

Nov 19, 2022 – 07:02 pm GMT

PDB ID	:	509Z
EMDB ID	:	EMD-3766
Title	:	Cryo-EM structure of a pre-catalytic human spliceosome primed for activation
		(B complex)
Authors	:	Bertram, K.; Kastner, B.
Deposited on	:	2017-06-20
Resolution	:	4.50 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

:	0.0.1. dev 43
:	4.02b-467
:	20191225.v01 (using entries in the PDB archive December 25th 2019)
:	1.9.9
:	Engh & Huber (2001)
:	Parkinson et al. (1996)
:	2.31.2
	: : : : :

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 4.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	2335	7% 89%	5% 6%
2	В	972	81%	6% 13%
3	С	2136	43%	• 21%
4	D	357	78%	15%
5	Е	683	- 28% ⋅ 68%	
6	F	521	72%	9% 19%
7	G	941	7%79%	6% 15%

Continued on next page...

Continue contract c	nued from	n previous	page	
Mol	Chain	Length	Quality of chain	
8	Н	499	8% 77% 5%	17%
9	Ι	312	5 4% • 44%	
10	J	142	94%	• 5%
11	Κ	439	9% • 90%	
12	L	513	89%	• 11%
13	М	177	92%	• 5%
14	Ν	199	26% • 72%	
15	Ο	128	95%	
16	Р	800	11% 89%	
17	Q	376	• 19% • 80%	
18	R	557	97%	
19	S	118	74%	26%
19	a	118	66% 34	%
19	h	118	45% 63% 37%)
20	Т	86	86%	14%
20	b	86	41% 85%	15%
20	i	86	83%	17%
21	U	92	86%	14%
21	с	92	85%	15%
21	j	92	85%	15%
22	V	76	97%	·
22	d	76	91%	9%
22	k	76	96%	·
23	W	126	61% · 37%)
23	е	126	62% 38%	

Continued on next page...

Conti	nued fron	<i>i</i> previous	page	
Mol	Chain	Length	Quality of	of chain
		100	47%	
23	l	126	56%	44%
24	Х	240	30%	70%
24	f	240	27%	73%
24	m	240	27%	73%
25	Ζ	119	69%	31%
25	g	119	78%	22%
25	n	119	69%	31%
26	О	95	95%	5%
27	р	102	72%	28%
28	q	139	58%	42%
29	r	91	84%	16%
30	s	80	86%	14%
31	t	103	77%	23%
32	u	96	65%	35%
33	V	1304	62%	38%
34	W	1217	94%	6%
35	х	86	63%	37%
36	У	110	81%	19%
37	Z	256	63%	37%
38	1	225	42%	58%
39	Y	324	6% 5% •	86%
40	2	188	16% 15% 20% •	47%
41	4	145	47%	40% 8% 6%
42	5	116	41%	43% 14% ·
43	6	106	48%	30% 7% 15%

2 Entry composition (i)

There are 43 unique types of molecules in this entry. The entry contains 59243 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Pre-mRNA-processing-splicing factor 8.

Mol	Chain	Residues	Atoms				AltConf	Trace
1	А	2190	Total 11100	C 6725	N 2190	0 2185	0	0

• Molecule 2 is a protein called 116 kDa U5 small nuclear ribonucleoprotein component.

Mol	Chain	Residues	Atoms				AltConf	Trace
2	В	844	Total 4264	C 2577	N 844	O 843	0	0

• Molecule 3 is a protein called U5 small nuclear ribonucleoprotein 200 kDa helicase.

Mol	Chain	Residues	Atoms				AltConf	Trace
3	С	1693	Total 8538	C 5154	N 1693	O 1691	0	0

• Molecule 4 is a protein called U5 small nuclear ribonucleoprotein 40 kDa protein.

Mol	Chain	Residues	Atoms	AltConf	Trace
4	D	302	Total C 302 302	0	302

• Molecule 5 is a protein called U4/U6 small nuclear ribonucleoprotein Prp3.

Mol	Chain	Residues	Atoms				AltConf	Trace
5	Е	219	Total 1101	C 663	N 219	O 219	0	0

• Molecule 6 is a protein called U4/U6 small nuclear ribonucleoprotein Prp4.

Mol	Chain	Residues		Ator	AltConf	Trace		
6	F	420	Total 2100	C 1260	N 420	O 420	0	0

• Molecule 7 is a protein called Pre-mRNA-processing factor 6.

Mol	Chain	Residues	Atoms				AltConf	Trace
7	G	804	Total 4057	C 2449	N 804	O 804	0	0

• Molecule 8 is a protein called U4/U6 small nuclear ribonucleoprotein Prp31.

Mol	Chain	Residues		Ator	AltConf	Trace		
8	Н	413	Total 2068	C 1243	N 413	O 412	0	0

• Molecule 9 is a protein called Pre-mRNA-splicing factor 38A.

Mol	Chain	Residues	Atoms				AltConf	Trace
9	Ι	176	Total 883	C 531	N 176	O 176	0	0

• Molecule 10 is a protein called Thioredoxin-like protein 4A.

Mol	Chain	Residues	Atoms				AltConf	Trace
10	J	135	Total 677	C 408	N 135	0 134	0	0

• Molecule 11 is a protein called Microfibrillar-associated protein 1.

Mol	Chain	Residues	Atoms				AltConf	Trace
11	K	45	Total 225	C 135	N 45	O 45	0	0

• Molecule 12 is a protein called WD40 repeat-containing protein SMU1.

Mol	Chain	Residues	Atoms				AltConf	Trace
12	L	459	Total 2288	C 1370	N 459	O 459	0	0

• Molecule 13 is a protein called Peptidyl-prolyl cis-trans isomerase H.

Mol	Chain	Residues	Atoms				AltConf	Trace
13	М	169	Total 844	$\begin{array}{c} \mathrm{C} \\ 506 \end{array}$	N 169	O 169	0	0

• Molecule 14 is a protein called Zinc finger matrin-type protein 2.

Mol	Chain	Residues	Atoms				AltConf	Trace
14	Ν	56	Total 277	$\begin{array}{c} \mathrm{C} \\ 165 \end{array}$	N 56	O 56	0	0

• Molecule 15 is a protein called NHP2-like protein 1.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
15	О	126	Total 636	$\begin{array}{c} \mathrm{C} \\ \mathrm{385} \end{array}$	N 126	O 125	0	0

• Molecule 16 is a protein called U4/U6.U5 tri-snRNP-associated protein 1.

Mol	Chain	Residues	Atoms				AltConf	Trace
16	Р	91	Total 458	C 276	N 91	0 91	0	0

• Molecule 17 is a protein called WW domain-binding protein 4.

Mol	Chain	Residues	Atoms				AltConf	Trace
17	Q	75	Total 378	C 228	N 75	O 75	0	0

• Molecule 18 is a protein called Protein Red.

Mol	Chain	Residues		Ator	\mathbf{ns}	AltConf	Trace	
18	R	16	Total 79	С 47	N 16	O 16	0	0

• Molecule 19 is a protein called Small nuclear ribonucleoprotein Sm D2.

Mol	Chain	Residues	Atoms	AltConf	Trace
19	a	78	Total C N O 393 237 78 78	0	0
19	h	74	Total C N O 371 223 74 74	0	0
19	S	87	Total C 87 87	0	87

• Molecule 20 is a protein called Small nuclear ribonucleoprotein F.

Mol	Chain	Residues		Atom	ıs		AltConf	Trace
20	b	73	Total 364	C 218	N 73	0 73	0	0

Continued on next page...

Continued	from	nrovioue	naae
Commueu	jiom	previous	page

Mol	Chain	Residues	Atoms	AltConf	Trace
20	i	71	Total C N O 354 212 71 71	0	0
20	Т	74	Total C 74 74	0	74

• Molecule 21 is a protein called Small nuclear ribonucleoprotein E.

Mol	Chain	Residues	Atoms	AltConf	Trace
21	С	78	Total C N O 388 232 78 78	0	0
21	j	78	Total C N O 388 232 78 78	0	0
21	U	79	Total C 79 79	0	79

• Molecule 22 is a protein called Small nuclear ribonucleoprotein G.

Mol	Chain	Residues	Atoms	AltConf	Trace
22	d	69	Total C N O 344 206 69 69	0	0
22	k	73	Total C N O 364 218 73 73	0	0
22	V	74	$\begin{array}{cc} \text{Total} & \text{C} \\ 74 & 74 \end{array}$	0	74

• Molecule 23 is a protein called Small nuclear ribonucleoprotein Sm D3.

Mol	Chain	Residues	Atoms	AltConf	Trace
23	е	78	Total C N O 390 234 78 78	0	0
23	1	71	Total C N O 353 211 71 71	0	0
23	W	80	Total C 80 80	0	80

• Molecule 24 is a protein called Small nuclear ribonucleoprotein-associated proteins B and B'.

Mol	Chain	Residues		Aton	ns		AltConf	Trace
24	f	64	Total 319	C 191	N 64	0 64	0	0

Continued on next page...

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf	Trace
24	m	64	Total C N O 316 188 64 64	0	0
24	Х	71	Total C 71 71	0	71

• Molecule 25 is a protein called Small nuclear ribonucleoprotein Sm D1.

Mol	Chain	Residues	Atoms	AltConf	Trace
25	g	93	Total C N O 469 283 93 93	0	0
25	n	82	Total C N O 412 248 82 82	0	0
25	Z	82	Total C 82 82	0	82

• Molecule 26 is a protein called U6 snRNA-associated Sm-like protein LSm2.

Mol	Chain	Residues	Atoms		AltConf	Trace
26	О	90	Total 90	C 90	0	90

• Molecule 27 is a protein called U6 snRNA-associated Sm-like protein LSm3.

Mol	Chain	Residues	Atoms	AltConf	Trace
27	р	73	Total C 73 73	0	73

• Molecule 28 is a protein called U6 snRNA-associated Sm-like protein LSm4.

Mol	Chain	Residues	Atoms	AltConf	Trace
28	q	80	Total C 80 80	0	80

• Molecule 29 is a protein called U6 snRNA-associated Sm-like protein LSm5.

Mol	Chain	Residues	Atoms	AltConf	Trace
29	r	76	Total C 76 76	0	76

• Molecule 30 is a protein called U6 snRNA-associated Sm-like protein LSm6.

Mol	Chain	Residues	Atoms	AltConf	Trace
30	s	69	Total C 69 69	0	69

• Molecule 31 is a protein called U6 snRNA-associated Sm-like protein LSm7.

Mol	Chain	Residues	Atoms	AltConf	Trace
31	t	79	TotalC7979	0	79

• Molecule 32 is a protein called U6 snRNA-associated Sm-like protein LSm8.

Mol	Chain	Residues	Atoms	AltConf	Trace
32	u	62	TotalC6262	0	62

• Molecule 33 is a protein called Splicing factor 3B subunit 1.

Mol	Chain	Residues	Atoms		AltConf	Trace
33	v	806	Total 806 8	C 306	0	806

• Molecule 34 is a protein called Splicing factor 3B subunit 3 (SF3B3).

Mol	Chain	Residues	Atoms	AltConf	Trace
34	W	1140	Total C 1140 1140	0	1140

• Molecule 35 is a protein called Splicing factor 3B subunit 5.

Mol	Chain	Residues	Atoms	AltConf	Trace
35	x	54	$\begin{array}{cc} \text{Total} & \text{C} \\ 54 & 54 \end{array}$	0	54

• Molecule 36 is a protein called PHD finger-like domain-containing protein 5A.

Mol	Chain	Residues	Atoms	AltConf	Trace
36	У	89	Total C 89 89	0	89

• Molecule 37 is a protein called U2 small nuclear ribonucleoprotein A'.

Mol	Chain	Residues	Atoms		AltConf	Trace
37	Z	162	Total (162 16	52	0	162

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Z	89	ASP	CYS	conflict	UNP P09661
Z	119	CYS	SER	conflict	UNP P09661
Z	151A	PHE	-	insertion	UNP P09661

• Molecule 38 is a protein called U2 small nuclear ribonucleoprotein B".

Mol	Chain	Residues	Atoms	AltConf	Trace
38	1	94	Total C 94 94	0	94

• Molecule 39 is a RNA chain called MINX pre-mRNA.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	AltConf	Trace			
39	Y	46	Total 972	C 435	N 167	0 324	Р 46	0	0

• Molecule 40 is a RNA chain called Human gene for small nuclear RNA U2 (snRNA U2).

Mol	Chain	Residues		Α	AltConf	Trace			
40	2	100	Total 2123	C 947	N 367	O 709	Р 100	0	0

• Molecule 41 is a RNA chain called Homo sapiens U4A snRNA.

Mol	Chain	Residues		A	AltConf	Trace			
41	4	137	Total 2904	C 1298	N 501	O 968	Р 137	0	0

• Molecule 42 is a RNA chain called Homo sapiens U5 A small nuclear RNA.

Mol	Chain	Residues		At	AltConf	Trace			
42	5	114	Total 2397	C 1074	N 399	0 810	Р 114	0	0

• Molecule 43 is a RNA chain called Homo sapiens RNA, U6 small nuclear 1 (RNU6-1), small nuclear RNA.

Mol	Chain	Residues		A	AltConf	Trace			
43	6	90	Total 1926	C 861	N 353	O 622	Р 90	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Pre-mRNA-processing-splicing factor 8

S486 K487 L488 Y489 R490 A491 A491	L493 E494 L501	4507 4508 4509 4510 N511 V512	A513 L514 M515 L518 R519 E520	I525 N526 M527 D528 G529	T530	A542 P543 V548 Q549	V552 G553 G556 K557	L559 A560 T561 Y562 G563	1565 V566
A567 E568 L569 T570 G571 D572	H573 Q574 L575 C576 K577 E578	E579 I580 S581 A582 K599 K599	1602 1606 1607	1613 1614 1614 1615	D623 B624 V627 L628 E629	A630 A635 T642 Q643	E644 D645 V646 R647	L651	P669 A670 K671 G672
L673	V690 6691 1692 T693 E694 K695	K696 E714 H715 A716 G717	V7 25 R7 28 K7 29 A7 37	D7 40 ↔ M7 41 ↔ E7 44 ↔ L7 48 ↔	G749 L750 F751 E754 E754 G755	S756 A757 S758 T759 E760 V761	L/ 62 R7 63 T7 64 E7 67 Q7 68	C769 K770 L774 K775 L778	F782
A783 1784 M785 M789	K804 H805 12809 V810 S811 S811	G818 V819 N820 A823 H824	K829 E837 K838 G839 B840	E843 E843 G845 A846	G854 G857 R858 P859 Q860	T863 K864 G865 E866 G867	1870 1871 8871 8872 8872 8872	6874 E875 L876 S881 L882 L882	N884
Q885 Q886 L887 P888 I889 E890	8891 ◆ V894 ◆ S895 ◆ N912	R931	1938 8939 H940 D941 L943 L943 KoAA	6945 0946 9947 1951	L955 L955 H958 T959 A960	A961 ♦ L962 ♦ K966 ♦ N967 ♦	L969 V970 D973 K974 K975	T976 6977 7978 7980 V981	T982 E983
q1003 L1004 L1005 K1005 P1007 T1008	L1009 S1010 E1011 E1012 E1013 R1016	S1019 L1020 S1021 S1022 S1022 E1023	F1024 K1025 N1026 T1027 T1028 V1029	R1030 E1031 E1032 E1033 K1034 L1035	E1036 11037 01038 K1039 L1040 L1041	E1042 R1043 V1044 P1045 T1046 P1047	K1049 E1050 S1051 11052 E1053	E1054 P1055 S1056 A1057 A1057 11058	N1060 V1061
S1068 q1069 L1070 K1071 L1072 E1073	G1074 ← F1075 ← L1077 M1078 A1079 ←	M1081 V1082 V1083 V1084 T1085 Q1086	A1088	G1103 W1104 A1105 D1119 K1120	M1122 W1123 W1126 M1126 L1129	K1134 L1135 P1136	V1140	E1151 R1152 L1153 Y1154 D1155	N1159 E1160
L1164	K1172	K1183 L1184 B1185 L1186 S1187 V1188	L1190	W1210	G1216 ♦ 81217 ♦ 81218 ♦ F1221 L1224	V1228	I 1233 ♦ L 1234 ♦ H 1235 H 1236 K 1242 ♦	A1243	P1261
P1264 S1272 W1275	51277 C1278 E1279 11280 11281	F1286 ← R1287 ← H1288 ← L1289 ← 11290 ←	P1292 E1293 ∀1295 P1296 ● T1299	E1300 ← L1301 ← L1302 ← D1303 ← L1304 ←	P1306 P1306 P1308 V1309 S1310	L1312 R1313 N1314 S1315	S1319 ↓1320 ↓1321 ↓1322 ↓1323	K1324	11330 41332 41332
1336 1337 1341 1341 1342	1344 1345 1346 1347 1348	1353 1354 1355 1355 1356	1369 1371 1372 1373	1374	1385 1385 1386 1387 1388 1389	1390 1392 1393 1394 1396 1396	1397 1398 1399 1400	1402 1403 1405 1405	1409 1411
412 413 414 415 415 415 415 416 814 817 817 817 817 817 817 817 817 817 817	421 425 429 430	431 432 435 436 440 440	441 442 443 453 455 455 455 455 455 455 8 8 8 8 8 8 8 8	456 457 461 462 462 462 462 462 462	465 466 467 467 477 477 477 477 477	473 480 481 482 482 482 483 5 5 5 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	484 490 501 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	500 500 511 511	
	22 24 26 26 21 21 21 21 21 21 21 21 21 21 21 21 21	228	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	42 • 11 43 • 11 44 • 11 45 • 61 46 • 61	55 55 55 55 55 55 55 71 11 11 11 51 55 55 55 55 55 55 55 55 55	888 888 988 988 988 988 988 988 988 988		75 • 41 77 • 41 75 • • 1 75 75 75 75 71 71 71 71 80	H1 883 883 85
P15 N15 P15 P15 P15				M15 M15 M15 M15 M15 M15 M15 M15 M15 M15	115 115 115 115 115 115 115 115 115				
R1586 Q1587 R1588 F1589 L1590 H1591	C1592 T1595 E1594 K1595 D1596 L1597	11596 P1596 Y1600 L1601 E1602 K1603	L1604 S1605 D1606 S1607 S1607 T1608 L1609 K1610	E1611 T1612 L1613 L1614 N1615	L162 H1621 G1623 G1623 L1624 S1626 S1626	M1627 E1628 R1629 F1636	51638 61638 A1640 11641	R1646 G1653 M1654 M1655	V1656 A1657 A1658 H1659

 \bullet Molecule 5: U4/U6 small nuclear ribonucleoprotein Prp3

• Molecule 7: Pre-mRNA-processing factor 6

• Molecule 10: Thioredoxin-like protein 4A Chain J: 94% • 5% • Molecule 11: Microfibrillar-associated protein 1 Chain K: 9% 90% MET Valiantes Probability of the second seco E31 ARG ALA GLU GLU LEU ARG • Molecule 12: WD40 repeat-containing protein SMU1 89% Chain L: 86% 11%

 1121
 051

 1122
 052

 1125
 055

 1255
 055

 1256
 056

 1257
 056

 1257
 056

 1253
 056

 1253
 056

 1231
 156

 1231
 156

 1231
 157

 1232
 157

 1331
 157

 1333
 157

 1333
 177

 1334
 174

 1335
 177

 1335
 177

 1343
 174

 1344
 174

 1343
 174

 1344
 174

 1345
 174

 1345
 174

 1345
 174

 1445
 174

 1445
 174

 1445
 174

 1446
 174

 1445
 174

 1446
 174

 1446
 174

 1446
 174

 1446
 174

 1446
 174

 1446
 174

 1446
 174

 1446
 174

 1446
 174

 1446
 174

V21

0226 3226 7227 7228 7228 7231

WORLDWIDE PROTEIN DATA BANK

121:

21

ASN ALA ASN THR ILE THR LYS

• Molecule 17: WW domain-binding protein 4

ASN GLY LYS SER ARC ASN LEU ARG GLN ARG GLN ASP GLY ASP

• Molecule 18: Protein Red

• Molecule 24: Small nuclear ribonucleoprotein-associated proteins B and B' 22% Chain m: 27% 73% MET THR VAL GLY GLY LYS SER • Molecule 24: Small nuclear ribonucleoprotein-associated proteins B and B' 30% Chain X: 30% 70% MET THR VAL R49 LYS LYS LYS LYS ASN SER SER SER GLN GLN GLN V78 S79 V82 E83 G84 P85 R73 G74 E75 T81 • Molecule 25: Small nuclear ribonucleoprotein Sm D1 36% Chain g: 78% 22% D82
V83
E84
E84
E84
E84
F85
F89
S89
S99
S99 L5E

• Molecule 25: Small nuclear ribonucleoprotein Sm D1

S5 S5< PR0 GLY GLY GLY GLY GLN GLN CLU SPR0 GLN GLN GLN GLN GLN GLN GLN GLN GLN • Molecule 29: U6 snRNA-associated Sm-like protein LSm5 84% Chain r: 84% 16% MET ALA ALA ASN ASN ALA ALA THR THR THR ASN PRO 33 324 127 127 128 56 31 32 33 136 137 137 138 138 138 L41 G42 151 152 153 154 156 156 GLY GLV GLY PRO GLU VAL • Molecule 30: U6 snRNA-associated Sm-like protein LSm6 86% Chain s: 86% 14% MET SER LEU ARG LYS GLN THR L34 A35 C36 L37 L37 L37 L37 C36 G39 G39 G39 Y40 Y40 N41 N42 N25 S26 G27 G27 V28 V28 V28 Y30 Y30 S32 G32 V33 • Molecule 31: U6 snRNA-associated Sm-like protein LSm7 77% Chain t: 23% MET ALA ASP LYS GLU LYS LYS LYS LYS GLU GLU ñ • Molecule 32: U6 snRNA-associated Sm-like protein LSm8 65% Chain u: 65% 35% MET THR SER

• Molecule 33: Splicing factor 3B subunit 1

	62%		
Chain v:	62%	38%	
MET ALA LYS LYS LYS THR THR THR THR GLV CLN TLE GLN TLE CLN TLE CLN TLE CLN TLE CLN TLE CLN TLE CLN TLE CLN TLE CLN TLE CLN TLE CLN TLE CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	LYS LYS ALA ALA ALA ASP ASP ALU ALU ALU ALY ASP CLN CLN ASP CLN CLN CLU CLU CLU	TYR TYR GLY GLY GLY SER SER ALA CLY TYR CLY CLY TYR TYR TYR TYR THE THE THE THE THE THE THE THE	
THR GLU CGLU CGLU CGLU ASP ASP ASP ASP ASP ASP ASP ASP ASP CLU CLU CLU CLU CLU CLU	PRO GLY TTR ALA ALA ALA ALA LEU ASN ASN FRO GLN GLN GLN GLN GLN GLN GLN GLN	PHA ALA ALA ALA ALA ALA ALA ALA PRO PRO LYS ALA ASP ASP ASP ASP ASP ASP ASP ASP ASP AS	
LYS ARG ARG ARG TILE TILE TILE SER PRO PRO PRO PRO PRO PRO PRO PRO PRO PR	THR PRO PRO PRO PRO PRO PRO PRO PRO PRO PR	CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	
LLEU LLYS VAL VAL VAL ALA ALA ALA ALA ALA ALA ALA	GLN THR ASP GLN GLN THR THR PRO GLY PRO CLY SER THR THR TRP SER SER SER SER SER SER SER SER SER SER	PRIA CLY CLY CLY THR PRO SER TRP TRP TRP CLU TRP CLU TRP ARC CLV PRO CLY TRP ARC CLY	
GLY SER SER GLU GLU GLY ALA ALA ALA ALA FTR PRO CLY SER LYS SER TTR PRO FRO FRO FRO FRO FRO FRO FRO	PRIO ALA ALA ALA ALA ALA ALA ALA ALA PTA PTA ALA ALA ALA ALA ALA ALA ALA ALA ALA A	ALA THR SER SER SER ALA ALA ALA ALA ARC ARC ARC ARC ARC ARC CTR TRP ARC TRP CLU CHR CLU CHR CLU	
ARG TASP TASP TASP PRO GLY GLY GLY TRP GLY ARD ARD ARD ARD ARD ARD ARD ARD ARD ARD	ALC SEC CLY GLY GLY GLY PRO PRO PRO PRO PRO PRO CLY THR PRO GLY CLY SER ARG CLY GLY CLY SER ARG CLY THR PRO GLY CLY THR PRO CLY THR PRO CLY CLY THR CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	SELA SELA GLN MET GLN GLY GLY SER THR PRO VAL LVAL LVAL LVAL LVAL LVS GLY GLY THR PRO GLY THR THR THR	
GLY PRO PRO ALA ALA ALA ASN ASN ASN ASN THR PRO PRO GLY THR PRO GLY THR THR THR THR PRO GLY	GLN GLN GLN GLN ARG TRP ARG GLU GLU ARG GLU ARG ARG GLU PRO SER SER SER	LEU ASP ALA ALA ALA ALA ALA PLC GLY CVAL LVAL LVAL LEU PRO PRO ALA ALA	
TYR VAL PRO FILE TILE TRG TRG TRG ALA ALA ALA ALA ALA ALA ALA TRR TRR PRO CTTRR FIL CTTR FIL CTTRR FIL CTTRR FIL CTTRR FIL CTTRR FIL CTTRR FIL CTTR FIL CTTRR FIL CTTRR FIL CTTRR FIL CTTRR FIL CTTRR FIL CTTRR FIL CTTRR FIL CTTRR FIL CTTRR FIL CTTRR FIL CTTRR FIL CTTRR FIL CTTRR FIL FIL CTTRR FIL FIL FIL FIL FIL FIL FIL FIL FIL FIL	THA THA CLY PHE HHE HET GLU GLU ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	LEU PRO PRO PRO PRO LEU LEU ASP ASP ASP ASP ASP ASP ASP CLU SV ASP LLEU LYS VAL	

ASP VAL VAL ALU ALU SER THR THR THR CLU CA92 C492 K493 K495 K495 K495 K495 K495 K495 K495	K499 L500 L501 L501 L502 K503 N506 K503 N506 P509 P510 P510 P513 A515	L516 R517 q518 1519 1520 D521 K524 A523 R524 F526 F526 F526 G527 A528 G529	P530 L531 F532 R533 Q534 L536 L536 P537 L539 M540
••••••	•••••	•••••	•••••
8541 1544 1544 1544 1544 1544 1546 1546 1	D557 1558 1558 1558 1558 1566 1566 1566 1566	1574 L575 V577 V577 E578 P580 L581 L581 L583 L583 L583 D584 E583 D584	Y588 A589 R590 F592 C593 R594 E595 E595 F1596 I597 S598 N599
•••••	•••••	•••••	•••••
A601 K6022 A6032 A604 C6056 C6056 C6056 A607 T608 M609 S611 T610 S611 T612 S611 T612 S615 T6156 S615 C6156	 I 617 D 618 N 619 N 620 M 620 D 621 D 621 E 6222 Y 623 Y 623 N 626 N 627 N 626 N 626 N 627 <li< td=""><td>V634 V6356 A6366 S637 A636 A638 A638 A638 L639 C640 C640 C640 C642 C6437 C6447 F647</td><td>L 648 K 649 A 650 V 651 V 651 C 655 K 655 S 654 K 655 S 654 K 655 S 657 V 656 S 657 V 655 S 657 A 660</td></li<>	V634 V6356 A6366 S637 A636 A638 A638 A638 L639 C640 C640 C640 C642 C6437 C6447 F647	L 648 K 649 A 650 V 651 V 651 C 655 K 655 S 654 K 655 S 654 K 655 S 657 V 656 S 657 V 655 S 657 A 660
R661 H662 G664 G664 F1665 R666 R666 G669 Q669 Q669 Q669 Q660 C1671 L671 L673 C1673 C	C677 A678 L680 P681 P681 P681 H682 R684 S685 S685 S685 S685 S685 S685 S685 S685	L694 V695 D696 E697 E697 E697 E697 Q699 V701 V701 V701 T703 T703 T704 S705 S705 L707	A708 I709 A710 A711 L712 L712 E714 A715 A715 A715 A715 A715 Y719 Y719 Y719 S720
721 723 723 725 725 725 725 725 725 725 725 725 731 732 733 735 735 735 735	737 738 740 741 742 745 745 745 745 745 745 745 745 752 752 753	755 755 755 757 757 757 759 761 763 763 763 765 765	768 769 770 771 772 777 775 777 775 777 777 778
н ј и ј о и о и и и и и и и и и и и и и и	онкохол ее глхено х л	¥ H K K K K K K K K K K K K K K K K K K	N > Z H H H H H H H H H H H H H H H H H H
••••			
D781 E765 E765 E765 E765 M764 K786 L787 L787 L787 K795 K795 K795 K795 C795 C795 C795	6797 7796 6800 6800 6800 7800 7800 7800 7800 780	F814 F815 F816 F816 F815 F815 6820 6820 6820 A820 A820 L825 D826 B826 B826 B826 B826 B826 B826 B826 B	R828 N822 Y830 R831 Q835 L833 U835 U835 T836 T836 T837 V838 C835 C835 L846 L846
•••••	•••••	**********	•••••
A841 N842 K843 V844 G845 A847 E848 A847 E848 1850 S851 1855 S851 S855 D856 D856	L857 K858 B859 B860 A861 E862 Q863 Q865 Q865 K866 M867 V868 M867 V868 M867 S866 M867 V868 B870 S872 E870 E873	K874 1875 M876 G877 N878 N878 L879 G880 G880 G880 A881 A881 1884 1888 H886 H886 H886	L888 E889 E890 Q891 L892 L892 D894 C895 C895 L897 Y898 X899 F900
Q901 E902 E903 Q903 Q903 Q903 P001 T1905 E906 E907 S908 P0907 S908 M910 M912 M913 G913 G915 F1916	V917 V918 N919 A920 L921 L921 C922 K923 K926 K926 K926 K926 K926 F937 F930 F930 F931 F933 F933 F933 F933 F933 F933 F933	C334 1935 1935 1937 1937 1933 1933 1942 1940 1945 8944 8945 8945 8945	R948 (9950 (950 A951 A952 A952 L954 L955 S956 S956 R957 A959 A959 A959 V950

••			••	•		••		••	••		••	•	••	•	••	••		••	•		••	•	•	••	••	•	••	••	••	••	••	•	••	•	••		••	••	•••	••
361	1362 1363	.364	365)366)367	368	1369 1370	371	372	676 374	375	1376	378	379	1380 1381	1382	383 384	385	386	.387 388	389	1390	.392	(393	1394 .395	/396	.397 1398	399	3400 .401	102	404	3405	407	408	409	411	412)414 .415	1416 1417	5418 0410	420
	4 1		0		н	щщ	Ч	шч	4 03		~ 2	- 14		н ш	0				1 0	ц	ць	4 11	<u>, 1</u>	4 1	- ,		-	шц	Ц		01			4 0				1		
••		•	••		•	••		••		•	••	•	••	••	•	•	•	••	•	••	••	•	••	•	••		• •	-	••	•	••	•	••	•	••	•••	•	••	••	•
P421	4422 L423	Y424	V425	A426 C427	G428	R429 G430	P431	R432	5434 S434	L435	R436 V437	L438	R439	H440 G441	L442	ањо V444	S445	E446 M447	A448	V449	S450 E451	L452	Р453 слел	N455	P456 N457	A458	V459	r461	V462 R463	R464	H465 1466	E467	D468 E469	F470	D471 A472	Y473	14/4 I475	V476 S477	F478 V479	N480
••			••	••	•	••		••		•	• •	•	••	••	••	••		••	••	•	••	•	••	••	••	••	••	••	••	•	••	••	••	••	••		••	••	•••	••
A481	1482 L483	V484	L485	S486 1487	G488	E489 T490	V491	E492	V494	T495	D496 9497	G498	F499	L500 G501	T502	T503 P504	T505	L506	C508	S509	L510 1511	G512	D513	D514 A515	L516	0518 0518	V519	Y520 P521	D522	1524 I524	R525	1527 1527	R528	A529 D530	K531 bear	V533	N534 E535	W536 K537	T538 D530	G540
+4	••	•	••	••	-	••	-	••		-	• •		••	••	••	••		••	••	•	••	•	•••	••	••	••	••	••	••	•	••	••	••	•	••		••	••		•
K541	T543	I544	V545	K546 C547	A548	V549 N550	Q551	R552	V554	V555	1556 A557	L558	T559	G561 G561	E562	L563 V564	Y565	F566	E567 M568	D569	P570	G572	q573	L574 N575	E576	T578	E579	R580 K581	E582	S584	A585	V587	V588	M590	S591	A593	N594 V595	P596	G598 FF00	009b
																				•	••						•••				•									
R601	R603	F604	L605	A606 V607	G608	L609 V610	D611	N612	V614	R615	1616 1617	S618	L619	D620 P621	S622	D623 C624	L625	Q626	P627 L628	S629	M630	4632	L633	P634 A635	0636 7225	F63/	S639	L640 C641	1642 1042	E644	M645 GLY	GLY	GLU	GLN	GLU	GLY	ARG GLY	SER		
	• •	4	ب م		~	שיא שיא שיא שיא שיא אויי היי היי היי היי היי היי היי היי היי ה	←	0 10	4	<u>ل</u>	0 1~	00	ს ი ი	• • •	0 0	0 4	د	9 F	- 00	o	••	<u>ب</u>		ب س		ωσ		→ ◆ → ~	ν m	4 u	9	•••	ს თ	••		€ €	ب م		ლ ი	•
GLY F66	1 C C C	Y66	L66 Me e	I66	095	097 097	N67	G67 V67	L67	L67	767 T67	V67	L67	P68	V68 T69	100 G68	D68	L68 262	D68	T68	R69 T69	R69	LEU	699 460	R69	969 V69	K70	L70	R70	V70 R70	M7 0	070 070	07p	E71 A71	V71	L71 A71	M71 971	S71	R71 S71	W72
													_														_													
12		54	25	26	8	e e	E	6 G	3 4	a B	2 20	5 8	8	6 1	с <u>г</u>	87 4 1	ц Ц	9 1 0	18 18	⁴⁹			83 23	55	99		eg (00 11 00	32	3 40	9 2 2	24 0		-	22	73 74	75		82 62	
L7:		S7:	:7Y:	: LD : LS	R7:	F7: H7:	177	T70	L7:	S73	77. 77	11	12	E7.	A74	27. S7.	F7.	A7.	E7.	d7،	C71	Ē	G78	171 171	A78	378 S78	17.	N76 176	17	17(L70	L70	CL1	LEI LEI	A7	V7' F7'	. ZN	.27	A7' F7'	P78
81	83 87	84	85	86 87	88	68 O6	16	6 6	94 94	95	96 97	5 <u>8</u>	66	8 2	02	03	9	9	R C	U. A	1 H V	A A	20	n n	s ti	A D	D H	ЧР	A A	л Л	d D	IJ D	D P	A D	L.A	A				
L7	ν Α Α	T7	P7	R7 K7	F7	71 71	- H	P7 57	S 7	N7	7 N 7	17	21	E8 E8	T8	D8 H8	N8	A8	TH	GL	TH	AL	AR	GL	WE CF	ALGL	UE GL	VAGL	AL	CL GL	AS GL	AR GL	LE AL	AL GL	ME	AL				
														••					•					•		•••		•						••		••				
HE I	DE NE	5 B I		348	349 350	351	35.2 35.3	354	355	356 357	358	359 360	361	362	364	365	366 367	368	369	370 271	372	373 77	374 375	876 777	878	379 000	381	382	384 384	385 906	387	888	068	391 202	393	394 395	396	998	668 006	
AI PI	LI	3 5 3	L1 AS	Β	й й	ĩ	й Э	AS AS	P	A8 A8	ë	Ξĉ	ëë	3M	ž ŭ	N	Πã	Ĩ	W	Ω Ω	Ϊ	ĕč	ΞΞ	Ë,	ŭ ŭ	ЗĚ	šõr	ជ័រ	ũ ở	N G	¥ ¥	A8 Fe	ι Ω	N SA	Ň	ΰ ਔ	й	δĨ	£ 3	
••	•		••	•		••		••	•		••		••	•	••	••		••	•		••	•	•	••	••	•	••	••	••	•	••	••	••		••		••	••	•••	•
901	7.05 803	904	905	906 907	908	909 910	911	912	914	915	916 917	918	919	920 921	922	923 924	925	926	927 928	929	930	932	933	934 935	936	937 938	939	940 941	942	944	945	947 947	948	9449 950	951 057	953	954 955	956 957	958 958	960
ш	23		>		. 9	V A	X	Ο -	1 H	-1	Z Q	- 2	ŝ	> 4	9	с н		Y	Η Υ	K		> Z	N	вы	м,	цп	E.	цщ	XE	- 4	> 4	а ш	> (A	A	A	ር ር	G (р Ж Þ	• -1
••		•	••	••		••		••			••		••	••	••	••	•	••	••	•	••	•	••	••	••	••	••	••	••	••	••	••	••		••		••	••	•••	••
961 200	963 963	964	965	966 967	968	969 970	116	972 773	574	375	976 777	978	979	980 981	982	983 984	985	986	987 988	989	990	992	993	994 995	966	766 998	666	1000 1001	1002	1004	1005	1007	1008	1010	1011	1013	1014 1015	1016	1018	1020
ŝi	3 ×		KS	3 3	RS	SV 2	ğ	3 5	5 X	Kg	SX 1	3 3	RS	S S	ы В	SN 93	5H	SI :	AS Ng	YS	SI S	3 8	SI	er er	SI 8	35 CH	RS	58	5.5	2 2	5 5	5 E	5	2 7	EW	- F8	EY EX	LA FN	2 B 2	3 8
••			•			••		• •					•	•	•			•			••	•	•	•	••	•	•	••	••		••	•								
921 200	723	024	025	026 027	028	029	331	032	34	335	036	038	039	040 041	042	043 744	D45	046	047)48	949	050)F 1	001 052	953	054 055	056	057	959	060 061	062	064	065	290	Б Ф	— ~	× 7	0 -	5 0	2. 67. 5	-	
L1 (F10	A1(D10	E	P10	R10) EW	110 T10	TI	A1V	Ξ	E	DIY DIY	D1(T1 P	A10	G1(D10	K1(F1(DEN	E	V1 C	ο FΛ	E E	P1(P1(N1(Ē	D1(E1(D10	GLI	PRU	GL	LY: AL <i>I</i>	TRI	ASL	76	
					• •				•	• •																													• •	•
	83	84 or	ດ ເຊິ່ງ	87	88 8	8	91	93	94	95 96	97	88 00	n 0	5	S S	04	05	8 6	88	60 F	3 1	12	13 14	15	16 17	18	20	21	5 5	24 or	20 P	27	73 78	8.5	32 2	33 34	35	36	8 8	40
LEU	N10	G 10	S10	Q10	K10	E10	V10	M10	N10.	Y10 H10	V10	G10	T11	V11	S11(L11	Q11	T11(T11.	L11	P11	G11	G11 S11	E11	511 L11	V11	711 T11	T11.	L11 S11	G11	; EI	G11.	L11	V11	F11	T11 S113	H11	E11 D11	H11 D11	F11

• Molecule 38: U2 small nuclear ribonucleoprotein B"

• Molecule 41: Homo sapiens U4A snRNA

• Molecule 42: Homo sapiens U5 A small nuclear RNA

• Molecule 43: Homo sapiens RNA, U6 small nuclear 1 (RNU6-1), small nuclear RNA

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	44629	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	1.5	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	FEI FALCON III (4k x 4k)	Depositor
Maximum map value	0.144	Depositor
Minimum map value	-0.041	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.007	Depositor
Recommended contour level	0.04	Depositor
Map size (Å)	501.12, 501.12, 501.12	wwPDB
Map dimensions	432, 432, 432	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.16, 1.16, 1.16	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles						
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5					
1	А	0.23	0/11222	0.41	0/15747					
2	В	0.24	0/4312	0.43	0/6043					
3	С	0.23	0/8613	0.41	0/12069					
5	Ε	0.23	0/1107	0.42	0/1547					
6	F	0.24	0/2115	0.45	0/2951					
7	G	0.26	1/4089~(0.0%)	0.40	0/5728					
8	Н	0.49	1/2082~(0.0%)	0.40	0/2910					
9	Ι	0.23	0/888	0.40	0/1241					
10	J	0.23	0/681	0.38	0/952					
11	Κ	0.22	0/224	0.29	0/312					
12	L	0.24	0/2295	0.44	0/3198					
13	М	0.24	0/853	0.47	0/1188					
14	Ν	0.22	0/276	0.43	0/383					
15	Ο	0.22	0/641	0.39	0/898					
16	Р	0.22	0/459	0.36	0/640					
17	\mathbf{Q}	0.24	0/379	0.35	0/530					
18	R	0.21	0/78	0.35	0/107					
19	a	0.22	0/394	0.44	0/548					
19	h	0.22	0/371	0.44	0/516					
20	b	0.24	0/367	0.45	0/509					
20	i	0.24	0/357	0.46	0/495					
21	с	0.22	0/388	0.46	0/540					
21	j	0.22	0/388	0.45	0/540					
22	d	0.23	0/346	0.48	0/481					
22	k	0.23	0/366	0.47	0/509					
23	е	0.23	0/392	0.47	0/546					
23	1	0.23	0/354	0.45	0/492					
24	f	0.23	0/319	0.43	0/442					
24	m	0.22	0/314	0.44	0/434					
25	g	0.23	0/471	0.42	0/657					
25	n	0.22	0/414	0.45	0/578					
39	Y	0.44	4/1083~(0.4%)	0.75	0/1681					
40	2	0.88	16/2366~(0.7%)	1.55	70/3677~(1.9%)					
41	4	0.16	$0/3\overline{240}$	0.71	$0/5\overline{039}$					

Mal	Chain	Bo	ond lengths	Bond angles		
Moi Chair	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
42	5	0.16	0/2672	0.76	0/4154	
43	6	0.14	0/2155	0.70	0/3355	
All	All	0.30	22/57071~(0.0%)	0.58	70/81637~(0.1%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	2
7	G	0	3
All	All	0	5

All (22) bond length outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms	\mathbf{Z}	Observed(A)	Ideal(Å)
8	Н	268	LEU	C-N	19.79	1.71	1.34
40	2	150	U	C1'-N1	6.93	1.59	1.48
40	2	111	G	C1'-N9	-6.89	1.37	1.46
40	2	182	U	C1'-N1	6.86	1.59	1.48
40	2	142	U	C1'-N1	6.77	1.58	1.48
40	2	137	U	C1'-N1	6.76	1.58	1.48
40	2	148	С	C1'-N1	6.49	1.58	1.48
40	2	143	С	C1'-N1	6.35	1.58	1.48
7	G	400	VAL	C-N	6.35	1.46	1.34
40	2	141	С	C1'-N1	6.31	1.58	1.48
40	2	139	С	C1'-N1	6.31	1.58	1.48
40	2	97	G	C1'-N9	-6.30	1.38	1.46
39	Y	143	G	C1'-N9	-6.30	1.38	1.46
40	2	179	С	C1'-N1	6.29	1.58	1.48
40	2	151	С	C1'-N1	6.23	1.58	1.48
40	2	144	С	C1'-N1	6.23	1.58	1.48
40	2	138	С	C1'-N1	6.21	1.58	1.48
40	2	184	С	C1'-N1	6.21	1.58	1.48
40	2	110	А	C1'-N9	-5.70	1.38	1.46
39	Y	148	С	C1'-N1	5.48	1.56	1.48
39	Y	152	С	C1'-N1	5.38	1.56	1.48
39	Y	156	U	C1'-N1	5.25	1.56	1.48

All (70) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
40	2	167	U	C5-C4-O4	11.77	132.96	125.90
40	2	164	С	N1-C2-O2	-10.19	112.78	118.90
40	2	162	U	N3-C2-O2	-9.05	115.87	122.20
40	2	164	С	C5'-C4'-O4'	-8.38	99.04	109.10
40	2	169	С	P-O3'-C3'	8.20	129.53	119.70
40	2	167	U	N3-C4-O4	-8.02	113.78	119.40
40	2	166	G	O4'-C1'-N9	7.91	114.53	108.20
40	2	164	С	P-O3'-C3'	7.55	128.76	119.70
40	2	164	С	N3-C2-O2	7.50	127.15	121.90
40	2	167	U	N1-C2-O2	7.27	127.89	122.80
40	2	179	С	OP2-P-O3'	7.27	121.19	105.20
40	2	141	C	OP2-P-O3'	7.25	121.15	105.20
40	2	151	С	OP2-P-O3'	7.25	121.15	105.20
40	2	143	C	OP2-P-O3'	7.24	121.12	105.20
40	2	139	С	OP2-P-O3'	7.24	121.12	105.20
40	2	149	А	OP2-P-O3'	7.22	121.09	105.20
40	2	150	U	OP2-P-O3'	7.22	121.08	105.20
40	2	140	А	OP2-P-O3'	7.21	121.06	105.20
40	2	180	G	OP2-P-O3'	7.21	121.06	105.20
40	2	119	G	OP2-P-O3'	7.20	121.04	105.20
40	2	181	G	OP2-P-O3'	7.19	121.02	105.20
40	2	182	U	OP2-P-O3'	7.19	121.02	105.20
40	2	138	С	OP2-P-O3'	7.19	121.01	105.20
40	2	142	U	OP2-P-O3'	7.18	121.00	105.20
40	2	148	С	OP2-P-O3'	7.16	120.94	105.20
40	2	183	G	OP2-P-O3'	7.14	120.92	105.20
40	2	137	U	OP2-P-O3'	7.14	120.92	105.20
40	2	168	A	P-O5'-C5'	-7.14	109.48	120.90
40	2	167	U	N3-C2-O2	-7.04	117.27	122.20
40	2	106	G	O5'-P-OP1	6.92	119.00	110.70
40	2	119	G	O3'-P-O5'	-6.80	91.08	104.00
40	2	151	С	O3'-P-O5'	-6.80	91.08	104.00
40	2	181	G	O3'-P-O5'	-6.80	91.09	104.00
40	2	183	G	O3'-P-O5'	-6.79	91.10	104.00
40	2	142	U	O3'-P-O5'	-6.79	91.10	104.00
40	2	141	С	O3'-P-O5'	-6.78	91.11	104.00
40	2	150	U	O3'-P-O5'	-6.78	91.11	104.00
40	2	166	G	C8-N9-C4	-6.78	103.69	106.40
40	2	182	U	O3'-P-O5'	-6.78	91.12	104.00
40	2	180	G	O3'-P-O5'	-6.77	91.14	104.00
40	2	137	U	O3'-P-O5'	-6.77	91.14	104.00
40	2	139	С	O3'-P-O5'	-6.76	91.15	104.00
40	2	140	A	O3'-P-O5'	-6.76	91.16	104.00

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
40	2	179	С	O3'-P-O5'	-6.76	91.16	104.00
40	2	149	А	O3'-P-O5'	-6.75	91.17	104.00
40	2	138	С	O3'-P-O5'	-6.73	91.22	104.00
40	2	143	С	O3'-P-O5'	-6.72	91.22	104.00
40	2	148	С	O3'-P-O5'	-6.72	91.24	104.00
40	2	155	С	P-O3'-C3'	6.69	127.72	119.70
40	2	157	G	C5-C6-O6	-6.29	124.83	128.60
40	2	162	U	N1-C2-O2	6.28	127.20	122.80
40	2	157	G	N1-C6-O6	6.26	123.66	119.90
40	2	166	G	N9-C4-C5	6.24	107.90	105.40
40	2	165	А	O4'-C1'-N9	-6.16	103.27	108.20
40	2	166	G	N3-C4-C5	-5.95	125.63	128.60
40	2	172	С	P-O3'-C3'	5.87	126.75	119.70
40	2	167	U	O3'-P-O5'	-5.79	93.01	104.00
40	2	168	А	C5'-C4'-C3'	-5.79	106.75	116.00
40	2	164	С	C5-C4-N4	-5.72	116.19	120.20
40	2	156	U	P-O3'-C3'	-5.72	112.84	119.70
40	2	166	G	C6-N1-C2	-5.40	121.86	125.10
40	2	156	U	OP2-P-O3'	5.39	117.06	105.20
40	2	157	G	P-O5'-C5'	-5.22	112.55	120.90
40	2	160	А	C4'-C3'-C2'	-5.21	97.39	102.60
40	2	162	U	C2-N3-C4	-5.20	123.88	127.00
40	2	160	А	P-O5'-C5'	-5.15	112.66	120.90
40	2	170	С	N3-C4-C5	-5.14	119.84	121.90
40	2	156	U	C4'-C3'-C2'	5.12	107.72	102.60
40	2	170	С	O4'-C1'-C2'	-5.12	100.68	105.80
40	2	176	G	OP1-P-OP2	-5.11	111.93	119.60

There are no chirality outliers.

All (5) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	462	ARG	Peptide
1	А	948	PRO	Peptide
7	G	308	HIS	Peptide
7	G	840	ASP	Peptide
7	G	841	PRO	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	11100	0	5431	72	0
2	В	4264	0	2120	32	0
3	С	8538	0	4146	60	0
4	D	302	0	0	0	0
5	Е	1101	0	543	15	0
6	F	2100	0	1038	24	0
7	G	4057	0	2089	37	0
8	Н	2068	0	1019	20	0
9	Ι	883	0	414	4	0
10	J	677	0	316	1	0
11	K	225	0	98	2	0
12	L	2288	0	1076	10	0
13	М	844	0	426	3	0
14	Ν	277	0	114	2	0
15	0	636	0	322	2	0
16	Р	458	0	225	1	0
17	Q	378	0	190	1	0
18	R	79	0	32	0	0
19	S	87	0	0	0	0
19	a	393	0	176	0	0
19	h	371	0	162	0	0
20	Т	74	0	0	0	0
20	b	364	0	181	0	0
20	i	354	0	177	0	0
21	U	79	0	0	0	0
21	с	388	0	167	0	0
21	j	388	0	167	0	0
22	V	74	0	0	0	0
22	d	344	0	168	0	0
22	k	364	0	176	0	0
23	W	80	0	0	2	0
23	е	390	0	188	0	0
23	l	353	0	166	0	0
24	X	71	0	0	0	0
24	f	319	0	144	0	0
24	m	316	0	133	0	0
25	Z	82	0	0	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
25	g	469	0	214	0	0
25	n	412	0	185	0	0
26	0	90	0	0	0	0
27	р	73	0	0	0	0
28	q	80	0	0	0	0
29	r	76	0	0	0	0
30	s	69	0	0	0	0
31	t	79	0	0	0	0
32	u	62	0	0	0	0
33	V	806	0	0	0	0
34	W	1140	0	0	0	0
35	Х	54	0	0	0	0
36	У	89	0	0	0	0
37	Z	162	0	0	0	0
38	1	94	0	0	0	0
39	Y	972	0	495	31	0
40	2	2123	0	1076	178	0
41	4	2904	0	1470	44	0
42	5	2397	0	1216	40	0
43	6	1926	0	973	33	0
All	All	59243	0	27233	553	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 7.

All (553) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
40:2:153:A:H2	40:2:178:A:N1	1.00	1.46
1:A:2313:HIS:CB	3:C:1045:PRO:HB3	1.47	1.44
40:2:153:A:C2'	40:2:154:C:H5'	1.46	1.42
8:H:268:LEU:C	8:H:269:PRO:N	1.71	1.39
40:2:153:A:N1	40:2:178:A:N6	1.73	1.37
40:2:153:A:C2	40:2:178:A:N1	1.91	1.36
40:2:106:G:H21	40:2:107:A:N6	1.23	1.35
40:2:106:G:N2	40:2:107:A:C6	1.97	1.29
39:Y:149:A:N1	40:2:40:C:N4	1.78	1.29
40:2:153:A:O2'	40:2:154:C:C5'	1.79	1.29
40:2:108:G:H2'	40:2:109:C:C6	1.68	1.27
39:Y:143:G:O6	40:2:45:C:N4	1.71	1.21
40:2:153:A:C2	40:2:178:A:C6	2.31	1.18

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
40:2:153:A:O2'	40:2:154:C:H5'	1.01	1.17
40:2:153:A:C2'	40:2:154:C:C5'	2.22	1.16
40:2:106:G:N2	40:2:107:A:N6	1.94	1.13
40:2:156:U:H6	40:2:156:U:H5"	1.10	1.10
40:2:154:C:O2	40:2:178:A:N6	1.85	1.09
1:A:2268:LEU:O	3:C:1264:PRO:HG2	1.53	1.08
39:Y:149:A:H61	40:2:40:C:N4	1.50	1.07
39:Y:149:A:N6	40:2:40:C:N4	2.03	1.07
1:A:2268:LEU:O	3:C:1264:PRO:CG	2.04	1.06
39:Y:149:A:C6	40:2:40:C:N4	2.19	1.06
40:2:105:G:H2'	40:2:106:G:H5"	1.37	1.05
40:2:153:A:H2'	40:2:154:C:C5'	1.81	1.05
1:A:2074:ARG:CB	3:C:1047:PRO:HG2	1.86	1.03
39:Y:72:A:N6	43:6:33:G:H1	1.53	1.03
1:A:2313:HIS:CB	3:C:1045:PRO:CB	2.37	1.01
40:2:153:A:H2	40:2:178:A:C6	1.74	1.01
40:2:153:A:C2	40:2:178:A:N6	2.28	1.00
40:2:168:A:C8	40:2:168:A:H5"	1.99	0.98
40:2:112:G:C2	40:2:113:G:C5	2.51	0.97
42:5:12:U:H3	42:5:65:G:H1	1.12	0.97
41:4:91:A:H2	41:4:110:G:N2	1.61	0.97
40:2:153:A:H2'	40:2:154:C:H5'	1.34	0.96
40:2:112:G:H2'	40:2:113:G:H8	1.29	0.96
41:4:4:U:H3	43:6:71:G:H1	0.98	0.94
40:2:156:U:H5"	40:2:156:U:C6	2.02	0.93
39:Y:149:A:N1	40:2:40:C:C4	2.37	0.93
39:Y:149:A:N6	40:2:40:C:H42	1.62	0.93
39:Y:65:G:H1	43:6:40:U:H3	0.99	0.92
40:2:118:G:H2'	40:2:119:G:H8	1.33	0.92
40:2:153:A:N1	40:2:178:A:C6	2.34	0.91
40:2:112:G:O2'	40:2:113:G:H5'	1.69	0.91
40:2:168:A:H5"	40:2:168:A:H8	1.37	0.90
39:Y:149:A:H61	40:2:40:C:H41	1.14	0.90
40:2:112:G:N3	40:2:113:G:C8	2.40	0.89
40:2:144:C:H2'	40:2:145:A:H5"	1.54	0.89
39:Y:58:G:H1	42:5:41:U:H3	0.92	0.89
40:2:112:G:C2	40:2:113:G:N7	2.42	0.87
40:2:144:C:H3'	40:2:145:A:H5'	1.56	0.86
7:G:312:TRP:O	7:G:316:ALA:HB3	1.75	0.86
39:Y:143:G:O6	40:2:45:C:C4	2.29	0.86
40:2:108:G:H2'	40:2:109:C:H6	1.35	0.86

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
40:2:106:G:N2	40:2:107:A:N1	2.22	0.86
40:2:156:U:H6	40:2:156:U:C5'	1.89	0.86
39:Y:74:G:H1	43:6:31:U:H3	0.86	0.85
40:2:105:G:C2'	40:2:106:G:H5"	2.09	0.81
40:2:108:G:H2'	40:2:109:C:C5	2.14	0.81
41:4:91:A:H2	41:4:110:G:H22	0.83	0.81
41:4:108:C:O2'	41:4:109:G:H5'	1.81	0.81
40:2:112:G:C4	40:2:113:G:N7	2.49	0.80
40:2:112:G:N3	40:2:113:G:N7	2.30	0.80
42:5:17:U:H3	42:5:60:G:H1	0.83	0.80
7:G:842:HIS:O	7:G:846:ALA:HB2	1.83	0.80
40:2:101:U:H5"	40:2:102:U:H5'	1.64	0.80
40:2:154:C:C2	40:2:178:A:N6	2.47	0.79
40:2:178:A:O2'	40:2:179:C:H5'	1.85	0.77
39:Y:72:A:H61	43:6:33:G:H1	0.78	0.77
1:A:2070:LYS:O	3:C:1047:PRO:HG3	1.84	0.76
40:2:112:G:H2'	40:2:113:G:C8	2.18	0.76
39:Y:149:A:N1	40:2:40:C:N3	2.33	0.76
40:2:106:G:H4'	40:2:107:A:O4'	1.85	0.76
40:2:178:A:H2'	40:2:179:C:H6	1.49	0.75
1:A:464:PRO:HG2	42:5:20:G:H4'	1.69	0.75
40:2:144:C:H3'	40:2:145:A:C5'	2.17	0.75
1:A:75:ASP:HA	9:I:14:GLY:HA2	1.70	0.73
40:2:118:G:H2'	40:2:119:G:C8	2.23	0.72
2:B:441:PRO:O	2:B:445:ALA:HB2	1.88	0.72
7:G:361:VAL:O	7:G:365:ALA:HB2	1.89	0.72
40:2:153:A:HO2'	40:2:154:C:C5'	2.02	0.72
40:2:109:C:H6	40:2:109:C:O5'	1.73	0.71
39:Y:143:G:O6	40:2:45:C:N3	2.23	0.71
8:H:288:ARG:O	8:H:292:ALA:HB2	1.91	0.70
40:2:153:A:H2'	40:2:154:C:O5'	1.91	0.70
40:2:154:C:H1'	40:2:178:A:N1	2.05	0.70
7:G:842:HIS:O	7:G:846:ALA:CB	2.39	0.70
1:A:2313:HIS:CA	3:C:1045:PRO:HB3	2.19	0.70
40:2:12:G:H1	43:6:86:U:H3	1.39	0.69
40:2:177:A:H2	40:2:178:A:H62	1.39	0.68
40:2:150:U:H3	40:2:181:G:H1	1.41	0.68
7:G:312:TRP:O	7:G:316:ALA:CB	2.42	0.68
8:H:292:ALA:O	8:H:296:ALA:HB2	1.93	0.68
15:O:113:LYS:O	15:O:117:GLN:CB	2.41	0.67
40:2:112:G:N1	40:2:113:G:C6	2.62	0.67

EMD-3766,	509Z
-----------	------

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
13:M:111:SER:HA	13:M:140:VAL:HA	1.76	0.67
7:G:841:PRO:O	7:G:843:VAL:N	2.27	0.67
41:4:24:U:H3	41:4:48:G:H1	1.42	0.67
41:4:2:G:O6	43:6:73:A:N1	2.27	0.67
11:K:299:LYS:O	11:K:303:GLU:CB	2.43	0.67
39:Y:150:U:H6	39:Y:150:U:O5'	1.77	0.67
41:4:111:C:O5'	41:4:111:C:H6	1.78	0.67
40:2:168:A:C8	40:2:168:A:C5'	2.75	0.66
42:5:78:U:O2'	42:5:80:U:OP1	2.14	0.66
40:2:154:C:O2	40:2:178:A:C6	2.49	0.66
41:4:6:U:H2'	41:4:7:G:H8	1.61	0.65
42:5:58:U:H2'	42:5:59:G:H8	1.62	0.65
1:A:2152:GLY:HA3	1:A:2157:VAL:HA	1.79	0.65
41:4:117:C:O5'	41:4:117:C:H6	1.80	0.65
9:I:35:TRP:O	9:I:39:CYS:CB	2.45	0.65
6:F:349:TRP:HA	6:F:356:GLU:HA	1.78	0.65
40:2:144:C:C3'	40:2:145:A:C5'	2.75	0.65
40:2:153:A:C2'	40:2:154:C:O5'	2.43	0.65
40:2:156:U:C6	40:2:156:U:C5'	2.72	0.64
3:C:1084:VAL:O	3:C:1088:ALA:HB2	1.97	0.64
39:Y:149:A:C2	40:2:40:C:N3	2.65	0.64
3:C:1077:LEU:O	3:C:1081:MET:N	2.27	0.63
40:2:112:G:N1	40:2:113:G:C5	2.66	0.63
40:2:164:C:H6	40:2:164:C:H5'	1.63	0.63
2:B:371:GLU:O	2:B:375:GLU:CB	2.46	0.63
41:4:89:U:C2'	41:4:90:G:H5'	2.29	0.63
40:2:112:G:C2	40:2:113:G:C8	2.85	0.63
41:4:108:C:H2'	41:4:109:G:H8	1.63	0.62
1:A:2074:ARG:CB	3:C:1047:PRO:CG	2.73	0.62
7:G:311:ALA:O	7:G:315:SER:CB	2.47	0.62
41:4:89:U:O2'	41:4:90:G:H5'	1.99	0.62
3:C:1081:MET:O	3:C:1085:THR:CB	2.48	0.62
7:G:407:TRP:O	7:G:411:VAL:CB	2.48	0.62
41:4:91:A:O5'	41:4:91:A:H8	1.82	0.62
1:A:534:GLU:O	1:A:538:SER:CB	2.48	0.62
1:A:2317:PHE:CB	3:C:1043:ARG:CB	2.78	0.62
5:E:513:GLU:O	5:E:517:ALA:HB2	2.00	0.62
7:G:875:GLY:O	7:G:879:ALA:HB2	2.00	0.61
3:C:488:LEU:O	3:C:492:ALA:HB3	2.01	0.61
13:M:107:PRO:HG3	13:M:129:SER:HA	1.81	0.61
2:B:328:ALA:HA	2:B:332:GLY:HA3	1.83	0.61

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
7:G:745:LEU:O	7:G:749:LEU:CB	2.47	0.61
1:A:239:TYR:O	1:A:243:ASN:CB	2.49	0.61
40:2:147:G:H2'	40:2:148:C:H6	1.66	0.61
42:5:12:U:O4	42:5:65:G:O6	2.19	0.61
40:2:146:C:O5'	40:2:147:G:H4'	2.01	0.61
23:W:54:ARG:CA	40:2:151:C:O2	2.50	0.60
39:Y:151:A:O5'	39:Y:151:A:H8	1.84	0.60
40:2:146:C:OP2	40:2:147:G:H4'	2.01	0.60
40:2:157:G:H8	40:2:157:G:H5"	1.65	0.60
3:C:1393:TRP:O	3:C:1397:PHE:CB	2.49	0.60
3:C:1080:ASP:O	3:C:1084:VAL:CB	2.50	0.60
7:G:861:ARG:O	7:G:865:HIS:CB	2.50	0.59
3:C:774:LEU:O	3:C:778:LEU:N	2.31	0.59
1:A:1007:ASP:O	1:A:1011:ALA:HB2	2.02	0.59
7:G:379:ALA:O	7:G:383:GLU:CB	2.50	0.59
40:2:176:G:H2'	40:2:177:A:O4'	2.02	0.59
13:M:29:ILE:HA	13:M:144:ILE:HA	1.83	0.59
16:P:198:ASP:HA	16:P:202:ALA:HB3	1.84	0.59
3:C:482:ASN:O	3:C:486:SER:N	2.36	0.58
3:C:1084:VAL:O	3:C:1088:ALA:CB	2.52	0.58
41:4:110:G:O5'	41:4:110:G:H8	1.86	0.58
40:2:118:G:O2'	40:2:119:G:H5'	2.04	0.58
39:Y:143:G:C6	40:2:45:C:N3	2.71	0.58
40:2:114:A:O5'	40:2:114:A:H8	1.86	0.58
41:4:33:A:H62	41:4:43:G:H21	1.49	0.58
1:A:77:THR:HA	9:I:17:PRO:HD3	1.84	0.58
2:B:441:PRO:O	2:B:445:ALA:CB	2.51	0.58
6:F:130:GLU:O	6:F:134:ASN:CB	2.52	0.58
7:G:783:SER:O	7:G:787:GLU:CB	2.52	0.58
40:2:146:C:H2'	40:2:148:C:OP1	2.03	0.58
2:B:208:HIS:O	2:B:212:SER:N	2.37	0.57
2:B:474:LEU:HA	2:B:499:GLY:HA3	1.85	0.57
40:2:112:G:C2'	40:2:113:G:H5'	2.33	0.57
40:2:108:G:C5	40:2:109:C:C4	2.91	0.57
40:2:152:G:H2'	40:2:153:A:H8	1.68	0.57
40:2:144:C:C2'	40:2:145:A:H5"	2.30	0.57
8:H:372:ARG:O	8:H:376:ASN:CB	2.52	0.57
1:A:85:LYS:O	1:A:89:LEU:CB	2.53	0.57
1:A:305:ARG:HA	2:B:923:PRO:HG3	1.85	0.57
39:Y:74:G:O6	43:6:31:U:O4	2.22	0.57
41:4:108:C:C2'	41:4:109:G:H5'	2.34	0.57

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:B:428:THR:O	2:B:432:ASP:CB	2.53	0.56
42:5:61:A:H2'	42:5:62:G:H8	1.69	0.56
1:A:1682:ALA:O	1:A:1686:ASP:CB	2.53	0.56
39:Y:57:C:N4	42:5:42:U:O4	2.36	0.56
40:2:146:C:P	40:2:147:G:H4'	2.45	0.56
40:2:183:G:H2'	40:2:184:C:H6	1.70	0.56
5:E:548:VAL:O	5:E:579:VAL:N	2.26	0.56
6:F:295:LEU:O	6:F:307:TRP:N	2.33	0.56
9:I:116:CYS:O	9:I:120:LEU:CB	2.53	0.56
11:K:300:GLU:O	11:K:304:ILE:CB	2.54	0.56
40:2:143:C:C2	40:2:144:C:C5	2.93	0.56
40:2:109:C:C6	40:2:109:C:O5'	2.57	0.56
40:2:137:U:H2'	40:2:138:C:H6	1.71	0.56
40:2:138:C:C2	40:2:139:C:C5	2.93	0.56
1:A:950:LEU:O	1:A:954:LYS:CB	2.52	0.56
40:2:106:G:C2	40:2:107:A:C6	2.89	0.56
42:5:69:A:O2'	42:5:70:A:N3	2.39	0.56
42:5:109:C:H2'	42:5:110:A:H8	1.70	0.56
40:2:105:G:N2	40:2:107:A:H5'	2.20	0.56
40:2:141:C:H2'	40:2:142:U:H6	1.71	0.56
40:2:141:C:C2	40:2:142:U:C5	2.94	0.56
41:4:111:C:H2'	41:4:112:A:H8	1.69	0.56
3:C:485:GLN:O	3:C:489:TYR:CB	2.53	0.56
40:2:137:U:C2	40:2:138:C:C5	2.94	0.56
40:2:149:A:H2'	40:2:150:U:H6	1.70	0.56
3:C:1395:GLU:O	3:C:1399:ASP:CB	2.54	0.56
39:Y:65:G:O6	43:6:40:U:O4	2.24	0.56
40:2:142:U:C2	40:2:143:C:C5	2.94	0.56
41:4:108:C:H2'	41:4:109:G:C8	2.41	0.56
6:F:202:PRO:O	6:F:206:ARG:CB	2.55	0.55
7:G:11:MET:O	7:G:13:ALA:N	2.38	0.55
40:2:140:A:C4	40:2:141:C:C5	2.95	0.55
40:2:150:U:C2	40:2:151:C:C5	2.94	0.55
1:A:532:THR:O	1:A:536:LYS:CB	2.54	0.55
5:E:544:SER:HA	5:E:631:VAL:HA	1.87	0.55
40:2:147:G:H2'	40:2:148:C:C6	2.40	0.55
3:C:1332:GLN:O	3:C:1336:PHE:CB	2.54	0.55
40:2:143:C:H2'	40:2:144:C:H6	1.71	0.55
42:5:109:C:H2'	42:5:110:A:C8	2.41	0.55
7:G:419:ALA:O	7:G:423:LEU:CB	2.54	0.55
40:2:106:G:N2	40:2:107:A:H61	1.98	0.55

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
40:2:142:U:H2'	40:2:143:C:H6	1.71	0.55
40:2:178:A:O2'	40:2:179:C:C5'	2.53	0.55
43:6:78:A:N1	43:6:85:U:OP1	2.39	0.55
1:A:584:HIS:O	1:A:588:LEU:CB	2.55	0.55
40:2:118:G:O2'	40:2:119:G:C5'	2.55	0.55
40:2:140:A:H2'	40:2:141:C:H6	1.71	0.55
40:2:181:G:C4	40:2:182:U:C5	2.95	0.55
41:4:113:U:H6	41:4:113:U:O5'	1.90	0.55
1:A:1725:LEU:O	1:A:1729:ALA:CB	2.55	0.55
2:B:588:ILE:HA	2:B:660:VAL:HA	1.89	0.55
40:2:138:C:H2'	40:2:139:C:H6	1.71	0.55
40:2:183:G:C4	40:2:184:C:C5	2.94	0.55
1:A:2268:LEU:O	3:C:1264:PRO:HG3	2.04	0.54
1:A:947:PRO:HG2	1:A:948:PRO:HD2	1.90	0.54
12:L:330:THR:HA	12:L:346:ARG:HA	1.88	0.54
42:5:17:U:O2	42:5:60:G:N2	2.28	0.54
2:B:448:LYS:O	2:B:452:THR:CB	2.55	0.54
5:E:650:GLN:H	5:E:652:PRO:HD2	1.72	0.54
39:Y:159:U:H3	40:2:31:G:H22	1.55	0.54
40:2:150:U:H2'	40:2:151:C:H6	1.71	0.54
40:2:153:A:O2'	40:2:154:C:H5"	1.95	0.54
41:4:2:G:N1	43:6:73:A:C2	2.75	0.54
42:5:107:G:H3'	42:5:108:G:H8	1.73	0.54
1:A:1729:ALA:O	1:A:1733:ILE:CB	2.56	0.54
3:C:489:TYR:O	3:C:493:LEU:CB	2.55	0.54
6:F:223:PHE:N	6:F:517:LEU:O	2.40	0.54
40:2:181:G:H2'	40:2:182:U:H6	1.70	0.54
2:B:324:ALA:O	2:B:328:ALA:CB	2.56	0.54
40:2:146:C:OP2	40:2:147:G:C4'	2.56	0.54
40:2:149:A:C4	40:2:150:U:C5	2.95	0.54
39:Y:58:G:N2	42:5:41:U:O2	2.28	0.53
40:2:164:C:H5'	40:2:164:C:C6	2.44	0.53
1:A:734:PRO:HB3	7:G:149:LEU:HA	1.89	0.53
40:2:178:A:H2'	40:2:179:C:C6	2.37	0.53
2:B:482:TYR:O	2:B:491:HIS:N	2.40	0.53
1:A:235:MET:O	1:A:239:TYR:CB	2.56	0.53
1:A:1426:ASP:O	1:A:1430:LEU:CB	2.57	0.53
3:C:1563:VAL:O	3:C:1648:ARG:N	2.41	0.53
40:2:112:G:N2	40:2:113:G:C4	2.77	0.53
41:4:4:U:O2	43:6:71:G:N2	2.33	0.53
2:B:118:PHE:O	2:B:122:LEU:CB	2.56	0.53

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:C:490:ARG:O	3:C:494:GLU:CB	2.57	0.53
42:5:98:C:H2'	42:5:99:C:C6	2.43	0.53
1:A:84:ASP:O	1:A:88:TYR:CB	2.57	0.53
2:B:643:ASP:O	2:B:647:MET:CB	2.57	0.53
8:H:287:LEU:O	8:H:291:ALA:HB3	2.09	0.53
41:4:118:A:OP2	41:4:118:A:H8	1.92	0.53
3:C:1412:THR:O	3:C:1416:LEU:CB	2.57	0.53
1:A:1135:PRO:O	1:A:1139:ARG:N	2.41	0.52
2:B:742:PRO:HG2	2:B:785:ARG:HA	1.90	0.52
8:H:288:ARG:O	8:H:292:ALA:CB	2.56	0.52
7:G:361:VAL:O	7:G:365:ALA:CB	2.55	0.52
1:A:1725:LEU:O	1:A:1729:ALA:HB3	2.09	0.52
5:E:554:PRO:O	5:E:557:LYS:N	2.42	0.52
12:L:425:MET:HA	12:L:431:ILE:HA	1.92	0.52
41:4:2:G:H1	43:6:73:A:H2	1.56	0.52
43:6:52:U:O4	43:6:53:A:N6	2.42	0.52
7:G:875:GLY:O	7:G:879:ALA:CB	2.58	0.52
3:C:1224:LEU:HA	3:C:1236:HIS:HA	1.92	0.52
3:C:1033:GLU:O	3:C:1037:LEU:CB	2.58	0.51
8:H:167:VAL:O	8:H:171:ALA:CB	2.58	0.51
3:C:1389:VAL:O	3:C:1393:TRP:CB	2.57	0.51
39:Y:69:A:O2'	43:6:35:A:N6	2.42	0.51
41:4:143:U:H2'	41:4:144:G:H5"	1.92	0.51
40:2:152:G:H2'	40:2:153:A:C8	2.45	0.51
1:A:1931:THR:O	1:A:1935:ARG:CB	2.59	0.51
5:E:493:PRO:O	5:E:497:GLU:CB	2.59	0.51
7:G:418:ASP:O	7:G:422:MET:CB	2.58	0.51
8:H:355:GLY:H	41:4:58:C:H41	1.56	0.51
1:A:1684:PHE:O	1:A:1688:THR:CB	2.59	0.51
2:B:430:PHE:O	2:B:434:CYS:CB	2.59	0.51
6:F:204:THR:O	6:F:208:SER:CB	2.59	0.51
8:H:292:ALA:O	8:H:296:ALA:CB	2.59	0.51
42:5:99:C:H2'	42:5:100:U:C6	2.46	0.51
40:2:108:G:C2'	40:2:109:C:C6	2.65	0.51
42:5:48:A:H2'	42:5:49:A:H8	1.76	0.51
3:C:1221:PHE:HA	3:C:1272:SER:HA	1.93	0.51
3:C:1432:TRP:O	3:C:1436:SER:CB	2.59	0.51
6:F:224:CYS:HA	7:G:764:ALA:HB2	1.91	0.50
6:F:304:VAL:N	6:F:318:ILE:O	2.39	0.50
2:B:393:PRO:O	2:B:397:ASP:CB	2.58	0.50
3:C:1665:ASP:HA	3:C:1706:CYS:HA	1.93	0.50

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
5:E:573:VAL:N	5:E:580:ASN:O	2.41	0.50
15:O:56:MET:O	15:O:83:VAL:N	2.43	0.50
42:5:97:G:H2'	42:5:98:C:H6	1.77	0.50
6:F:370:ILE:HA	6:F:381:THR:HA	1.92	0.50
40:2:112:G:C4	40:2:113:G:C8	2.96	0.50
40:2:177:A:N3	40:2:178:A:N7	2.58	0.50
1:A:564:TYR:O	1:A:569:VAL:N	2.45	0.50
1:A:1584:LYS:O	1:A:1588:SER:CB	2.59	0.50
7:G:142:PHE:O	7:G:146:LYS:CB	2.59	0.50
8:H:367:GLY:O	8:H:371:ILE:N	2.41	0.50
41:4:52:U:O2'	41:4:56:U:OP2	2.22	0.50
1:A:1378:GLU:O	1:A:1382:SER:CB	2.60	0.50
1:A:1833:LEU:O	1:A:1837:ALA:CB	2.60	0.50
10:J:25:VAL:N	10:J:55:PHE:O	2.40	0.50
1:A:880:ARG:O	1:A:884:HIS:CB	2.60	0.50
1:A:150:MET:O	1:A:154:GLU:CB	2.60	0.49
7:G:782:GLU:O	7:G:786:LEU:CB	2.59	0.49
40:2:117:U:H2'	40:2:118:G:C8	2.47	0.49
40:2:113:G:H2'	40:2:114:A:C8	2.47	0.49
41:4:111:C:H2'	41:4:112:A:C8	2.46	0.49
42:5:97:G:H2'	42:5:98:C:C6	2.47	0.49
42:5:17:U:O4	42:5:60:G:O6	2.31	0.49
42:5:25:C:H2'	42:5:26:A:C8	2.47	0.49
2:B:369:PHE:O	2:B:373:ILE:CB	2.60	0.49
2:B:777:GLY:N	2:B:782:GLU:O	2.46	0.49
5:E:554:PRO:HG3	43:6:78:A:H8	1.78	0.49
6:F:254:CYS:HA	6:F:266:HIS:HA	1.95	0.49
6:F:506:ILE:N	6:F:518:TRP:O	2.41	0.49
3:C:778:LEU:HA	3:C:782:PHE:O	2.13	0.49
3:C:872:SER:O	3:C:876:LEU:N	2.45	0.49
1:A:581:ILE:O	1:A:585:VAL:CB	2.61	0.49
43:6:24:A:H4'	43:6:26:U:H1'	1.94	0.49
1:A:2268:LEU:O	3:C:1264:PRO:CD	2.59	0.49
39:Y:69:A:H62	43:6:35:A:H2'	1.77	0.48
42:5:58:U:H2'	42:5:59:G:C8	2.46	0.48
1:A:280:GLU:O	1:A:282:LEU:N	2.46	0.48
40:2:116:A:O5'	40:2:116:A:H8	1.95	0.48
1:A:1007:ASP:O	1:A:1011:ALA:CB	2.60	0.48
7:G:841:PRO:C	7:G:843:VAL:H	2.17	0.48
2:B:508:LYS:N	2:B:566:THR:O	2.39	0.48
7:G:512:GLU:O	7:G:516:ALA:HB3	2.12	0.48

EMD-3766, 8	509Z
-------------	------

Continuea from previous page			
Atom-1	Atom-2	distance $(Å)$	overlap(Å)
6·F·431·LYS·HA	6·F·443·THB·HA	<u>1 94</u>	0.48
7:G:449:ALA:O	7:G·453:LEU:CB	2.61	0.48
1:A:2070:LYS:O	3·C·1047·PBO·CG	2.59	0.48
7:G:817:ALA:O	7:G:821:GLU:CB	2.61	0.48
42:5:72:U:H2'	42:5:73:C:H6	1.78	0.48
1:A:883:ARG:O	1:A:887:THR:CB	2.62	0.48
41:4:110:G:H2'	41:4:111:C:C6	2.49	0.48
1:A:121:HIS:HA	1:A:482:PHE:HA	1.96	0.48
6:F:178:LEU:O	6:F:182:ASN:CB	2.62	0.48
8:H:268:LEU:C	8:H:269:PRO:CA	2.75	0.48
40:2:108:G:C2'	40:2:109:C:C5	2.92	0.48
41:4:2:G:C6	43:6:73:A:N1	2.82	0.48
1:A:1947:ASN:O	1:A:1951:LYS:CB	2.62	0.47
3:C:612:ILE:N	3:C:647:ARG:O	2.47	0.47
3:C:1037:LEU:O	3:C:1041:LEU:CB	2.62	0.47
39:Y:151:A:H2	40:2:38:A:N1	2.12	0.47
40:2:143:C:H2'	40:2:144:C:C6	2.49	0.47
42:5:23:C:H3'	42:5:24:G:H4'	1.96	0.47
3:C:725:VAL:N	3:C:811:SER:O	2.46	0.47
3:C:1761:TYR:O	3:C:1765:THR:CB	2.62	0.47
1:A:1778:TRP:HA	1:A:1811:ASN:HA	1.96	0.47
2:B:816:VAL:O	2:B:820:PHE:CB	2.63	0.47
3:C:1088:ALA:O	3:C:1092:MET:CB	2.63	0.47
40:2:142:U:H2'	40:2:143:C:C6	2.49	0.47
42:5:98:C:H2'	42:5:99:C:H6	1.80	0.47
42:5:110:A:H2'	42:5:111:A:C8	2.49	0.47
1:A:1568:THR:O	1:A:1572:SER:CB	2.62	0.47
3:C:1964:PRO:HA	3:C:2054:PRO:HG3	1.96	0.47
8:H:135:TYR:O	8:H:139:VAL:CB	2.62	0.47
3:C:1831:LEU:O	3:C:1835:SER:CB	2.62	0.47
7:G:680:LYS:HA	7:G:934:ALA:HB1	1.97	0.47
41:4:109:G:H2'	41:4:110:G:C8	2.50	0.47
1:A:117:PRO:HA	1:A:486:LYS:HA	1.96	0.47
2:B:261:ASP:O	2:B:265:LEU:CB	2.63	0.47
8:H:291:ALA:O	8:H:295:VAL:CB	2.63	0.47
40:2:117:U:H2'	40:2:118:G:H8	1.79	0.47
1:A:1470:TYR:O	1:A:1474:MET:CB	2.63	0.46
3:C:525:ILE:HA	3:C:531:ILE:HA	1.98	0.46
5:E:554:PRO:HG3	43:6:78:A:C8	2.50	0.46
40:2:138:C:H2'	40:2:139:C:C6	2.50	0.46
41:4:11:A:H2'	41:4:12:G:C8	2.50	0.46

EMD-3766, 8	509Z
-------------	------

	At and D	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
3:C:1620:LEU:N	3:C:1645:VAL:O	2.48	0.46
7:G:309:PRO:HB2	7:G:310:PRO:HD3	1.97	0.46
40:2:154:C:O5'	40:2:154:C:H6	1.97	0.46
41:4:89:U:HO2'	41:4:90:G:H5'	1.81	0.46
6:F:325:VAL:HA	6:F:341:CYS:HA	1.97	0.46
7:G:309:PRO:O	7:G:313:ILE:CB	2.63	0.46
40:2:137:U:H2'	40:2:138:C:C6	2.50	0.46
40:2:149:A:H2'	40:2:150:U:C6	2.50	0.46
1:A:1833:LEU:O	1:A:1837:ALA:HB3	2.14	0.46
8:H:253:GLY:HA3	8:H:273:TYR:H	1.81	0.46
40:2:140:A:H2'	40:2:141:C:C6	2.50	0.46
40:2:150:U:H2'	40:2:151:C:C6	2.50	0.46
40:2:181:G:H2'	40:2:182:U:C6	2.50	0.46
1:A:88:TYR:O	1:A:92:LEU:CB	2.64	0.46
2:B:833:PHE:N	2:B:900:VAL:O	2.41	0.46
6:F:167:HIS:C	6:F:169:GLY:H	2.19	0.46
40:2:180:G:H2'	40:2:181:G:H8	1.81	0.46
1:A:2130:GLY:HA3	1:A:2142:ILE:HA	1.98	0.46
14:N:105:GLN:O	14:N:110:MET:N	2.34	0.46
43:6:40:U:H2'	43:6:41:A:C8	2.51	0.46
2:B:508:LYS:HA	2:B:524:ILE:HA	1.98	0.46
5:E:563:ASN:O	5:E:567:LEU:N	2.48	0.46
8:H:167:VAL:O	8:H:171:ALA:HB3	2.16	0.46
43:6:66:C:H2'	43:6:67:G:C8	2.50	0.46
7:G:512:GLU:O	7:G:516:ALA:CB	2.63	0.46
40:2:112:G:N2	40:2:113:G:C5	2.82	0.46
40:2:112:G:C6	40:2:113:G:O6	2.69	0.46
6:F:421:ILE:N	6:F:433:TRP:O	2.49	0.45
8:H:39:THR:O	8:H:43:LEU:CB	2.64	0.45
40:2:183:G:H2'	40:2:184:C:C6	2.50	0.45
42:5:61:A:H2'	42:5:62:G:C8	2.50	0.45
6:F:255:LYS:N	6:F:265:LEU:O	2.49	0.45
40:2:178:A:C2'	40:2:179:C:O5'	2.64	0.45
1:A:463:PRO:O	42:5:24:G:N2	2.47	0.45
1:A:798:GLY:N	1:A:799:PRO:HD3	2.32	0.45
40:2:3:C:H2'	40:2:4:G:C8	2.51	0.45
40:2:177:A:H2	40:2:178:A:N6	2.09	0.45
7:G:912:TRP:O	7:G:916:SER:CB	2.64	0.45
40:2:148:C:H2'	40:2:149:A:H8	1.82	0.45
40:2:151:C:H2'	40:2:152:G:H8	1.81	0.45
3:C:912:ASN:HA	3:C:978:ASN:HA	1.98	0.45

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
40:2:179:C:H2'	40:2:180:G:H8	1.81	0.45
1:A:598:LEU:O	1:A:602:ILE:CB	2.64	0.45
17:Q:9:PRO:HB2	17:Q:22:ASP:HA	1.98	0.45
2:B:324:ALA:O	2:B:328:ALA:HB2	2.17	0.45
40:2:112:G:C2	40:2:113:G:C4	3.04	0.45
40:2:182:U:H2'	40:2:183:G:H8	1.81	0.45
42:5:10:U:H2'	42:5:11:U:C6	2.52	0.45
6:F:234:SER:N	6:F:248:ALA:O	2.49	0.45
40:2:119:G:H2'	40:2:120:A:H8	1.82	0.45
2:B:715:GLY:O	2:B:719:GLN:CB	2.64	0.44
40:2:116:A:O5'	40:2:116:A:C8	2.70	0.44
43:6:91:A:H2'	43:6:92:A:H8	1.82	0.44
3:C:2067:VAL:HA	3:C:2079:ILE:HA	2.00	0.44
40:2:141:C:H2'	40:2:142:U:C6	2.50	0.44
1:A:1809:ILE:O	1:A:1818:PHE:N	2.49	0.44
3:C:1522:PRO:HG2	12:L:343:LYS:HA	1.99	0.44
6:F:367:VAL:HA	6:F:383:GLY:HA2	2.00	0.44
7:G:340:PRO:HB2	7:G:368:HIS:O	2.18	0.44
1:A:897:GLU:O	1:A:908:VAL:N	2.48	0.44
3:C:785:HIS:N	3:C:810:VAL:O	2.51	0.44
41:4:115:G:H2'	41:4:116:G:C8	2.52	0.44
40:2:139:C:H2'	40:2:140:A:H8	1.81	0.44
43:6:89:U:H2'	43:6:90:G:C8	2.53	0.44
43:6:90:G:H2'	43:6:91:A:H8	1.82	0.44
5:E:594:PHE:O	5:E:598:MET:CB	2.66	0.44
43:6:91:A:H2'	43:6:92:A:C8	2.53	0.44
40:2:118:G:O6	40:2:140:A:N6	2.51	0.44
41:4:91:A:H2'	41:4:92:C:C6	2.53	0.44
1:A:1878:ASP:HA	7:G:282:PRO:HA	1.99	0.43
41:4:118:A:OP2	41:4:118:A:C8	2.70	0.43
2:B:215:VAL:O	2:B:219:LEU:CB	2.66	0.43
8:H:284:PRO:O	8:H:288:ARG:N	2.48	0.43
40:2:117:U:C2'	40:2:118:G:H5'	2.48	0.43
42:5:72:U:H2'	42:5:73:C:C6	2.53	0.43
8:H:355:GLY:N	41:4:58:C:H41	2.16	0.43
39:Y:71:C:H2'	39:Y:72:A:H8	1.83	0.43
43:6:40:U:H2'	43:6:41:A:H8	1.83	0.43
3:C:1186:LEU:HA	3:C:1204:ILE:HA	2.00	0.43
40:2:108:G:C4	40:2:109:C:C4	3.07	0.43
42:5:74:U:H2'	42:5:75:G:C8	2.52	0.43
5:E:513:GLU:O	5:E:517:ALA:CB	2.64	0.43

EMD-3766,	509Z
-----------	------

	lo uo pugo	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
8:H:358:ARG:O	8:H:362:MET:CB	2.66	0.43	
12:L:499:ILE:N	12:L:511:TRP:O	2.43	0.43	
39:Y:70:G:H22	43:6:36:A:H2	1.66	0.43	
6:F:279:VAL:N	6:F:296:ALA:O	2.51	0.43	
8:H:314:GLY:O	8:H:318:TYR:CB	2.67	0.43	
42:5:31:U:H2'	42:5:32:C:C6	2.54	0.43	
1:A:440:PRO:HB2	1:A:442:LYS:H	1.83	0.43	
1:A:1195:ARG:O	1:A:1229:PHE:N	2.46	0.43	
2:B:642:HIS:O	2:B:646:LYS:CB	2.67	0.43	
40:2:144:C:C4	40:2:146:C:OP1	2.72	0.43	
40:2:153:A:H2'	40:2:154:C:H6	1.84	0.43	
40:2:157:G:H5"	40:2:157:G:C8	2.50	0.43	
1:A:679:SER:O	1:A:683:LEU:CB	2.67	0.43	
3:C:548:VAL:O	3:C:552:VAL:CB	2.67	0.43	
40:2:178:A:H2'	40:2:179:C:O5'	2.18	0.43	
43:6:89:U:H2'	43:6:90:G:H8	1.84	0.43	
3:C:783:ALA:HB3	3:C:809:LEU:HA	2.01	0.42	
6:F:380:GLY:HA2	6:F:390:VAL:HA	2.00	0.42	
12:L:488:ILE:H	12:L:503:SER:HA	1.84	0.42	
2:B:396:LEU:O	2:B:400:GLY:N	2.51	0.42	
40:2:108:G:C5	40:2:109:C:N4	2.87	0.42	
40:2:112:G:HO2'	40:2:113:G:H5'	1.79	0.42	
40:2:114:A:O5'	40:2:114:A:C8	2.70	0.42	
40:2:118:G:C2'	40:2:119:G:O5'	2.67	0.42	
12:L:146:ALA:O	12:L:150:ALA:CB	2.68	0.42	
1:A:580:TYR:O	1:A:584:HIS:CB	2.67	0.42	
3:C:488:LEU:O	3:C:492:ALA:CB	2.66	0.42	
3:C:1390:TYR:O	3:C:1394:TYR:CB	2.67	0.42	
43:6:92:A:H2'	43:6:93:G:H8	1.83	0.42	
7:G:448:ASN:O	7:G:452:VAL:CB	2.68	0.42	
12:L:331:ILE:N	12:L:345:PHE:O	2.44	0.42	
23:W:80:ALA:CA	23:W:81:PRO:CA	2.98	0.42	
40:2:98:G:H5'	40:2:104:U:OP2	2.19	0.42	
1:A:926:LEU:O	1:A:930:ALA:CB	2.67	0.42	
40:2:155:C:H2'	40:2:156:U:H5"	2.02	0.42	
3:C:1386:ALA:O	3:C:1390:TYR:CB	2.68	0.42	
7:G:841:PRO:C	7:G:843:VAL:N	2.73	0.42	
41:4:90:G:H2'	41:4:91:A:C8	2.55	0.42	
2:B:227:LEU:O	2:B:256:CYS:N	2.46	0.42	
40:2:157:G:H2'	40:2:158:G:O4'	2.19	0.42	
41:4:107:U:H2'	41:4:108:C:H6	1.85	0.42	

EMD-3766, 8	509Z
-------------	------

Interatomic Clash					
Atom-1	Atom-2	distance $(Å)$	overlap (Å)		
12:L:241:TRP:HA	12:L:248:ILE:HA	2.01	0.42		
40:2:3:C:H2'	40:2:4:G:H8	1.84	0.42		
2:B:828:MET:HA	2:B:906:ILE:HA	2.01	0.42		
41:4:14:G:H2'	41:4:15:G:C8	2.55	0.42		
43:6:92:A:H2'	43:6:93:G:C8	2.54	0.42		
1:A:2130:GLY:O	1:A:2173:GLU:N	2.53	0.41		
1:A:981:PHE:C	1:A:983:LYS:H	2.23	0.41		
42:5:75:G:H2'	42:5:76:A:C8	2.55	0.41		
1:A:577:GLY:O	1:A:581:ILE:CB	2.68	0.41		
3:C:1609:LEU:O	3:C:1613:LEU:CB	2.68	0.41		
42:5:31:U:H2'	42:5:32:C:H6	1.85	0.41		
42:5:59:G:C2	42:5:60:G:C8	3.08	0.41		
3:C:823:ALA:O	3:C:857:GLY:N	2.50	0.41		
6:F:257:TRP:N	6:F:262:CYS:O	2.43	0.41		
7:G:824:PRO:C	7:G:826:ARG:H	2.24	0.41		
40:2:171:U:H2'	40:2:172:C:O4'	2.21	0.41		
1:A:1696:PRO:HB2	1:A:1699:THR:O	2.21	0.41		
3:C:1915:ILE:O	3:C:1919:ALA:CB	2.69	0.41		
41:4:22:C:H2'	41:4:23:G:C8	2.56	0.41		
42:5:71:C:H2'	42:5:72:U:C6	2.56	0.41		
14:N:80:TYR:O	14:N:89:VAL:N	2.47	0.41		
41:4:55:U:H2'	41:4:56:U:C6	2.56	0.41		
3:C:1058:LYS:O	3:C:1062:LEU:CB	2.69	0.41		
39:Y:54:G:O2'	39:Y:55:A:H5"	2.21	0.41		
40:2:117:U:H6	40:2:117:U:H5'	1.85	0.41		
42:5:5:U:H2'	42:5:6:C:C6	2.56	0.41		
42:5:38:C:N4	42:5:39:C:N3	2.68	0.41		
2:B:121:ASP:O	2:B:125:ASN:CB	2.69	0.41		
3:C:1431:LYS:O	3:C:1435:LEU:CB	2.69	0.41		
40:2:103:U:C3'	40:2:104:U:H5'	2.51	0.41		
40:2:107:A:H2'	40:2:108:G:C8	2.56	0.41		
41:4:72:U:O2'	41:4:73:U:H5"	2.21	0.41		
42:5:100:U:H2'	42:5:101:U:C6	2.57	0.41		
43:6:43:A:H3'	43:6:44:G:H8	1.86	0.41		
6:F:116:GLU:O	6:F:118:ILE:N	2.52	0.40		
7:G:743:THR:N	7:G:744:PRO:HD3	2.36	0.40		
12:L:240:VAL:O	12:L:249:ARG:N	2.52	0.40		
5:E:470:PRO:O	5:E:472:PRO:HD3	2.21	0.40		
12:L:217:VAL:HA	12:L:233:SER:HA	2.04	0.40		
40:2:149:A:C6	40:2:150:U:C4	3.09	0.40		
43:6:66:C:H2'	43:6:67:G:H8	1.85	0.40		

Atom_1	Atom_2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:454:TYR:O	1:A:458:ALA:HB2	2.22	0.40
1:A:739:ILE:O	1:A:743:VAL:CB	2.69	0.40
5:E:471:PRO:O	5:E:473:GLU:N	2.54	0.40
40:2:183:G:C6	40:2:184:C:N4	2.89	0.40
41:4:14:G:H2'	41:4:15:G:H8	1.87	0.40
5:E:669:TYR:HA	6:F:483:PRO:HG3	2.04	0.40
41:4:110:G:O5'	41:4:110:G:C8	2.70	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	2184/2335~(94%)	1969 (90%)	208 (10%)	7~(0%)	41	76
2	В	842/972~(87%)	772 (92%)	70 (8%)	0	100	100
3	С	1689/2136~(79%)	1624 (96%)	63 (4%)	2~(0%)	51	85
5	Е	215/683~(32%)	174 (81%)	37 (17%)	4 (2%)	8	41
6	F	416/521 (80%)	376 (90%)	39 (9%)	1 (0%)	47	81
7	G	798/941~(85%)	700 (88%)	94 (12%)	4 (0%)	29	68
8	Н	411/499 (82%)	359 (87%)	49 (12%)	3 (1%)	22	62
9	Ι	174/312~(56%)	158 (91%)	15 (9%)	1 (1%)	25	65
10	J	133/142~(94%)	126~(95%)	7 (5%)	0	100	100
11	K	43/439~(10%)	42 (98%)	1 (2%)	0	100	100
12	L	451/513~(88%)	437~(97%)	14 (3%)	0	100	100
13	М	167/177~(94%)	158~(95%)	9~(5%)	0	100	100
14	Ν	54/199~(27%)	47 (87%)	7 (13%)	0	100	100
15	Ο	124/128~(97%)	119 (96%)	5 (4%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
16	Р	87/800~(11%)	79~(91%)	8 (9%)	0	100	100
17	Q	73/376~(19%)	70~(96%)	3~(4%)	0	100	100
18	R	14/557~(2%)	13~(93%)	1 (7%)	0	100	100
19	a	74/118~(63%)	71~(96%)	3~(4%)	0	100	100
19	h	70/118~(59%)	68~(97%)	2~(3%)	0	100	100
20	b	71/86~(83%)	70~(99%)	1 (1%)	0	100	100
20	i	69/86~(80%)	67~(97%)	2(3%)	0	100	100
21	с	76/92~(83%)	70 (92%)	6 (8%)	0	100	100
21	j	76/92~(83%)	70~(92%)	6 (8%)	0	100	100
22	d	67/76~(88%)	63~(94%)	4 (6%)	0	100	100
22	k	71/76~(93%)	67~(94%)	4 (6%)	0	100	100
23	е	76/126~(60%)	73~(96%)	3~(4%)	0	100	100
23	1	69/126~(55%)	69 (100%)	0	0	100	100
24	f	60/240~(25%)	57~(95%)	3~(5%)	0	100	100
24	m	60/240~(25%)	57~(95%)	3~(5%)	0	100	100
25	g	89/119~(75%)	84 (94%)	5 (6%)	0	100	100
25	n	80/119~(67%)	77~(96%)	3 (4%)	0	100	100
All	All	$888\overline{3}/13444~(\overline{66\%})$	8186 (92%)	675 (8%)	22 (0%)	50	81

All (22) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
3	С	957	VAL
7	G	842	HIS
7	G	373	VAL
8	Н	434	VAL
1	А	1015	VAL
3	С	531	ILE
9	Ι	157	VAL
1	А	1092	ILE
5	Е	478	ILE
5	Е	490	VAL
1	А	569	VAL
1	А	945	THR
5	Е	533	LEU
7	G	309	PRO

Continued from previous page...

Mol	Chain	Res	Type
7	G	929	ILE
1	А	948	PRO
8	Н	271	THR
1	А	947	PRO
5	Е	537	ILE
1	А	386	PRO
8	Н	269	PRO
6	F	459	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percer	ntiles
1	А	125/2108~(6%)	125~(100%)	0	100	100
2	В	49/866~(6%)	49 (100%)	0	100	100
3	\mathbf{C}	77/1908~(4%)	77~(100%)	0	100	100
5	Ε	8/599~(1%)	8 (100%)	0	100	100
6	F	17/441~(4%)	17 (100%)	0	100	100
7	G	35/792~(4%)	35~(100%)	0	100	100
8	Н	15/424~(4%)	15 (100%)	0	100	100
9	Ι	6/293~(2%)	6 (100%)	0	100	100
10	J	5/130~(4%)	5 (100%)	0	100	100
12	L	11/450~(2%)	11 (100%)	0	100	100
13	М	10/148~(7%)	10 (100%)	0	100	100
15	Ο	6/111~(5%)	6 (100%)	0	100	100
16	Р	3/681~(0%)	3 (100%)	0	100	100
17	Q	2/333~(1%)	2(100%)	0	100	100
19	a	3/110~(3%)	3 (100%)	0	100	100
19	h	2/110~(2%)	2(100%)	0	100	100
20	b	4/74~(5%)	4 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
20	i	4/74~(5%)	4 (100%)	0	100	100
21	с	1/84~(1%)	1 (100%)	0	100	100
21	j	1/84~(1%)	1 (100%)	0	100	100
22	d	3/66~(4%)	3~(100%)	0	100	100
22	k	3/66~(4%)	3~(100%)	0	100	100
23	е	3/101~(3%)	3~(100%)	0	100	100
23	1	2/101~(2%)	2~(100%)	0	100	100
24	f	2/177~(1%)	2~(100%)	0	100	100
25	g	4/101~(4%)	4 (100%)	0	100	100
25	n	3/101~(3%)	3~(100%)	0	100	100
All	All	404/10533~(4%)	404 (100%)	0	100	100

There are no protein residues with a non-rotameric sidechain to report.

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
39	Y	44/324~(13%)	14 (31%)	0
40	2	96/188~(51%)	18 (18%)	3~(3%)
41	4	134/145~(92%)	41 (30%)	4 (2%)
42	5	113/116~(97%)	36 (31%)	2(1%)
43	6	88/106~(83%)	22~(25%)	3~(3%)
All	All	475/879~(54%)	131 (27%)	12 (2%)

All (131) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
39	Y	50	С
39	Υ	51	U
39	Y	52	С
39	Y	53	С
39	Y	54	G
39	Y	55	А
39	Y	56	А
39	Y	57	С

Mol	Chain	Res	Type
39	Y	61	А
39	Y	70	G
39	Y	71	С
39	Y	72	A
39	Y	156	U
39	Y	160	G
40	2	111	G
40	2	112	G
40	2	113	G
40	2	116	А
40	2	117	U
40	2	118	G
40	2	145	А
40	2	146	С
40	2	147	G
40	2	154	С
40	2	156	U
40	2	157	G
40	2	164	С
40	2	165	А
40	2	168	A
40	2	169	С
40	2	177	А
40	2	178	А
41	4	19	U
41	4	20	А
41	4	25	А
41	4	26	G
41	4	36	U
41	4	41	С
41	4	44	A
41	4	45	G
41	4	52	U
41	4	53	U
41	4	54	А
41	4	55	U
41	4	56	U
41	4	58	С
41	4	69	С
41	4	71	U
41	4	73	U
41	4	76	С

Mol	Chain	Res	Type	
41	4	78	А	
41	4	80	А	
41	4	81	С	
41	4	82	С	
41	4	84	С	
41	4	85	G	
41	4	90	G	
41	4	100	А	
41	4	103	А	
41	4	109	G	
41	4	114	U	
41	4	115	G	
41	4	118	А	
41	4	119	A	
41	4	120	U	
41	4	121	U	
41	4	122	U	
41	4	124	U	
41	4	125	G	
41	4	126	A	
41	4	127	С	
41	4	144	G	
41	4	145	G	
42	5	8	G	
42	5	10	U	
42	5	20	G	
42	5	21	A	
42	5	22	U	
42	5	23	С	
42	5	24	G	
42	5	25	С	
42	5	26	A	
42	5	27	U	
42	5	34	U	
42	5	36	C	
42	5	38	С	
42	5	39	С	
42	5	41	U	
42	5	42	U	
42	5	45	С	
42	5	48	A	
42	5	52	U	

Mol	Chain	Res	Type	
42	5	53	U	
42	5	54	U	
42	5	57	G	
42	5	68	С	
42	5	69	A	
42	5	70	A	
42	5	79	С	
42	5	80	U	
42	5	83	A	
42	5	88	А	
42	5	90	U	
42	5	92	U	
42	5	93	U	
42	5	94	U	
42	5	95	G	
42	5	96	A	
42	5	108	G	
43	6	6	С	
43	6	7	G	
43	6	9	U	
43	6	21	U	
43	6	22	А	
43	6	26	U	
43	6	28	A	
43	6	29	А	
43	6	33	G	
43	6	35	А	
43	6	38	G	
43	6	40	U	
43	6	43	А	
43	6	44	G	
43	6	45	А	
43	6	47	A	
43	6	48	А	
43	6	49	G	
43	6	50	A	
43	6	70	A	
43	6	77	С	
43	6	78	A	

All (12) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
40	2	156	U
40	2	164	С
40	2	168	А
41	4	43	G
41	4	55	U
41	4	99	С
41	4	114	U
42	5	78	U
42	5	94	U
43	6	28	А
43	6	49	G
43	6	77	С

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
12	L	1
3	С	1
8	Н	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	L	39:ASN	С	40:THR	Ν	8.39
1	С	1296:PRO	С	1297:PRO	Ν	3.45
1	Н	268:LEU	С	269:PRO	Ν	1.71

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-3766. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 216

Y Index: 216

Z Index: 216

6.2.2 Raw map

X Index: 216

Y Index: 216

Z Index: 216

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 237

Y Index: 229

Z Index: 225

6.3.2 Raw map

X Index: 237

Y Index: 229

Z Index: 225

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.04. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 761 $\rm nm^3;$ this corresponds to an approximate mass of 688 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.222 $\rm \AA^{-1}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.222 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	4.50	-	-
Author-provided FSC curve	-	-	-
Unmasked-calculated*	7.56	9.74	7.89

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 7.56 differs from the reported value 4.5 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-3766 and PDB model 5O9Z. Per-residue inclusion information can be found in section 3 on page 13.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.04 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.04).

9.4 Atom inclusion (i)

At the recommended contour level, 65% of all backbone atoms, 61% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.04) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} ext{-score}$
All	0.6147	0.1700
1	0.0000	-0.0190
2	0.0033	0.0020
4	0.5472	0.1530
5	0.7514	0.1460
6	0.5125	0.1590
А	0.8732	0.2930
В	0.9022	0.2720
С	0.4551	0.1010
D	0.0795	0.0160
E	0.8719	0.2380
F	0.9357	0.2270
G	0.8541	0.2100
Н	0.8559	0.2640
I	0.8641	0.2710
J	0.9084	0.3400
K	0.5333	0.1580
L	0.0022	0.0000
М	0.8448	0.1800
N	0.8881	0.2410
0	0.9104	0.3320
P	0.8668	0.2450
Q	0.8439	0.2290
R	0.0000	-0.0450
S	0.0000	-0.0040
T	0.0000	0.0150
U	0.0000	0.0180
V	0.0000	-0.0160
W	0.0000	0.0150
X	0.0000	-0.0380
Y	0.4815	0.1140
Z	0.0000	0.0200
a	0.6463	0.0580
b	0.5220	0.0720
с	0.6753	0.1070

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
d	0.6977	0.1330
е	0.7256	0.1590
f	0.6740	0.1190
g	0.4968	0.0860
h	0.3127	0.0490
i	0.1808	0.0130
j	0.1778	-0.0180
k	0.1126	-0.0050
1	0.2011	-0.0270
m	0.1994	0.0790
n	0.2379	-0.0190
0	0.0000	0.0070
р	0.0000	-0.0560
q	0.0000	0.0160
r	0.0000	0.0060
S	0.0000	0.0340
t	0.0000	0.0120
u	0.0000	0.0350
V	0.0000	0.0080
W	0.0009	0.0070
X	0.0000	0.0850
У	0.0000	-0.0320
Z	0.0000	0.0070

