

Full wwPDB X-ray Structure Validation Report (i)

Sep 11, 2023 – 04:41 pm BST

PDB ID	:	80FV
Title	:	Human adenovirus type 53 fiber-knob protein complexed with sialic acid
Authors	:	Rizkallah, P.J.; Parker, A.L.; Mundy, R.M.; Baker, A.T.
Deposited on	:	2023-03-16
Resolution	:	1.77 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 1.77 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motrie	Whole archive	Similar resolution		
WIEUTIC	$(\# {\rm Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$		
R_{free}	130704	9185 (1.80-1.76)		
Clashscore	141614	10184 (1.80-1.76)		
Ramachandran outliers	138981	10051 (1.80-1.76)		
Sidechain outliers	138945	10050 (1.80-1.76)		
RSRZ outliers	127900	9032 (1.80-1.76)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	Λ	180	3%	1.00/	
	Π	169	<u>2%</u>	16%	•
1	В	189	80%	20%	•
1	С	180		150/	
1	0	105	3%	15%	••
1	D	189	83%	15%	••
1	F	180		1.40/	
	Ľ	109	86%	14%	•

IVIOI	Chain	Length	Quality of chain			
			6%			
1	\mathbf{F}	189	74% 1	7%	•	7%
			9%			
1	G	189	72% 20)%	•	6%
			4%			
1	Н	189	83%		15%	••
			%			
1	Ι	189	81%		17%	•
			3%			
1	J	189	79%	18	3%	••
			2%			
1	K	189	84%		14%	••
	-		12%			
1	Ĺ	189	75% 1	.6%	•	8%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
2	PEG	В	407	-	-	Х	-
2	PEG	В	408	-	-	Х	-
2	PEG	С	401	-	-	Х	-
2	PEG	G	404	-	-	Х	-
2	PEG	G	405	-	-	Х	-
3	EDO	В	401	-	-	Х	-
3	EDO	G	403	-	-	Х	-

80FV

2 Entry composition (i)

There are 7 unique types of molecules in this entry. The entry contains 19866 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace	
1	Δ	195	Total	С	Ν	0	S	0	F	0	
1	A	165	1509	968	245	289	7	0	0	0	
1	В	180	Total	С	Ν	0	S	0	Б	0	
1	D	169	1545	988	256	294	$\overline{7}$	0	5	0	
1	С	188	Total	С	Ν	0	S	0	6	0	
1	U	100	1539	984	251	297	7	0	0	0	
1	Л	187	Total	С	Ν	0	S	0	9	0	
1	D	107	1501	960	247	287	7	0	2	0	
1	F	180	Total	С	Ν	0	S	0	4	0	
1	Ľ	169	1535	980	253	295	$\overline{7}$	0	0	4	0
1	Б	175	Total	С	Ν	0	S	0	2	0	
1	Г	175	1418	911	234	268	5		5	0	
1	C	178	Total	С	Ν	0	S	0	2	0	
1	G	170	1434	925	234	270	5	0	2	0	
1	ц	100	Total	С	Ν	0	S	0	5	0	
1	11	100	1534	980	254	292	8	0	5	0	
1	т	180	Total	С	Ν	Ο	\mathbf{S}	0	0	0	
1	1	169	1574	1005	260	301	8	0	9	0	
1	т	195	Total	С	Ν	0	S	0	1	0	
1	1	165	1500	963	244	285	8	U	4	0	
1	K	197	Total	С	Ν	0	S	0	1	0	
	IX	101	1518	970	249	292	7	U	4	U	
1	т	174	Total	С	Ν	0	S	0	0	0	
		1/4	1384	893	225	261	5	U	U	0	

• Molecule 1 is a protein called Fiber protein.

There are 36 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	180	ASN	LYS	conflict	UNP E5RWD1
А	181	ASN	GLU	conflict	UNP E5RWD1
А	184	LEU	ARG	conflict	UNP E5RWD1
В	180	ASN	LYS	conflict	UNP E5RWD1
В	181	ASN	GLU	conflict	UNP E5RWD1

Chain	Residue	Modelled	Actual	Comment	Reference
В	184	LEU	ARG	conflict	UNP E5RWD1
С	180	ASN	LYS	conflict	UNP E5RWD1
С	181	ASN	GLU	conflict	UNP E5RWD1
С	184	LEU	ARG	conflict	UNP E5RWD1
D	180	ASN	LYS	conflict	UNP E5RWD1
D	181	ASN	GLU	conflict	UNP E5RWD1
D	184	LEU	ARG	conflict	UNP E5RWD1
Е	180	ASN	LYS	conflict	UNP E5RWD1
Е	181	ASN	GLU	conflict	UNP E5RWD1
Е	184	LEU	ARG	conflict	UNP E5RWD1
F	180	ASN	LYS	conflict	UNP E5RWD1
F	181	ASN	GLU	conflict	UNP E5RWD1
F	184	LEU	ARG	conflict	UNP E5RWD1
G	180	ASN	LYS	conflict	UNP E5RWD1
G	181	ASN	GLU	conflict	UNP E5RWD1
G	184	LEU	ARG	conflict	UNP E5RWD1
Н	180	ASN	LYS	conflict	UNP E5RWD1
Н	181	ASN	GLU	conflict	UNP E5RWD1
Н	184	LEU	ARG	conflict	UNP E5RWD1
Ι	180	ASN	LYS	conflict	UNP E5RWD1
Ι	181	ASN	GLU	conflict	UNP E5RWD1
Ι	184	LEU	ARG	conflict	UNP E5RWD1
J	180	ASN	LYS	conflict	UNP E5RWD1
J	181	ASN	GLU	conflict	UNP E5RWD1
J	184	LEU	ARG	conflict	UNP E5RWD1
K	180	ASN	LYS	conflict	UNP E5RWD1
K	181	ASN	GLU	conflict	UNP E5RWD1
K	184	LEU	ARG	conflict	UNP E5RWD1
L	180	ASN	LYS	conflict	UNP E5RWD1
L	181	ASN	GLU	conflict	UNP E5RWD1
L	184	LEU	ARG	conflict	UNP E5RWD1

• Molecule 2 is DI(HYDROXYETHYL)ETHER (three-letter code: PEG) (formula: $C_4H_{10}O_3$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 7 4 3 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 7 4 3 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 7 4 3 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 7 4 3 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 7 4 3 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 7 4 3 \end{array}$	0	0
2	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 7 4 3 \end{array}$	0	0
2	Е	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 7 4 3 \end{array}$	0	0
2	Е	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 7 4 3 \end{array}$	0	0
2	Е	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 7 4 3 \end{array}$	0	0
2	F	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 7 4 3 \end{array}$	0	0
2	G	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 7 4 3 \end{array}$	0	0
2	G	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 7 4 3 \end{array}$	0	0
2	Н	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 7 4 3 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	Н	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 7 & 4 & 3 \end{array}$	0	0
2	Ι	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 7 & 4 & 3 \end{array}$	0	0
2	Ι	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 7 4 3 \end{array}$	0	0
2	Κ	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 7 4 3 \end{array}$	0	0

• Molecule 3 is 1,2-ETHANEDIOL (three-letter code: EDO) (formula: $C_2H_6O_2$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
3	Е	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
3	F	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
3	G	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
3	G	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	G	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
3	Н	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
3	Ι	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
3	L	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0

• Molecule 4 is 1-ETHOXY-2-(2-ETHOXYETHOXY)ETHANE (three-letter code: P4G) (formula: C₈H₁₈O₃).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	В	1	Total C O 11 8 3	0	0
4	В	1	Total C O 11 8 3	0	0
4	С	1	Total C O 11 8 3	0	0
4	С	1	Total C O 11 8 3	0	0
4	F	1	Total C O 11 8 3	0	0
4	G	1	Total C O 11 8 3	0	0
4	G	1	Total C O 11 8 3	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	Ι	1	Total C O	0	0
4	K	1	Total C O	0	0
-		-	$\begin{array}{c cccc} 11 & 8 & 3 \\ \hline \text{Total} & \text{C} & \text{O} \end{array}$	-	
4	L	1	11 8 3	0	0
4	L	1	Total C O 11 8 3	0	0

• Molecule 5 is N-acetyl-beta-neuraminic acid (three-letter code: SLB) (formula: $C_{11}H_{19}NO_9$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf
5	F	1	Total	С	Ν	Ο	0	0
5	Ľ	I	21	11	1	9	0	0

• Molecule 6 is N-acetyl-alpha-neuraminic acid (three-letter code: SIA) (formula: $C_{11}H_{19}NO_9$).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf
6	т	1	Total	С	Ν	Ο	0	0
0	L	1	21	11	1	9	0	0

• Molecule 7 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	А	165	Total O 165 165	0	0
7	В	161	Total O 161 161	0	0
7	С	159	Total O 159 159	0	0
7	D	124	Total O 124 124	0	0
7	Ε	138	Total O 138 138	0	0
7	F	111	Total O 111 111	0	0
7	G	94	Total O 94 94	0	0
7	Н	149	Total O 149 149	0	0
7	Ι	156	Total O 156 156	0	0
7	J	111	Total O 111 111	0	0
7	K	122	Total O 122 122	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	L	52	$\begin{array}{cc} \text{Total} & \text{O} \\ 52 & 52 \end{array}$	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Fiber protein

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 2 1	Depositor
Cell constants	93.56\AA 60.41\AA 243.69\AA	Deperitor
a, b, c, α , β , γ	90.00° 99.88° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	92.17 - 1.77	Depositor
Resolution (A)	92.17 - 1.77	EDS
% Data completeness	98.7 (92.17-1.77)	Depositor
(in resolution range)	98.7 (92.17-1.77)	EDS
R _{merge}	0.17	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	1.13 (at 1.77Å)	Xtriage
Refinement program	REFMAC 5.8.0267	Depositor
B B.	0.208 , 0.228	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.212 , 0.231	DCC
R_{free} test set	12949 reflections (5.01%)	wwPDB-VP
Wilson B-factor $(Å^2)$	20.0	Xtriage
Anisotropy	0.512	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.35 , 48.7	EDS
L-test for $twinning^2$	$< L > = 0.47, < L^2 > = 0.30$	Xtriage
Estimated twinning fraction	0.028 for h,-k,-h-l	Xtriage
F_o, F_c correlation	0.95	EDS
Total number of atoms	19866	wwPDB-VP
Average B, all atoms $(Å^2)$	29.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.82% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: P4G, EDO, SLB, PEG, SIA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	Bo	ond angles
WIOI			RMSZ $\# Z > 5$		# Z > 5
1	А	0.85	3/1543~(0.2%)	0.84	0/2093
1	В	0.79	1/1580~(0.1%)	0.85	0/2140
1	С	0.72	0/1573	0.81	0/2134
1	D	0.69	0/1536	0.81	0/2084
1	Ε	0.71	0/1570	0.84	1/2128~(0.0%)
1	F	0.69	0/1450	0.85	0/1965
1	G	0.70	0/1467	0.83	0/1988
1	Н	0.77	1/1568~(0.1%)	0.84	2/2125~(0.1%)
1	Ι	0.82	2/1608~(0.1%)	0.89	1/2178~(0.0%)
1	J	0.71	0/1534	0.84	1/2079~(0.0%)
1	K	0.72	0/1553	0.79	0/2106
1	L	0.67	0/1416	0.83	0/1919
All	All	0.74	7/18398~(0.0%)	0.84	5/24939~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	С	0	1
1	F	0	1
1	G	0	1
1	L	0	1
All	All	0	4

All (7) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
1	В	258	GLU	CD-OE1	9.05	1.35	1.25
1	А	335	GLU	CD-OE2	7.69	1.34	1.25

Mol	Chain	Res	Type	Atoms	Ζ	$\operatorname{Observed}(\operatorname{\AA})$	$\mathrm{Ideal}(\mathrm{\AA})$
1	А	335	GLU	CD-OE1	7.22	1.33	1.25
1	Н	352	GLU	CD-OE1	5.87	1.32	1.25
1	А	270	ARG	NE-CZ	5.69	1.40	1.33
1	Ι	258[A]	GLU	CD-OE1	5.06	1.31	1.25
1	Ι	258[B]	GLU	CD-OE1	5.06	1.31	1.25

All (5) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	Н	229	ARG	CG-CD-NE	6.06	124.52	111.80
1	Ι	305	ARG	NE-CZ-NH2	-5.21	117.69	120.30
1	J	278	THR	OG1-CB-CG2	5.13	121.81	110.00
1	Е	305	ARG	NE-CZ-NH2	-5.12	117.74	120.30
1	Н	305	ARG	NE-CZ-NH2	-5.02	117.79	120.30

There are no chirality outliers.

All (4) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	С	345	ALA	Mainchain
1	F	345	ALA	Mainchain
1	G	345	ALA	Mainchain
1	L	345	ALA	Mainchain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1509	0	1502	25	0
1	В	1545	0	1536	42	0
1	С	1539	0	1527	23	0
1	D	1501	0	1482	31	0
1	Е	1535	0	1515	30	0
1	F	1418	0	1413	45	0
1	G	1434	0	1432	59	0
1	Н	1534	0	1522	33	0
1	Ι	1574	0	1565	38	0

80FV

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	J	1500	0	1494	36	0
1	Κ	1518	0	1496	27	0
1	L	1384	0	1384	29	0
2	А	7	0	10	0	0
2	В	35	0	50	19	0
2	С	7	0	10	4	0
2	Е	21	0	30	2	0
2	F	7	0	10	1	0
2	G	14	0	20	18	0
2	Н	14	0	20	6	0
2	Ι	14	0	20	2	0
2	Κ	7	0	10	3	0
3	В	12	0	18	9	0
3	Е	4	0	6	0	0
3	F	4	0	6	3	0
3	G	12	0	18	4	0
3	Н	4	0	6	0	0
3	Ι	4	0	6	0	0
3	L	4	0	6	3	0
4	В	22	0	36	0	0
4	С	22	0	36	2	0
4	F	11	0	18	0	0
4	G	22	0	36	5	0
4	Ι	11	0	18	1	0
4	Κ	11	0	18	4	0
4	L	22	0	36	3	0
5	F	21	0	18	0	0
6	L	21	0	18	1	0
7	А	165	0	0	2	0
7	В	161	0	0	5	0
7	С	159	0	0	3	0
7	D	124	0	0	2	0
7	Е	138	0	0	5	0
7	F	111	0	0	8	0
7	G	94	0	0	5	0
7	H	149	0	0	3	0
7	Ι	156	0	0	3	0
7	J	111	0	0	7	0
7	K	122	0	0	3	0
7	L	52	0	0	4	0
All	All	19866	0	18348	367	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including

hydrogen atoms). The all-atom clashscore for this structure is 10.

All (367) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom_1	Atom_2	Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:G:211:THR:HG21	1:H:213[A]:CYS:O	1.47	1.13
1:D:211:THR:HG23	1:E:216:GLN:HE21	1.12	1.09
1:L:233:ILE:HD11	1:L:353:PHE:HD2	1.15	1.09
1:G:211:THR:HG21	1:H:213[B]:CYS:O	1.49	1.06
1:A:216:GLN:HE21	1:C:211[A]:THR:HG23	1.22	1.01
1:D:211:THR:HG23	1:E:216:GLN:NE2	1.77	1.00
1:J:233[B]:ILE:HD11	1:J:353:PHE:HD2	1.24	1.00
1:E:211:THR:HG23	1:F:216:GLN:HE21	1.24	0.99
1:B:265:SER:OG	2:B:408:PEG:H31	1.61	0.98
1:K:258[A]:GLU:CD	1:K:258[A]:GLU:H	1.63	0.97
1:B:245:THR:OG1	3:B:401:EDO:H11	1.65	0.96
1:D:211:THR:CG2	1:E:216:GLN:HE21	1.77	0.96
1:D:291:VAL:HG22	1:F:190:PRO:HG2	1.46	0.95
1:D:213[B]:CYS:O	1:F:211[B]:THR:HG21	1.67	0.94
1:A:284[B]:ILE:HD11	1:A:365:GLN:HG2	1.46	0.93
4:C:403:P4G:H83	7:C:654:HOH:O	1.68	0.92
1:L:233:ILE:HD11	1:L:353:PHE:CD2	2.05	0.91
1:A:284[B]:ILE:HG22	7:A:632:HOH:O	1.70	0.91
1:H:273:ASN:HD21	1:I:289:ASN:HD21	1.18	0.90
1:G:268:ASN:HD22	1:G:269:PHE:H	1.20	0.89
1:J:291:VAL:HG22	1:L:190:PRO:HG2	1.52	0.88
1:J:247:LYS:H	1:J:261:ASN:HD22	1.19	0.88
1:G:247:LYS:H	1:G:261:ASN:HD22	1.20	0.85
1:J:213[A]:CYS:O	1:L:211:THR:HG21	1.75	0.85
1:A:216:GLN:HE21	1:C:211[A]:THR:CG2	1.89	0.84
1:D:247:LYS:H	1:D:261:ASN:HD22	1.22	0.84
1:G:268:ASN:HD22	1:G:269:PHE:N	1.76	0.84
1:E:211:THR:CG2	1:F:216:GLN:HE21	1.90	0.83
1:F:233:ILE:HD11	1:F:353:PHE:HB2	1.60	0.83
1:J:213[B]:CYS:O	1:L:211:THR:HG21	1.78	0.83
1:E:211:THR:HG23	1:F:216:GLN:NE2	1.94	0.83
1:B:195:ASN:HA	2:B:408:PEG:H22	1.60	0.82
1:L:327:THR:HG21	7:L:536:HOH:O	1.76	0.82
1:B:323:THR:HG21	2:B:407:PEG:H31	1.62	0.82
1:J:233[B]:ILE:HD11	1:J:353:PHE:CD2	2.13	0.82
1:A:247:LYS:H	1:A:261:ASN:HD22	1.23	0.81
1:E:273:ASN:HD21	1:F:289:ASN:HD21	1.28	0.81
1:G:289:ASN:HD21	1:I:273:ASN:HD21	1.25	0.81

Atom-1	Atom-2	Interatomic	Clash
	Atom-2	distance (Å)	overlap (Å)
1:I:197[A]:ARG:NH2	1:I:258[A]:GLU:O	2.14	0.81
1:G:291:VAL:HG22	1:I:190:PRO:HG2	1.64	0.79
2:C:401:PEG:H31	7:C:538:HOH:O	1.84	0.78
1:A:216:GLN:NE2	1:C:211[A]:THR:HG23	1.98	0.77
1:G:308[A]:VAL:CG1	2:G:405:PEG:H32	2.15	0.76
1:G:308[B]:VAL:CG2	2:G:405:PEG:H32	2.15	0.76
1:B:319[B]:HIS:H	1:B:319[B]:HIS:CD2	2.02	0.76
1:G:233:ILE:HD11	1:G:353:PHE:HB2	1.67	0.75
1:G:211:THR:CG2	1:H:213[A]:CYS:O	2.30	0.75
1:A:284[B]:ILE:HD11	1:A:365:GLN:CG	2.17	0.74
1:I:237:THR:HG21	7:I:644:HOH:O	1.88	0.74
1:C:265:SER:HB2	2:C:401:PEG:H21	1.70	0.74
1:A:213:CYS:O	1:C:211[B]:THR:HG21	1.88	0.74
2:G:405:PEG:H11	1:I:359:THR:HB	1.70	0.73
1:F:327:THR:HG21	7:F:564:HOH:O	1.89	0.73
1:J:270:ARG:HD3	1:K:215[B]:SER:OG	1.89	0.73
1:G:211:THR:CG2	1:H:213[B]:CYS:O	2.32	0.73
1:I:197[A]:ARG:NH2	1:I:260:SER:O	2.21	0.72
1:A:284[B]:ILE:HD12	1:A:284[B]:ILE:O	1.88	0.72
1:J:252:LYS:O	1:J:284:ILE:HD11	1.89	0.72
1:E:190:PRO:HG2	1:F:291:VAL:HG22	1.72	0.72
1:I:230:TYR:CE1	1:I:241:LEU:HD11	2.25	0.71
1:F:233:ILE:N	1:F:233:ILE:HD12	2.05	0.71
1:G:319:HIS:HB2	3:G:403:EDO:C1	2.19	0.71
1:E:319[B]:HIS:CD2	1:E:319[B]:HIS:H	2.07	0.71
1:K:230:TYR:CE1	1:K:241:LEU:HD11	2.25	0.71
1:B:252[B]:LYS:H	1:B:252[B]:LYS:HZ3	1.37	0.70
1:J:270:ARG:HH11	1:K:215[B]:SER:HB3	1.58	0.69
1:E:230:TYR:CE1	1:E:241:LEU:HD11	2.28	0.69
1:F:211[A]:THR:HG22	1:F:218:LEU:HB3	1.73	0.69
1:G:252:LYS:O	1:G:284:ILE:HD11	1.93	0.69
1:G:319:HIS:HB2	3:G:403:EDO:H11	1.74	0.69
1:H:270:ARG:CZ	1:I:215[A]:SER:OG	2.41	0.69
1:K:258[A]:GLU:CD	1:K:258[A]:GLU:N	2.42	0.69
1:F:252:LYS:O	1:F:284:ILE:HD11	1.93	0.69
1:J:230:TYR:CE1	1:J:241:LEU:HD11	2.27	0.69
1:J:247:LYS:H	1:J:261:ASN:ND2	1.90	0.68
1:B:230:TYR:CE1	1:B:241:LEU:HD11	2.28	0.68
2:G:404:PEG:H22	4:G:406:P4G:H81	1.75	0.68
1:D:247:LYS:H	1:D:261:ASN:ND2	1.92	0.68
1:G:247:LYS:H	1:G:261:ASN:ND2	1.92	0.67

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:L:319:HIS:HB2	3:L:401:EDO:C1	2.25	0.67
1:A:284[B]:ILE:HG23	1:A:366:GLU:OE2	1.95	0.66
1:G:233:ILE:HD12	1:G:233:ILE:N	2.09	0.66
1:G:211:THR:HG22	1:H:213[B]:CYS:SG	2.35	0.66
1:A:247:LYS:H	1:A:261:ASN:ND2	1.92	0.66
1:E:229:ARG:NH2	1:J:345:ALA:O	2.30	0.65
1:G:308[B]:VAL:HG21	2:G:405:PEG:H32	1.78	0.65
1:J:327:THR:CG2	7:J:445:HOH:O	2.44	0.65
2:B:407:PEG:H41	7:B:606:HOH:O	1.97	0.65
1:D:345:ALA:O	1:K:229:ARG:NH2	2.30	0.65
1:B:211:THR:HG21	1:C:213:CYS:O	1.97	0.65
1:A:230:TYR:CE1	1:A:241:LEU:HD11	2.31	0.64
1:K:211:THR:HG21	1:L:213:CYS:O	1.96	0.64
1:F:298:THR:HG23	7:F:557:HOH:O	1.96	0.64
1:G:271:ASN:H	1:G:271:ASN:HD22	1.46	0.63
1:G:308[B]:VAL:HG23	2:G:405:PEG:H32	1.80	0.63
1:I:230:TYR:HE1	1:I:241:LEU:HD11	1.63	0.63
1:B:319[B]:HIS:CD2	7:B:622:HOH:O	2.52	0.62
1:D:230:TYR:CE1	1:D:241:LEU:HD11	2.34	0.62
1:G:213:CYS:O	1:I:211:THR:HG21	1.99	0.62
1:I:324[A]:ILE:HG23	1:I:342:PHE:CD2	2.34	0.62
1:E:229:ARG:NH1	7:E:502:HOH:O	2.32	0.62
1:H:230:TYR:CE1	1:H:241:LEU:HD11	2.34	0.62
1:B:263:GLY:HA3	2:B:408:PEG:H42	1.82	0.62
1:F:323:THR:HG22	7:F:594:HOH:O	2.00	0.61
1:I:258[B]:GLU:HG2	1:I:264:LYS:HD3	1.82	0.61
1:J:327:THR:HG21	7:J:467:HOH:O	1.99	0.61
2:G:404:PEG:C4	7:G:583:HOH:O	2.48	0.61
1:L:189:THR:CG2	1:L:190:PRO:HD2	2.30	0.61
1:G:317:LYS:HD3	3:G:403:EDO:H21	1.81	0.61
1:K:202:LYS:HE2	7:K:615:HOH:O	1.99	0.61
2:G:404:PEG:H42	7:G:583:HOH:O	2.00	0.61
1:B:245:THR:OG1	3:B:401:EDO:C1	2.47	0.60
1:F:233:ILE:N	1:F:233:ILE:CD1	2.64	0.60
1:G:233:ILE:N	1:G:233:ILE:CD1	2.65	0.60
2:G:405:PEG:H31	1:I:358:PHE:HA	1.82	0.60
1:E:258[A]:GLU:OE1	7:E:501:HOH:O	2.16	0.60
1:C:324[A]:ILE:HG23	1:C:342:PHE:CD2	2.36	0.60
1:K:230:TYR:HE1	1:K:241:LEU:HD11	1.67	0.59
1:H:270:ARG:NE	1:I:215[A]:SER:OG	2.35	0.59
1:B:265:SER:OG	2:B:408:PEG:C3	2.45	0.59

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:L:319:HIS:HB2	3:L:401:EDO:H12	1.85	0.59
1:F:319:HIS:HB2	3:F:401:EDO:C1	2.33	0.59
1:J:202:LYS:HE3	1:J:266:TYR:OH	2.03	0.59
1:B:251:ASP:HB2	1:B:252[B]:LYS:HZ3	1.68	0.58
1:E:230:TYR:HE1	1:E:241:LEU:HD11	1.68	0.58
1:D:211:THR:HG21	1:E:216:GLN:HB2	1.85	0.58
1:J:270:ARG:NH1	1:K:215[B]:SER:HB3	2.17	0.58
1:G:268:ASN:ND2	1:G:269:PHE:H	1.96	0.58
1:L:189:THR:HG22	1:L:190:PRO:HD2	1.84	0.58
1:G:289:ASN:HD21	1:I:273:ASN:ND2	1.98	0.58
1:J:346[B]:LYS:HE2	7:J:448:HOH:O	2.04	0.58
1:A:216:GLN:HB2	1:C:211[A]:THR:HG21	1.85	0.58
1:G:308[A]:VAL:HG13	2:G:405:PEG:H32	1.84	0.57
1:G:360:PHE:HA	2:G:405:PEG:H12	1.86	0.57
1:E:273:ASN:ND2	1:F:289:ASN:HD21	1.98	0.57
1:I:324[A]:ILE:CG2	1:I:342:PHE:CE2	2.88	0.57
2:G:404:PEG:C2	4:G:406:P4G:H81	2.33	0.57
1:L:251:ASP:HB3	7:L:543:HOH:O	2.04	0.57
1:G:271:ASN:H	1:G:271:ASN:ND2	2.02	0.57
1:L:323:THR:CG2	4:L:402:P4G:H83	2.35	0.57
1:C:324[A]:ILE:HG23	1:C:342:PHE:CE2	2.40	0.57
1:E:319[B]:HIS:H	1:E:319[B]:HIS:HD2	1.53	0.57
2:H:403:PEG:H12	7:H:506:HOH:O	2.05	0.56
1:I:258[A]:GLU:HG2	7:I:652:HOH:O	2.05	0.56
1:L:319:HIS:HB2	3:L:401:EDO:H11	1.87	0.56
1:C:324[A]:ILE:CG2	1:C:342:PHE:CE2	2.89	0.56
1:I:324[A]:ILE:HG23	1:I:342:PHE:CE2	2.40	0.56
1:L:323:THR:HG23	4:L:402:P4G:H83	1.87	0.56
1:B:263:GLY:CA	2:B:408:PEG:H42	2.37	0.55
1:B:285:GLY:H	3:B:403:EDO:H11	1.72	0.55
1:D:184:LEU:N	1:D:184:LEU:HD22	2.22	0.55
1:B:323:THR:HG21	2:B:407:PEG:C3	2.37	0.54
1:I:258[A]:GLU:OE2	1:I:264:LYS:HD3	2.08	0.54
1:G:309:TYR:O	2:G:405:PEG:O4	2.22	0.54
1:D:236:ASN:HB3	2:K:401:PEG:O1	2.08	0.53
1:J:211:THR:HG21	1:K:213:CYS:O	2.07	0.53
1:D:205:LYS:HE2	7:D:499:HOH:O	2.07	0.53
1:D:291:VAL:CG2	1:F:190:PRO:HG2	2.28	0.53
1:F:319:HIS:HB2	3:F:401:EDO:H11	1.90	0.53
1:H:273:ASN:ND2	1:I:289:ASN:HD21	1.98	0.53
1:D:245:THR:HG21	1:D:247:LYS:HZ3	1.74	0.53

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:L:319:HIS:ND1	6:L:404:SIA:O1B	2.27	0.53
1:C:321:PRO:HD2	1:C:346:LYS:HE3	1.90	0.53
1:I:325:LYS:HD2	2:I:402:PEG:H31	1.90	0.53
1:J:346[B]:LYS:CE	7:J:448:HOH:O	2.57	0.53
1:J:327:THR:HG22	7:J:445:HOH:O	2.08	0.53
2:C:401:PEG:C3	7:C:538:HOH:O	2.51	0.53
1:F:258:GLU:CG	1:F:264:LYS:HE2	2.38	0.53
1:B:298:THR:HG23	1:I:301:LYS:N	2.24	0.53
1:A:211:THR:HG21	1:B:213:CYS:O	2.09	0.52
1:D:211:THR:CG2	1:E:216:GLN:NE2	2.52	0.52
1:I:365:GLN:HE21	4:I:404:P4G:H32	1.74	0.52
1:B:230:TYR:HE1	1:B:241:LEU:HD11	1.73	0.52
1:B:195:ASN:CA	2:B:408:PEG:H22	2.34	0.52
1:L:230:TYR:CE1	1:L:241:LEU:HD11	2.45	0.52
1:G:213:CYS:SG	1:H:213[A]:CYS:HB3	2.50	0.52
1:H:290:LEU:O	2:H:402:PEG:H31	2.10	0.52
1:B:278:THR:HG23	7:B:609:HOH:O	2.09	0.51
1:F:282:LYS:HG3	7:F:560:HOH:O	2.10	0.51
1:G:358:PHE:HE1	2:G:404:PEG:H32	1.75	0.51
1:J:253:ASN:HA	1:J:284:ILE:HD11	1.92	0.51
1:C:194:PRO:HG3	1:C:226:VAL:HG21	1.92	0.51
1:B:323:THR:CG2	2:B:407:PEG:H31	2.37	0.50
1:F:327:THR:CG2	7:F:535:HOH:O	2.58	0.50
1:B:192[B]:THR:HG22	1:B:192[B]:THR:O	2.10	0.50
1:A:284[B]:ILE:CG2	1:A:366:GLU:OE2	2.59	0.50
1:I:197[A]:ARG:CZ	1:I:260:SER:O	2.60	0.50
1:B:258:GLU:HG2	1:B:264:LYS:HD3	1.94	0.49
1:B:259:SER:HB2	1:H:234:ASN:ND2	2.26	0.49
1:B:252[B]:LYS:H	1:B:252[B]:LYS:NZ	2.08	0.49
1:J:318:PRO:HB2	4:K:402:P4G:H42	1.94	0.49
1:L:216:GLN:NE2	1:L:361:SER:OG	2.44	0.49
1:A:202:LYS:HE2	1:A:266:TYR:OH	2.12	0.49
1:B:199:ASP:OD2	7:B:501:HOH:O	2.20	0.49
1:J:252:LYS:O	1:J:284:ILE:CD1	2.60	0.49
1:F:233:ILE:CD1	1:F:353:PHE:HB2	2.36	0.49
1:D:213[B]:CYS:O	1:F:211[B]:THR:CG2	2.51	0.49
1:F:253:ASN:HA	1:F:284:ILE:HD11	1.95	0.49
1:J:249:LEU:HD12	1:J:259:SER:OG	2.13	0.49
1:J:270:ARG:NE	7:J:408:HOH:O	2.45	0.49
1:F:258:GLU:HG2	1:F:264:LYS:HE2	1.94	0.49
1:L:194:PRO:HG3	1:L:226:VAL:HG21	1.94	0.49

Atom 1	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
3:B:401:EDO:H22	7:H:624:HOH:O	2.13	0.49	
1:D:216:GLN:HE21	1:F:211[A]:THR:HB	1.78	0.49	
1:D:234:ASN:ND2	1:K:259:SER:HB2	2.28	0.49	
1:A:366:GLU:OE1	7:A:501:HOH:O	2.20	0.48	
1:G:271:ASN:ND2	1:G:271:ASN:N	2.61	0.48	
2:G:404:PEG:H41	7:G:583:HOH:O	2.11	0.48	
1:A:249:LEU:HD12	1:A:259:SER:OG	2.13	0.48	
1:A:352[A]:GLU:OE1	1:B:301:LYS:HE3	2.13	0.48	
1:G:230:TYR:CE1	1:G:241:LEU:HD11	2.49	0.48	
1:G:319:HIS:HB2	3:G:403:EDO:H12	1.94	0.48	
1:H:318:PRO:HG3	2:I:402:PEG:H42	1.96	0.48	
1:L:237:THR:OG1	1:L:238:ASN:ND2	2.47	0.48	
1:B:266:TYR:HD2	2:B:408:PEG:H12	1.79	0.48	
4:K:402:P4G:H12	7:K:621:HOH:O	2.13	0.48	
1:B:195:ASN:HA	2:B:408:PEG:C2	2.38	0.48	
1:D:319[B]:HIS:ND1	1:K:243:GLY:O	2.46	0.47	
1:F:194:PRO:HG3	1:F:226:VAL:HG21	1.96	0.47	
1:F:319:HIS:HB2	3:F:401:EDO:H12	1.96	0.47	
1:H:268:ASN:HB3	1:H:275:ILE:HB	1.96	0.47	
1:L:327:THR:CG2	7:L:501:HOH:O	2.61	0.47	
1:H:232:ILE:HD13	1:H:352:GLU:HG3	1.95	0.47	
1:G:249:LEU:HD12	1:G:259:SER:OG	2.15	0.47	
1:H:249:LEU:HD12	1:H:259:SER:OG	2.14	0.47	
1:E:202:LYS:NZ	7:E:505:HOH:O	2.46	0.47	
1:E:259:SER:HB2	1:J:234:ASN:ND2	2.30	0.47	
1:F:205:LYS:HE2	7:F:558:HOH:O	2.14	0.47	
1:G:346[B]:LYS:HD3	1:G:346[B]:LYS:N	2.30	0.47	
1:J:194:PRO:HG3	1:J:226:VAL:HG21	1.97	0.47	
1:G:253:ASN:HA	1:G:284:ILE:HD11	1.95	0.47	
1:H:232:ILE:CD1	1:H:352:GLU:HG3	2.45	0.47	
1:J:268:ASN:HB3	1:J:275:ILE:HB	1.97	0.47	
1:L:249:LEU:HD12	1:L:259:SER:OG	2.14	0.47	
1:A:268:ASN:HB3	1:A:275:ILE:HB	1.97	0.47	
2:B:404:PEG:H21	2:B:408:PEG:O4	2.16	0.47	
1:J:327:THR:HG23	7:J:445:HOH:O	2.08	0.47	
1:E:295:LYS:O	2:E:404:PEG:H41	2.14	0.46	
1:H:290:LEU:HB3	2:H:402:PEG:H32	1.97	0.46	
2:G:404:PEG:H32	2:G:404:PEG:H12	1.39	0.46	
1:K:323:THR:HG21	4:K:402:P4G:H31	1.98	0.46	
1:A:194:PRO:HG3	1:A:226:VAL:HG21	1.96	0.46	
1:F:249:LEU:HD12	1:F:259:SER:OG	2.16	0.46	

Atom 1	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:G:205:LYS:HE2	7:G:567:HOH:O	2.15	0.46	
1:C:295:LYS:HE3	1:C:335:GLU:O	2.15	0.46	
1:H:290:LEU:O	2:H:402:PEG:C3	2.64	0.46	
1:B:230:TYR:HE2	3:B:402:EDO:H22	1.80	0.46	
1:B:265:SER:CB	2:B:408:PEG:H31	2.45	0.46	
1:J:190:PRO:O	1:K:305:ARG:NH2	2.48	0.46	
1:C:230:TYR:CE1	1:C:241:LEU:HD11	2.50	0.46	
1:H:270:ARG:CD	1:I:215[A]:SER:OG	2.63	0.46	
1:C:276[B]:MET:HB2	1:C:276[B]:MET:HE2	1.73	0.46	
1:D:268:ASN:HB3	1:D:275:ILE:HB	1.97	0.46	
1:B:325:LYS:HD2	2:B:407:PEG:H21	1.97	0.46	
1:C:269:PHE:HB2	1:C:276[B]:MET:HG3	1.97	0.46	
1:D:249:LEU:HD12	1:D:259:SER:OG	2.15	0.46	
1:B:178:ASN:OD1	1:B:180:ASN:HB2	2.16	0.45	
1:C:249:LEU:HD12	1:C:259:SER:OG	2.16	0.45	
1:H:211:THR:HG21	1:I:213:CYS:O	2.16	0.45	
1:F:258:GLU:HG3	1:F:264:LYS:HE2	1.98	0.45	
1:G:282:LYS:HG2	7:G:556:HOH:O	2.16	0.45	
1:K:181:ASN:HB3	1:K:276[A]:MET:HE1	1.99	0.45	
1:L:245:THR:HG21	1:L:247:LYS:HZ3	1.81	0.45	
1:B:332:THR:HG22	7:B:532:HOH:O	2.16	0.45	
1:D:213[A]:CYS:HB3	1:F:213:CYS:SG	2.57	0.45	
1:F:211[A]:THR:O	1:F:211[A]:THR:CG2	2.64	0.45	
1:G:233:ILE:CD1	1:G:353:PHE:HB2	2.42	0.45	
1:B:202:LYS:HE3	2:B:408:PEG:H21	1.98	0.45	
1:B:241:LEU:HD13	2:B:405:PEG:H31	1.99	0.45	
1:E:301:LYS:HB2	1:K:298:THR:HG22	1.99	0.45	
1:F:323:THR:HG21	2:F:402:PEG:H21	1.99	0.45	
1:G:346[B]:LYS:N	1:G:346[B]:LYS:CD	2.79	0.45	
1:C:245:THR:HG21	1:C:247:LYS:NZ	2.31	0.45	
1:D:245:THR:HG21	1:D:247:LYS:NZ	2.31	0.45	
1:G:358:PHE:HE1	2:G:404:PEG:C3	2.29	0.45	
1:K:268:ASN:HB3	1:K:275:ILE:HB	1.99	0.45	
1:I:197[A]:ARG:HG2	1:I:261:ASN:O	2.17	0.45	
1:J:185:THR:OG1	1:K:215[A]:SER:HB3	2.17	0.44	
1:J:230:TYR:HE1	1:J:241:LEU:HD11	1.82	0.44	
3:B:401:EDO:H21	1:H:319:HIS:HB2	1.99	0.44	
1:A:318:PRO:HB3	2:B:407:PEG:H32	1.99	0.44	
1:A:236:ASN:OD1	1:I:197[B]:ARG:HD3	2.17	0.44	
1:D:297:THR:OG1	1:D:300:SER:OG	2.25	0.44	
1:G:252:LYS:O	1:G:284:ILE:CD1	2.65	0.44	

80FV

Atom-1	Atom-2	Interatomic	Clash	
	7100HI 2	distance (Å)	overlap (Å)	
1:I:252[B]:LYS:O	1:I:252[B]:LYS:HG2	2.18	0.44	
1:I:268:ASN:HB3	1:I:275:ILE:HB	1.99	0.44	
1:J:305:ARG:NH2	1:L:190:PRO:O	2.50	0.44	
1:B:251:ASP:HB2	1:B:252[B]:LYS:NZ	2.33	0.44	
1:B:268:ASN:HB3	1:B:275:ILE:HB	1.99	0.44	
1:J:253:ASN:CA	1:J:284:ILE:HD11	2.48	0.44	
1:G:291:VAL:CG2	1:I:190:PRO:HG2	2.40	0.43	
1:L:311:ASN:HD21	4:L:402:P4G:C2	2.31	0.43	
1:H:284:ILE:CD1	2:H:403:PEG:H41	2.48	0.43	
1:I:324[B]:ILE:HG23	1:I:324[B]:ILE:O	2.17	0.43	
1:C:311:ASN:HD21	4:C:402:P4G:H11	1.83	0.43	
1:J:321:PRO:HG2	1:J:346[B]:LYS:HE3	1.99	0.43	
1:B:217:ILE:O	1:B:361:SER:HA	2.19	0.43	
1:F:327:THR:HG23	7:F:535:HOH:O	2.18	0.43	
1:G:194:PRO:HG3	1:G:226:VAL:HG21	1.99	0.43	
1:G:183:LYS:HD2	1:G:271:ASN:HB3	2.01	0.43	
1:H:248:LEU:N	1:H:248:LEU:HD12	2.34	0.43	
1:B:202:LYS:HZ1	2:B:408:PEG:C2	2.31	0.43	
1:C:321:PRO:CD	1:C:346:LYS:HE3	2.49	0.43	
1:F:245:THR:HG21	1:F:247:LYS:HZ3	1.84	0.43	
1:F:252:LYS:O	1:F:284:ILE:CD1	2.64	0.43	
1:I:276[B]:MET:HE1	1:I:280:TYR:HB3	2.01	0.43	
1:L:327:THR:HG23	7:L:501:HOH:O	2.19	0.43	
3:B:402:EDO:C2	1:H:347:THR:H	2.32	0.42	
1:B:269:PHE:HB2	1:B:276[A]:MET:HE3	2.01	0.42	
3:B:401:EDO:C2	1:H:319:HIS:HB2	2.48	0.42	
1:F:282:LYS:CG	1:F:283:ALA:H	2.32	0.42	
1:G:308[B]:VAL:HG13	1:G:326:THR:HB	2.01	0.42	
1:E:330:GLN:OE1	2:E:404:PEG:O1	2.36	0.42	
1:G:233:ILE:CD1	1:G:233:ILE:H	2.33	0.42	
1:E:297:THR:HB	7:E:622:HOH:O	2.19	0.42	
1:G:313:TYR:OH	4:G:406:P4G:H13	2.19	0.42	
1:E:319[B]:HIS:CD2	1:E:319[B]:HIS:N	2.81	0.42	
1:G:248:LEU:HD12	1:G:248:LEU:N	2.35	0.42	
1:G:270:ARG:HD3	1:H:215:SER:OG	2.20	0.42	
1:K:276[B]:MET:HB2	1:K:276[B]:MET:HE2	1.86	0.42	
1:G:183:LYS:HD2	1:G:271:ASN:CB	2.50	0.42	
1:G:308[A]:VAL:HG11	2:G:405:PEG:H32	1.87	0.42	
1:F:211[A]:THR:HG22	1:F:211[A]:THR:O	2.19	0.42	
1:I:308[B]:VAL:HG13	1:I:326:THR:HB	2.02	0.42	
1:L:252:LYS:HG2	1:L:252:LYS:O	2.18	0.42	

Atom 1	Atom 2	Interatomic	Clash overlap (Å)	
Atom-1	Atom-2	distance (Å)		
1:A:217:ILE:O	1:A:361:SER:HA	2.20	0.42	
1:I:181:ASN:HB3	1:I:276[A]:MET:HE1	2.00	0.42	
1:K:323:THR:HG21	4:K:402:P4G:C3	2.50	0.42	
1:F:264:LYS:HE3	1:F:264:LYS:HB2	1.87	0.41	
1:C:248:LEU:HD12	1:C:248:LEU:N	2.36	0.41	
1:C:268:ASN:HB3	1:C:275:ILE:HB	2.01	0.41	
1:D:349:VAL:HG21	1:K:261:ASN:HD21	1.85	0.41	
1:L:245:THR:HG21	1:L:247:LYS:NZ	2.35	0.41	
1:E:268:ASN:HB3	1:E:275:ILE:HB	2.02	0.41	
1:G:247:LYS:N	1:G:261:ASN:HD22	2.03	0.41	
1:G:291:VAL:HG13	1:I:273:ASN:OD1	2.20	0.41	
1:G:293:TYR:CD1	1:G:306:ASP:HA	2.56	0.41	
1:H:284:ILE:HD11	2:H:403:PEG:H41	2.02	0.41	
1:G:365:GLN:HE21	4:G:407:P4G:H41	1.85	0.41	
1:H:269:PHE:HB2	1:H:276[B]:MET:HG3	2.03	0.41	
1:J:270:ARG:HD3	1:K:215[A]:SER:HB2	2.01	0.41	
1:L:248:LEU:HD12	1:L:248:LEU:N	2.36	0.41	
1:F:293:TYR:CD1	1:F:306:ASP:HA	2.56	0.41	
1:H:197[A]:ARG:NH1	1:H:200:GLN:HA	2.35	0.41	
1:I:346:LYS:NZ	7:I:510:HOH:O	2.50	0.41	
1:E:197:ARG:NH1	1:E:200:GLN:HA	2.36	0.41	
1:E:217:ILE:O	1:E:361:SER:HA	2.21	0.41	
3:B:401:EDO:C2	7:H:624:HOH:O	2.69	0.41	
1:C:195:ASN:HB2	2:C:401:PEG:H11	2.03	0.41	
1:E:273:ASN:HD22	1:E:273:ASN:HA	1.64	0.41	
1:G:365:GLN:HE21	4:G:407:P4G:H52	1.86	0.41	
1:K:194:PRO:HG3	1:K:226:VAL:HG21	2.03	0.41	
2:K:401:PEG:O1	2:K:401:PEG:H42	2.20	0.41	
1:A:293:TYR:CD1	1:A:306:ASP:HA	2.56	0.40	
1:K:231:LYS:NZ	7:K:514:HOH:O	2.54	0.40	
1:D:217:ILE:O	1:D:361:SER:HA	2.21	0.40	
1:D:291:VAL:HG13	7:D:480:HOH:O	2.20	0.40	
1:F:248:LEU:N	1:F:248:LEU:HD12	2.36	0.40	
1:D:184:LEU:N	1:D:184:LEU:CD2	2.83	0.40	
1:E:197:ARG:NH1	7:E:514:HOH:O	2.51	0.40	
1:F:327:THR:HG22	7:F:535:HOH:O	2.20	0.40	
1:K:263:GLY:HA2	2:K:401:PEG:H32	2.02	0.40	
1:K:301:LYS:HE2	1:K:302:LYS:O	2.22	0.40	
1:D:191:ASP:O	1:D:205:LYS:HE3	2.22	0.40	
1:D:305:ARG:NH2	1:F:190:PRO:O	2.55	0.40	
1:H:269:PHE:HB2	1:H:276[B]:MET:SD	2.62	0.40	

$\alpha \cdot \cdot \cdot \cdot$	C		
Continued	trom	premous	naae
Contentaca	<i>J</i> ¹ <i>O</i> 110	proceeduo	pago

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:H:293:TYR:CD1	1:H:306:ASP:HA	2.57	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	188/189~(100%)	183 (97%)	5 (3%)	0	100	100
1	В	192/189~(102%)	187 (97%)	5 (3%)	0	100	100
1	С	192/189~(102%)	184 (96%)	8 (4%)	0	100	100
1	D	187/189~(99%)	181 (97%)	6 (3%)	0	100	100
1	Е	191/189 (101%)	185 (97%)	6 (3%)	0	100	100
1	F	174/189~(92%)	172 (99%)	1 (1%)	1 (1%)	25	11
1	G	176/189~(93%)	171 (97%)	5 (3%)	0	100	100
1	Н	191/189 (101%)	185 (97%)	6 (3%)	0	100	100
1	Ι	196/189~(104%)	190 (97%)	6 (3%)	0	100	100
1	J	187/189~(99%)	179~(96%)	8 (4%)	0	100	100
1	K	189/189~(100%)	180 (95%)	9 (5%)	0	100	100
1	L	170/189~(90%)	166 (98%)	3 (2%)	1 (1%)	25	11
All	All	2233/2268 (98%)	2163 (97%)	68 (3%)	2(0%)	51	35

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	L	191	ASP
1	F	189	THR

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percer	ntiles
1	А	170/169~(101%)	166~(98%)	4(2%)	49	33
1	В	174/169~(103%)	169~(97%)	5(3%)	42	25
1	\mathbf{C}	174/169~(103%)	168~(97%)	6 (3%)	37	20
1	D	169/169~(100%)	164~(97%)	5(3%)	41	24
1	Ε	173/169~(102%)	167~(96%)	6 (4%)	36	19
1	F	159/169~(94%)	150 (94%)	9~(6%)	20	7
1	G	160/169~(95%)	153~(96%)	7~(4%)	28	12
1	Н	173/169~(102%)	169~(98%)	4 (2%)	50	34
1	Ι	178/169~(105%)	169~(95%)	9~(5%)	24	9
1	J	169/169~(100%)	162~(96%)	7 (4%)	30	14
1	Κ	171/169~(101%)	164 (96%)	7 (4%)	30	14
1	L	155/169~(92%)	146 (94%)	9~(6%)	20	6
All	All	$\boxed{2025/202}8\ (100\%)$	1947 (96%)	78 (4%)	35	15

All (78) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	187	TRP
1	А	271	ASN
1	А	276[A]	MET
1	А	276[B]	MET
1	В	187	TRP
1	В	271	ASN
1	В	297	THR
1	В	308	VAL
1	В	322	VAL
1	С	179	LYS
1	С	187	TRP
1	С	202	LYS
1	С	271	ASN
1	С	324[A]	ILE

Mol	Chain	Res	Type
1	С	324[B]	ILE
1	D	181	ASN
1	D	183	LYS
1	D	187	TRP
1	D	211	THR
1	D	271	ASN
1	Е	187	TRP
1	Е	192	THR
1	Е	211	THR
1	Е	271	ASN
1	Е	308	VAL
1	Е	322	VAL
1	F	187	TRP
1	F	193	SER
1	F	211[A]	THR
1	F	211[B]	THR
1	F	233	ILE
1	F	271	ASN
1	F	322	VAL
1	F	323	THR
1	F	327	THR
1	G	187	TRP
1	G	193	SER
1	G	233	ILE
1	G	268	ASN
1	G	271	ASN
1	G	282	LYS
1	G	300	SER
1	Н	179	LYS
1	Н	187	TRP
1	Н	215	SER
1	Н	271	ASN
1	Ι	187	TRP
1	Ι	201	ASP
1	Ι	215[A]	SER
1	I	215[B]	SER
1	Ι	229	ARG
1	Ι	271	ASN
1	Ι	322	VAL
1	Ι	324[A]	ILE
1	I	$324[\overline{\mathrm{B}}]$	ILE
1	J	187	TRP

Mol	Chain	Res	Type
1	J	201	ASP
1	J	229	ARG
1	J	271	ASN
1	J	278	THR
1	J	322	VAL
1	J	327	THR
1	Κ	187	TRP
1	Κ	258[A]	GLU
1	Κ	258[B]	GLU
1	Κ	271	ASN
1	Κ	282	LYS
1	Κ	301	LYS
1	Κ	322	VAL
1	L	187	TRP
1	L	197	ARG
1	L	200	GLN
1	L	202	LYS
1	L	242	LYS
1	L	252	LYS
1	L	322	VAL
1	L	323	THR
1	L	327	THR

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (36) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	216	GLN
1	А	261	ASN
1	А	271	ASN
1	В	200	GLN
1	В	271	ASN
1	С	181	ASN
1	С	238	ASN
1	С	271	ASN
1	D	261	ASN
1	D	271	ASN
1	Е	178	ASN
1	Е	216	GLN
1	Е	271	ASN
1	Е	273	ASN
1	F	216	GLN
1	F	253	ASN

Mol	Chain	Res	Type
1	G	261	ASN
1	G	268	ASN
1	G	271	ASN
1	G	311	ASN
1	Н	216	GLN
1	Н	271	ASN
1	Н	273	ASN
1	Н	330	GLN
1	Ι	178	ASN
1	Ι	238	ASN
1	Ι	271	ASN
1	Ι	273	ASN
1	Ι	330	GLN
1	J	261	ASN
1	J	271	ASN
1	J	319	HIS
1	K	271	ASN
1	L	216	GLN
1	L	238	ASN
1	L	311	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

42 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond

					Pond longths Pond angle				1	
Mol	Type	Chain	Res	Link	Bo	ond leng	ths	B	ond ang	gles
4	DAC	т	400		Counts	RM5Z	# Z > Z	Counts	RM5Z	# Z > Z
4	P4G DEC		402	-	10,10,10	0.25	0	9,9,9	0.15	0
	PEG	h V	401	-	0,0,0	0.25	0	5,5,5	0.14	0
4	P4G DDC	K	402	-	10,10,10	0.38	0	9,9,9	0.21	0
2	PEG	H	402	-	6,6,6	0.18	0	5,5,5	0.19	0
3	EDO	H	401	-	3,3,3	0.28	0	2,2,2	0.33	0
2	PEG	H	403	-	6,6,6	0.38	0	5,5,5	0.26	0
3	EDO	L	401	-	3,3,3	0.11	0	2,2,2	0.31	0
4	P4G	F'	403	-	10,10,10	0.34	0	9,9,9	0.20	0
2	PEG	F'	402	-	6,6,6	0.17	0	5,5,5	0.19	0
4	P4G	В	410	-	10,10,10	0.29	0	9,9,9	0.09	0
2	PEG	G	404	-	6,6,6	0.16	0	5,5,5	0.11	0
3	EDO	В	403	-	3,3,3	0.21	0	2,2,2	0.52	0
2	PEG	Ι	402	-	6,6,6	0.29	0	5,5,5	0.14	0
2	PEG	А	401	-	6,6,6	0.16	0	$5,\!5,\!5$	0.05	0
3	EDO	Ι	401	-	3,3,3	0.13	0	2,2,2	0.20	0
2	PEG	С	401	-	6,6,6	0.20	0	$5,\!5,\!5$	0.26	0
4	P4G	С	403	-	10,10,10	0.25	0	9,9,9	0.10	0
4	P4G	С	402	-	10,10,10	0.31	0	9,9,9	0.12	0
2	PEG	В	406	-	6,6,6	0.25	0	$5,\!5,\!5$	0.19	0
2	PEG	В	407	-	6,6,6	0.19	0	$5,\!5,\!5$	0.25	0
2	PEG	G	405	-	6,6,6	0.62	0	$5,\!5,\!5$	0.36	0
3	EDO	Е	401	-	3,3,3	0.36	0	2,2,2	0.38	0
3	EDO	F	401	-	3,3,3	0.15	0	2,2,2	0.38	0
2	PEG	Ι	403	-	6,6,6	0.25	0	$5,\!5,\!5$	0.10	0
3	EDO	G	401	-	3,3,3	0.14	0	2,2,2	0.07	0
3	EDO	В	401	-	3,3,3	0.35	0	2,2,2	0.24	0
2	PEG	Е	404	-	6,6,6	0.29	0	5,5,5	0.18	0
2	PEG	В	408	-	6,6,6	0.42	0	5,5,5	0.32	0
2	PEG	В	404	-	6,6,6	0.26	0	5,5,5	0.14	0
4	P4G	G	407	-	10,10,10	0.34	0	9,9,9	0.26	0
3	EDO	В	402	-	3,3,3	0.14	0	2,2,2	0.31	0
2	PEG	В	405	-	6,6,6	0.20	0	5,5,5	0.10	0
3	EDO	G	403	-	3,3,3	0.17	0	2,2,2	0.36	0
3	EDO	G	402	-	3,3,3	0.12	0	2,2,2	0.23	0
4	P4G	В	409	-	10,10,10	0.21	0	9,9,9	0.15	0
4	P4G	Ι	404	-	10,10,10	0.45	0	9,9,9	0.23	0
2	PEG	Е	402	_	6,6,6	0.26	0	5,5,5	0.12	0
5	SLB	F	404	_	21,21,21	0.84	1 (4%)	25,31,31	0.92	1 (4%)
4	P4G	L	403	_	10,10,10	0.32	0	9,9,9	0.16	0

length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type		Chain	Chain	Chain	Chain	Dec	Tiple	Bond lengths			Bond angles		
Moi Type	nes			Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2				
6	SIA	L	404	-	21,21,21	0.86	1 (4%)	25,31,31	0.99	1 (4%)			
2	PEG	Е	403	-	6,6,6	0.17	0	5,5,5	0.11	0			
4	P4G	G	406	-	10,10,10	0.23	0	9,9,9	0.23	0			

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	P4G	L	402	-	-	2/8/8/8	-
2	PEG	K	401	-	-	2/4/4/4	-
4	P4G	K	402	-	-	7/8/8/8	-
2	PEG	Н	402	-	-	2/4/4/4	-
3	EDO	Н	401	-	-	1/1/1/1	-
2	PEG	Н	403	-	-	3/4/4/4	-
3	EDO	L	401	-	-	1/1/1/1	-
4	P4G	F	403	-	-	5/8/8/8	-
2	PEG	F	402	-	-	1/4/4/4	-
4	P4G	В	410	-	-	0/8/8/8	-
2	PEG	G	404	-	-	3/4/4/4	-
3	EDO	В	403	-	-	1/1/1/1	-
2	PEG	Ι	402	-	-	3/4/4/4	-
2	PEG	А	401	-	-	2/4/4/4	-
3	EDO	Ι	401	-	-	1/1/1/1	-
2	PEG	С	401	-	-	2/4/4/4	-
4	P4G	С	403	-	-	2/8/8/8	-
4	P4G	С	402	-	-	3/8/8/8	-
2	PEG	В	406	-	-	3/4/4/4	-
2	PEG	В	407	-	-	3/4/4/4	-
2	PEG	G	405	-	-	2/4/4/4	-
3	EDO	Е	401	-	-	1/1/1/1	-
3	EDO	F	401	-	-	0/1/1/1	-
2	PEG	Ι	403	-	-	2/4/4/4	-
3	EDO	G	401	-	-	1/1/1/1	-
3	EDO	В	401	-	-	1/1/1/1	-
2	PEG	E	404	-	-	1/4/4/4	-
2	PEG	В	408	-	-	4/4/4/4	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	PEG	В	404	-	-	3/4/4/4	-
4	P4G	G	407	-	-	6/8/8/8	-
3	EDO	В	402	-	-	0/1/1/1	-
2	PEG	В	405	-	-	3/4/4/4	-
3	EDO	G	403	-	-	1/1/1/1	-
3	EDO	G	402	-	-	0/1/1/1	-
4	P4G	В	409	-	-	4/8/8/8	-
4	P4G	Ι	404	-	-	4/8/8/8	-
2	PEG	Е	402	-	-	2/4/4/4	-
5	SLB	F	404	-	-	9/20/38/38	0/1/1/1
4	P4G	L	403	-	-	0/8/8/8	-
6	SIA	L	404	-	-	4/20/38/38	0/1/1/1
2	PEG	Е	403	-	-	3/4/4/4	-
4	P4G	G	406	-	-	1/8/8/8	-

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
5	F	404	SLB	O1B-C1	-2.37	1.21	1.30
6	L	404	SIA	O1B-C1	-2.16	1.22	1.30

All (2) bond angle outliers are listed below	w:
--	----

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
6	L	404	SIA	O1A-C1-C2	-2.81	119.34	123.59
5	F	404	SLB	O2-C2-C1	-2.42	105.84	110.76

There are no chirality outliers.

All (99) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
5	F	404	SLB	O1B-C1-C2-C3
5	F	404	SLB	C5-C6-C7-C8
5	F	404	SLB	C5-C6-C7-O7
5	F	404	SLB	O6-C6-C7-C8
5	F	404	SLB	O6-C6-C7-O7
5	F	404	SLB	C7-C8-C9-O9
5	F	404	SLB	O8-C8-C9-O9
6	L	404	SIA	O1A-C1-C2-O2

Mol	Chain	Res	Type	Atoms
6	L	404	SIA	O1A-C1-C2-O6
6	L	404	SIA	O1B-C1-C2-O2
6	L	404	SIA	O1B-C1-C2-O6
2	G	404	PEG	C1-C2-O2-C3
2	G	405	PEG	C4-C3-O2-C2
2	А	401	PEG	O1-C1-C2-O2
2	В	408	PEG	O2-C3-C4-O4
2	Е	404	PEG	O1-C1-C2-O2
4	С	402	P4G	O2-C3-C4-O3
4	F	403	P4G	O2-C3-C4-O3
2	В	406	PEG	C1-C2-O2-C3
4	K	402	P4G	O3-C5-C6-O4
4	С	402	P4G	O3-C5-C6-O4
4	F	403	P4G	O3-C5-C6-O4
2	В	406	PEG	O1-C1-C2-O2
2	G	404	PEG	O2-C3-C4-O4
4	Ι	404	P4G	O2-C3-C4-O3
4	G	407	P4G	O3-C5-C6-O4
2	В	405	PEG	O1-C1-C2-O2
2	В	405	PEG	O2-C3-C4-O4
2	Е	402	PEG	O2-C3-C4-O4
2	Е	403	PEG	O2-C3-C4-O4
2	Н	403	PEG	O1-C1-C2-O2
2	Н	403	PEG	O2-C3-C4-O4
4	Ι	404	P4G	O3-C5-C6-O4
2	Е	402	PEG	O1-C1-C2-O2
2	Е	403	PEG	O1-C1-C2-O2
2	Ι	403	PEG	C4-C3-O2-C2
4	В	409	P4G	O3-C5-C6-O4
2	G	405	PEG	O1-C1-C2-O2
3	В	403	EDO	O1-C1-C2-O2
3	Е	401	EDO	O1-C1-C2-O2
3	Н	401	EDO	O1-C1-C2-O2
4	G	407	P4G	C6-C5-O3-C4
2	В	406	PEG	O2-C3-C4-O4
2	С	401	PEG	O1-C1-C2-O2
2	Н	402	PEG	O2-C3-C4-O4
2	Ι	403	PEG	O2-C3-C4-O4
3	G	403	EDO	O1-C1-C2-O2
4	G	407	P4G	O2-C3-C4-O3
4	G	407	P4G	C8-C7-O4-C6
2	Ι	402	PEG	O1-C1-C2-O2

Continued from previous page...

Mol	Chain	Res	Type	Atoms
4	F	403	P4G	C8-C7-O4-C6
4	F	403	P4G	C6-C5-O3-C4
4	F	403	P4G	C1-C2-O2-C3
2	В	404	PEG	C4-C3-O2-C2
4	С	403	P4G	O3-C5-C6-O4
2	А	401	PEG	O2-C3-C4-O4
4	С	402	P4G	C1-C2-O2-C3
2	В	407	PEG	O2-C3-C4-O4
2	Ι	402	PEG	C4-C3-O2-C2
2	В	404	PEG	C1-C2-O2-C3
4	K	402	P4G	C3-C4-O3-C5
2	В	408	PEG	C1-C2-O2-C3
4	В	409	P4G	C6-C5-O3-C4
4	K	402	P4G	C8-C7-O4-C6
2	В	407	PEG	C4-C3-O2-C2
2	В	408	PEG	C4-C3-O2-C2
4	L	402	P4G	C3-C4-O3-C5
2	В	407	PEG	O1-C1-C2-O2
2	С	401	PEG	O2-C3-C4-O4
2	G	404	PEG	C4-C3-O2-C2
4	G	407	P4G	C5-C6-O4-C7
2	В	404	PEG	O1-C1-C2-O2
2	В	408	PEG	O1-C1-C2-O2
2	Ι	402	PEG	O2-C3-C4-O4
4	В	409	P4G	C5-C6-O4-C7
4	Ι	404	P4G	C3-C4-O3-C5
2	Н	402	PEG	C4-C3-O2-C2
2	Н	403	PEG	C4-C3-O2-C2
4	С	403	P4G	C1-C2-O2-C3
4	G	407	P4G	C3-C4-O3-C5
4	K	402	P4G	C5-C6-O4-C7
4	G	406	P4G	C5-C6-O4-C7
4	K	402	P4G	C6-C5-O3-C4
2	E	403	PEG	C1-C2-O2-C3
4	L	402	P4G	C8-C7-O4-C6
4	Ι	404	P4G	C6-C5-O3-C4
2	В	405	PEG	C4-C3-O2-C2
4	K	402	P4G	C1-C2-O2-C3
2	F	402	PEG	02-C3-C4-O4
3	G	401	EDO	O1-C1-C2-O2
2	K	401	PEG	C1-C2-O2-C3
4	В	409	P4G	C1-C2-O2-C3

Continued from previous page...

Mol	Chain	Res	Type	Atoms
5	F	404	SLB	O1A-C1-C2-O6
3	В	401	EDO	O1-C1-C2-O2
2	Κ	401	PEG	O1-C1-C2-O2
3	Ι	401	EDO	O1-C1-C2-O2
3	L	401	EDO	O1-C1-C2-O2
5	F	404	SLB	O1B-C1-C2-O6
4	Κ	402	P4G	O2-C3-C4-O3

There are no ring outliers.

27 monomers are involved in 88 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	L	402	P4G	3	0
2	Κ	401	PEG	3	0
4	Κ	402	P4G	4	0
2	Н	402	PEG	3	0
2	Н	403	PEG	3	0
3	L	401	EDO	3	0
2	F	402	PEG	1	0
2	G	404	PEG	8	0
3	В	403	EDO	1	0
2	Ι	402	PEG	2	0
2	С	401	PEG	4	0
4	С	403	P4G	1	0
4	С	402	P4G	1	0
2	В	407	PEG	6	0
2	G	405	PEG	10	0
3	F	401	EDO	3	0
3	В	401	EDO	6	0
2	Е	404	PEG	2	0
2	В	408	PEG	12	0
2	В	404	PEG	1	0
4	G	407	P4G	2	0
3	В	402	EDO	2	0
2	В	405	PEG	1	0
3	G	403	EDO	4	0
4	Ι	404	P4G	1	0
6	L	404	SIA	1	0
4	G	406	P4G	3	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In

addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	185/189~(97%)	0.29	6 (3%) 47 46	12, 20, 34, 75	0
1	В	189/189~(100%)	0.10	3 (1%) 72 72	13, 20, 34, 75	0
1	С	188/189~(99%)	0.09	5 (2%) 54 53	13, 23, 50, 70	0
1	D	187/189~(98%)	0.21	5 (2%) 54 53	19, 29, 47, 73	0
1	Ε	189/189~(100%)	0.17	5 (2%) 56 55	19, 26, 41, 68	0
1	F	175/189~(92%)	0.33	11 (6%) 20 19	20, 30, 48, 76	0
1	G	178/189~(94%)	0.54	17 (9%) 8 7	16, 31, 61, 85	0
1	Н	188/189~(99%)	0.26	7 (3%) 41 40	13, 22, 44, 93	0
1	Ι	189/189~(100%)	0.07	1 (0%) 91 91	13, 21, 36, 66	0
1	J	185/189~(97%)	0.28	6 (3%) 47 46	20, 29, 44, 78	0
1	Κ	187/189~(98%)	0.19	4 (2%) 63 63	21, 29, 43, 59	0
1	L	174/189~(92%)	0.74	22 (12%) 3 3	25, 41, 68, 83	0
All	All	2214/2268~(97%)	0.27	92 (4%) 36 34	12, 26, 52, 93	0

All (92) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	L	298	THR	10.4
1	G	298	THR	9.5
1	G	299	GLY	9.2
1	А	299	GLY	6.8
1	G	279	ALA	6.8
1	L	299	GLY	6.7
1	Е	179	LYS	6.0
1	А	298	THR	5.7
1	D	299	GLY	5.6
1	L	281	GLU	5.5
1	С	299	GLY	5.3

Conti	nued from	ı previou	s page	
Mol	Chain	Res	Type	RSRZ
1	J	300	SER	5.0
1	F	299	GLY	5.0
1	F	271	ASN	4.9
1	J	299	GLY	4.8
1	G	280	TYR	4.8
1	G	281	GLU	4.8
1	Н	179	LYS	4.7
1	L	184	LEU	4.5
1	G	300	SER	4.3
1	F	298	THR	4.3
1	F	300	SER	4.3
1	В	179	LYS	4.2
1	Н	300	SER	4.0
1	L	300	SER	4.0
1	Н	297	THR	4.0
1	D	298	THR	4.0
1	D	300	SER	4.0
1	Е	178	ASN	3.9
1	С	180	ASN	3.8
1	J	298	THR	3.7
1	С	298	THR	3.6
1	А	300	SER	3.5
1	G	183	LYS	3.4
1	Н	180	ASN	3.3
1	Н	181	ASN	3.2
1	А	182	ASP	3.1
1	Ι	179	LYS	3.1
1	Н	298	THR	3.0
1	G	199	ASP	3.0
1	K	300	SER	3.0
1	L	193	SER	3.0
1	F	183	LYS	3.0
1	L	183	LYS	2.9
1	G	240	ALA	2.8
1	G	271	ASN	2.8
1	E	229	ARG	2.8
1	В	300	SER	2.8
1	L	191	ASP	2.8
1	L	240	ALA	2.7
1	G	192	THR	2.7
1	G	282	LYS	2.7
1	А	297	THR	2.7
1	A	291	Ink	2.1

Mol	Chain	Res	Type	RSRZ
1	Н	299	GLY	2.7
1	L	189	THR	2.7
1	F	214	GLY	2.6
1	F	213	CYS	2.6
1	G	213	CYS	2.6
1	L	213	CYS	2.6
1	L	282	LYS	2.6
1	L	199	ASP	2.5
1	L	239	PRO	2.5
1	F	266	TYR	2.5
1	J	297	THR	2.5
1	L	241	LEU	2.4
1	G	190	PRO	2.4
1	L	301	LYS	2.4
1	F	282	LYS	2.3
1	В	178	ASN	2.3
1	G	266	TYR	2.3
1	G	189	THR	2.3
1	D	229	ARG	2.3
1	F	184	LEU	2.3
1	D	319[A]	HIS	2.3
1	L	297	THR	2.2
1	Е	230	TYR	2.2
1	K	237	THR	2.2
1	L	201	ASP	2.2
1	K	230	TYR	2.2
1	С	179	LYS	2.2
1	J	215	SER	2.2
1	G	345	ALA	2.1
1	L	229	ARG	2.1
1	L	251	ASP	2.1
1	Е	180	ASN	2.1
1	J	213[A]	CYS	2.1
1	A	183	LYS	2.0
1	L	266	TYR	2.0
1	C	324[A]	ILE	2.0
1	L	296	PRO	2.0
1	К	276[A]	MET	2.0
1	F	251[A]	ASP	2.0

Continued from previous page...

80FV

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
4	P4G	В	409	11/11	0.43	0.27	66,73,78,79	0
3	EDO	G	402	4/4	0.57	0.37	67,70,71,74	0
3	EDO	Е	401	4/4	0.58	0.27	48,52,52,56	0
4	P4G	L	402	11/11	0.59	0.32	56,66,76,77	0
6	SIA	L	404	21/21	0.64	0.29	55,65,68,69	0
2	PEG	Е	402	7/7	0.65	0.16	50, 56, 56, 56	0
2	PEG	K	401	7/7	0.66	0.33	63,69,74,75	0
4	P4G	K	402	11/11	0.66	0.30	38,52,60,60	0
5	SLB	F	404	21/21	0.67	0.31	59,64,68,70	0
2	PEG	Ι	403	7/7	0.67	0.33	42,54,60,61	0
3	EDO	Н	401	4/4	0.68	0.30	44,50,50,55	0
3	EDO	Ι	401	4/4	0.71	0.20	59,60,61,64	0
2	PEG	В	404	7/7	0.71	0.27	15,16,19,19	7
4	P4G	Ι	404	11/11	0.73	0.17	43,47,54,56	0
2	PEG	В	406	7/7	0.74	0.20	45,49,54,54	0
4	P4G	В	410	11/11	0.77	0.17	47,50,53,53	0
4	P4G	L	403	11/11	0.77	0.14	46,48,54,55	0
2	PEG	В	405	7/7	0.78	0.19	$54,\!57,\!59,\!59$	0
2	PEG	F	402	7/7	0.79	0.18	47,49,56,56	0
4	P4G	G	407	11/11	0.81	0.14	36,41,47,49	0
4	P4G	С	402	11/11	0.82	0.17	41,54,66,68	0
4	P4G	F	403	11/11	0.82	0.15	38,41,43,44	0
2	PEG	Н	403	7/7	0.82	0.33	36,39,40,44	0
2	PEG	G	404	7/7	0.83	0.27	18,20,20,21	7
4	P4G	G	406	11/11	0.83	0.15	45,51,53,55	0
2	PEG	Н	402	7/7	0.83	0.36	47,48,53,56	0
3	EDO	L	401	4/4	0.84	0.24	$3\overline{4,}42,\!44,\!47$	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors($Å^2$)	Q<0.9
2	PEG	G	405	7/7	0.85	0.25	$5,\!5,\!7,\!8$	7
2	PEG	В	407	7/7	0.86	0.18	32,32,40,46	0
2	PEG	Е	404	7/7	0.87	0.22	37,38,41,43	0
3	EDO	F	401	4/4	0.88	0.22	28,32,37,43	0
2	PEG	В	408	7/7	0.88	0.24	26,29,33,36	0
4	P4G	С	403	11/11	0.88	0.10	28,32,38,38	0
2	PEG	Ι	402	7/7	0.89	0.25	34,37,49,50	0
3	EDO	G	401	4/4	0.90	0.14	39,41,41,43	0
2	PEG	Е	403	7/7	0.90	0.18	45,49,59,66	0
2	PEG	А	401	7/7	0.90	0.13	44,46,49,52	0
2	PEG	С	401	7/7	0.91	0.19	25,29,36,44	0
3	EDO	В	402	4/4	0.92	0.19	44,45,47,48	0
3	EDO	G	403	4/4	0.92	0.19	24,31,35,40	0
3	EDO	В	401	4/4	0.93	0.15	21,22,22,23	0
3	EDO	В	403	4/4	0.94	0.09	20,21,23,24	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

