0

• Molecule 35 is a protein called Ribosome biogenesis protein 15.

Mol	Chain	Residues	Atoms				AltConf	Trace		
35	О	133	Total 2267	C 716	Н 1160	N 198	O 189	$\frac{S}{4}$	0	0

• Molecule 36 is a protein called Ribosome biogenesis protein NSA2.

Mol	Chain	Residues	Atoms				AltConf	Trace	
36	r	54	Total 962	C 294	Н 485	N 102	0 81	0	0

• Molecule 37 is a protein called Ribosome biogenesis protein RLP7.

Mol	Chain	Residues	Atoms				AltConf	Trace		
37	t	240	Total 3923	C 1217	Н 2018	N 340	O 345	${ m S} { m 3}$	0	0

• Molecule 38 is a protein called Nucleolar protein 16.

Mol	Chain	Residues	Atoms				AltConf	Trace		
38	v	130	Total 2223	C 678	Н 1136	N 211	0 195	${ m S} { m 3}$	0	0

• Molecule 39 is a protein called Ribosome production factor 1.

Mol	Chain	Residues	Atoms				AltConf	Trace		
39	х	267	Total 4573	C 1444	Н 2305	N 413	O 407	$\frac{S}{4}$	0	0

• Molecule 40 is a protein called Eukaryotic translation initiation factor 6.

Mol	Chain	Residues	Atoms				AltConf	Trace		
40	У	217	Total 3262	C 1016	Н 1630	N 280	O 329	${ m S} 7$	0	0

• Molecule 41 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
41	j	1	Total Zn 1 1	0

Residue-property plots (i) 3

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Chain 1: 29% 15% 52% 0 D 0 4 4 0 0 0 4 0 <<<p>Constant
- Molecule 1: 25S rRNA

• Molecule 10: ATP-dependent RNA helicase HAS1 Chain D: 77% 9% 13% GLY ALA SER GLY CLYS LYS THR THR LYS THR HIS LYS • Molecule 11: 60S ribosomal protein L6-A Chain E: 77% 9% 14% MET SER ALA GLN LYS ALA • Molecule 12: 60S ribosomal protein L7-A Chain F: 91% 8% . • Molecule 13: 60S ribosomal protein L8-A Chain G: 52% 10% 38% GLN LYS LYS LYS LLE LEU SER SER SER ALA ASN ASN SER SER ASP ASP ASP • Molecule 14: 60S ribosomal protein L9-A 56% Chain H: 77% 13% 9%

• Molecule 26: 60S ribosomal protein L26-A Chain Y: 95% • Molecule 27: Nucleolar GTP-binding protein 1 23% Chain b: 39% 60% MET GLN LEU SER TRP LYS ASP PRO PRO PRO THR VAL ALA K51 Y52 T53 G54 VAL ARG LEU LYS LYS PHE GLY GLN LEU LEU CYS CYS SLY VAL ASP GLN VAL GLN FTYR ALA ALA ALA ALA ALA LYS SER LYS SER LYS SER VAL VAL TYR LEU ARG GLN ALA ALA ALA PTHR PTHR THR THR THR THR GLU GLU MET ASN ASN HIS LEU ARG SER CYS VAL SER ILE LYS PRO PRO LYS ASN LYS GLU VAL PRO GLY VAL GLU 334 1LEU GUU LLYS SER SER GLN CLNYS SER ARG CLNYS SER TLEU VAL LLYS CLNYS CLNY ILL MET THR SER SER CYS GLN GLN GLU GLU ASN ASP ASP GLU GLU GLU GLU TYR TYR HHIS METRALA METRALA CLIULEU CLIULEU CLIULEU CLIURS CLIULEU CLIURS CLIUR • Molecule 28: 60S ribosomal protein L32

• Molecule 29: (60S ribosomal protein L33-A	
Chain f:	99%	
MET A2 I107		
• Molecule 30: (60S ribosomal protein L35-A	
Chain h:	97%	
MET A2 837 837 838 839 839 839 8138 8119 8119		
• Molecule 31: (60S ribosomal protein L36-A	
Chain i:	73%	• 26%
MET THR VAL LYS LYS GLY THR TLE ALA CLY LEU	LAN LAN GLY LLYS LLYS LLYS LLYS LLA MET THR FRO PRO PRO PRO PRO PRO PRO PRO PRO PRO P	
• Molecule 32: (60S ribosomal protein L37-A	
Chain j:	81%	19%
MET GLY CLYS CLYS CLYS CLY PHR PHE CLY CLYS HRG HTS	ALA ALA ALA ALA ALA ALA	
• Molecule 33: 1	Ribosome biogenesis protein ERB1	
Chain m: 1	9% 81%	
MET MET MET ALA LYS ASN ASN LYS THR THR GLU ALA	MET SER LYS LYS ARG ALA ALA ALA ALA ALA CUU CUU CUU CUU CUU CUU CUU CUU CUU CU	ALA ALA ALA ALA ALA ALA ALA ALU ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP
GLU SER SER SER ASP GLU GLU ASP ASP ASP	ASP ASP ASP ASP ASP ASP ASP ASP ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	PHL SER SER ASP ASP ASP THR THR SER ASP ASC ASC ASC ASC ASC ASC ASC ASC ASC ASC
ASP PRO ASN ILE TYR SER LYS TYR ALA ALA ASP GLY	ASP ARG TILE LYS CUT CUT TILE TILE CUT ARD ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	TILEU PRO LIEU SER ALA ALA ALA PRO GLU TILE ALY ASP ASP ASS ASS ASS ASS ASS ASS ASS ASS
MET ARG PRO CLYS CLYS CLY SER ALA ALA ALA CLU CLU	LEU LEU ASP SER ASP CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU
K302 1303 Y306 ASP ASP ASP G1U GLU THR	N318 M322 M322 VAL ASP ASP ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	LEU ARG PRO PRO TLE PRO TLE CYS SER ALA ALA ALA ALA ALA ALA CYS SER CYS SER TYS CYS SER TYS CYS TYS CYS TARC TARC TLE TARC TLE TARC TLE TARC TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE
SER ILE ASP PRO PRO GLY CLEU LEU ALA ALA ALA ALA	SER ASP ASP CLY VAL VAL VAL THR THR CLY VAL VAL THR THR ARC CLY ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	ASN PRO TYR TYR HIS HILE ILLE CVS CVS CVS CVS CVS CVS CVS CVS CVS CVS

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	37557	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	86.09	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	FEI FALCON III $(4k \ge 4k)$	Depositor
Maximum map value	0.134	Depositor
Minimum map value	-0.042	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.006	Depositor
Recommended contour level	0.021	Depositor
Map size (Å)	425.40002, 425.40002, 425.40002	wwPDB
Map dimensions	400, 400, 400	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.0635, 1.0635, 1.0635	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond angles		
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	1	0.16	0/39278	0.74	32/61189~(0.1%)	
2	2	0.16	0/3536	0.75	3/5501~(0.1%)	
3	3	0.24	0/1461	0.39	0/1958	
4	4	0.24	0/1895	0.37	0/2549	
5	5	0.23	0/3109	0.42	0/4187	
6	6	0.16	0/1527	0.78	2/2371~(0.1%)	
7	А	0.24	0/1235	0.41	0/1669	
8	В	0.24	0/2699	0.42	0/3626	
9	С	0.23	0/2660	0.40	0/3601	
10	D	0.24	0/3552	0.39	0/4789	
11	Ε	0.24	0/1226	0.39	0/1648	
12	F	0.25	0/1974	0.38	0/2654	
13	G	0.24	0/1252	0.41	0/1695	
14	Н	0.23	0/1412	0.42	0/1898	
15	J	0.23	0/538	0.36	0/723	
16	K	0.24	0/2107	0.39	0/2845	
17	L	0.24	0/877	0.39	0/1179	
18	М	0.24	0/1056	0.38	0/1421	
19	Ν	0.23	0/1544	0.40	0/2065	
20	0	0.24	0/1585	0.38	0/2128	
21	Р	0.24	0/1080	0.39	0/1455	
22	Q	0.25	0/1024	0.44	1/1385~(0.1%)	
23	S	0.24	0/1468	0.40	0/1973	
24	V	0.24	0/747	0.41	0/1002	
25	W	0.23	0/1543	0.40	0/2068	
26	Y	0.23	0/995	0.40	0/1329	
27	b	0.23	0/2133	0.36	0/2857	
28	е	0.23	0/1030	0.40	0/1379	
29	f	0.25	0/868	0.41	0/1168	
30	h	0.24	0/978	0.37	0/1301	
31	i	0.24	0/599	0.37	0/793	
32	j	0.24	0/578	0.42	0/767	

Mol Chain		Bond	lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
33	m	0.23	0/1363	0.37	0/1841	
34	n	0.24	0/2802	0.36	0/3791	
35	0	0.24	0/1129	0.39	0/1502	
36	r	0.22	0/485	0.33	0/636	
37	t	0.24	0/1930	0.40	0/2596	
38	V	0.23	0/1100	0.37	0/1456	
39	Х	0.24	0/2313	0.40	0/3100	
40	У	0.23	0/1650	0.43	0/2242	
All	All	0.21	0/100338	0.59	38/144337~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
14	Н	0	1

There are no bond length outliers.

All (38) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
6	6	1	С	OP1-P-OP2	-6.95	109.17	119.60
1	1	310	U	OP1-P-OP2	-6.84	109.33	119.60
1	1	2890	А	OP1-P-OP2	-6.84	109.34	119.60
1	1	44	U	OP1-P-OP2	-6.80	109.40	119.60
1	1	3364	С	OP1-P-OP2	-6.79	109.41	119.60
1	1	714	G	OP1-P-OP2	-6.79	109.42	119.60
1	1	3070	А	OP1-P-OP2	-6.79	109.42	119.60
1	1	3285	С	OP1-P-OP2	-6.78	109.44	119.60
1	1	720	А	OP1-P-OP2	-6.77	109.44	119.60
1	1	2830	G	OP1-P-OP2	-6.77	109.44	119.60
1	1	2824	G	OP1-P-OP2	-6.77	109.44	119.60
2	2	114	G	OP1-P-OP2	-6.77	109.45	119.60
1	1	1306	G	OP1-P-OP2	-6.75	109.47	119.60
1	1	2379	U	OP1-P-OP2	-6.75	109.47	119.60
1	1	3093	С	OP1-P-OP2	-6.75	109.47	119.60
1	1	925	А	OP1-P-OP2	-6.75	109.48	119.60
1	1	3378	С	OP1-P-OP2	-6.75	109.48	119.60
1	1	1200	А	OP1-P-OP2	-6.75	109.48	119.60
1	1	2352	А	OP1-P-OP2	-6.75	109.48	119.60
6	6	227	С	OP1-P-OP2	-6.74	109.50	119.60

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	1	781	G	OP1-P-OP2	-6.73	109.50	119.60
1	1	2848	G	OP1-P-OP2	-6.73	109.50	119.60
2	2	1	А	OP1-P-OP2	-6.73	109.50	119.60
1	1	769	G	OP1-P-OP2	-6.73	109.51	119.60
1	1	3158	G	OP1-P-OP2	-6.73	109.51	119.60
1	1	2372	А	OP1-P-OP2	-6.72	109.51	119.60
1	1	1061	A	OP1-P-OP2	-6.72	109.52	119.60
1	1	3172	А	OP1-P-OP2	-6.72	109.52	119.60
1	1	2995	А	OP1-P-OP2	-6.72	109.53	119.60
1	1	93	С	OP1-P-OP2	-6.71	109.54	119.60
1	1	1098	А	OP1-P-OP2	-6.70	109.55	119.60
2	2	130	С	OP1-P-OP2	-6.70	109.55	119.60
1	1	1	G	OP1-P-OP2	-6.57	109.75	119.60
1	1	1254	С	N3-C2-O2	-6.29	117.50	121.90
1	1	2899	C	C2-N1-C1'	6.00	125.40	118.80
1	1	954	U	C2-N1-C1'	5.74	124.59	117.70
22	Q	31	LYS	CD-CE-NZ	5.72	124.85	111.70
1	1	3058	U	C2-N1-C1'	5.58	124.40	117.70

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
14	Н	22	SER	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	1	35107	17632	17660	363	0
2	2	3166	1601	1603	35	0
3	3	1434	1474	1473	11	0
4	4	1853	1891	1887	17	0
5	5	3055	3115	3113	14	0
6	6	1370	691	692	24	0
7	А	1203	1208	1205	9	0
8	В	2646	2728	2726	41	0

	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
9	С	2611	2725	2724	29	0
10	D	3486	3620	3618	20	0
11	E E	1205	1292	1291	10	0
12	F	1936	2033	2032	10	0
13	G	1231	1289	1287	12	0
14	Н	1394	1468	1464	20	0
15	J	529	506	504	2	0
16	K	2073	2157	2155	36	0
17	L	864	918	917	14	0
18	M	1041	1138	1137	12	0
19	N	1513	1566	1564	17	0
20	0	1555	1660	1659	22	0
21	Р	1062	1077	1075	10	0
22	Q	1009	1092	1091	4	0
23	S	1432	1472	1470	13	0
24	V	738	760	757	5	0
25	W	1522	1527	1520	10	0
26	Y	984	1076	1075	3	0
27	b	2105	2116	2106	0	0
28	е	1009	1081	1080	0	0
29	f	850	881	880	0	0
30	h	969	1079	1078	0	0
31	i	594	642	641	0	0
32	j	566	571	566	0	0
33	m	1325	1318	1317	0	0
34	n	2734	2782	2778	0	0
35	0	1107	1160	1159	0	0
36	r	477	485	484	0	0
37	t	1905	2018	2015	0	0
38	V	1087	1136	1133	0	0
39	X	2268	2305	2302	0	0
40	У	1632	1630	1628	0	0
41	j	1	0	0	0	0
All	All	94648	76920	76866	668	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

All (668) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:1:3329:U:HO2'	8:B:363:SER:HG	1.03	0.99
1:1:3198:U:O2'	1:1:3199:G:OP1	1.81	0.99
1:1:625:G:O2'	1:1:1401:A:OP1	1.85	0.94
1:1:2899:C:O2'	1:1:2901:G:OP2	1.86	0.93
1:1:1347:U:O2'	1:1:1348:U:OP1	1.90	0.90
1:1:3228:C:O2'	1:1:3229:G:OP2	1.90	0.90
1:1:2857:C:O2'	1:1:2858:U:O5'	1.88	0.89
1:1:656:A:HO2'	2:2:17:A:HO2'	1.13	0.88
1:1:2995:A:O2'	1:1:2996:U:OP1	1.91	0.87
1:1:716:A:O2'	1:1:718:G:OP2	1.93	0.86
1:1:720:A:O2'	1:1:783:A:O2'	1.93	0.86
1:1:548:G:O2'	1:1:549:U:OP1	1.94	0.85
1:1:1278:A:O2'	1:1:1279:C:O5'	1.94	0.85
1:1:1395:G:O2'	2:2:18:U:O2	1.94	0.84
10:D:178:HIS:O	10:D:182:THR:OG1	1.94	0.84
1:1:2897:A:OP2	1:1:2899:C:N4	2.10	0.84
1:1:1152:G:N2	1:1:1152:G:OP2	2.10	0.83
1:1:518:G:OP2	1:1:518:G:N2	2.11	0.83
1:1:408:A:N3	1:1:655:C:O2'	2.10	0.83
1:1:1257:C:O2'	1:1:1258:U:O5'	1.95	0.82
1:1:2375:G:N2	1:1:2375:G:OP2	2.12	0.82
1:1:1254:C:O2'	1:1:1255:C:O4'	1.98	0.81
6:6:33:U:O4'	16:K:285:ARG:NE	2.13	0.81
1:1:476:G:O2'	1:1:477:A:O4'	1.99	0.81
1:1:3306:U:O2'	1:1:3308:C:OP2	1.99	0.80
1:1:1153:A:O2'	1:1:1154:A:O4'	2.00	0.80
1:1:164:A:O2'	1:1:166:C:O4'	1.99	0.80
1:1:200:C:N4	1:1:218:G:OP1	2.16	0.79
1:1:297:G:N2	1:1:297:G:OP2	2.16	0.79
1:1:399:A:O2'	1:1:403:C:O2'	1.98	0.79
8:B:66:LYS:O	8:B:70:ARG:NH2	2.15	0.78
1:1:691:A:N1	2:2:28:C:O2'	2.14	0.78
20:O:27:LEU:O	20:O:101:ARG:NH1	2.17	0.78
1:1:3099:C:O2'	1:1:3100:U:O5'	2.01	0.78
1:1:649:A:O2'	1:1:650:C:OP1	2.01	0.77
5:5:277:SER:OG	5:5:301:GLU:O	2.01	0.77
2:2:114:G:O2'	2:2:115:C:OP1	2.02	0.76
6:6:6:U:OP2	16:K:189:SER:OG	2.03	0.76
1:1:1394:A:N6	1:1:1416:C:O2	2.18	0.76
1:1:3115:C:O2	1:1:3117:C:N4	2.18	0.76
4:4:57:ASP:OD1	4:4:120:LYS:NZ	2.18	0.76
19:N:38:ARG:NH1	19:N:39:ALA:O	2.19	0.76

		Interatomic	Clash	
Atom-1	Atom-2	distance $(Å)$	overlap (Å)	
17:L:62:THR:O	17:L:64:LYS:N	2.18	0.75	
6:6:44:G:N2	16:K:242:THR:OG1	2.20	0.75	
1:1:755:A:O2'	1:1:756:U:O5'	2.03	0.75	
1:1:399:A:HO2'	1:1:403:C:HO2'	1.29	0.75	
1:1:600:G:N2	1:1:603:A:OP2	2.20	0.75	
16:K:236:VAL:HG21	16:K:246:VAL:HG22	1.68	0.75	
1:1:63:A:N3	1:1:78:U:O2'	2.20	0.74	
1:1:1176:C:OP2	1:1:1177:G:O2'	2.01	0.74	
1:1:348:A:N3	1:1:352:A:O2'	2.21	0.74	
1:1:1231:A:OP2	25:W:49:ARG:NH2	2.18	0.74	
2:2:50:C:OP2	2:2:51:G:N2	2.20	0.74	
16:K:250:ASN:OD1	16:K:251:LEU:N	2.20	0.74	
1:1:480:C:O2'	1:1:481:U:OP2	2.03	0.74	
1:1:382:U:O2	21:P:97:ASN:ND2	2.20	0.74	
1:1:1176:C:O2'	20:O:89:SER:OG	2.03	0.74	
1:1:1259:A:OP1	25:W:67:MET:N	2.19	0.74	
6:6:16:U:O2'	6:6:17:G:OP2	2.05	0.74	
6:6:33:U:O2'	6:6:34:A:OP2	2.05	0.74	
1:1:1315:U:OP2	20:O:44:SER:OG	2.01	0.73	
8:B:57:VAL:HG12	8:B:73:VAL:HG23	1.68	0.73	
6:6:54:A:OP1	13:G:213:LYS:NZ	2.20	0.73	
1:1:720:A:HO2'	1:1:783:A:HO2'	1.27	0.73	
1:1:68:C:OP2	1:1:301:G:N2	2.21	0.73	
1:1:1384:U:O2	1:1:1422:G:O6	2.07	0.73	
1:1:93:C:O2'	1:1:94:G:O5'	2.07	0.72	
1:1:3116:G:N2	1:1:3116:G:OP1	2.21	0.72	
1:1:755:A:O2'	1:1:756:U:O4'	2.05	0.72	
12:F:88:ARG:NH1	12:F:91:GLY:O	2.23	0.72	
6:6:5:C:N4	6:6:24:A:OP1	2.24	0.71	
1:1:1307:G:O2'	1:1:1308:A:OP2	2.08	0.71	
1:1:75:G:O2'	1:1:76:G:OP1	2.08	0.71	
1:1:1235:U:N3	1:1:1237:G:O4'	2.24	0.71	
6:6:58:G:N2	6:6:58:G:OP2	2.23	0.70	
1:1:3228:C:HO2'	1:1:3229:G:P	2.14	0.70	
1:1:117:U:O2'	1:1:119:U:OP2	2.06	0.69	
6:6:51:U:O2'	6:6:54:A:N7	2.23	0.69	
1:1:695:C:OP2	9:C:115:HIS:NE2	2.23	0.69	
1:1:36:C:O2'	1:1:934:G:N3	2.26	0.69	
2:2:13:A:O2'	21:P:121:GLN:O	2.10	0.69	
2:2:103:G:OP2	2:2:105:A:O2'	2.10	0.69	
1:1:177:U:O2	1:1:241:G:O6	2.10	0.69	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:1:310:U:O2'	1:1:311:C:O4'	2.12	0.68	
1:1:656:A:O2'	2:2:17:A:O2'	2.04	0.68	
6:6:45:U:O2'	16:K:243:THR:O	2.11	0.68	
1:1:551:A:O2'	1:1:552:G:OP1	2.12	0.68	
1:1:3165:A:O2'	1:1:3166:C:O4'	2.08	0.68	
1:1:1:G:N2	1:1:1:G:OP1	2.26	0.68	
1:1:195:U:O2'	1:1:1391:C:OP1	2.08	0.68	
1:1:779:G:O3'	1:1:781:G:OP2	2.08	0.68	
1:1:358:G:N2	1:1:361:A:OP2	2.26	0.68	
25:W:38:ARG:NH2	25:W:222:ASP:OD1	2.26	0.68	
1:1:3067:C:O2'	1:1:3068:U:O4'	2.12	0.68	
4:4:67:ASN:OD1	4:4:68:GLU:N	2.26	0.68	
1:1:1276:U:O2'	1:1:1277:C:OP1	2.11	0.67	
8:B:219:ALA:HB2	8:B:336:VAL:HG12	1.75	0.67	
23:S:79:VAL:HG21	23:S:106:LEU:HD21	1.76	0.67	
8:B:187:SER:O	8:B:190:GLU:N	2.27	0.67	
14:H:67:ALA:O	14:H:71:VAL:HG23	1.95	0.67	
16:K:84:ASN:O	16:K:277:ARG:N	2.26	0.67	
1:1:477:A:O2'	1:1:478:A:O5'	2.13	0.67	
8:B:299:ASP:OD2	8:B:301:THR:OG1	2.12	0.66	
1:1:3082:C:N4	1:1:3083:G:O6	2.29	0.66	
1:1:3265:C:N4	1:1:3266:G:O6	2.28	0.66	
10:D:203:GLU:OE1	10:D:371:ARG:NH1	2.27	0.66	
23:S:40:ARG:NH2	23:S:121:ILE:O	2.29	0.66	
1:1:549:U:O4	1:1:550:A:N6	2.29	0.66	
1:1:1245:A:N7	1:1:1271:A:O2'	2.29	0.66	
12:F:130:ILE:O	12:F:134:VAL:HG22	1.96	0.66	
4:4:136:LEU:HB3	4:4:145:LEU:HD12	1.78	0.65	
25:W:38:ARG:NH1	25:W:224:ASP:OD2	2.29	0.65	
1:1:1158:A:OP1	12:F:91:GLY:N	2.30	0.65	
1:1:759:U:O2'	1:1:760:G:O4'	2.15	0.65	
1:1:2382:G:OP2	20:O:90:HIS:NE2	2.29	0.65	
24:V:24:ASN:ND2	24:V:97:ASP:OD2	2.29	0.65	
1:1:33:G:O6	1:1:49:A:O2'	2.13	0.65	
24:V:102:ILE:O	24:V:102:ILE:HD12	1.97	0.65	
8:B:74:GLU:OE1	8:B:325:LYS:NZ	2.27	0.65	
1:1:213:A:N6	1:1:227:G:O2'	2.29	0.65	
4:4:87:GLU:N	4:4:87:GLU:OE1	2.29	0.65	
1:1:1:G:OP2	6:6:232:A:O3'	2.08	0.64	
1:1:77:A:OP2	17:L:73:ARG:NH2	2.29	0.64	
6:6:231:A:O2'	6:6:232:A:O5'	2.16	0.64	

	fus puge	Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:1:3085:G:N2	1:1:3086:A:N7	2.46	0.64
1:1:1260:A:O2'	1:1:1279:C:O2	2.14	0.64
10:D:422:ILE:O	10:D:424:ASN:ND2	2.30	0.64
14:H:167:VAL:HG12	14:H:170:LYS:HB2	1.79	0.63
1:1:2857:C:HO2'	1:1:2858:U:P	2.22	0.63
7:A:51:ASP:OD1	7:A:52:LEU:N	2.31	0.63
13:G:132:VAL:HG12	13:G:200:LEU:HD21	1.81	0.63
1:1:3258:U:O2'	1:1:3260:G:OP1	2.17	0.63
13:G:184:ALA:O	13:G:188:THR:HG23	1.99	0.63
17:L:119:TYR:O	17:L:123:ILE:HG23	1.99	0.63
6:6:227:C:O2'	6:6:228:U:OP1	2.17	0.62
18:M:40:ASP:OD1	18:M:43:LYS:N	2.32	0.62
1:1:753:C:N3	1:1:781:G:N2	2.47	0.62
1:1:1102:A:OP1	12:F:155:LYS:NZ	2.32	0.62
18:M:42:LYS:O	18:M:59:ASN:ND2	2.32	0.62
1:1:1111:U:O2'	1:1:1112:A:O5'	2.12	0.62
1:1:1414:G:OP1	3:3:142:LYS:NZ	2.32	0.62
1:1:406:G:O2'	1:1:407:A:OP2	2.17	0.62
1:1:974:G:O2'	22:Q:144:ARG:NH1	2.32	0.62
5:5:162:GLY:O	5:5:183:LEU:N	2.33	0.62
16:K:83:VAL:HG21	16:K:270:LEU:HD13	1.81	0.62
20:O:10:ASP:OD2	23:S:167:ARG:NH2	2.33	0.62
1:1:1259:A:N3	1:1:1280:C:O2'	2.27	0.62
14:H:22:SER:O	14:H:24:ILE:N	2.33	0.62
1:1:674:G:O2'	9:C:116:ASN:ND2	2.33	0.61
10:D:119:VAL:HG13	10:D:194:ILE:HD11	1.80	0.61
1:1:3332:U:O2'	1:1:3333:G:O5'	2.19	0.61
21:P:39:TRP:O	21:P:114:VAL:HG12	2.00	0.61
1:1:717:C:O2'	1:1:718:G:O5'	2.15	0.61
1:1:3339:A:O2'	1:1:3340:G:OP1	2.17	0.61
10:D:131:PHE:CD2	10:D:147:ILE:HD11	2.34	0.61
1:1:80:G:O6	1:1:106:A:N6	2.34	0.61
1:1:102:C:O2'	17:L:62:THR:OG1	2.17	0.61
1:1:2899:C:O2	14:H:173:ARG:NH1	2.33	0.61
25:W:224:ASP:OD1	25:W:225:SER:N	2.33	0.61
7:A:41:VAL:HG13	7:A:45:HIS:HB2	1.83	0.61
1:1:1125:U:O2'	1:1:1126:G:O4'	2.13	0.60
3:3:69:ARG:NE	3:3:78:GLU:OE2	2.35	0.60
2:2:114:G:HO2'	2:2:115:C:P	2.23	0.60
6:6:231:A:O2'	6:6:232:A:N3	2.24	0.60
15:J:236:ILE:O	15:J:242:ARG:NH2	2.35	0.60

	t i c	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
10:D:312:ILE:HG22	10:D:312:ILE:O	2.02	0.60
25:W:88:ASN:ND2	25:W:226:SER:O	2.35	0.60
1:1:291:C:O2	1:1:292:U:N3	2.35	0.60
2:2:70:G:O2'	2:2:87:G:N2	2.35	0.60
11:E:52:VAL:HG21	11:E:65:ILE:CD1	2.31	0.59
19:N:8:GLU:OE2	19:N:50:ARG:NH2	2.34	0.59
1:1:2901:G:N2	1:1:3030:G:O2'	2.35	0.59
1:1:3198:U:HO2'	1:1:3199:G:P	2.22	0.59
9:C:315:LYS:HB2	9:C:323:VAL:HG21	1.85	0.59
1:1:3331:U:OP1	8:B:369:ARG:NH2	2.35	0.59
8:B:377:HIS:O	8:B:381:GLY:N	2.35	0.59
1:1:304:G:OP1	7:A:93:LYS:N	2.35	0.59
2:2:13:A:C2	2:2:14:C:C5	2.91	0.59
6:6:52:G:N2	13:G:216:SER:OG	2.34	0.59
12:F:189:ILE:HG23	12:F:190:THR:HG23	1.84	0.59
1:1:1103:A:O2'	1:1:1104:G:OP1	2.20	0.59
6:6:40:U:O2'	6:6:41:G:OP2	2.19	0.58
1:1:75:G:HO2'	1:1:76:G:P	2.24	0.58
1:1:126:U:OP1	19:N:144:ARG:NH2	2.36	0.58
1:1:146:U:N3	13:G:134:TYR:OH	2.36	0.58
12:F:48:ASN:ND2	12:F:182:ASP:OD1	2.36	0.58
13:G:163:VAL:HG23	13:G:166:LEU:HD12	1.85	0.58
1:1:442:G:O6	1:1:492:U:O2	2.22	0.58
1:1:3075:G:O2'	1:1:3076:C:O5'	2.17	0.58
4:4:51:TYR:OH	9:C:2:SER:O	2.19	0.58
10:D:293:ILE:HG13	10:D:358:VAL:HG21	1.85	0.58
18:M:99:TRP:CZ2	18:M:103:ILE:HD11	2.39	0.58
1:1:295:A:O2'	1:1:296:A:O5'	2.21	0.57
4:4:89:THR:O	4:4:90:THR:OG1	2.18	0.57
1:1:752:C:O2'	1:1:753:C:O5'	2.20	0.57
4:4:76:TYR:O	4:4:135:TYR:OH	2.17	0.57
8:B:86:VAL:HG22	8:B:162:VAL:HG12	1.85	0.57
1:1:250:U:O2'	1:1:251:G:OP2	2.14	0.57
10:D:118:ILE:HD12	10:D:190:LEU:HD13	1.86	0.57
21:P:30:ARG:HA	21:P:119:VAL:HG11	1.85	0.57
1:1:551:A:HO2'	1:1:552:G:P	2.28	0.57
8:B:56:ILE:HD12	8:B:356:LEU:HD22	1.86	0.56
1:1:1382:G:OP2	9:C:188:ARG:NH1	2.37	0.56
8:B:286:GLY:N	8:B:321:PHE:O	2.37	0.56
16:K:37:VAL:HG12	16:K:260:VAL:HG22	1.87	0.56
1:1:1237:G:O6	1:1:1251:A:N1	2.39	0.56

	juo puge	Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
4:4:182:GLU:OE1	4:4:247:ARG:NH1	2.39	0.56
14:H:71:VAL:O	14:H:75:VAL:HG23	2.04	0.56
1:1:3148:U:O2'	8:B:106:TRP:NE1	2.38	0.56
1:1:3273:A:H2	11:E:83:TYR:HH	1.54	0.56
4:4:155:ARG:O	4:4:159:LEU:HD12	2.06	0.56
9:C:260:GLN:O	9:C:270:SER:OG	2.10	0.56
1:1:534:U:OP1	23:S:132:THR:OG1	2.20	0.56
1:1:1177:G:OP1	1:1:1177:G:N2	2.30	0.55
12:F:40:LYS:NZ	12:F:170:GLU:OE2	2.28	0.55
13:G:140:VAL:HG21	19:N:3:ALA:HB2	1.88	0.55
11:E:52:VAL:HG21	11:E:65:ILE:HD13	1.89	0.55
13:G:134:TYR:CD1	13:G:190:VAL:HG21	2.42	0.55
1:1:637:C:O2'	1:1:638:C:OP2	2.20	0.55
1:1:752:C:H2'	1:1:753:C:C5	2.41	0.55
5:5:305:GLN:NE2	5:5:365:THR:O	2.39	0.55
4:4:174:VAL:HG21	4:4:238:ILE:HG22	1.88	0.55
9:C:38:VAL:O	9:C:42:VAL:HG23	2.07	0.55
1:1:209:A:O2'	1:1:211:A:OP2	2.17	0.55
14:H:41:ILE:CG2	14:H:43:VAL:HG22	2.37	0.55
1:1:3021:A:O2'	1:1:3022:G:OP2	2.21	0.55
20:O:19:LEU:O	20:O:23:VAL:HG23	2.07	0.55
8:B:49:TYR:O	8:B:80:ASP:N	2.37	0.54
14:H:28:VAL:HG22	14:H:33:THR:HG22	1.89	0.54
1:1:267:G:O4'	19:N:50:ARG:NH1	2.41	0.54
1:1:1229:G:O2'	25:W:47:ASP:OD2	2.23	0.54
6:6:44:G:O2'	16:K:240:ARG:O	2.24	0.54
1:1:3146:G:O2'	8:B:101:SER:O	2.24	0.54
9:C:154:THR:OG1	9:C:252:GLU:OE1	2.24	0.54
10:D:131:PHE:CG	10:D:147:ILE:HD11	2.42	0.54
10:D:143:GLN:OE1	10:D:166:ASN:ND2	2.38	0.54
2:2:72:A:OP1	26:Y:52:ARG:N	2.37	0.54
12:F:22:THR:O	12:F:26:VAL:HG23	2.08	0.54
1:1:3228:C:OP1	18:M:137:LYS:NZ	2.37	0.54
1:1:456:U:O2'	1:1:457:C:OP1	2.24	0.53
6:6:32:A:O2'	16:K:75:LYS:NZ	2.27	0.53
13:G:160:ILE:O	13:G:164:VAL:HG13	2.08	0.53
8:B:50:LYS:NZ	8:B:330:GLY:O	2.31	0.53
16:K:283:THR:HG22	16:K:284:ASN:H	1.71	0.53
5:5:381:ASP:OD2	5:5:385:ARG:NH1	2.41	0.53
13:G:134:TYR:CG	13:G:190:VAL:HG21	2.44	0.53
1:1:91:G:N2	1:1:95:A:OP2	2.40	0.53

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
4:4:145:LEU:HD13	4:4:145:LEU:O	2.09	0.53
11:E:68:PRO:HG3	11:E:145:LEU:HD23	1.91	0.53
24:V:80:ARG:NH1	24:V:117:PRO:O	2.40	0.53
1:1:345:G:O2'	2:2:25:G:N3	2.42	0.53
1:1:726:G:N1	1:1:743:C:OP2	2.38	0.52
16:K:183:ASP:O	16:K:187:VAL:HG23	2.10	0.52
2:2:12:A:C2	2:2:13:A:C8	2.98	0.52
5:5:57:GLU:OE1	5:5:169:LYS:NZ	2.42	0.52
5:5:346:ASP:OD1	5:5:350:ARG:N	2.42	0.52
1:1:336:A:O2'	9:C:48:GLN:NE2	2.40	0.52
7:A:90:GLU:OE2	7:A:92:ARG:NH2	2.43	0.52
10:D:243:LEU:HD13	10:D:247:PRO:HB3	1.92	0.52
9:C:156:LEU:HD22	9:C:159:ILE:HD12	1.91	0.52
16:K:276:ILE:HD12	16:K:279:ILE:HD11	1.90	0.52
1:1:477:A:HO2'	1:1:478:A:P	2.32	0.52
1:1:337:G:OP2	9:C:196:ASN:ND2	2.41	0.52
4:4:147:ASP:OD1	4:4:148:GLU:N	2.43	0.52
9:C:229:ASN:OD1	9:C:230:VAL:N	2.43	0.52
18:M:85:TRP:HE1	18:M:91:CYS:HG	1.56	0.52
20:O:39:GLU:OE1	20:O:39:GLU:N	2.41	0.52
8:B:43:LEU:HB2	8:B:208:VAL:HG22	1.92	0.52
16:K:256:PRO:O	16:K:260:VAL:HG23	2.10	0.52
23:S:66:GLU:OE2	23:S:73:LYS:NZ	2.42	0.52
1:1:940:G:HO2'	1:1:1435:A:HO2'	1.53	0.51
1:1:401:U:O2'	1:1:402:A:OP2	2.15	0.51
1:1:456:U:O2'	1:1:457:C:P	2.68	0.51
1:1:34:A:H3'	1:1:48:A:H61	1.75	0.51
1:1:304:G:N2	1:1:312:C:O2	2.44	0.51
1:1:187:A:O2'	1:1:188:U:O4'	2.20	0.51
1:1:351:A:C4'	2:2:53:A:HO2'	2.22	0.51
1:1:1210:U:O4	25:W:3:ARG:NH2	2.43	0.51
1:1:1336:U:O2	1:1:1337:A:C8	2.63	0.51
1:1:3212:C:C2'	1:1:3213:A:O5'	2.59	0.51
23:S:155:ARG:NE	23:S:171:PHE:O	2.41	0.51
1:1:649:A:HO2'	1:1:650:C:P	2.34	0.51
9:C:131:VAL:O	9:C:135:VAL:HG23	2.10	0.51
1:1:3163:A:OP1	21:P:159:LYS:N	2.44	0.51
1:1:1108:U:O2	1:1:1108:U:O4'	2.29	0.51
16:K:70:ASP:N	16:K:70:ASP:OD1	2.40	0.50
14:H:55:VAL:HG21	14:H:71:VAL:HG11	1.94	0.50
1:1:609:G:O2'	9:C:312:VAL:N	2.39	0.50

	jus puge	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:1:289:A:C2	1:1:290:G:N7	2.80	0.50	
1:1:720:A:O2'	1:1:721:G:P	2.69	0.50	
1:1:1419:A:OP1	2:2:20:U:O2'	2.29	0.50	
8:B:139:GLN:OE1	8:B:143:GLY:N	2.42	0.50	
3:3:28:CYS:N	3:3:36:GLY:O	2.42	0.50	
1:1:1192:C:H3'	1:1:1193:A:C5'	2.41	0.50	
10:D:200:ARG:NH1	10:D:368:ASP:O	2.43	0.50	
20:O:27:LEU:HD21	20:O:102:LEU:HB2	1.93	0.50	
1:1:649:A:O2'	1:1:650:C:P	2.69	0.50	
1:1:3109:G:N2	14:H:156:GLN:OE1	2.43	0.50	
5:5:131:VAL:HG21	5:5:247:TRP:HZ3	1.76	0.50	
1:1:631:U:O2	1:1:632:G:N7	2.45	0.49	
20:O:54:TYR:OH	20:O:73:PHE:O	2.30	0.49	
1:1:62:A:O2'	19:N:172:ARG:NH2	2.43	0.49	
1:1:594:U:OP1	1:1:609:G:N1	2.42	0.49	
1:1:1133:A:N6	1:1:1134:G:O6	2.45	0.49	
1:1:437:G:O2'	1:1:621:A:N1	2.38	0.49	
3:3:83:SER:OG	3:3:83:SER:O	2.29	0.49	
19:N:155:VAL:O	19:N:162:ARG:NH2	2.43	0.49	
20:O:120:VAL:HG12	20:O:122:GLN:HG2	1.94	0.49	
1:1:611:A:O2'	1:1:612:U:OP2	2.25	0.49	
1:1:2836:C:H5	1:1:2852:C:H41	1.60	0.49	
16:K:254:LEU:HD22	16:K:254:LEU:H	1.77	0.49	
19:N:124:ASP:OD2	19:N:125:SER:N	2.46	0.49	
1:1:110:G:OP2	17:L:73:ARG:NH1	2.45	0.49	
1:1:2:U:O2'	1:1:3:U:OP1	2.29	0.49	
1:1:760:G:O2'	1:1:761:A:OP2	2.27	0.49	
1:1:282:G:O6	1:1:286:U:N3	2.46	0.49	
16:K:156:CYS:SG	16:K:157:GLY:N	2.85	0.49	
1:1:3075:G:HO2'	1:1:3076:C:P	2.35	0.49	
17:L:109:PHE:O	17:L:113:VAL:HG23	2.12	0.49	
20:O:189:ASP:OD1	20:O:190:VAL:N	2.45	0.49	
1:1:679:U:O2'	1:1:788:C:O2	2.29	0.48	
2:2:11:C:C2	2:2:12:A:C8	3.01	0.48	
14:H:41:ILE:HD13	14:H:71:VAL:HG22	1.94	0.48	
17:L:105:ASN:ND2	17:L:107:GLU:OE1	2.44	0.48	
1:1:3211:C:C2	1:1:3212:C:C5	3.01	0.48	
1:1:80:G:OP1	19:N:189:LYS:NZ	2.31	0.48	
1:1:593:C:O2'	1:1:594:U:O5'	2.24	0.48	
1:1:1333:C:C2	1:1:1334:U:C5	3.02	0.48	
1:1:1347:U:HO2'	1:1:1348:U:P	2.28	0.48	

	h i a	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:2:15:G:O3'	2:2:16:G:O4'	2.32	0.48	
20:O:158:ALA:O	20:O:162:VAL:HG23	2.13	0.48	
22:Q:81:VAL:HG13	22:Q:101:VAL:HG13	1.95	0.48	
1:1:359:U:H4'	1:1:360:G:OP1	2.13	0.48	
1:1:1278:A:O2'	1:1:1279:C:P	2.72	0.48	
1:1:292:U:O2	1:1:292:U:O4'	2.32	0.48	
2:2:14:C:H4'	21:P:123:PRO:HA	1.96	0.48	
5:5:337:ASP:OD1	5:5:341:ASN:N	2.46	0.48	
10:D:367:PRO:O	10:D:457:HIS:NE2	2.47	0.48	
1:1:3212:C:OP2	18:M:124:ARG:NH2	2.46	0.48	
11:E:52:VAL:HG21	11:E:65:ILE:HD12	1.95	0.48	
11:E:70:LYS:N	11:E:142:ASP:OD2	2.45	0.48	
20:O:174:PHE:O	20:O:178:VAL:HG23	2.14	0.48	
1:1:2363:A:O2'	1:1:2364:G:O4'	2.21	0.48	
9:C:156:LEU:CD2	9:C:159:ILE:HD12	2.44	0.48	
1:1:1107:C:O2	1:1:1108:U:O2	2.32	0.47	
1:1:3099:C:HO2'	1:1:3100:U:P	2.34	0.47	
8:B:190:GLU:N	8:B:190:GLU:OE1	2.47	0.47	
1:1:1416:C:OP1	3:3:143:ARG:NH1	2.43	0.47	
8:B:159:ARG:NE	8:B:182:GLN:OE1	2.47	0.47	
11:E:52:VAL:HG22	11:E:53:VAL:H	1.79	0.47	
1:1:352:A:N7	1:1:367:A:N6	2.63	0.47	
1:1:533:A:HO2'	1:1:535:G:H8	1.60	0.47	
1:1:3121:U:H4'	1:1:3122:A:OP1	2.15	0.47	
1:1:3210:A:OP1	18:M:109:ARG:NH1	2.44	0.47	
5:5:404:ILE:HG21	5:5:407:ILE:HD11	1.95	0.47	
9:C:222:VAL:HG13	9:C:225:VAL:HB	1.96	0.47	
1:1:3208:G:O4'	1:1:3210:A:C8	2.68	0.47	
16:K:159:ASP:O	16:K:163:VAL:HG12	2.15	0.47	
1:1:3212:C:O2'	1:1:3213:A:O5'	2.29	0.47	
14:H:23:ARG:O	14:H:25:VAL:HG23	2.14	0.47	
1:1:720:A:O2'	1:1:721:G:OP2	2.32	0.47	
1:1:1353:U:O2'	1:1:1354:G:N2	2.47	0.47	
1:1:2826:U:N3	1:1:2827:U:O4	2.47	0.47	
2:2:19:C:C2	2:2:20:U:C5	3.02	0.47	
2:2:143:U:C2	2:2:144:G:C8	3.03	0.47	
3:3:133:HIS:O	3:3:134:TYR:C	2.52	0.47	
9:C:260:GLN:OE1	9:C:267:VAL:HG11	2.15	0.47	
16:K:84:ASN:OD1	16:K:85:ASN:N	2.47	0.47	
1:1:1296:C:N3	1:1:1297:C:C5	2.83	0.47	
16:K:45:ILE:O	16:K:48:THR:HG22	2.15	0.47	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:1:100:A:H3'	1:1:101:G:H21	1.80	0.47	
10:D:461:THR:HG23	10:D:462:VAL:HG23	1.97	0.47	
13:G:91:PHE:HE1	13:G:180:VAL:HG21	1.80	0.47	
14:H:41:ILE:HG23	14:H:43:VAL:HG22	1.97	0.47	
1:1:122:A:N6	1:1:146:U:O4'	2.47	0.47	
1:1:1257:C:H4'	1:1:1258:U:OP1	2.15	0.47	
1:1:3022:G:N2	1:1:3032:A:OP2	2.38	0.47	
1:1:3207:U:H3	23:S:164:SER:HG	1.63	0.47	
5:5:131:VAL:HG21	5:5:247:TRP:CZ3	2.49	0.47	
7:A:88:PHE:O	7:A:99:LEU:HD12	2.15	0.47	
1:1:296:A:O2'	1:1:297:G:O4'	2.24	0.46	
1:1:665:A:N6	1:1:798:G:O6	2.48	0.46	
1:1:1278:A:HO2'	1:1:1279:C:H6	1.59	0.46	
1:1:3008:A:N6	1:1:3139:A:N6	2.63	0.46	
10:D:291:LYS:HB2	10:D:358:VAL:HG23	1.97	0.46	
20:O:153:VAL:O	20:O:156:LEU:HD23	2.15	0.46	
1:1:752:C:HO2'	1:1:753:C:C5'	2.27	0.46	
1:1:1172:G:O2'	1:1:1179:A:N1	2.38	0.46	
1:1:3213:A:OP2	18:M:128:ARG:NH2	2.48	0.46	
1:1:2382:G:OP1	20:O:85:ARG:NH1	2.47	0.46	
1:1:2830:G:H2'	1:1:2831:G:C8	2.50	0.46	
8:B:280:HIS:ND1	8:B:325:LYS:O	2.48	0.46	
11:E:52:VAL:HG23	11:E:67:GLY:HA2	1.95	0.46	
16:K:162:THR:HG23	16:K:163:VAL:N	2.31	0.46	
1:1:196:G:N1	1:1:199:A:OP2	2.40	0.46	
1:1:406:G:N2	2:2:16:G:C4	2.84	0.46	
1:1:707:U:O4'	1:1:779:G:N2	2.48	0.46	
1:1:1150:A:C8	1:1:1310:G:O4'	2.69	0.46	
1:1:1276:U:O2'	1:1:1277:C:P	2.74	0.46	
1:1:3019:U:O2	1:1:3019:U:O5'	2.34	0.46	
4:4:132:GLN:O	4:4:133:LEU:HB2	2.14	0.46	
8:B:132:LYS:O	8:B:136:LYS:N	2.43	0.46	
9:C:289:ILE:HG21	22:Q:32:LEU:HD11	1.97	0.46	
19:N:124:ASP:N	19:N:127:TYR:O	2.46	0.46	
1:1:3020:U:H3'	1:1:3021:A:H5'	1.98	0.46	
1:1:3313:U:O4	1:1:3314:A:N6	2.48	0.46	
2:2:8:C:C2	2:2:9:A:C8	3.04	0.46	
8:B:156:SER:O	8:B:188:ILE:HG21	2.16	0.46	
21:P:87:SER:O	21:P:91:VAL:HG23	2.15	0.46	
23:S:132:THR:O	23:S:133:ALA:HB3	2.16	0.46	
1:1:717:C:HO2'	1:1:718:G:C5'	2.27	0.46	

		Interatomic	Clash overlap (Å)	
Atom-1	Atom-2	distance (\AA)		
10:D:451:LEU:HD12	10:D:485:VAL:HG21	1.97	0.46	
8:B:73:VAL:HG12	24:V:88:ARG:O	2.16	0.46	
14:H:67:ALA:HA	14:H:70:THR:HG22	1.96	0.46	
1:1:69:C:O2'	1:1:101:G:O2'	1.99	0.46	
1:1:3220:G:C6	1:1:3266:G:N1	2.84	0.46	
14:H:20:ILE:N	18:M:6:ILE:O	2.39	0.46	
21:P:51:VAL:HG21	21:P:58:ILE:HD11	1.98	0.46	
1:1:93:C:HO2'	1:1:94:G:C5'	2.26	0.46	
1:1:563:U:OP1	23:S:68:HIS:NE2	2.49	0.46	
8:B:31:ALA:O	8:B:339:ARG:NH1	2.46	0.46	
1:1:400:G:O2'	1:1:401:U:OP2	2.27	0.46	
1:1:752:C:H2'	1:1:753:C:C6	2.50	0.46	
5:5:13:ILE:O	5:5:38:HIS:N	2.48	0.46	
14:H:23:ARG:NH1	14:H:39:LYS:O	2.48	0.46	
1:1:75:G:H5"	17:L:58:VAL:HG13	1.98	0.45	
1:1:651:G:O2'	1:1:1435:A:OP1	2.35	0.45	
1:1:3071:U:OP2	1:1:3073:A:N6	2.49	0.45	
8:B:160:VAL:O	8:B:181:ILE:N	2.40	0.45	
1:1:150:A:C2	1:1:151:A:C8	3.04	0.45	
2:2:71:A:H4'	2:2:72:A:O5'	2.17	0.45	
6:6:16:U:HO2'	6:6:17:G:P	2.30	0.45	
8:B:57:VAL:HG12	8:B:73:VAL:CG2	2.43	0.45	
8:B:140:ASP:OD1	8:B:141:GLY:N	2.50	0.45	
1:1:548:G:HO2'	1:1:549:U:P	2.33	0.45	
1:1:677:A:N6	1:1:786:A:O4'	2.49	0.45	
16:K:158:LYS:O	16:K:162:THR:HG22	2.17	0.45	
17:L:93:ILE:HG22	17:L:93:ILE:O	2.17	0.45	
1:1:3059:G:O2'	1:1:3373:U:O2'	2.24	0.45	
2:2:85:G:O6	26:Y:114:ASP:N	2.41	0.45	
10:D:193:LEU:HD11	10:D:195:ILE:HD11	1.99	0.45	
1:1:648:C:C2	1:1:649:A:C8	3.04	0.45	
4:4:212:THR:O	4:4:214:LEU:N	2.50	0.45	
1:1:151:A:C5	1:1:152:U:C5	3.05	0.45	
7:A:136:VAL:HB	7:A:176:VAL:HG12	1.99	0.45	
1:1:412:G:C6	2:2:12:A:C6	3.04	0.44	
1:1:1257:C:H2'	1:1:1258:U:C6	2.52	0.44	
1:1:3196:U:O2	1:1:3197:G:N1	2.50	0.44	
1:1:3304:U:O3'	8:B:334:ARG:NH2	2.50	0.44	
13:G:132:VAL:HG12	13:G:200:LEU:CD2	2.47	0.44	
14:H:34:LEU:HD12	14:H:82:VAL:HG23	1.99	0.44	
16:K:106:PHE:CE1	16:K:234:LEU:HD13	2.53	0.44	

	tu -	Interatomic	Clash overlap (Å)	
Atom-1	Atom-2	distance (Å)		
16:K:229:VAL:HG22	16:K:233:GLN:OE1	2.17	0.44	
1:1:75:G:O2'	1:1:76:G:P	2.72	0.44	
2:2:114:G:O2'	2:2:115:C:P	2.72	0.44	
8:B:161:LEU:CD2	8:B:178:LEU:HD12	2.47	0.44	
19:N:18:VAL:HG13	19:N:19:LEU:N	2.32	0.44	
20:O:118:VAL:HG21	23:S:163:PHE:HB3	2.00	0.44	
1:1:949:C:O2'	1:1:971:G:OP1	2.30	0.44	
6:6:1:C:N4	13:G:85:ASN:OD1	2.50	0.44	
12:F:84:VAL:HG12	12:F:137:GLY:O	2.17	0.44	
14:H:48:VAL:HG13	14:H:49:ASN:N	2.33	0.44	
15:J:250:SER:O	15:J:254:VAL:HG23	2.17	0.44	
1:1:2367:A:N1	1:1:2368:A:N6	2.66	0.44	
8:B:117:ARG:NE	8:B:176:ALA:O	2.39	0.44	
1:1:164:A:HO2'	1:1:166:C:C1'	2.19	0.44	
1:1:406:G:N2	2:2:16:G:O2'	2.50	0.44	
1:1:1347:U:O2'	1:1:1348:U:P	2.74	0.44	
1:1:3185:U:H2'	20:O:126:VAL:HG21	2.00	0.44	
4:4:158:PRO:O	4:4:224:ILE:HD11	2.17	0.44	
1:1:150:A:N3	1:1:150:A:H2'	2.32	0.44	
1:1:208:C:H2'	1:1:209:A:O4'	2.17	0.44	
17:L:86:THR:HG23	17:L:89:TYR:H	1.82	0.44	
1:1:1412:G:C2	1:1:1413:G:C8	3.05	0.44	
7:A:144:GLU:OE2	7:A:150:GLN:NE2	2.45	0.44	
1:1:84:U:OP2	1:1:85:A:O2'	2.25	0.44	
1:1:596:C:O2	9:C:326:ARG:NE	2.51	0.44	
1:1:931:C:OP2	1:1:932:U:O2'	2.30	0.44	
1:1:1174:G:N2	20:O:87:MET:SD	2.91	0.44	
1:1:2369:G:O2'	1:1:2370:G:O5'	2.26	0.44	
1:1:2900:A:C2	1:1:2901:G:C8	3.06	0.44	
1:1:290:G:C5	1:1:291:C:C5	3.06	0.44	
1:1:591:G:O2'	11:E:17:ALA:O	2.31	0.44	
1:1:1413:G:C2	1:1:1414:G:N7	2.86	0.44	
2:2:57:C:O2	2:2:61:A:O2'	2.32	0.44	
6:6:33:U:OP2	16:K:285:ARG:NH1	2.51	0.44	
8:B:331:ASN:ND2	8:B:332:ARG:O	2.50	0.44	
11:E:131:LYS:O	11:E:135:VAL:HG23	2.18	0.44	
13:G:77:GLN:HA	13:G:229:VAL:HG22	1.98	0.44	
14:H:132:VAL:HG23	14:H:154:VAL:HG22	2.00	0.44	
17:L:80:VAL:HG12	17:L:85:LEU:O	2.18	0.44	
25:W:26:ILE:O	25:W:30:VAL:HG23	2.18	0.44	
1:1:1157:G:H2'	1:1:1158:A:O4'	2.18	0.43	

	Jus puge	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:1:1350:A:H62	9:C:287:THR:HG22	1.83	0.43	
1:1:277:G:C6	1:1:289:A:C6	3.06	0.43	
1:1:340:C:OP2	9:C:195:ARG:NH1	2.44	0.43	
1:1:1340:G:H2'	1:1:1341:U:C6	2.53	0.43	
1:1:1383:G:O2'	9:C:243:HIS:ND1	2.47	0.43	
8:B:62:ARG:O	8:B:68:HIS:ND1	2.51	0.43	
8:B:283:TYR:CD1	8:B:356:LEU:HD21	2.53	0.43	
10:D:296:LEU:HD13	10:D:302:VAL:HG22	1.98	0.43	
13:G:158:ASP:HB3	13:G:159:PRO:HD3	2.00	0.43	
17:L:29:ALA:O	17:L:33:VAL:HG23	2.17	0.43	
25:W:30:VAL:HG22	25:W:66:ILE:CG2	2.48	0.43	
1:1:1188:U:OP1	1:1:1210:U:O2'	2.30	0.43	
1:1:3018:C:C4	1:1:3019:U:C4	3.06	0.43	
3:3:5:ILE:O	3:3:9:VAL:HG23	2.19	0.43	
8:B:187:SER:OG	8:B:190:GLU:OE1	2.23	0.43	
10:D:308:LEU:HD21	10:D:429:LEU:HD22	2.00	0.43	
1:1:74:G:OP2	17:L:104:ARG:NH1	2.50	0.43	
1:1:1150:A:C6	1:1:1151:U:C4	3.06	0.43	
1:1:1307:G:HO2'	1:1:1308:A:P	2.37	0.43	
1:1:1389:G:O2'	1:1:1418:A:N1	2.44	0.43	
1:1:3017:A:C2	1:1:3018:C:C5	3.06	0.43	
16:K:97:LEU:HD11	16:K:205:THR:HG23	2.00	0.43	
16:K:155:ILE:HG22	16:K:156:CYS:N	2.33	0.43	
19:N:106:VAL:HG11	19:N:132:VAL:HG11	2.00	0.43	
1:1:645:A:H2'	1:1:646:A:O4'	2.19	0.43	
1:1:655:C:H2'	1:1:656:A:H8	1.84	0.43	
1:1:430:U:O4	1:1:630:A:N6	2.51	0.43	
21:P:114:VAL:HG13	21:P:114:VAL:O	2.18	0.43	
1:1:1294:A:C2	1:1:1295:G:C8	3.07	0.43	
1:1:346:C:O2	1:1:348:A:N6	2.52	0.43	
1:1:628:A:H2'	1:1:629:U:C6	2.54	0.43	
1:1:791:A:C2	1:1:792:G:C5	3.07	0.43	
1:1:1404:G:N2	1:1:1407:A:OP2	2.20	0.43	
3:3:14:PHE:O	3:3:14:PHE:CG	2.70	0.43	
5:5:326:GLU:OE1	5:5:326:GLU:N	2.52	0.43	
16:K:83:VAL:HG21	16:K:270:LEU:CD1	2.46	0.43	
1:1:369:A:O2'	1:1:370:U:H5"	2.19	0.43	
1:1:628:A:H2'	1:1:629:U:O4'	2.19	0.43	
1:1:1277:C:O2'	1:1:1278:A:OP2	2.32	0.43	
1:1:1361:U:O2	12:F:159:GLN:NE2	2.52	0.43	
1:1:3023:U:O2	1:1:3023:U:O4'	2.35	0.43	

	h h	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:2:7:U:C2	2:2:8:C:C5	3.07	0.43	
1:1:82:C:H2'	1:1:83:U:O4'	2.19	0.43	
6:6:39:U:O2	6:6:39:U:O4'	2.37	0.43	
9:C:320:ASN:O	9:C:322:GLN:N	2.52	0.43	
16:K:77:ASP:O	16:K:251:LEU:N	2.52	0.43	
20:O:118:VAL:HG22	20:O:119:VAL:H	1.83	0.43	
1:1:3214:U:OP2	18:M:128:ARG:NH2	2.38	0.42	
1:1:1415:U:H2'	1:1:1416:C:O4'	2.19	0.42	
1:1:3020:U:H3'	1:1:3021:A:C5'	2.49	0.42	
1:1:150:A:N1	1:1:151:A:C8	2.88	0.42	
1:1:1128:U:O2'	1:1:1129:A:O3'	2.37	0.42	
1:1:1188:U:O2'	1:1:1190:A:N7	2.47	0.42	
1:1:1293:U:C2	1:1:1294:A:C8	3.08	0.42	
1:1:1150:A:H2'	1:1:1150:A:N3	2.34	0.42	
1:1:3305:A:OP1	8:B:334:ARG:NH2	2.52	0.42	
1:1:30:G:OP1	19:N:172:ARG:NE	2.44	0.42	
1:1:296:A:N3	1:1:299:G:O2'	2.53	0.42	
1:1:753:C:H2'	1:1:754:G:O4'	2.19	0.42	
1:1:3275:U:OP2	1:1:3276:G:N1	2.53	0.42	
16:K:45:ILE:HD13	16:K:251:LEU:HD21	2.00	0.42	
21:P:119:VAL:HG23	21:P:146:ILE:HG13	2.01	0.42	
1:1:67:A:O2'	1:1:315:C:O2	2.29	0.42	
1:1:311:C:H2'	1:1:312:C:O4'	2.20	0.42	
1:1:400:G:H1'	1:1:401:U:OP2	2.20	0.42	
1:1:976:U:O2	1:1:976:U:O5'	2.38	0.42	
7:A:42:ASN:OD1	7:A:43:TYR:N	2.47	0.42	
12:F:98:LYS:HB3	12:F:99:PRO:HD3	2.02	0.42	
1:1:199:A:C2	1:1:219:A:C5	3.08	0.42	
1:1:372:A:H2'	1:1:373:A:O4'	2.19	0.42	
1:1:429:U:C2	1:1:430:U:C5	3.08	0.42	
1:1:562:C:OP2	18:M:77:ARG:NH1	2.53	0.42	
2:2:18:U:N3	2:2:19:C:C5	2.87	0.42	
5:5:268:TYR:N	5:5:284:THR:OG1	2.53	0.42	
1:1:341:G:N1	2:2:24:G:O6	2.53	0.42	
1:1:82:C:N3	1:1:104:G:N1	2.67	0.42	
1:1:90:C:HO2'	1:1:281:G:C2'	2.29	0.42	
1:1:295:A:HO2'	1:1:296:A:C5'	2.33	0.42	
1:1:1185:C:N4	1:1:1186:G:O6	2.52	0.42	
1:1:3124:G:OP2	20:O:134:LYS:NZ	2.46	0.42	
2:2:6:U:C2	2:2:7:U:C5	3.08	0.42	
2:2:77:A:H2'	2:2:78:G:O4'	2.20	0.42	

	Jus puge	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
20:O:142:SER:HA	20:O:145:VAL:HG22	2.02	0.42	
1:1:123:A:N1	1:1:150:A:C8	2.88	0.41	
1:1:432:G:C6	1:1:628:A:N1	2.88	0.41	
2:2:72:A:OP2	26:Y:52:ARG:NH2	2.52	0.41	
1:1:126:U:C2	1:1:127:G:C8	3.08	0.41	
1:1:648:C:H2'	1:1:648:C:O2	2.19	0.41	
1:1:1224:C:O4'	1:1:1288:U:O2'	2.36	0.41	
1:1:1298:C:H2'	1:1:1299:U:O2	2.19	0.41	
1:1:1307:G:O2'	1:1:1308:A:P	2.78	0.41	
1:1:3173:G:N3	1:1:3173:G:H2'	2.35	0.41	
4:4:102:PHE:CE2	4:4:128:VAL:HG11	2.54	0.41	
6:6:40:U:O2	6:6:40:U:O4'	2.38	0.41	
8:B:58:ARG:O	8:B:72:VAL:N	2.46	0.41	
1:1:72:C:H4'	17:L:63:VAL:HG22	2.03	0.41	
1:1:303:G:OP1	19:N:179:LYS:NZ	2.53	0.41	
1:1:385:A:C2'	1:1:386:A:O5'	2.68	0.41	
1:1:626:U:H2'	1:1:627:U:C6	2.55	0.41	
10:D:175:LEU:HD13	10:D:179:LEU:HD12	2.01	0.41	
20:O:50:ASN:ND2	20:O:136:THR:OG1	2.54	0.41	
1:1:303:G:H2'	1:1:304:G:C8	2.56	0.41	
1:1:303:G:C6	1:1:313:A:N6	2.88	0.41	
3:3:128:ARG:O	3:3:129:GLU:C	2.58	0.41	
8:B:341:SER:O	8:B:342:LEU:HB2	2.21	0.41	
16:K:79:GLN:N	16:K:249:GLY:O	2.46	0.41	
1:1:454:C:H2'	1:1:455:C:C6	2.55	0.41	
1:1:1278:A:O2'	1:1:1279:C:H6	2.03	0.41	
1:1:1297:C:C2	1:1:1298:C:C5	3.09	0.41	
3:3:114:LYS:O	3:3:118:VAL:HG23	2.20	0.41	
16:K:276:ILE:O	16:K:297:VAL:HG21	2.20	0.41	
18:M:114:ASP:OD1	18:M:117:ARG:NH1	2.51	0.41	
1:1:546:C:OP1	1:1:548:G:N2	2.54	0.41	
1:1:808:A:H2'	1:1:809:G:C8	2.55	0.41	
13:G:232:HIS:O	13:G:233:TRP:C	2.59	0.41	
1:1:199:A:C4	1:1:201:A:C8	3.08	0.41	
1:1:1111:U:HO2'	1:1:1112:A:P	2.42	0.41	
1:1:1192:C:H4'	1:1:1193:A:OP2	2.19	0.41	
1:1:1256:G:H2'	1:1:1257:C:O4'	2.20	0.41	
9:C:300:ARG:NH2	22:Q:38:ARG:O	2.53	0.41	
14:H:18:VAL:HG23	14:H:18:VAL:O	2.21	0.41	
23:S:71:LYS:HB3	23:S:73:LYS:HZ2	1.85	0.41	
23:S:112:ALA:O	23:S:115:ARG:NH1	2.53	0.41	

		Interatomic	Clash overlap (Å)	
Atom-1	Atom-2	distance (Å)		
1:1:228:U:N3	1:1:229:G:N7	2.68	0.41	
1:1:580:C:OP1	9:C:321:LYS:NZ	2.38	0.41	
1:1:782:U:H2'	1:1:783:A:C1'	2.50	0.41	
1:1:1257:C:HO2'	1:1:1258:U:P	2.39	0.41	
1:1:1263:A:H2'	1:1:1263:A:N3	2.36	0.41	
1:1:1334:U:C2	1:1:1335:C:C5	3.09	0.41	
1:1:2995:A:HO2'	1:1:2996:U:P	2.33	0.41	
1:1:209:A:N3	9:C:221:ASN:ND2	2.65	0.41	
1:1:268:A:N7	19:N:12:ARG:NH1	2.69	0.41	
1:1:271:C:C2	1:1:295:A:N6	2.89	0.41	
1:1:432:G:H2'	1:1:433:A:O4'	2.21	0.41	
1:1:965:A:H2'	1:1:966:U:O4'	2.20	0.41	
1:1:1231:A:N6	1:1:1276:U:OP2	2.54	0.41	
1:1:2367:A:C2	1:1:2368:A:N7	2.89	0.41	
1:1:2901:G:O3'	14:H:170:LYS:NZ	2.52	0.41	
1:1:3009:G:N2	8:B:15:GLY:O	2.49	0.41	
3:3:85:ASN:OD1	3:3:88:LYS:HB3	2.21	0.41	
4:4:137:GLN:O	4:4:138:SER:C	2.59	0.41	
7:A:41:VAL:HG12	7:A:46:ARG:CG	2.51	0.41	
1:1:2:U:HO2'	1:1:3:U:P	2.44	0.41	
6:6:15:C:C4'	6:6:16:U:OP2	2.69	0.41	
16:K:129:ASP:O	16:K:132:ILE:HG22	2.20	0.41	
1:1:1208:U:O2	1:1:1208:U:O4'	2.39	0.40	
1:1:1383:G:OP1	9:C:203:ARG:NE	2.52	0.40	
1:1:2999:U:O2	1:1:3149:G:O6	2.39	0.40	
19:N:119:TYR:OH	19:N:131:GLU:OE1	2.25	0.40	
23:S:139:TYR:CE2	23:S:140:VAL:HG23	2.56	0.40	
1:1:406:G:HO2'	1:1:407:A:P	2.44	0.40	
8:B:44:THR:HG22	8:B:184:ASN:OD1	2.20	0.40	
8:B:306:THR:HG23	8:B:311:PHE:CE2	2.57	0.40	
16:K:221:THR:O	16:K:224:ASN:OD1	2.40	0.40	
16:K:271:ILE:CG1	16:K:276:ILE:HD11	2.52	0.40	
1:1:753:C:C4	1:1:754:G:C6	3.09	0.40	
1:1:756:U:H3'	1:1:757:C:H5"	2.02	0.40	
1:1:952:A:O3'	1:1:953:G:O4'	2.40	0.40	
1:1:1149:G:C6	1:1:1152:G:OP2	2.75	0.40	
1:1:3021:A:O4'	1:1:3023:U:C2	2.74	0.40	
1:1:3216:G:O6	1:1:3259:U:O2'	2.32	0.40	
13:G:150:LEU:HG	13:G:215:VAL:HG22	2.03	0.40	
13:G:211:LEU:O	13:G:215:VAL:HG23	2.22	0.40	
24:V:86:ARG:NH1	24:V:87:ARG:O	2.54	0.40	

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
1:1:576:C:OP1	12:F:241:LYS:NZ	2.47	0.40	
1:1:583:G:C2	1:1:584:G:C8	3.09	0.40	
1:1:3057:U:H3'	1:1:3058:U:H4'	2.03	0.40	
5:5:156:VAL:HG12	5:5:166:ILE:CD1	2.51	0.40	
9:C:269:SER:O	9:C:270:SER:OG	2.39	0.40	
10:D:129:GLN:O	10:D:133:VAL:HG23	2.21	0.40	
19:N:145:ASP:O	19:N:149:ASN:N	2.54	0.40	
1:1:498:A:C6	1:1:616:G:O6	2.75	0.40	
1:1:706:A:N6	1:1:714:G:O6	2.53	0.40	
1:1:951:A:N1	1:1:1369:A:C2	2.89	0.40	
9:C:77:VAL:HG21	9:C:84:ARG:NH1	2.37	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
3	3	171/306~(56%)	161 (94%)	9~(5%)	1 (1%)	25	64
4	4	209/278~(75%)	191 (91%)	18 (9%)	0	100	100
5	5	377/463~(81%)	364 (97%)	13 (3%)	0	100	100
7	А	138/291~(47%)	124 (90%)	14 (10%)	0	100	100
8	В	329/387~(85%)	316~(96%)	13 (4%)	0	100	100
9	С	341/362~(94%)	323~(95%)	18 (5%)	0	100	100
10	D	433/505~(86%)	413 (95%)	20~(5%)	0	100	100
11	Ε	147/176~(84%)	142 (97%)	5(3%)	0	100	100
12	F	239/244~(98%)	236~(99%)	3 (1%)	0	100	100
13	G	$15\overline{5}/256~(60\%)$	151 (97%)	4 (3%)	0	100	100
14	Η	166/191 (87%)	159 (96%)	6 (4%)	1 (1%)	25	64

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
15	J	59/427~(14%)	59~(100%)	0	0	100	100
16	Κ	253/376~(67%)	240~(95%)	13~(5%)	0	100	100
17	L	106/199~(53%)	97~(92%)	7~(7%)	2(2%)	8	40
18	М	132/138~(96%)	130~(98%)	2(2%)	0	100	100
19	Ν	173/204~(85%)	171~(99%)	2(1%)	0	100	100
20	Ο	195/199~(98%)	192~(98%)	3(2%)	0	100	100
21	Р	133/184~(72%)	131 (98%)	2(2%)	0	100	100
22	Q	129/186~(69%)	128 (99%)	1 (1%)	0	100	100
23	S	168/172~(98%)	156 (93%)	12 (7%)	0	100	100
24	V	92/137~(67%)	91~(99%)	1 (1%)	0	100	100
25	W	171/236~(72%)	167 (98%)	4 (2%)	0	100	100
26	Y	123/127~(97%)	122 (99%)	1 (1%)	0	100	100
27	b	237/647~(37%)	230~(97%)	7 (3%)	0	100	100
28	е	123/130~(95%)	120 (98%)	3 (2%)	0	100	100
29	f	104/107~(97%)	99~(95%)	5 (5%)	0	100	100
30	h	117/120 (98%)	109 (93%)	8 (7%)	0	100	100
31	i	72/100~(72%)	70~(97%)	2(3%)	0	100	100
32	j	69/88~(78%)	65~(94%)	4 (6%)	0	100	100
33	m	152/807~(19%)	145~(95%)	7 (5%)	0	100	100
34	n	326/605~(54%)	317 (97%)	9(3%)	0	100	100
35	О	131/220~(60%)	127 (97%)	4 (3%)	0	100	100
36	r	50/261~(19%)	50 (100%)	0	0	100	100
37	t	234/322~(73%)	222~(95%)	12 (5%)	0	100	100
38	V	$\overline{124/231}$ (54%)	118 (95%)	6 (5%)	0	100	100
39	х	261/295~(88%)	243 (93%)	18 (7%)	0	100	100
40	У	211/245~(86%)	206 (98%)	5 (2%)	0	100	100
All	All	6650/10222~(65%)	6385~(96%)	261 (4%)	4 (0%)	54	84

All (4) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
3	3	134	TYR
17	L	63	VAL
-	<i>a</i>	7	

Continued from previous page...

Mol	Chain	Res	Type
14	Н	23	ARG
17	L	61	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{ntiles}
3	3	155/274~(57%)	152 (98%)	3~(2%)	57	80
4	4	203/257~(79%)	201~(99%)	2(1%)	76	88
5	5	343/410~(84%)	342~(100%)	1 (0%)	92	97
7	А	136/263~(52%)	133~(98%)	3~(2%)	52	78
8	В	280/323~(87%)	274 (98%)	6(2%)	53	79
9	С	273/289~(94%)	267~(98%)	6 (2%)	52	78
10	D	381/440~(87%)	373~(98%)	8 (2%)	53	79
11	Е	131/153~(86%)	128 (98%)	3~(2%)	50	77
12	F	204/205~(100%)	203 (100%)	1 (0%)	88	94
13	G	128/208~(62%)	127~(99%)	1 (1%)	81	91
14	Н	157/171~(92%)	156 (99%)	1 (1%)	86	94
15	J	58/383~(15%)	58 (100%)	0	100	100
16	Κ	238/346~(69%)	230~(97%)	8 (3%)	37	68
17	L	87/159~(55%)	87 (100%)	0	100	100
18	М	106/109~(97%)	104 (98%)	2(2%)	57	80
19	Ν	153/176~(87%)	151 (99%)	2(1%)	69	86
20	Ο	160/162~(99%)	157~(98%)	3~(2%)	57	80
21	Р	109/146~(75%)	109 (100%)	0	100	100
22	Q	107/151~(71%)	106 (99%)	1 (1%)	78	90
23	S	$155/15\overline{6}\ (99\%)$	150 (97%)	5(3%)	39	69
24	V	77/105~(73%)	77~(100%)	0	100	100
25	W	$169/21\overline{3}\ (79\%)$	167 (99%)	2(1%)	71	87

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
26	Y	108/110~(98%)	106 (98%)	2(2%)	57	80
27	b	231/573~(40%)	225~(97%)	6 (3%)	46	74
28	е	108/111~(97%)	106 (98%)	2(2%)	57	80
29	f	90/91~(99%)	90 (100%)	0	100	100
30	h	104/105~(99%)	101 (97%)	3(3%)	42	71
31	i	61/82~(74%)	60 (98%)	1 (2%)	62	83
32	j	59/71~(83%)	59 (100%)	0	100	100
33	m	145/723~(20%)	143 (99%)	2(1%)	67	85
34	n	302/548~(55%)	300 (99%)	2 (1%)	84	93
35	0	118/199~(59%)	116 (98%)	2(2%)	60	82
36	r	48/229~(21%)	48 (100%)	0	100	100
37	t	213/287~(74%)	208~(98%)	5 (2%)	50	77
38	v	116/205~(57%)	115 (99%)	1 (1%)	78	90
39	х	252/276~(91%)	248 (98%)	4 (2%)	62	83
40	У	185/211 (88%)	185 (100%)	0	100	100
All	All	5950/8920~(67%)	5862 (98%)	88 (2%)	66	84

All (88) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
3	3	11	ASN
3	3	40	ARG
3	3	71	HIS
4	4	69	LEU
4	4	148	GLU
5	5	107	GLU
7	А	43	TYR
7	А	103	LYS
7	А	106	ASN
8	В	46	PHE
8	В	100	ARG
8	В	182	GLN
8	В	332	ARG
8	В	349	LYS
8	В	385	LYS
9	С	93	MET
9	С	120	TYR

Mol	Chain	Res	Type
9	С	177	ASP
9	С	182	LEU
9	С	259	ASP
9	С	306	THR
10	D	103	LEU
10	D	112	ARG
10	D	113	ASN
10	D	286	ARG
10	D	304	TYR
10	D	314	LEU
10	D	319	LEU
10	D	466	ASP
11	Е	29	LYS
11	Е	46	ARG
11	Е	133	GLU
12	F	4	GLU
13	G	204	ARG
14	Н	153	ASP
16	Κ	76	LYS
16	Κ	80	LEU
16	K	88	PHE
16	Κ	156	CYS
16	Κ	253	TRP
16	Κ	262	ASN
16	Κ	277	ARG
16	K	280	PHE
18	М	59	ASN
18	М	108	ARG
19	Ν	144	ARG
19	Ν	188	ARG
20	0	57	PHE
20	0	94	ARG
20	0	156	LEU
$\overline{22}$	Q	78	ASN
23	S	12	ARG
$\overline{23}$	S	106	LEU
23	S	166	LYS
23	S	171	PHE
23	S	172	TYR
25	W	60	TRP
25	W	220	TYR
26	Y	51	ARG

Mol	Chain	Res	Type
26	Y	74	TYR
27	b	15	ASN
27	b	70	ASN
27	b	159	ARG
27	b	180	LYS
27	b	442	TYR
27	b	462	LYS
28	е	33	ARG
28	е	98	HIS
30	h	38	ARG
30	h	59	ASN
30	h	119	LYS
31	i	53	TYR
33	m	306	TYR
33	m	322	MET
34	n	64	TYR
34	n	81	ARG
35	0	175	LYS
35	0	177	TYR
37	t	157	ASN
37	t	160	PHE
37	t	167	ARG
37	t	187	LEU
37	t	291	GLN
38	v	31	GLN
39	Х	163	ILE
39	Х	165	LEU
39	Х	215	GLN
39	х	223	ASP

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (27) such sidechains are listed below:

Mol	Chain	Res	Type
3	3	106	HIS
7	А	75	ASN
9	С	48	GLN
9	С	116	ASN
9	С	213	ASN
10	D	113	ASN
10	D	141	HIS
10	D	251	ASN
10	D	441	GLN

Mol	Chain	Res	Type
12	F	157	ASN
13	G	145	ASN
14	Н	59	ASN
16	K	262	ASN
18	М	41	GLN
18	М	59	ASN
20	0	50	ASN
22	Q	58	ASN
23	S	63	GLN
27	b	15	ASN
27	b	70	ASN
27	b	124	GLN
28	е	49	ASN
28	е	98	HIS
30	h	59	ASN
34	n	456	HIS
37	t	157	ASN
37	t	269	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	1	1615/3396~(47%)	296 (18%)	27~(1%)
2	2	147/158~(93%)	25~(17%)	1 (0%)
6	6	64/232~(27%)	26 (40%)	2(3%)
All	All	1826/3786~(48%)	347~(19%)	30 (1%)

All (347) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	1	2	U
1	1	3	U
1	1	20	А
1	1	26	А
1	1	34	А
1	1	38	U
1	1	49	А
1	1	60	А
1	1	65	А
1	1	66	А
1	1	76	G

1 1 94 G 1 1 109 A 1 1 110 G 1 1 116 A 1 1 118 U 1 1 122 A 1 1 122 A 1 1 122 A 1 1 150 A 1 1 150 A 1 1 150 A 1 1 150 A 1 1 156 G 1 1 165 A 1 1 190 U 1 1 190 U 1 1 210 U 1 1 210 U 1 1 218 G 1 1 220 G 1 1 240 U 1 1 246 U 1 1 250 U <th>Mol</th> <th>Chain</th> <th>Res</th> <th>Type</th>	Mol	Chain	Res	Type
1 1 109 A 1 1 110 G 1 1 116 A 1 1 118 U 1 1 122 A 1 1 122 A 1 1 136 G 1 1 150 A 1 1 153 U 1 1 156 G 1 1 165 A 1 1 190 U 1 1 190 U 1 1 200 C 1 1 210 U 1 1 210 U 1 1 218 G 1 1 220 G 1 1 240 U 1 1 243 G 1 1 246 U 1 1 250 U 1 1 265 A </td <td>1</td> <td>1</td> <td>94</td> <td>G</td>	1	1	94	G
1 1 110 G 1 1 116 A 1 1 118 U 1 1 122 A 1 1 122 A 1 1 136 G 1 1 150 A 1 1 153 U 1 1 156 G 1 1 165 A 1 1 190 U 1 1 190 U 1 1 190 U 1 1 200 C 1 1 210 U 1 1 210 U 1 1 220 G 1 1 220 G 1 1 234 G 1 1 240 U 1 1 240 U 1 1 251 G 1 1 265 A </td <td>1</td> <td>1</td> <td>109</td> <td>А</td>	1	1	109	А
11116A11118U11122A11136G11150A11153U11156G11165A11170G11190U11200C11210U11210U11219A11220G11219A11234G11240U11243G11250U11252U11265A11282G11283G11284A11285A11305U11329U11329U11360G	1	1	110	G
1 1 118 U 1 1 122 A 1 1 136 G 1 1 150 A 1 1 153 U 1 1 156 G 1 1 165 A 1 1 170 G 1 1 190 U 1 1 190 U 1 1 200 C 1 1 210 U 1 1 210 U 1 1 219 A 1 1 220 G 1 1 220 G 1 1 234 G 1 1 243 G 1 1 243 G 1 1 246 U 1 1 250 U 1 1 265 A 1 1 269 G </td <td>1</td> <td>1</td> <td>116</td> <td>А</td>	1	1	116	А
1 1 122 A 1 1 136 G 1 1 150 A 1 1 153 U 1 1 156 G 1 1 165 A 1 1 170 G 1 1 190 U 1 1 190 U 1 1 200 C 1 1 210 U 1 1 210 U 1 1 210 G 1 1 220 G 1 1 220 G 1 1 240 U 1 1 244 G 1 1 246 U 1 1 250 U 1 1 252 U 1 1 265 A 1 1 283 G 1 1 284 A </td <td>1</td> <td>1</td> <td>118</td> <td>U</td>	1	1	118	U
1 1 136 G 1 1 150 A 1 1 153 U 1 1 156 G 1 1 165 A 1 1 170 G 1 1 190 U 1 1 190 U 1 1 191 U 1 1 200 C 1 1 210 U 1 1 210 U 1 1 210 U 1 1 220 G 1 1 220 G 1 1 240 U 1 1 243 G 1 1 246 U 1 1 250 U 1 1 252 U 1 1 265 A 1 1 283 G 1 1 283 G </td <td>1</td> <td>1</td> <td>122</td> <td>А</td>	1	1	122	А
1 1 150 A 1 1 153 U 1 1 156 G 1 1 165 A 1 1 170 G 1 1 190 U 1 1 190 U 1 1 190 U 1 1 200 C 1 1 210 U 1 1 210 U 1 1 210 G 1 1 220 G 1 1 240 U 1 1 243 G 1 1 246 U 1 1 250 U 1 1 265 A 1 1 269 G </td <td>1</td> <td>1</td> <td>136</td> <td>G</td>	1	1	136	G
1 1 153 U 1 1 156 G 1 1 165 A 1 1 170 G 1 1 190 U 1 1 190 U 1 1 190 U 1 1 200 C 1 1 210 U 1 1 210 U 1 1 219 A 1 1 220 G 1 1 220 G 1 1 244 G 1 1 243 G 1 1 246 U 1 1 250 U 1 1 251 G 1 1 252 U 1 1 265 A 1 1 269 G 1 1 283 G 1 1 285 A </td <td>1</td> <td>1</td> <td>150</td> <td>А</td>	1	1	150	А
1 1 156 G 1 1 165 A 1 1 170 G 1 1 190 U 1 1 191 U 1 1 200 C 1 1 210 U 1 1 210 U 1 1 210 U 1 1 210 U 1 1 219 A 1 1 220 G 1 1 220 G 1 1 244 U 1 1 243 G 1 1 244 U 1 1 249 U 1 1 250 U 1 1 251 G 1 1 265 A 1 1 269 G 1 1 283 G 1 1 286 U </td <td>1</td> <td>1</td> <td>153</td> <td>U</td>	1	1	153	U
1 1 165 A 1 1 170 G 1 1 190 U 1 1 191 U 1 1 200 C 1 1 210 U 1 1 210 U 1 1 210 U 1 1 210 G 1 1 219 A 1 1 220 G 1 1 220 G 1 1 243 G 1 1 244 U 1 1 246 U 1 1 246 U 1 1 250 U 1 1 251 G 1 1 265 A 1 1 268 A 1 1 283 G 1 1 284 A 1 1 305 U </td <td>1</td> <td>1</td> <td>156</td> <td>G</td>	1	1	156	G
1 1 170 G 1 1 190 U 1 1 191 U 1 1 200 C 1 1 210 U 1 1 210 U 1 1 210 U 1 1 210 G 1 1 219 A 1 1 220 G 1 1 220 G 1 1 244 G 1 1 243 G 1 1 244 U 1 1 245 U 1 1 250 U 1 1 251 G 1 1 265 A 1 1 269 G 1 1 283 G 1 1 284 A 1 1 286 U 1 1 305 U </td <td>1</td> <td>1</td> <td>165</td> <td>A</td>	1	1	165	A
11190U11191U11200C11210U11218G11219A11220G11221A11234G11240U11243G11244U11250U11251G11265A11269G11283G11284A11285A11285A11305U11329U11360G	1	1	170	G
1 1 191 U 1 1 200 C 1 1 210 U 1 1 210 U 1 1 210 U 1 1 210 A 1 1 219 A 1 1 220 G 1 1 221 A 1 1 234 G 1 1 240 U 1 1 240 U 1 1 240 U 1 1 246 U 1 1 250 U 1 1 250 U 1 1 251 G 1 1 265 A 1 1 269 G 1 1 283 G 1 1 285 A 1 1 305 U 1 1 325 A </td <td>1</td> <td>1</td> <td>190</td> <td>U</td>	1	1	190	U
11200C11210U11218G11219A11220G11221A11234G11240U11243G11244U11249U11250U11252U11265A11269G11282G11283G11285A11286U11305U11325A11329U11360G	1	1	191	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	200	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	210	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	218	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	219	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	220	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	221	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	234	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	240	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	243	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	246	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	249	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	250	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	251	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	252	U
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1	265	А
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1	268	A
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1	269	G
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1	282	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	283	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	284	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	285	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	286	U
1 1 311 C 1 1 325 A 1 1 329 U 1 1 352 A 1 1 360 G	1	1	305	U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	311	C
1 1 329 U 1 1 352 A 1 1 360 G	1	1	325	A
1 1 352 A 1 1 360 G	1	1	329	U
1 1 360 G	1	1	352	A
	1	1	360	G

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1 1 376 G 1 1 383 G 1 1 384 A 1 1 385 A 1 1 386 A 1 1 388 G 1 1 398 A	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1 1 384 A 1 1 385 A 1 1 386 A 1 1 388 G 1 1 398 A	
1 1 385 A 1 1 386 A 1 1 388 G 1 1 398 A 1 1 398 A	
1 1 386 A 1 1 388 G 1 1 398 A	_
1 1 388 G 1 1 398 A	
1 1 398 A	
1 1 222	
1 1 399 A	
1 1 401 U	
1 1 402 A	
1 1 403 C	
1 1 404 G	
1 1 421 G	
1 1 422 A	
1 1 429 U	
1 1 438 A	
1 1 439 C	
1 1 442 G	
1 1 454 C	
1 1 457 C	
1 1 459 G	
1 1 462 C	
1 1 463 C	
1 1 464 U	
1 1 465 U	
1 1 468 G	
1 1 478 A	
1 1 479 U	
1 1 480 C	
1 1 481 U	
1 1 482 C	
1 1 521 A	
1 1 533 A	
1 1 544 C	
1 1 545 U	
1 1 547 G	
1 1 548 G	
1 1 549 U	
1 1 551 A	

Mol	Chain	Res	Type	
1	1	552	G	
1	1	555	U	
1	1	556	U	
1	1	557	А	
1	1	559	А	
1	1	569	А	
1	1	578	А	
1	1	579	G	
1	1	589	А	
1	1	592	A	
1	1	604	G	
1	1	611	A	
1	1	619	A	
1	1	621	A	
1	1	636	C	
1	1	638	C	
1	1	645	A	
1	1	647	A	
1	1	650	С	
1	1	660	A	
1	1	661	G	
1	1	677	A	
1	1	681	U	
1	1	705	A	
1	1	716	A	
1	1	717	C	
1	1	718	G	
1	1	721	G	
1	1	722	G	
1	1	725	G	
1	1	735	A	
1	1	737	G	
1	1	750	G	
1	1	753	C	
1	1	756	U	
1	1	757	C	
1	1	761	A	
1	1	775	A	
1	1	777	U	
1	1	779	G	
1	1	783	A	
1	1	784	A	

Mol	Chain	Res	Type
1	1	785	G
1	1	806	А
1	1	817	А
1	1	926	А
1	1	930	U
1	1	933	А
1	1	937	G
1	1	938	\mathbf{C}
1	1	944	С
1	1	951	А
1	1	953	G
1	1	956	U
1	1	957	C
1	1	959	C
1	1	961	С
1	1	962	А
1	1	977	С
1	1	978	G
1	1	979	U
1	1	980	А
1	1	982	С
1	1	1103	А
1	1	1104	G
1	1	1111	U
1	1	1112	А
1	1	1116	G
1	1	1124	U
1	1	1125	U
1	1	1129	А
1	1	1130	А
1	1	1131	G
1	1	1132	C
1	1	1133	А
1	1	1139	G
1	1	1140	G
1	1	1144	U
1	1	1153	A
1	1	1155	C
1	1	1159	А
1	1	1180	A
1	1	1181	U
1	1	1189	С

Mol	Chain	Res	Type
1	1	1191	U
1	1	1193	А
1	1	1196	С
1	1	1220	U
1	1	1221	А
1	1	1222	G
1	1	1223	А
1	1	1227	С
1	1	1245	А
1	1	1246	G
1	1	1253	U
1	1	1258	U
1	1	1261	G
1	1	1262	G
1	1	1263	А
1	1	1277	С
1	1	1278	А
1	1	1279	С
1	1	1286	А
1	1	1287	А
1	1	1301	А
1	1	1307	G
1	1	1308	А
1	1	1310	G
1	1	1313	G
1	1	1330	А
1	1	1332	А
1	1	1348	U
1	1	1350	А
1	1	1353	U
1	1	1354	G
1	1	1355	A
1	1	1386	А
1	1	1399	A
1	1	1400	G
1	1	1408	G
1	1	1417	G
1	1	1418	А
1	1	1419	A
1	1	1437	С
1	1	2353	G
1	1	2364	G

Mol	Chain	Res	Type
1	1	2373	А
1	1	2374	С
1	1	2825	С
1	1	2836	С
1	1	2837	А
1	1	2849	С
1	1	2856	G
1	1	2858	U
1	1	2899	С
1	1	2996	U
1	1	3012	А
1	1	3021	А
1	1	3022	G
1	1	3028	G
1	1	3029	А
1	1	3032	А
1	1	3049	А
1	1	3057	U
1	1	3058	U
1	1	3061	G
1	1	3067	С
1	1	3072	С
1	1	3073	А
1	1	3075	G
1	1	3076	С
1	1	3078	U
1	1	3088	G
1	1	3099	С
1	1	3100	U
1	1	3101	G
1	1	3129	А
1	1	3130	А
1	1	3131	U
1	1	3142	А
1	1	3164	С
1	1	3173	G
1	1	3174	А
1	1	3176	G
1	1	3179	U
1	1	3181	С
1	1	3187	A
1	1	3189	G

Mol	Chain	Res	Type
1	1	3196	U
1	1	3198	U
1	1	3199	G
1	1	3207	U
1	1	3213	А
1	1	3217	С
1	1	3218	А
1	1	3219	G
1	1	3229	G
1	1	3244	А
1	1	3245	А
1	1	3246	G
1	1	3250	U
1	1	3259	U
1	1	3260	G
1	1	3270	U
1	1	3273	А
1	1	3275	U
1	1	3276	G
1	1	3286	G
1	1	3289	G
1	1	3294	А
1	1	3304	U
1	1	3317	U
1	1	3330	А
1	1	3331	U
1	1	3333	G
1	1	3340	G
1	1	3366	G
1	1	3368	U
1	1	3370	А
1	1	3382	U
1	1	3390	G
2	2	16	G
2	2	34	U
2	2	35	С
2	2	39	G
2	2	40	А
2	2	51	G
2	2	52	А
2	2	59	А
2	2	62	С
	~ .		

Mol	Chain	Res	Type
2	2	63	G
2	2	79	А
2	2	80	А
2	2	82	U
2	2	86	U
2	2	87	G
2	2	90	U
2	2	95	G
2	2	104	А
2	2	106	С
2	2	107	G
2	2	109	А
2	2	115	С
2	2	123	G
2	2	157	U
2	2	158	U
6	6	2	С
6	6	4	U
6	6	5	С
6	6	6	U
6	6	7	С
6	6	8	А
6	6	13	U
6	6	15	С
6	6	16	U
6	6	17	G
6	6	34	A
6	6	36	U
6	6	39	U
6	6	40	U
6	6	42	G
6	6	43	А
6	6	47	А
6	6	52	G
6	6	53	А
6	6	54	А
6	6	56	U
6	6	59	С
6	6	228	U
6	6	229	U
6	6	231	А
6	6	232	А

All (30) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	1	75	G
1	1	93	С
1	1	155	G
1	1	250	U
1	1	310	U
1	1	359	U
1	1	400	G
1	1	401	U
1	1	456	U
1	1	477	А
1	1	480	С
1	1	548	G
1	1	551	А
1	1	649	А
1	1	659	G
1	1	720	А
1	1	755	А
1	1	1128	U
1	1	1257	С
1	1	1276	U
1	1	1347	U
1	1	2857	С
1	1	2995	А
1	1	3218	А
1	1	3228	С
1	1	3269	U
1	1	3339	А
2	2	114	G
6	6	15	С
6	6	227	С

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 1 ligands modelled in this entry, 1 is monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-12911. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 200

Y Index: 200

Z Index: 200

6.2.2 Raw map

X Index: 200

Y Index: 200

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 188

Y Index: 146

Z Index: 155

6.3.2 Raw map

X Index: 188

Y Index: 146

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.021. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1238 nm^3 ; this corresponds to an approximate mass of 1119 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.286 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.286 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.50	-	-
Author-provided FSC curve	3.47	4.15	3.55
Unmasked-calculated*	4.38	8.19	4.57

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 4.38 differs from the reported value 3.5 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-12911 and PDB model 7OHW. Per-residue inclusion information can be found in section 3 on page 11.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.021 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Atom inclusion (i)

At the recommended contour level, 95% of all backbone atoms, 86% of all non-hydrogen atoms, are inside the map.

