

# Full wwPDB X-ray Structure Validation Report (i)

#### May 22, 2020 – 03:42 pm BST

| PDB ID<br>Title | : | 1O96<br>Structure of electron transferring flavoprotein for Methylophilus methylotro- |
|-----------------|---|---------------------------------------------------------------------------------------|
| Authors         | : | phus.<br>Leys, D.; Basran, J.; Talfournier, F.; Sutcliffe, M.J.; Scrutton, N.S.       |
| Deposited on    | : | 2002-12-11                                                                            |
| Resolution      | : | 3.10 A(reported)                                                                      |

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| Xtriage (Phenix)               | : | 1.13                                                               |
| EDS                            | : | 2.11                                                               |
| buster-report                  | : | 1.1.7 (2018)                                                       |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| $\operatorname{Refmac}$        | : | 5.8.0158                                                           |
| CCP4                           | : | 7.0.044  (Gargrove)                                                |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.11                                                               |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 3.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | $egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$ | ${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$ |
|-----------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| $R_{free}$            | 130704                                                               | 1094 (3.10-3.10)                                                          |
| Clashscore            | 141614                                                               | 1184 (3.10-3.10)                                                          |
| Ramachandran outliers | 138981                                                               | 1141 (3.10-3.10)                                                          |
| Sidechain outliers    | 138945                                                               | 1141 (3.10-3.10)                                                          |
| RSRZ outliers         | 127900                                                               | 1067 (3.10-3.10)                                                          |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain  |     |         |  |
|-----|-------|--------|-------------------|-----|---------|--|
| 1   | А     | 264    | 56%               | 30% | 11% ••  |  |
| 1   | С     | 264    | 55%               | 36% | 6% • •  |  |
| 1   | Е     | 264    | 53%               | 31% | 12% • • |  |
| 1   | Q     | 264    | 5%                | 30% | 5% • 7% |  |
| 2   | В     | 320    | %<br>61%          | 27% | 8% • •  |  |
| 2   | D     | 320    | <b>%</b><br>■ 47% | 38% | 13% ••  |  |



| Mol | Chain | Length | Quality of c | hain |        |
|-----|-------|--------|--------------|------|--------|
| 2   | F     | 320    | %<br>58%     | 30%  | 8% • • |
| 2   | Z     | 320    | 9%           | 24%  | •••    |



# 2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 17093 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called ELECTRON TRANSFERRING FLAVOPROTEIN BETA-SUBUNIT.

| Mol | Chain | Residues |       | $\mathbf{At}$ | oms |     |    | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|---------------|-----|-----|----|---------|---------|-------|
| 1   | Δ     | 261      | Total | С             | Ν   | Ο   | S  | 0       | 0       | 0     |
|     | А     | 201      | 1963  | 1227          | 336 | 389 | 11 | 0       | 0       | 0     |
| 1   | C     | 260      | Total | С             | Ν   | Ο   | S  | 0       | 0       | 0     |
| L   | U     | 200      | 1942  | 1217          | 334 | 380 | 11 | 0       |         | 0     |
| 1   | F     | 260      | Total | С             | Ν   | Ο   | S  | 0       | 0       | 0     |
|     |       | 200      | 1939  | 1216          | 331 | 381 | 11 | 0       | 0       | 0     |
| 1   | 0     | 246      | Total | С             | Ν   | 0   | S  | 0       | 0       | 0     |
|     | Q V   | 240      | 1831  | 1147          | 311 | 363 | 10 | 0       | 0       |       |

• Molecule 2 is a protein called ELECTRON TRANSFERRING FLAVOPROTEIN ALPHA-SUBUNIT.

| Mol | Chain | Residues |       | At   | oms |     |   | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|------|-----|-----|---|---------|---------|-------|
| 0   | В     | 214      | Total | С    | Ν   | Ο   | S | 0       | 0       | 0     |
|     | D     | 514      | 2287  | 1444 | 384 | 452 | 7 | 0       | 0       | 0     |
| 0   | п     | 914      | Total | С    | Ν   | 0   | S | 0       | 0       | 0     |
|     | D     | 514      | 2281  | 1440 | 383 | 451 | 7 | 0       | 0       | 0     |
| 0   | Б     | 914      | Total | С    | Ν   | Ο   | S | 0       | 0       | 0     |
|     | Г     | 514      | 2281  | 1440 | 383 | 451 | 7 | 0       | 0       | 0     |
| 0   | 7     | 210      | Total | С    | Ν   | Ο   | S | 0       | 0       | 0     |
|     | L     | 512      | 2265  | 1430 | 381 | 447 | 7 | 0       | 0       | 0     |

• Molecule 3 is ADENOSINE MONOPHOSPHATE (three-letter code: AMP) (formula:  $C_{10}H_{14}N_5O_7P$ ).





| Mol | Chain  | Residues |       | Ato | $\mathbf{ms}$ |   |   | ZeroOcc | AltConf |
|-----|--------|----------|-------|-----|---------------|---|---|---------|---------|
| 3   | Δ      | 1        | Total | С   | Ν             | Ο | Р | 0       | 0       |
| J   | Π      | T        | 23    | 10  | 5             | 7 | 1 | 0       | 0       |
| 3   | С      | 1        | Total | С   | Ν             | Ο | Р | 0       | 0       |
| 0   | U      | L        | 23    | 10  | 5             | 7 | 1 | 0       | 0       |
| 3   | F      | 1        | Total | С   | Ν             | Ο | Р | 0       | 0       |
| 0   |        | L        | 23    | 10  | 5             | 7 | 1 | 0       | 0       |
| 3   | 0      | 1        | Total | С   | Ν             | Ο | Р | 0       | 0       |
| 0   | V<br>V |          | 23    | 10  | 5             | 7 | 1 | 0       | 0       |

• Molecule 4 is FLAVIN-ADENINE DINUCLEOTIDE (three-letter code: FAD) (formula:  $C_{27}H_{33}N_9O_{15}P_2$ ).





| Mol | Chain | Residues |       | Ato | oms |    |   | ZeroOcc | AltConf |
|-----|-------|----------|-------|-----|-----|----|---|---------|---------|
| 4   | р     | 1        | Total | С   | Ν   | Ο  | Р | 0       | 0       |
| 4   | D     | T        | 53    | 27  | 9   | 15 | 2 | 0       | 0       |
| 4   | п     | 1        | Total | С   | Ν   | Ο  | Р | 0       | 0       |
| 4   | D     | T        | 53    | 27  | 9   | 15 | 2 | 0       | 0       |
| 4   | Б     | 1        | Total | С   | Ν   | Ο  | Р | 0       | 0       |
| 4   | Г     | T        | 53    | 27  | 9   | 15 | 2 | 0       | 0       |
| 4   | 7     | 1        | Total | С   | Ν   | Ο  | Р | 0       | 0       |
| 4   |       | T        | 53    | 27  | 9   | 15 | 2 | 0       | 0       |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.



• Molecule 1: ELECTRON TRANSFERRING FLAVOPROTEIN BETA-SUBUNIT











## 4 Data and refinement statistics (i)

| Property                                             | Value                                           | Source    |
|------------------------------------------------------|-------------------------------------------------|-----------|
| Space group                                          | P 21 21 21                                      | Depositor |
| Cell constants                                       | 117.52Å 126.88Å 221.39Å                         | Depositor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$               | $90.00^{\circ}$ $90.00^{\circ}$ $90.00^{\circ}$ | Depositor |
| $\mathbf{B}_{\mathrm{ascolution}}(\mathbf{\hat{A}})$ | 19.92 - 3.10                                    | Depositor |
| Resolution (A)                                       | 19.93 - 3.10                                    | EDS       |
| % Data completeness                                  | $100.0\ (19.92\text{-}3.10)$                    | Depositor |
| (in resolution range)                                | 97.8(19.93-3.10)                                | EDS       |
| $R_{merge}$                                          | 0.09                                            | Depositor |
| $R_{sym}$                                            | (Not available)                                 | Depositor |
| $< I/\sigma(I) > 1$                                  | $2.11 (at 3.09 \text{\AA})$                     | Xtriage   |
| Refinement program                                   | REFMAC $5.1.08$                                 | Depositor |
| B B.                                                 | 0.212 , $0.278$                                 | Depositor |
| $\mathbf{n}, \mathbf{n}_{free}$                      | 0.207 , $0.266$                                 | DCC       |
| $R_{free}$ test set                                  | 2989 reflections $(5.05\%)$                     | wwPDB-VP  |
| Wilson B-factor $(Å^2)$                              | 61.9                                            | Xtriage   |
| Anisotropy                                           | 0.422                                           | Xtriage   |
| Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$          | 0.28 , $56.5$                                   | EDS       |
| L-test for $twinning^2$                              | $ < L >=0.51, < L^2>=0.35$                      | Xtriage   |
| Estimated twinning fraction                          | No twinning to report.                          | Xtriage   |
| $F_o, F_c$ correlation                               | 0.92                                            | EDS       |
| Total number of atoms                                | 17093                                           | wwPDB-VP  |
| Average B, all atoms $(Å^2)$                         | 56.0                                            | wwPDB-VP  |

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.18% of the height of the origin peak. No significant pseudotranslation is detected.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

# 5 Model quality (i)

## 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: AMP, FAD

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Chain | B    | ond lengths      | E    | ond angles       |
|-----|-------|------|------------------|------|------------------|
|     | Chain | RMSZ | # Z  > 5         | RMSZ | # Z  > 5         |
| 1   | А     | 1.69 | 17/1986~(0.9%)   | 1.59 | 26/2688~(1.0%)   |
| 1   | С     | 1.72 | 20/1965~(1.0%)   | 1.53 | 24/2660~(0.9%)   |
| 1   | Е     | 1.55 | 19/1962~(1.0%)   | 1.51 | 31/2657~(1.2%)   |
| 1   | Q     | 1.28 | 10/1851~(0.5%)   | 1.25 | 10/2507~(0.4%)   |
| 2   | В     | 1.49 | 20/2324~(0.9%)   | 1.48 | 28/3167~(0.9%)   |
| 2   | D     | 1.53 | 21/2318~(0.9%)   | 1.54 | 34/3159~(1.1%)   |
| 2   | F     | 1.57 | 24/2318~(1.0%)   | 1.53 | 31/3159~(1.0%)   |
| 2   | Z     | 1.06 | 6/2302~(0.3%)    | 1.17 | 11/3137~(0.4%)   |
| All | All   | 1.50 | 137/17026~(0.8%) | 1.46 | 195/23134~(0.8%) |

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

| Mol | Chain | #Chirality outliers | <b>#Planarity outliers</b> |
|-----|-------|---------------------|----------------------------|
| 1   | А     | 0                   | 1                          |
| 1   | Е     | 0                   | 1                          |
| 1   | Q     | 0                   | 1                          |
| 2   | В     | 0                   | 3                          |
| 2   | D     | 0                   | 2                          |
| 2   | F     | 0                   | 2                          |
| All | All   | 0                   | 10                         |

All (137) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms  | Z     | $\operatorname{Observed}(\operatorname{\AA})$ | Ideal(Å) |
|-----|-------|-----|------|--------|-------|-----------------------------------------------|----------|
| 1   | С     | 28  | GLU  | CD-OE2 | 30.98 | 1.59                                          | 1.25     |
| 1   | С     | 249 | GLU  | CD-OE1 | 22.16 | 1.50                                          | 1.25     |
| 1   | А     | 74  | ARG  | CZ-NH2 | 15.41 | 1.53                                          | 1.33     |
| 1   | А     | 28  | GLU  | CD-OE2 | 13.61 | 1.40                                          | 1.25     |

| Mol | Chain | Res              | Type | Atoms  | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|------------------|------|--------|-------|-------------|----------|
| 2   | F     | 222              | ARG  | NE-CZ  | 13.57 | 1.50        | 1.33     |
| 1   | Е     | 195              | ARG  | NE-CZ  | 13.06 | 1.50        | 1.33     |
| 1   | Q     | 74               | ARG  | NE-CZ  | 12.98 | 1.50        | 1.33     |
| 1   | С     | 93               | GLU  | CD-OE1 | 12.89 | 1.39        | 1.25     |
| 2   | D     | 219              | GLU  | CD-OE2 | 12.20 | 1.39        | 1.25     |
| 1   | А     | 28               | GLU  | CG-CD  | 11.90 | 1.69        | 1.51     |
| 2   | F     | 222              | ARG  | CZ-NH1 | 11.43 | 1.48        | 1.33     |
| 2   | D     | 222              | ARG  | NE-CZ  | 11.35 | 1.47        | 1.33     |
| 1   | С     | 93               | GLU  | CD-OE2 | 11.34 | 1.38        | 1.25     |
| 1   | С     | 244              | GLU  | CD-OE1 | 11.15 | 1.38        | 1.25     |
| 1   | Е     | 195              | ARG  | CZ-NH1 | 10.51 | 1.46        | 1.33     |
| 1   | Е     | 74               | ARG  | NE-CZ  | 10.22 | 1.46        | 1.33     |
| 1   | Q     | 71               | GLU  | CD-OE2 | 9.84  | 1.36        | 1.25     |
| 2   | F     | 219              | GLU  | CD-OE2 | 9.54  | 1.36        | 1.25     |
| 1   | А     | 74               | ARG  | CG-CD  | 9.53  | 1.75        | 1.51     |
| 2   | Z     | 179              | VAL  | CB-CG2 | 9.51  | 1.72        | 1.52     |
| 2   | D     | 222              | ARG  | CZ-NH1 | 9.42  | 1.45        | 1.33     |
| 1   | Q     | 74               | ARG  | CZ-NH1 | 9.22  | 1.45        | 1.33     |
| 1   | С     | 28               | GLU  | CD-OE1 | 9.16  | 1.35        | 1.25     |
| 2   | D     | 196              | ASP  | C-O    | 9.14  | 1.40        | 1.23     |
| 1   | А     | 74               | ARG  | CZ-NH1 | 9.02  | 1.44        | 1.33     |
| 2   | Z     | 122              | GLU  | CD-OE1 | 8.88  | 1.35        | 1.25     |
| 2   | D     | 197              | ILE  | CA-CB  | 8.35  | 1.74        | 1.54     |
| 1   | С     | 249              | GLU  | CD-OE2 | 8.16  | 1.34        | 1.25     |
| 2   | В     | 30               | LYS  | CE-NZ  | 7.93  | 1.68        | 1.49     |
| 2   | F     | 226              | ASP  | CB-CG  | 7.92  | 1.68        | 1.51     |
| 2   | F     | 103              | ALA  | CA-CB  | -7.92 | 1.35        | 1.52     |
| 2   | В     | 197              | ILE  | CA-CB  | 7.89  | 1.73        | 1.54     |
| 2   | F     | 222              | ARG  | CZ-NH2 | 7.87  | 1.43        | 1.33     |
| 1   | Q     | 74               | ARG  | CZ-NH2 | 7.83  | 1.43        | 1.33     |
| 1   | E     | 232              | MET  | SD-CE  | 7.76  | 2.21        | 1.77     |
| 2   | F     | 219              | GLU  | CG-CD  | 7.75  | 1.63        | 1.51     |
| 2   | В     | 40               | VAL  | CB-CG1 | -7.73 | 1.36        | 1.52     |
| 1   | A     | 179              | VAL  | CB-CG1 | -7.71 | 1.36        | 1.52     |
| 2   | D     | 11               | ARG  | CG-CD  | 7.52  | 1.70        | 1.51     |
| 2   | D     | 309              | ASP  | CG-OD1 | 7.31  | 1.42        | 1.25     |
| 1   | Q     | 71               | GLU  | CD-OE1 | 7.24  | 1.33        | 1.25     |
| 1   | C     | 244              | GLU  | CD-OE2 | 7.18  | 1.33        | 1.25     |
| 2   | В     | 266              | MET  | CG-SD  | -7.17 | 1.62        | 1.81     |
| 2   | F     | 40               | VAL  | CB-CG2 | -7.13 | 1.37        | 1.52     |
| 1   | E     | 74               | ARG  | CZ-NH2 | 7.12  | 1.42        | 1.33     |
| 2   | Z     | $12\overline{2}$ | GLU  | CD-OE2 | 7.08  | 1.33        | 1.25     |



| Mol         | Chain | Res | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-------------|-------|-----|------|---------|-------|-------------|----------|
| 1           | С     | 145 | VAL  | CB-CG1  | -7.04 | 1.38        | 1.52     |
| 1           | Q     | 75  | LYS  | CD-CE   | 7.03  | 1.68        | 1.51     |
| 1           | E     | 242 | MET  | SD-CE   | 7.00  | 2.17        | 1.77     |
| 2           | В     | 170 | VAL  | CB-CG1  | 6.96  | 1.67        | 1.52     |
| 2           | В     | 222 | ARG  | NE-CZ   | 6.95  | 1.42        | 1.33     |
| 2           | D     | 196 | ASP  | CA-C    | 6.88  | 1.70        | 1.52     |
| 1           | Е     | 12  | ALA  | CA-CB   | -6.86 | 1.38        | 1.52     |
| 1           | А     | 28  | GLU  | CD-OE1  | 6.81  | 1.33        | 1.25     |
| 2           | F     | 59  | GLU  | CD-OE1  | 6.76  | 1.33        | 1.25     |
| 2           | D     | 191 | VAL  | CA-CB   | 6.65  | 1.68        | 1.54     |
| 1           | Е     | 122 | SER  | CB-OG   | -6.59 | 1.33        | 1.42     |
| 2           | В     | 198 | ASP  | CB-CG   | -6.50 | 1.38        | 1.51     |
| 2           | D     | 197 | ILE  | N-CA    | 6.47  | 1.59        | 1.46     |
| 2           | D     | 197 | ILE  | C-O     | 6.39  | 1.35        | 1.23     |
| 2           | F     | 266 | MET  | SD-CE   | 6.39  | 2.13        | 1.77     |
| 2           | D     | 196 | ASP  | N-CA    | 6.39  | 1.59        | 1.46     |
| 1           | С     | 93  | GLU  | CG-CD   | 6.37  | 1.61        | 1.51     |
| 1           | Е     | 74  | ARG  | CG-CD   | 6.37  | 1.67        | 1.51     |
| 1           | Е     | 226 | MET  | SD-CE   | 6.37  | 2.13        | 1.77     |
| 2           | В     | 97  | VAL  | CB-CG2  | -6.36 | 1.39        | 1.52     |
| 1           | Q     | 163 | GLU  | CD-OE1  | 6.35  | 1.32        | 1.25     |
| 1           | Q     | 140 | TRP  | CB-CG   | 6.32  | 1.61        | 1.50     |
| 2           | В     | 152 | VAL  | CB-CG2  | -6.27 | 1.39        | 1.52     |
| 1           | E     | 168 | MET  | SD-CE   | 6.24  | 2.12        | 1.77     |
| 2           | F     | 20  | GLU  | CD-OE1  | 6.23  | 1.32        | 1.25     |
| 2           | F     | 201 | THR  | CA-C    | 6.22  | 1.69        | 1.52     |
| 1           | A     | 87  | VAL  | CB-CG1  | -6.21 | 1.39        | 1.52     |
| 1           | С     | 107 | VAL  | CB-CG2  | -6.18 | 1.39        | 1.52     |
| 2           | В     | 5   | VAL  | CA-CB   | -6.11 | 1.42        | 1.54     |
| 2           | F     | 102 | TYR  | CE2-CZ  | 6.08  | 1.46        | 1.38     |
| 2           | D     | 222 | ARG  | CZ-NH2  | 6.07  | 1.41        | 1.33     |
| 2           | F'    | 202 | VAL  | N-CA    | 6.07  | 1.58        | 1.46     |
| 1           | A     | 232 | MET  | SD-CE   | 6.00  | 2.11        | 1.77     |
| 1           | C     | 162 | ARG  | CB-CG   | -5.94 | 1.36        | 1.52     |
| 2           | F'    | 257 | VAL  | CB-CG1  | -5.82 | 1.40        | 1.52     |
|             | A     | 163 | GLU  | CD-OE1  | 5.78  | 1.32        | 1.25     |
| 1           | A     | 48  | LYS  | CB-CG   | 5.76  | 1.68        | 1.52     |
| 2           | D     | 276 | ALA  | CA-CB   | -5.76 | 1.40        | 1.52     |
|             |       |     | MET  | CG-SD   | 5.73  | 1.96        | 1.81     |
| $\boxed{2}$ | B     | 304 | VAL  | CA-CB   | -5.72 | 1.42        | 1.54     |
| $\boxed{2}$ |       | 204 | PHE  | CD2-CE2 | 5.71  | 1.50        | 1.39     |
| 2           | L F,  | 80  | SER  | CB-OG   | -5.71 | 1.34        | 1.42     |



| Mol | Chain | Res | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|-------|-------------|----------|
| 1   | Е     | 195 | ARG  | CD-NE   | 5.63  | 1.56        | 1.46     |
| 2   | В     | 219 | GLU  | CG-CD   | 5.59  | 1.60        | 1.51     |
| 2   | В     | 104 | SER  | CB-OG   | -5.59 | 1.34        | 1.42     |
| 2   | F     | 293 | ALA  | CA-CB   | 5.58  | 1.64        | 1.52     |
| 2   | Ζ     | 187 | ASP  | CB-CG   | 5.57  | 1.63        | 1.51     |
| 1   | Е     | 75  | LYS  | CD-CE   | 5.55  | 1.65        | 1.51     |
| 2   | D     | 219 | GLU  | CD-OE1  | 5.55  | 1.31        | 1.25     |
| 1   | С     | 191 | TYR  | CD2-CE2 | 5.52  | 1.47        | 1.39     |
| 1   | А     | 61  | VAL  | CB-CG2  | -5.51 | 1.41        | 1.52     |
| 1   | С     | 110 | LYS  | CD-CE   | 5.49  | 1.65        | 1.51     |
| 2   | D     | 185 | ASN  | CB-CG   | -5.48 | 1.38        | 1.51     |
| 1   | С     | 102 | ARG  | NE-CZ   | 5.48  | 1.40        | 1.33     |
| 2   | В     | 97  | VAL  | CB-CG1  | -5.47 | 1.41        | 1.52     |
| 2   | В     | 222 | ARG  | CD-NE   | 5.46  | 1.55        | 1.46     |
| 1   | Е     | 74  | ARG  | CZ-NH1  | 5.45  | 1.40        | 1.33     |
| 1   | А     | 191 | TYR  | CB-CG   | -5.43 | 1.43        | 1.51     |
| 2   | В     | 91  | VAL  | CB-CG1  | -5.43 | 1.41        | 1.52     |
| 2   | В     | 225 | ALA  | CA-CB   | -5.42 | 1.41        | 1.52     |
| 2   | В     | 151 | VAL  | CB-CG2  | -5.41 | 1.41        | 1.52     |
| 1   | С     | 37  | GLU  | CD-OE1  | 5.39  | 1.31        | 1.25     |
| 1   | С     | 5   | VAL  | CB-CG1  | -5.38 | 1.41        | 1.52     |
| 1   | Q     | 75  | LYS  | CE-NZ   | 5.38  | 1.62        | 1.49     |
| 1   | Е     | 38  | TRP  | CB-CG   | -5.37 | 1.40        | 1.50     |
| 1   | А     | 16  | ASP  | CB-CG   | 5.34  | 1.62        | 1.51     |
| 2   | F     | 266 | MET  | CG-SD   | -5.34 | 1.67        | 1.81     |
| 2   | Z     | 266 | MET  | SD-CE   | 5.34  | 2.07        | 1.77     |
| 2   | F     | 191 | VAL  | CB-CG1  | 5.32  | 1.64        | 1.52     |
| 2   | F     | 238 | ILE  | CA-CB   | -5.28 | 1.42        | 1.54     |
| 1   | E     | 85  | VAL  | CB-CG2  | -5.28 | 1.41        | 1.52     |
| 1   | С     | 37  | GLU  | CD-OE2  | 5.27  | 1.31        | 1.25     |
| 2   | D     | 74  | VAL  | CB-CG1  | -5.27 | 1.41        | 1.52     |
| 2   | D     | 250 | VAL  | CA-CB   | -5.25 | 1.43        | 1.54     |
| 2   | F     | 137 | GLN  | C-O     | 5.24  | 1.33        | 1.23     |
| 1   | A     | 59  | VAL  | CB-CG2  | -5.23 | 1.41        | 1.52     |
| 1   | С     | 118 | ALA  | CA-CB   | -5.22 | 1.41        | 1.52     |
| 1   | E     | 195 | ARG  | CG-CD   | 5.20  | 1.65        | 1.51     |
| 2   | В     | 144 | ASP  | CB-CG   | 5.18  | 1.62        | 1.51     |
| 2   | В     | 127 | GLU  | CD-OE2  | 5.11  | 1.31        | 1.25     |
| 2   | F     | 219 | GLU  | CB-CG   | 5.11  | 1.61        | 1.52     |
| 2   | Z     | 122 | GLU  | CG-CD   | 5.11  | 1.59        | 1.51     |
| 1   | E     | 36  | ASN  | CB-CG   | 5.09  | 1.62        | 1.51     |
| 2   | D     | 275 | MET  | SD-CE   | -5.08 | 1.49        | 1.77     |



| Mol | Chain | Res | Type | Atoms   | Z     | $\operatorname{Observed}(\operatorname{\AA})$ | Ideal(Å) |
|-----|-------|-----|------|---------|-------|-----------------------------------------------|----------|
| 1   | А     | 233 | TYR  | CD1-CE1 | 5.07  | 1.47                                          | 1.39     |
| 1   | А     | 64  | VAL  | CA-CB   | -5.07 | 1.44                                          | 1.54     |
| 2   | D     | 296 | PHE  | CB-CG   | -5.07 | 1.42                                          | 1.51     |
| 1   | С     | 134 | VAL  | CB-CG2  | -5.06 | 1.42                                          | 1.52     |
| 2   | F     | 223 | GLU  | CD-OE2  | 5.06  | 1.31                                          | 1.25     |
| 1   | Е     | 146 | VAL  | CB-CG1  | 5.04  | 1.63                                          | 1.52     |
| 2   | D     | 159 | VAL  | CB-CG1  | -5.04 | 1.42                                          | 1.52     |

All (195) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms      | Z      | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|--------|------------------|---------------|
| 1   | А     | 74  | ARG  | NE-CZ-NH2  | -12.17 | 114.22           | 120.30        |
| 2   | D     | 198 | ASP  | CB-CG-OD2  | 11.85  | 128.97           | 118.30        |
| 1   | С     | 56  | ASP  | CB-CG-OD2  | 11.16  | 128.35           | 118.30        |
| 1   | Q     | 16  | ASP  | CB-CG-OD2  | 10.98  | 128.18           | 118.30        |
| 1   | А     | 68  | ARG  | NE-CZ-NH1  | 10.87  | 125.73           | 120.30        |
| 2   | F     | 202 | VAL  | CB-CA-C    | -10.59 | 91.29            | 111.40        |
| 1   | Е     | 27  | ASP  | CB-CG-OD2  | 10.56  | 127.80           | 118.30        |
| 1   | Е     | 195 | ARG  | NE-CZ-NH1  | 10.54  | 125.57           | 120.30        |
| 2   | D     | 202 | VAL  | CB-CA-C    | -9.83  | 92.72            | 111.40        |
| 1   | А     | 25  | ASP  | CB-CG-OD2  | 9.65   | 126.98           | 118.30        |
| 1   | А     | 89  | ASP  | CB-CG-OD2  | 9.59   | 126.93           | 118.30        |
| 2   | F     | 58  | ASP  | CB-CG-OD2  | 9.56   | 126.91           | 118.30        |
| 2   | F     | 226 | ASP  | CB-CG-OD1  | 9.51   | 126.86           | 118.30        |
| 1   | Е     | 162 | ARG  | NE-CZ-NH1  | -9.45  | 115.58           | 120.30        |
| 2   | D     | 163 | LEU  | CA-CB-CG   | 9.27   | 136.62           | 115.30        |
| 2   | В     | 187 | ASP  | CB-CG-OD1  | -9.12  | 110.09           | 118.30        |
| 2   | F     | 69  | ASP  | CB-CG-OD1  | 9.10   | 126.49           | 118.30        |
| 1   | С     | 102 | ARG  | NE-CZ-NH1  | 9.05   | 124.83           | 120.30        |
| 1   | А     | 67  | ASP  | CB-CG-OD2  | 9.04   | 126.44           | 118.30        |
| 2   | D     | 58  | ASP  | CB-CG-OD2  | 9.01   | 126.41           | 118.30        |
| 2   | D     | 15  | ARG  | NE-CZ-NH1  | -8.96  | 115.82           | 120.30        |
| 1   | А     | 39  | ASP  | CB-CG-OD2  | 8.87   | 126.28           | 118.30        |
| 1   | С     | 82  | ASP  | CB-CG-OD2  | 8.86   | 126.28           | 118.30        |
| 1   | Е     | 195 | ARG  | NH1-CZ-NH2 | -8.79  | 109.73           | 119.40        |
| 2   | Z     | 144 | ASP  | CB-CG-OD2  | 8.76   | 126.19           | 118.30        |
| 2   | В     | 202 | VAL  | CB-CA-C    | -8.64  | 94.98            | 111.40        |
| 1   | С     | 28  | GLU  | OE1-CD-OE2 | 8.53   | 133.53           | 123.30        |
| 2   | D     | 98  | ASP  | CB-CG-OD2  | 8.35   | 125.81           | 118.30        |
| 1   | Q     | 27  | ASP  | CB-CG-OD2  | 8.30   | 125.77           | 118.30        |
| 1   | С     | 27  | ASP  | CB-CG-OD2  | 8.27   | 125.75           | 118.30        |
| 2   | Ζ     | 98  | ASP  | CB-CG-OD2  | 8.23   | 125.71           | 118.30        |



| Mol | Chain | Res | Type | Atoms      | Z     | $Observed(^{o})$    | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|-------|---------------------|---------------|
| 1   | Q     | 102 | ARG  | NE-CZ-NH1  | 8.12  | 124.36              | 120.30        |
| 2   | Ζ     | 58  | ASP  | CB-CG-OD2  | 8.09  | 125.58              | 118.30        |
| 2   | В     | 187 | ASP  | CB-CG-OD2  | 7.78  | 125.30              | 118.30        |
| 2   | Ζ     | 34  | ASP  | CB-CG-OD2  | 7.74  | 125.26              | 118.30        |
| 2   | F     | 156 | ARG  | NE-CZ-NH1  | 7.52  | 124.06              | 120.30        |
| 1   | Е     | 68  | ARG  | NE-CZ-NH2  | -7.47 | 116.56              | 120.30        |
| 2   | В     | 126 | ASP  | CB-CG-OD2  | 7.28  | 124.86              | 118.30        |
| 1   | С     | 68  | ARG  | NE-CZ-NH1  | 7.25  | 123.92              | 120.30        |
| 2   | D     | 180 | GLN  | N-CA-C     | -7.22 | 91.51               | 111.00        |
| 1   | Q     | 16  | ASP  | CB-CG-OD1  | -7.19 | 111.83              | 118.30        |
| 2   | В     | 69  | ASP  | CB-CG-OD2  | 7.17  | 124.75              | 118.30        |
| 1   | Е     | 83  | ARG  | NE-CZ-NH1  | -7.17 | 116.72              | 120.30        |
| 2   | В     | 201 | THR  | CA-CB-CG2  | -7.14 | 102.40              | 112.40        |
| 1   | А     | 48  | LYS  | CA-CB-CG   | 7.08  | 128.98              | 113.40        |
| 2   | Ζ     | 126 | ASP  | CB-CG-OD2  | 7.05  | 124.65              | 118.30        |
| 2   | D     | 182 | ARG  | NE-CZ-NH1  | 7.04  | 123.82              | 120.30        |
| 1   | Е     | 24  | MET  | CB-CA-C    | 6.99  | 124.39              | 110.40        |
| 2   | D     | 306 | ASP  | CB-CA-C    | 6.97  | 124.34              | 110.40        |
| 1   | А     | 241 | THR  | OG1-CB-CG2 | -6.97 | 93.97               | 110.00        |
| 2   | F     | 13  | ASP  | CB-CG-OD2  | 6.97  | 124.57              | 118.30        |
| 1   | С     | 68  | ARG  | NE-CZ-NH2  | -6.95 | 116.83              | 120.30        |
| 2   | В     | 98  | ASP  | CB-CG-OD2  | 6.93  | 124.53              | 118.30        |
| 1   | Е     | 89  | ASP  | CB-CG-OD1  | -6.91 | 112.08              | 118.30        |
| 1   | А     | 29  | ASP  | CB-CG-OD2  | 6.89  | 124.50              | 118.30        |
| 1   | Е     | 70  | ASP  | CB-CG-OD2  | 6.88  | 124.49              | 118.30        |
| 1   | Е     | 89  | ASP  | CB-CG-OD2  | 6.88  | 124.49              | 118.30        |
| 1   | С     | 244 | GLU  | OE1-CD-OE2 | 6.87  | 131.54              | 123.30        |
| 2   | F     | 1   | SER  | N-CA-C     | -6.87 | 92.45               | 111.00        |
| 2   | D     | 198 | ASP  | N-CA-CB    | -6.86 | 98.25               | 110.60        |
| 1   | С     | 249 | GLU  | CB-CA-C    | -6.78 | 96.83               | 110.40        |
| 2   | F     | 156 | ARG  | NE-CZ-NH2  | -6.78 | 116.91              | 120.30        |
| 2   | F     | 34  | ASP  | CB-CG-OD2  | 6.77  | 124.39              | 118.30        |
| 1   | A     | 162 | ARG  | NE-CZ-NH1  | -6.75 | 116.93              | 120.30        |
| 1   | Q     | 212 | ASP  | CB-CG-OD2  | 6.74  | 124.37              | 118.30        |
| 1   | С     | 70  | ASP  | CB-CG-OD1  | 6.67  | 124.30              | 118.30        |
| 2   | В     | 34  | ASP  | CB-CG-OD2  | 6.66  | 124.29              | 118.30        |
| 1   | A     | 40  | ASP  | CB-CG-OD2  | 6.64  | $1\overline{24.27}$ | 118.30        |
| 2   | F     | 309 | ASP  | CB-CG-OD2  | 6.61  | 124.25              | 118.30        |
| 1   | С     | 74  | ARG  | CG-CD-NE   | -6.57 | 98.00               | 111.80        |
|     | Е     | 162 | ARG  | NE-CZ-NH2  | 6.57  | 123.58              | 120.30        |
| 2   | F     | 11  | ARG  | NE-CZ-NH1  | -6.55 | 117.02              | 120.30        |
| 2   | F     | 201 | THR  | N-CA-CB    | -6.55 | 97.86               | 110.30        |

Continued from previous page...



| Mot         Chain         Res         Type         Atoms         Z         Observed(*)         Ideal           1         E         74         ARG         NE-CZ-NH2         6.51         123.55         120.5           1         C         89         ASP         CB-CG-OD2         6.50         124.14         118.5           1         C         212         ASP         CB-CG-OD2         6.45         123.30         110.4           2         D         180         GLN         CB-CA-C         6.45         123.30         110.4           1         A         74         ARG         NH1-CZ-NH2         6.45         126.50         119.4           1         A         74         ARG         NH1-CZ-NH2         6.45         126.50         119.4           1         A         74         ARG         NH1-CZ-NH2         6.45         126.50         119.4           1         A         27         ASP         CB-CG-OD2         6.42         124.08         118.5           2         D         46         ASP         CB-CG-CD2         -6.39         100.14         111.0           2         F         187         ASP | .( <sup>°</sup> )<br>20 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 1         E         74         ARG         NE-CZ-NH2         6.51         123.55         120.3           1         C         89         ASP         CB-CG-OD2         6.50         124.14         118.3           1         C         212         ASP         CB-CG-OD2         6.45         124.14         118.3           2         D         180         GLN         CB-CA-C         6.45         123.30         110.4           1         A         74         ARG         NH1-CZ-NH2         6.45         126.50         119.4           1         A         74         ARG         NH1-CZ-NH2         6.45         126.50         119.4           1         A         74         ARG         NH1-CZ-NH2         6.45         126.50         119.4           1         A         27         ASP         CB-CG-OD2         6.42         124.08         118.3           2         D         46         ASP         CB-CA-C         -6.42         97.57         110.4           2         B         163         LEU         CB-CG-OD2         -6.39         100.14         111.4           2         F         187         ASP        | 20                      |
| 1         C         89         ASP         CB-CG-OD2         6.50         124.14         118.3           1         C         212         ASP         CB-CG-OD2         6.45         124.11         118.3           2         D         180         GLN         CB-CA-C         6.45         123.30         110.4           1         A         74         ARG         NH1-CZ-NH2         6.45         126.50         119.4           1         A         27         ASP         CB-CG-OD2         6.42         124.08         118.3           2         D         46         ASP         CB-CG-OD2         6.42         124.08         118.3           2         D         46         ASP         CB-CG-CD2         -6.42         97.57         110.4           2         B         163         LEU         CB-CG-CD2         -6.39         100.14         111.0           2         F         187         ASP         CB-CG-OD2         6.38         124.04         118.3                                                                                                                                                              | 30                      |
| 1         C         212         ASP         CB-CG-OD2         6.45         124.11         118.3           2         D         180         GLN         CB-CA-C         6.45         123.30         110.4           1         A         74         ARG         NH1-CZ-NH2         6.45         126.50         119.4           1         A         27         ASP         CB-CG-OD2         6.42         124.08         118.3           2         D         46         ASP         CB-CG-OD2         6.42         124.08         118.3           2         D         46         ASP         CB-CG-CD2         -6.42         97.57         110.4           2         B         163         LEU         CB-CG-CD2         -6.39         100.14         111.4           2         F         187         ASP         CB-CG-OD2         6.38         124.04         118.3                                                                                                                                                                                                                                                                       | 30                      |
| 2         D         180         GLN         CB-CA-C         6.45         123.30         110.4           1         A         74         ARG         NH1-CZ-NH2         6.45         126.50         119.4           1         A         27         ASP         CB-CG-OD2         6.42         124.08         118.3           2         D         46         ASP         CB-CA-C         -6.42         97.57         110.4           2         B         163         LEU         CB-CG-CD2         -6.39         100.14         111.6           2         F         187         ASP         CB-CG-OD2         6.38         124.04         118.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                      |
| 1         A         74         ARG         NH1-CZ-NH2         6.45         126.50         119.           1         A         27         ASP         CB-CG-OD2         6.42         124.08         118.           2         D         46         ASP         CB-CA-C         -6.42         97.57         110.           2         B         163         LEU         CB-CG-CD2         -6.39         100.14         111.0           2         F         187         ASP         CB-CG-OD2         6.38         124.04         118.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40                      |
| 1         A         27         ASP         CB-CG-OD2         6.42         124.08         118.3           2         D         46         ASP         CB-CA-C         -6.42         97.57         110.4           2         B         163         LEU         CB-CG-CD2         -6.39         100.14         111.0           2         F         187         ASP         CB-CG-OD2         6.38         124.04         118.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40                      |
| 2         D         46         ASP         CB-CA-C         -6.42         97.57         110.4           2         B         163         LEU         CB-CG-CD2         -6.39         100.14         111.0           2         F         187         ASP         CB-CG-OD2         6.38         124.04         118.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30                      |
| 2         B         163         LEU         CB-CG-CD2         -6.39         100.14         111.0           2         F         187         ASP         CB-CG-OD2         6.38         124.04         118.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                      |
| 2 F 306 ASP CB-CG-OD1 6.36 124.02 118.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                      |
| 2 D 198 ASP CB-CG-OD1 -6.34 112.60 118.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                      |
| 1 	 E 	 231 	 ARG 	 NE-CZ-NH1 	 6.30 	 123.45 	 120.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30                      |
| 1 A 242 MET CG-SD-CE 6.28 110.25 100.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                      |
| 1 C 155 ASP CB-CG-OD2 6.28 123.95 118.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                      |
| 2 Z 309 ASP CB-CG-OD2 6.19 123.87 118.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30                      |
| 1 C 168 MET CB-CG-SD -6.16 93.91 112.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40                      |
| 2 D 15 ARG NE-CZ-NH2 6.16 123.38 120.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                      |
| 2 D 69 ASP CB-CG-OD1 6.16 123.84 118.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                      |
| 2 Z 69 ASP CB-CG-OD1 6.15 123.83 118.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                      |
| 2 D 201 THR C-N-CA 6.13 137.01 121.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70                      |
| 2 B 309 ASP CB-CG-OD1 6.11 123.80 118.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30                      |
| 2 F 153 LEU CB-CG-CD1 -6.10 100.63 111.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00                      |
| 1 C 148 ASP CB-CG-OD2 6.09 123.78 118.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30                      |
| 1 A 180 LEU CB-CG-CD2 -6.05 100.71 111.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00                      |
| 2 B 198 ASP CB-CG-OD2 6.05 123.75 118.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30                      |
| 1 A 231 ARG NE-CZ-NH2 -6.05 117.28 120.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                      |
| 2 F 198 ASP CB-CA-C -6.04 98.31 110.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40                      |
| 2 F 144 ASP CB-CG-OD2 6.00 123.70 118.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30                      |
| 1 A 124 ASP CB-CG-OD2 6.00 123.70 118.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30                      |
| 1 E 190 ARG NE-CZ-NH2 -5.96 117.32 120.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                      |
| 2 F 318 LEU CA-CB-CG 5.96 129.00 115.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                      |
| 1 E 13 LEU CB-CG-CD2 -5.95 100.88 111.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00                      |
| 2 D 213 GLY N-CA-C 5.94 127.95 113.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                      |
| 2 D 34 ASP CB-CG-OD2 5.94 123.64 118.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                      |
| 2 D 16 PRO N-CD-CG -5.91 94.33 103.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                      |
| 2 D 254 GLY N-CA-C -5.90 98.36 113.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                      |
| 2 D 210 ARG NE-CZ-NH2 5.85 123.23 120.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30                      |
| 2 D 303 ILE N-CA-C -5.85 95.21 111.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00                      |
| 1 C 168 MET CB-CA-C -5.84 98.71 110.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40                      |

 $\alpha$ .1 L.



| Conti | nucu jion | i preui | ous puye | • • •      |       |                  |                              |
|-------|-----------|---------|----------|------------|-------|------------------|------------------------------|
| Mol   | Chain     | Res     | Type     | Atoms      | Ζ     | $Observed(^{o})$ | $\operatorname{Ideal}(^{o})$ |
| 1     | C         | 244     | GLU      | CG-CD-OE1  | -5.83 | 106.63           | 118.30                       |
| 2     | В         | 146     | PRO      | N-CD-CG    | -5.81 | 94.48            | 103.20                       |
| 1     | С         | 34      | ASP      | CB-CG-OD1  | 5.80  | 123.52           | 118.30                       |
| 2     | F         | 198     | ASP      | CB-CG-OD1  | -5.80 | 113.08           | 118.30                       |
| 2     | D         | 94      | PRO      | N-CD-CG    | -5.79 | 94.51            | 103.20                       |
| 2     | В         | 13      | ASP      | CB-CG-OD2  | 5.77  | 123.49           | 118.30                       |
| 2     | D         | 12      | ASN      | CB-CA-C    | -5.76 | 98.88            | 110.40                       |
| 1     | А         | 67      | ASP      | CB-CG-OD1  | -5.76 | 113.12           | 118.30                       |
| 2     | Z         | 100     | LEU      | CA-CB-CG   | 5.76  | 128.54           | 115.30                       |
| 1     | Е         | 238     | GLY      | N-CA-C     | -5.75 | 98.74            | 113.10                       |
| 2     | В         | 182     | ARG      | NE-CZ-NH1  | -5.72 | 117.44           | 120.30                       |
| 1     | Е         | 86      | ARG      | NE-CZ-NH1  | -5.70 | 117.45           | 120.30                       |
| 2     | D         | 14      | LEU      | CB-CG-CD1  | 5.70  | 120.68           | 111.00                       |
| 2     | Z         | 98      | ASP      | CB-CG-OD1  | -5.69 | 113.18           | 118.30                       |
| 2     | F         | 201     | THR      | C-N-CA     | 5.67  | 135.89           | 121.70                       |
| 1     | Q         | 184     | LEU      | CA-CB-CG   | 5.59  | 128.16           | 115.30                       |
| 2     | F         | 198     | ASP      | CB-CG-OD2  | 5.59  | 123.33           | 118.30                       |
| 1     | Q         | 40      | ASP      | CB-CG-OD2  | 5.58  | 123.32           | 118.30                       |
| 2     | D         | 314     | LEU      | CA-CB-CG   | 5.55  | 128.08           | 115.30                       |
| 1     | С         | 74      | ARG      | NE-CZ-NH2  | -5.53 | 117.53           | 120.30                       |
| 2     | F         | 131     | THR      | OG1-CB-CG2 | -5.51 | 97.33            | 110.00                       |
| 1     | А         | 31      | MET      | CG-SD-CE   | -5.50 | 91.40            | 100.20                       |
| 2     | В         | 278     | MET      | CG-SD-CE   | -5.49 | 91.41            | 100.20                       |
| 2     | В         | 71      | ASP      | CB-CG-OD2  | 5.49  | 123.24           | 118.30                       |
| 1     | А         | 138     | LEU      | CB-CG-CD1  | -5.48 | 101.68           | 111.00                       |
| 1     | А         | 83      | ARG      | NE-CZ-NH1  | 5.47  | 123.04           | 120.30                       |
| 2     | В         | 313     | GLU      | N-CA-CB    | -5.47 | 100.75           | 110.60                       |
| 2     | F         | 1       | SER      | C-N-CA     | -5.46 | 108.04           | 121.70                       |
| 2     | D         | 198     | ASP      | C-N-CA     | -5.45 | 108.08           | 121.70                       |
| 2     | F         | 196     | ASP      | C-N-CA     | 5.45  | 135.32           | 121.70                       |
| 2     | D         | 128     | LEU      | CB-CG-CD2  | -5.44 | 101.76           | 111.00                       |
| 2     | D         | 110     | THR      | C-N-CA     | -5.43 | 110.89           | 122.30                       |
| 1     | Е         | 108     | ILE      | CG1-CB-CG2 | -5.41 | 99.50            | 111.40                       |
| 1     | Q         | 228     | ARG      | NE-CZ-NH1  | -5.41 | 117.59           | 120.30                       |
| 2     | D         | 41      | ILE      | CG1-CB-CG2 | -5.40 | 99.52            | 111.40                       |
| 2     | В         | 73      | ASP      | CB-CG-OD2  | 5.39  | 123.15           | 118.30                       |
| 1     | А         | 70      | ASP      | CB-CG-OD1  | 5.38  | 123.14           | 118.30                       |
| 2     | В         | 272     | ILE      | CG1-CB-CG2 | -5.37 | 99.59            | 111.40                       |
| 1     | С         | 161     | ARG      | NE-CZ-NH2  | -5.35 | 117.62           | 120.30                       |
| 2     | D         | 71      | ASP      | CB-CG-OD2  | 5.35  | 123.11           | 118.30                       |
| 2     | D         | 219     | GLU      | CA-CB-CG   | 5.33  | 125.12           | 113.40                       |
| 1     | A         | 82      | ASP      | CB-CG-OD2  | 5.32  | 123.09           | 118.30                       |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms      | $\mathbf{Z} = \mathbf{Observed}(^{o})$ |        | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|----------------------------------------|--------|---------------|
| 1   | Е     | 32  | MET  | CG-SD-CE   | 5.32                                   | 108.71 | 100.20        |
| 2   | F     | 222 | ARG  | NE-CZ-NH2  | 5.30                                   | 122.95 | 120.30        |
| 2   | F     | 203 | ASP  | N-CA-C     | 5.29                                   | 125.28 | 111.00        |
| 2   | F     | 246 | LYS  | CD-CE-NZ   | 5.29                                   | 123.87 | 111.70        |
| 2   | В     | 120 | ILE  | CG1-CB-CG2 | -5.28                                  | 99.79  | 111.40        |
| 1   | Е     | 102 | ARG  | CG-CD-NE   | 5.27                                   | 122.86 | 111.80        |
| 2   | В     | 201 | THR  | C-N-CA     | 5.25                                   | 134.82 | 121.70        |
| 2   | В     | 222 | ARG  | NE-CZ-NH2  | 5.23                                   | 122.91 | 120.30        |
| 2   | В     | 306 | ASP  | CB-CG-OD1  | -5.23                                  | 113.60 | 118.30        |
| 1   | А     | 180 | LEU  | CA-CB-CG   | 5.20                                   | 127.26 | 115.30        |
| 1   | С     | 162 | ARG  | CB-CA-C    | 5.20                                   | 120.80 | 110.40        |
| 2   | F     | 318 | LEU  | CB-CG-CD1  | -5.20                                  | 102.16 | 111.00        |
| 2   | В     | 110 | THR  | C-N-CA     | -5.19                                  | 111.39 | 122.30        |
| 1   | Е     | 184 | LEU  | CB-CG-CD1  | -5.18                                  | 102.19 | 111.00        |
| 1   | А     | 68  | ARG  | NE-CZ-NH2  | -5.17                                  | 117.72 | 120.30        |
| 2   | В     | 240 | ASP  | CB-CG-OD2  | 5.17                                   | 122.95 | 118.30        |
| 2   | В     | 203 | ASP  | CB-CG-OD2  | 5.17                                   | 122.95 | 118.30        |
| 1   | Е     | 161 | ARG  | NE-CZ-NH1  | -5.15                                  | 117.73 | 120.30        |
| 2   | В     | 105 | SER  | N-CA-CB    | 5.14                                   | 118.21 | 110.50        |
| 1   | Q     | 25  | ASP  | CB-CG-OD2  | 5.14                                   | 122.92 | 118.30        |
| 1   | Е     | 98  | ILE  | CG1-CB-CG2 | -5.13                                  | 100.12 | 111.40        |
| 1   | А     | 40  | ASP  | CB-CG-OD1  | -5.12                                  | 113.70 | 118.30        |
| 1   | Е     | 17  | PHE  | N-CA-CB    | -5.10                                  | 101.41 | 110.60        |
| 2   | D     | 156 | ARG  | NE-CZ-NH2  | -5.10                                  | 117.75 | 120.30        |
| 2   | Ζ     | 21  | LEU  | CA-CB-CG   | 5.10                                   | 127.03 | 115.30        |
| 1   | Q     | 87  | VAL  | CB-CA-C    | -5.09                                  | 101.74 | 111.40        |
| 1   | Е     | 184 | LEU  | CB-CG-CD2  | 5.06                                   | 119.60 | 111.00        |
| 1   | Е     | 195 | ARG  | NE-CZ-NH2  | 5.06                                   | 122.83 | 120.30        |
| 2   | В     | 214 | GLU  | OE1-CD-OE2 | -5.05                                  | 117.24 | 123.30        |
| 2   | F     | 167 | GLY  | N-CA-C     | -5.05                                  | 100.48 | 113.10        |
| 1   | С     | 175 | ASN  | CB-CA-C    | -5.04                                  | 100.32 | 110.40        |
| 1   | Е     | 155 | ASP  | CB-CA-C    | -5.03                                  | 100.35 | 110.40        |
| 2   | F     | 290 | ASP  | CB-CG-OD2  | 5.02                                   | 122.82 | 118.30        |
| 1   | Е     | 40  | ASP  | CB-CG-OD2  | 5.01                                   | 122.81 | 118.30        |
| 2   | F     | 5   | VAL  | CB-CA-C    | -5.01                                  | 101.88 | 111.40        |
| 1   | С     | 169 | LEU  | CB-CG-CD2  | -5.01                                  | 102.49 | 111.00        |
| 2   | D     | 61  | VAL  | CB-CA-C    | -5.00                                  | 101.89 | 111.40        |
| 1   | Е     | 1   | MET  | CB-CG-SD   | 5.00                                   | 127.41 | 112.40        |

Continued from previous page...

There are no chirality outliers.

All (10) planarity outliers are listed below:



| Mol | Chain | Res | Type | Group   |
|-----|-------|-----|------|---------|
| 1   | А     | 22  | ASP  | Peptide |
| 2   | В     | 201 | THR  | Peptide |
| 2   | В     | 312 | GLU  | Peptide |
| 2   | В     | 313 | GLU  | Peptide |
| 2   | D     | 197 | ILE  | Peptide |
| 2   | D     | 200 | THR  | Peptide |
| 1   | Е     | 210 | LEU  | Peptide |
| 2   | F     | 196 | ASP  | Peptide |
| 2   | F     | 201 | THR  | Peptide |
| 1   | Q     | 231 | ARG  | Peptide |

#### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 1963  | 0        | 1916     | 87      | 1            |
| 1   | С     | 1942  | 0        | 1901     | 99      | 0            |
| 1   | Е     | 1939  | 0        | 1891     | 107     | 0            |
| 1   | Q     | 1831  | 0        | 1768     | 68      | 0            |
| 2   | В     | 2287  | 0        | 2250     | 81      | 0            |
| 2   | D     | 2281  | 0        | 2237     | 125     | 0            |
| 2   | F     | 2281  | 0        | 2237     | 85      | 1            |
| 2   | Ζ     | 2265  | 0        | 2222     | 52      | 0            |
| 3   | А     | 23    | 0        | 12       | 0       | 0            |
| 3   | С     | 23    | 0        | 12       | 3       | 0            |
| 3   | Е     | 23    | 0        | 12       | 2       | 0            |
| 3   | Q     | 23    | 0        | 12       | 2       | 0            |
| 4   | В     | 53    | 0        | 31       | 1       | 0            |
| 4   | D     | 53    | 0        | 31       | 8       | 0            |
| 4   | F     | 53    | 0        | 31       | 0       | 0            |
| 4   | Ζ     | 53    | 0        | 31       | 4       | 0            |
| All | All   | 17093 | 0        | 16594    | 655     | 1            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 19.

All (655) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.



| Atom 1           | Atom-2           | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           |                  | distance (Å) | overlap (Å) |
| 1:A:74:ARG:CG    | 1:A:74:ARG:CD    | 1.75         | 1.56        |
| 2:B:30:LYS:NZ    | 2:B:30:LYS:CE    | 1.68         | 1.54        |
| 1:Q:115:MET:CE   | 1:Q:115:MET:SD   | 2.03         | 1.46        |
| 1:Q:232:MET:SD   | 1:Q:232:MET:CE   | 2.05         | 1.44        |
| 2:Z:266:MET:CE   | 2:Z:266:MET:SD   | 2.07         | 1.42        |
| 1:A:232:MET:CE   | 1:A:232:MET:SD   | 2.11         | 1.39        |
| 2:F:266:MET:SD   | 2:F:266:MET:CE   | 2.13         | 1.36        |
| 1:E:226:MET:CE   | 1:E:226:MET:SD   | 2.13         | 1.36        |
| 1:E:168:MET:SD   | 1:E:168:MET:CE   | 2.12         | 1.36        |
| 1:E:242:MET:CE   | 1:E:242:MET:SD   | 2.17         | 1.32        |
| 1:E:232:MET:SD   | 1:E:232:MET:CE   | 2.21         | 1.29        |
| 1:A:239:ARG:O    | 1:A:239:ARG:CG   | 1.80         | 1.27        |
| 1:C:53:SER:OG    | 1:C:55:THR:HG22  | 1.45         | 1.16        |
| 1:C:243:ILE:HD13 | 1:C:253:LYS:HG3  | 1.23         | 1.16        |
| 1:A:74:ARG:NH2   | 1:A:203:LYS:O    | 1.77         | 1.15        |
| 1:Q:235:PRO:HG2  | 1:Q:237:LYS:HG3  | 1.21         | 1.14        |
| 1:A:239:ARG:O    | 1:A:239:ARG:HG2  | 1.32         | 1.08        |
| 1:E:1:MET:HG3    | 1:E:153:PRO:HB3  | 1.27         | 1.08        |
| 2:D:202:VAL:HG12 | 2:D:203:ASP:H    | 0.93         | 1.06        |
| 2:F:202:VAL:HG12 | 2:F:203:ASP:N    | 1.67         | 1.05        |
| 1:E:236:GLU:O    | 1:E:237:LYS:HB2  | 1.52         | 1.03        |
| 1:C:47:MET:HE2   | 1:C:80:GLY:HA3   | 1.39         | 1.03        |
| 1:A:246:THR:H    | 1:A:249:GLU:HG3  | 1.19         | 1.03        |
| 1:E:246:THR:H    | 1:E:249:GLU:HG3  | 1.24         | 1.02        |
| 2:D:202:VAL:CG1  | 2:D:203:ASP:H    | 1.74         | 1.01        |
| 2:F:202:VAL:CG1  | 2:F:203:ASP:N    | 2.24         | 1.01        |
| 2:D:202:VAL:HG12 | 2:D:203:ASP:N    | 1.72         | 1.00        |
| 1:A:1:MET:HG3    | 1:A:153:PRO:HB3  | 1.43         | 1.00        |
| 2:B:313:GLU:O    | 2:B:317:GLN:HG3  | 1.61         | 0.99        |
| 2:B:202:VAL:HG12 | 2:B:203:ASP:N    | 1.72         | 0.98        |
| 2:D:310:ILE:HG22 | 2:D:314:LEU:HD22 | 1.45         | 0.96        |
| 2:F:1:SER:N      | 2:F:34:ASP:OD1   | 2.00         | 0.94        |
| 1:Q:235:PRO:HG2  | 1:Q:237:LYS:CG   | 1.97         | 0.94        |
| 2:F:202:VAL:CG1  | 2:F:203:ASP:H    | 1.79         | 0.94        |
| 2:D:205:ILE:HG13 | 2:D:260:CYS:SG   | 2.07         | 0.93        |
| 1:Q:102:ARG:HH11 | 1:Q:102:ARG:HG2  | 1.34         | 0.93        |
| 1:C:246:THR:H    | 1:C:249:GLU:HG3  | 1.34         | 0.92        |
| 2:Z:202:VAL:HG12 | 2:Z:203:ASP:N    | 1.85         | 0.92        |
| 1:Q:183:GLN:HE21 | 1:Q:184:LEU:H    | 0.93         | 0.91        |
| 2:F:31:SER:HA    | 1:Q:91:ALA:HA    | 1.53         | 0.91        |
| 1:Q:102:ARG:HG2  | 1:Q:102:ARG:NH1  | 1.83         | 0.91        |
| 2:Z:202:VAL:HG12 | 2:Z:203:ASP:H    | 1.37         | 0.90        |



|                  |                  | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 2:Z:202:VAL:CG1  | 2:Z:203:ASP:H    | 1.84         | 0.90        |
| 2:B:197:ILE:CD1  | 2:B:248:ARG:HE   | 1.84         | 0.89        |
| 1:E:168:MET:HB2  | 1:E:168:MET:CE   | 2.03         | 0.89        |
| 2:F:219:GLU:OE2  | 2:F:222:ARG:HD2  | 1.73         | 0.89        |
| 1:C:246:THR:O    | 1:C:247:ILE:C    | 2.10         | 0.89        |
| 1:A:246:THR:N    | 1:A:249:GLU:HG3  | 1.87         | 0.88        |
| 1:C:47:MET:CE    | 1:C:80:GLY:HA3   | 2.05         | 0.86        |
| 2:F:1:SER:N      | 2:F:34:ASP:CG    | 2.28         | 0.86        |
| 1:Q:183:GLN:NE2  | 1:Q:184:LEU:H    | 1.72         | 0.85        |
| 1:C:230:ARG:NH2  | 2:D:124:GLN:HE22 | 1.75         | 0.84        |
| 1:A:239:ARG:O    | 1:A:239:ARG:HG3  | 1.75         | 0.84        |
| 1:Q:183:GLN:HE21 | 1:Q:184:LEU:N    | 1.75         | 0.83        |
| 1:E:226:MET:HE3  | 2:F:112:TYR:O    | 1.77         | 0.83        |
| 1:C:243:ILE:CD1  | 1:C:253:LYS:HG3  | 2.05         | 0.83        |
| 2:B:202:VAL:HG12 | 2:B:203:ASP:H    | 1.41         | 0.83        |
| 2:Z:246:LYS:HE2  | 2:Z:249:GLN:HE22 | 1.44         | 0.82        |
| 1:C:74:ARG:NH2   | 1:C:203:LYS:O    | 2.13         | 0.82        |
| 2:B:202:VAL:CG1  | 2:B:203:ASP:N    | 2.42         | 0.81        |
| 1:C:66:PRO:O     | 1:C:86:ARG:HD2   | 1.80         | 0.81        |
| 1:A:28:GLU:OE2   | 1:A:33:TYR:OH    | 1.99         | 0.81        |
| 2:F:219:GLU:OE2  | 2:F:222:ARG:CD   | 2.28         | 0.81        |
| 2:B:197:ILE:HD13 | 2:B:248:ARG:HE   | 1.46         | 0.81        |
| 1:Q:102:ARG:HH11 | 1:Q:102:ARG:CG   | 1.92         | 0.80        |
| 2:F:120:ILE:HB   | 2:F:131:THR:HB   | 1.63         | 0.80        |
| 1:C:15:GLU:O     | 1:C:16:ASP:HB2   | 1.79         | 0.80        |
| 1:A:20:ARG:CB    | 1:A:22:ASP:HA    | 2.10         | 0.80        |
| 1:C:162:ARG:HE   | 1:C:170:GLN:NE2  | 1.79         | 0.80        |
| 1:A:102:ARG:HG3  | 1:A:102:ARG:HH11 | 1.48         | 0.80        |
| 1:A:246:THR:H    | 1:A:249:GLU:CG   | 1.93         | 0.79        |
| 2:D:243:TRP:O    | 2:D:244:LEU:HG   | 1.81         | 0.79        |
| 2:Z:202:VAL:CG1  | 2:Z:203:ASP:N    | 2.44         | 0.78        |
| 1:C:129:SER:HB3  | 2:D:104:SER:HB3  | 1.66         | 0.77        |
| 2:F:219:GLU:CD   | 2:F:222:ARG:HD2  | 2.03         | 0.77        |
| 1:Q:1:MET:HG3    | 1:Q:153:PRO:HB3  | 1.67         | 0.77        |
| 2:D:223:GLU:O    | 2:D:226:ASP:HB2  | 1.84         | 0.76        |
| 1:Q:108:ILE:HG21 | 1:Q:138:LEU:HD11 | 1.66         | 0.76        |
| 1:A:254:ILE:HD11 | 2:B:303:ILE:HD13 | 1.66         | 0.76        |
| 1:A:247:ILE:HG22 | 2:B:313:GLU:HG2  | 1.66         | 0.76        |
| 2:F:310:ILE:O    | 2:F:314:LEU:HB2  | 1.85         | 0.76        |
| 2:D:200:THR:HA   | 2:D:202:VAL:HG23 | 1.68         | 0.75        |
| 2:D:264:VAL:HG12 | 2:D:266:MET:HE2  | 1.67         | 0.75        |



|                  |                  | Interatomic             | Clash       |
|------------------|------------------|-------------------------|-------------|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |
| 2:F:202:VAL:HG13 | 2:F:203:ASP:H    | 1.52                    | 0.75        |
| 2:B:202:VAL:CG1  | 2:B:203:ASP:H    | 1.97                    | 0.75        |
| 1:E:42:SER:HB2   | 1:E:182:ILE:HG13 | 1.67                    | 0.75        |
| 1:E:15:GLU:O     | 1:E:16:ASP:HB2   | 1.86                    | 0.74        |
| 1:Q:243:ILE:HD13 | 1:Q:253:LYS:HG3  | 1.70                    | 0.74        |
| 2:F:313:GLU:O    | 2:F:316:ALA:N    | 2.21                    | 0.73        |
| 2:D:204:PHE:CE1  | 2:D:230:ALA:HB2  | 2.22                    | 0.73        |
| 1:E:232:MET:HG3  | 2:F:141:VAL:HG22 | 1.70                    | 0.73        |
| 2:F:31:SER:HB3   | 1:Q:90:ASP:O     | 1.88                    | 0.73        |
| 2:D:310:ILE:O    | 2:D:314:LEU:HB2  | 1.88                    | 0.73        |
| 1:E:246:THR:N    | 1:E:249:GLU:HG3  | 2.02                    | 0.73        |
| 1:C:53:SER:HG    | 1:C:55:THR:HG22  | 1.52                    | 0.72        |
| 1:E:105:THR:HG23 | 1:E:138:LEU:HG   | 1.71                    | 0.72        |
| 1:A:136:SER:HB2  | 2:B:105:SER:OG   | 1.88                    | 0.72        |
| 2:B:313:GLU:HA   | 2:B:316:ALA:HB3  | 1.70                    | 0.72        |
| 1:E:1:MET:CG     | 1:E:153:PRO:HB3  | 2.16                    | 0.72        |
| 2:F:206:MET:SD   | 2:F:224:LEU:HD13 | 2.30                    | 0.72        |
| 1:E:246:THR:H    | 1:E:249:GLU:CG   | 2.00                    | 0.71        |
| 2:D:208:ILE:HG12 | 2:D:232:LEU:HD11 | 1.73                    | 0.71        |
| 1:C:53:SER:OG    | 1:C:55:THR:CG2   | 2.35                    | 0.70        |
| 2:D:278:MET:CE   | 2:D:284:ILE:HD13 | 2.22                    | 0.69        |
| 1:A:20:ARG:HB2   | 1:A:22:ASP:HA    | 1.74                    | 0.69        |
| 1:A:236:GLU:OE2  | 2:F:184:GLN:NE2  | 2.26                    | 0.69        |
| 1:Q:105:THR:HG21 | 1:Q:137:TYR:HB3  | 1.75                    | 0.69        |
| 2:D:21:LEU:HD11  | 2:D:94:PRO:HG3   | 1.74                    | 0.69        |
| 2:B:95:HIS:CE1   | 2:B:100:LEU:HD21 | 2.27                    | 0.68        |
| 2:D:204:PHE:CD2  | 2:D:262:LEU:HD23 | 2.27                    | 0.68        |
| 1:E:20:ARG:O     | 1:E:22:ASP:CB    | 2.41                    | 0.68        |
| 1:A:19:ILE:O     | 1:A:20:ARG:C     | 2.32                    | 0.68        |
| 1:E:55:THR:OG1   | 1:E:56:ASP:N     | 2.28                    | 0.67        |
| 2:Z:22:ILE:HD11  | 2:Z:38:VAL:HG21  | 1.74                    | 0.67        |
| 1:A:25:ASP:OD1   | 1:A:26:VAL:N     | 2.24                    | 0.67        |
| 1:E:211:ALA:O    | 1:E:213:ILE:N    | 2.28                    | 0.66        |
| 1:E:10:THR:HG23  | 1:E:36:ASN:HB2   | 1.77                    | 0.66        |
| 1:E:58:GLU:OE2   | 1:E:83:ARG:NH1   | 2.27                    | 0.66        |
| 1:A:183:GLN:HE21 | 1:A:184:LEU:H    | 1.43                    | 0.66        |
| 2:B:246:LYS:NZ   | 2:B:249:GLN:HE22 | 1.94                    | 0.65        |
| 1:A:74:ARG:CG    | 1:A:74:ARG:NE    | 2.57                    | 0.65        |
| 1:C:162:ARG:HE   | 1:C:170:GLN:HE21 | 1.44                    | 0.65        |
| 2:D:25:ALA:HB2   | 2:D:92:LEU:HD12  | 1.78                    | 0.65        |
| 2:F:313:GLU:O    | 2:F:314:LEU:C    | 2.35                    | 0.65        |



|                  | lo uo pugo       | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:Q:162:ARG:HH21 | 1:Q:170:GLN:HE22 | 1.45         | 0.65        |
| 1:E:147:ALA:O    | 1:E:186:ILE:HG13 | 1.96         | 0.65        |
| 2:F:117:ASP:OD1  | 2:F:156:ARG:HD3  | 1.97         | 0.65        |
| 2:F:157:PRO:O    | 2:F:158:SER:HB2  | 1.97         | 0.65        |
| 1:Q:121:GLN:HB3  | 1:Q:128:ALA:HB2  | 1.78         | 0.65        |
| 2:B:46:ASP:O     | 2:B:48:PHE:N     | 2.29         | 0.64        |
| 2:D:173:ASN:O    | 2:D:174:VAL:HG12 | 1.97         | 0.64        |
| 1:C:87:VAL:HG21  | 1:C:107:VAL:HG21 | 1.78         | 0.64        |
| 1:Q:132:ILE:HG22 | 2:Z:105:SER:HB2  | 1.80         | 0.64        |
| 2:Z:8:GLU:O      | 2:Z:15:ARG:HB2   | 1.96         | 0.64        |
| 2:D:310:ILE:CG2  | 2:D:314:LEU:HD22 | 2.25         | 0.64        |
| 1:C:246:THR:OG1  | 1:C:249:GLU:HG2  | 1.98         | 0.64        |
| 1:A:38:TRP:HE1   | 1:A:183:GLN:NE2  | 1.95         | 0.64        |
| 1:A:176:CYS:HA   | 1:A:177:PRO:C    | 2.19         | 0.63        |
| 2:B:199:ILE:C    | 2:B:201:THR:H    | 2.00         | 0.63        |
| 2:D:257:VAL:O    | 2:D:257:VAL:HG23 | 1.99         | 0.63        |
| 1:E:63:SER:HA    | 3:E:1262:AMP:H2  | 1.64         | 0.63        |
| 1:Q:252:ALA:HA   | 2:Z:317:GLN:HE22 | 1.63         | 0.63        |
| 2:F:309:ASP:HA   | 2:F:312:GLU:HG2  | 1.81         | 0.62        |
| 2:B:189:VAL:HG12 | 2:B:190:GLU:N    | 2.14         | 0.62        |
| 2:D:63:VAL:HG22  | 2:D:174:VAL:HG22 | 1.80         | 0.62        |
| 1:Q:132:ILE:CG2  | 2:Z:105:SER:HB2  | 2.30         | 0.62        |
| 2:Z:30:LYS:HE3   | 2:Z:123:TYR:CD2  | 2.35         | 0.62        |
| 1:C:114:ASP:O    | 1:C:115:MET:HG2  | 2.00         | 0.61        |
| 1:C:230:ARG:HH22 | 2:D:124:GLN:HE22 | 1.47         | 0.61        |
| 2:B:199:ILE:O    | 2:B:201:THR:N    | 2.33         | 0.61        |
| 1:C:47:MET:HE2   | 1:C:80:GLY:CA    | 2.21         | 0.61        |
| 1:E:236:GLU:O    | 1:E:237:LYS:CB   | 2.39         | 0.61        |
| 1:C:9:GLN:HG2    | 1:C:33:TYR:HB3   | 1.81         | 0.61        |
| 2:B:197:ILE:HD11 | 2:B:247:SER:CB   | 2.31         | 0.61        |
| 2:D:11:ARG:HG3   | 2:D:188:TYR:CE1  | 2.35         | 0.61        |
| 2:D:313:GLU:O    | 2:D:317:GLN:HG3  | 2.00         | 0.61        |
| 2:Z:246:LYS:HE2  | 2:Z:249:GLN:NE2  | 2.14         | 0.61        |
| 2:D:275:MET:HG2  | 2:D:298:ILE:HD11 | 1.81         | 0.61        |
| 1:A:27:ASP:O     | 1:A:29:ASP:N     | 2.34         | 0.60        |
| 2:B:238:ILE:HG21 | 2:B:244:LEU:HD12 | 1.83         | 0.60        |
| 2:F:198:ASP:OD1  | 2:F:198:ASP:N    | 2.33         | 0.60        |
| 2:D:246:LYS:NZ   | 2:D:249:GLN:HE22 | 2.00         | 0.60        |
| 2:D:288:ASN:ND2  | 4:D:1319:FAD:H1B | 2.16         | 0.60        |
| 2:D:217:ASN:O    | 2:D:220:GLN:HG2  | 2.01         | 0.60        |
| 1:E:1:MET:HG3    | 1:E:153:PRO:CB   | 2.18         | 0.60        |



|                  |                  | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:Q:87:VAL:HG21  | 1:Q:107:VAL:HG21 | 1.84         | 0.60        |
| 1:A:74:ARG:CB    | 1:A:74:ARG:CD    | 2.76         | 0.60        |
| 2:D:99:SER:C     | 2:D:101:GLY:H    | 2.05         | 0.60        |
| 2:Z:209:GLY:HA3  | 2:Z:267:GLY:O    | 2.01         | 0.60        |
| 1:A:20:ARG:HB3   | 1:A:22:ASP:HA    | 1.84         | 0.59        |
| 2:B:46:ASP:O     | 2:B:47:ALA:C     | 2.40         | 0.59        |
| 2:Z:114:PHE:HA   | 2:Z:152:VAL:O    | 2.03         | 0.59        |
| 1:C:249:GLU:O    | 1:C:253:LYS:N    | 2.29         | 0.59        |
| 1:C:65:GLY:O     | 1:C:88:TRP:HB2   | 2.02         | 0.59        |
| 1:C:1:MET:HG3    | 1:C:153:PRO:HB3  | 1.84         | 0.59        |
| 2:F:199:ILE:C    | 2:F:201:THR:H    | 2.05         | 0.59        |
| 2:Z:207:SER:HA   | 2:Z:233:CYS:O    | 2.02         | 0.59        |
| 2:F:136:ASN:O    | 2:F:137:GLN:HB2  | 2.03         | 0.59        |
| 2:F:79:VAL:HA    | 2:F:82:LEU:HD12  | 1.84         | 0.59        |
| 2:B:306:ASP:OD1  | 2:B:308:PHE:N    | 2.35         | 0.58        |
| 1:E:1:MET:HE2    | 1:E:2:LYS:N      | 2.17         | 0.58        |
| 2:F:316:ALA:O    | 2:F:317:GLN:C    | 2.42         | 0.58        |
| 1:C:98:ILE:O     | 1:C:98:ILE:CG2   | 2.52         | 0.58        |
| 1:Q:254:ILE:HD11 | 2:Z:303:ILE:HD13 | 1.86         | 0.58        |
| 2:D:110:THR:HG21 | 2:D:112:TYR:CE2  | 2.38         | 0.58        |
| 2:D:76:GLU:O     | 2:D:80:SER:HB3   | 2.04         | 0.58        |
| 2:B:91:VAL:HG13  | 2:B:152:VAL:HG22 | 1.84         | 0.58        |
| 2:F:266:MET:CG   | 2:F:266:MET:CE   | 2.81         | 0.58        |
| 1:E:1:MET:HE1    | 1:E:3:ILE:HG13   | 1.85         | 0.58        |
| 2:F:189:VAL:HG12 | 2:F:190:GLU:N    | 2.18         | 0.58        |
| 2:D:117:ASP:N    | 2:D:154:THR:O    | 2.35         | 0.58        |
| 1:A:158:ALA:HB2  | 1:A:176:CYS:SG   | 2.43         | 0.58        |
| 2:Z:120:ILE:HB   | 2:Z:131:THR:HB   | 1.86         | 0.58        |
| 1:A:186:ILE:O    | 1:A:187:ASN:HB3  | 2.02         | 0.57        |
| 1:E:1:MET:CE     | 1:E:3:ILE:HG13   | 2.34         | 0.57        |
| 1:C:47:MET:CE    | 1:C:80:GLY:CA    | 2.78         | 0.57        |
| 2:F:219:GLU:OE2  | 2:F:222:ARG:HD3  | 2.04         | 0.57        |
| 2:B:197:ILE:HD12 | 2:B:248:ARG:HE   | 1.67         | 0.57        |
| 1:E:25:ASP:HA    | 1:E:232:MET:SD   | 2.44         | 0.57        |
| 1:A:243:ILE:HD13 | 1:A:253:LYS:HG3  | 1.86         | 0.57        |
| 2:D:204:PHE:CD1  | 2:D:230:ALA:HB2  | 2.39         | 0.57        |
| 2:F:199:ILE:HG13 | 2:F:201:THR:OG1  | 2.04         | 0.57        |
| 2:F:316:ALA:O    | 2:F:318:LEU:N    | 2.38         | 0.57        |
| 2:Z:37:VAL:HG22  | 2:Z:59:GLU:HB2   | 1.85         | 0.57        |
| 1:Q:259:ASN:C    | 1:Q:261:PHE:N    | 2.58         | 0.57        |
| 1:E:145:VAL:HG12 | 1:E:145:VAL:O    | 2.03         | 0.57        |



|                  |                  | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 2:D:269:SER:H    | 4:D:1319:FAD:H4B | 1.70         | 0.56        |
| 2:B:134:GLY:O    | 2:B:135:TYR:C    | 2.43         | 0.56        |
| 1:Q:230:ARG:HD3  | 2:Z:142:GLU:HG2  | 1.87         | 0.56        |
| 1:Q:88:TRP:CG    | 1:Q:89:ASP:N     | 2.73         | 0.56        |
| 2:D:46:ASP:O     | 2:D:49:VAL:HG13  | 2.04         | 0.56        |
| 2:Z:254:GLY:C    | 2:Z:255:LYS:HE2  | 2.25         | 0.56        |
| 2:D:63:VAL:HG11  | 2:D:78:SER:HB3   | 1.87         | 0.56        |
| 2:D:91:VAL:HG13  | 2:D:152:VAL:HG22 | 1.87         | 0.56        |
| 2:B:312:GLU:O    | 2:B:316:ALA:N    | 2.39         | 0.56        |
| 2:D:157:PRO:O    | 2:D:158:SER:HB2  | 2.04         | 0.56        |
| 1:C:98:ILE:O     | 1:C:98:ILE:HG22  | 2.05         | 0.56        |
| 2:D:99:SER:C     | 2:D:101:GLY:N    | 2.57         | 0.56        |
| 2:F:232:LEU:O    | 2:F:248:ARG:HD2  | 2.05         | 0.56        |
| 1:A:247:ILE:HD13 | 1:A:247:ILE:N    | 2.19         | 0.56        |
| 1:C:89:ASP:OD2   | 1:C:210:LEU:HG   | 2.05         | 0.56        |
| 1:A:102:ARG:HG3  | 1:A:102:ARG:NH1  | 2.21         | 0.55        |
| 1:A:63:SER:HB2   | 1:A:73:LEU:HD21  | 1.88         | 0.55        |
| 2:D:99:SER:O     | 2:D:101:GLY:N    | 2.39         | 0.55        |
| 2:D:264:VAL:HG12 | 2:D:266:MET:CE   | 2.36         | 0.55        |
| 1:E:176:CYS:HA   | 1:E:177:PRO:C    | 2.27         | 0.55        |
| 1:E:17:PHE:HA    | 1:E:30:PHE:CD2   | 2.41         | 0.55        |
| 1:A:87:VAL:HG21  | 1:A:107:VAL:HG21 | 1.89         | 0.55        |
| 2:D:265:ALA:HB1  | 2:D:268:ILE:HD12 | 1.89         | 0.55        |
| 1:C:232:MET:HG2  | 2:D:141:VAL:HG22 | 1.89         | 0.55        |
| 2:D:246:LYS:HZ2  | 2:D:249:GLN:HE22 | 1.54         | 0.55        |
| 1:Q:186:ILE:HG23 | 1:Q:187:ASN:ND2  | 2.21         | 0.55        |
| 2:B:263:TYR:CE2  | 2:B:278:MET:HE2  | 2.42         | 0.55        |
| 1:C:246:THR:O    | 1:C:247:ILE:O    | 2.23         | 0.55        |
| 1:E:168:MET:HE3  | 1:E:168:MET:HB2  | 1.86         | 0.55        |
| 1:E:211:ALA:O    | 1:E:212:ASP:C    | 2.43         | 0.55        |
| 1:Q:259:ASN:C    | 1:Q:261:PHE:H    | 2.11         | 0.55        |
| 2:B:224:LEU:HD11 | 2:B:314:LEU:HD23 | 1.89         | 0.54        |
| 1:C:247:ILE:HG22 | 2:D:313:GLU:HG2  | 1.88         | 0.54        |
| 2:Z:239:ALA:HB3  | 2:Z:249:GLN:HE21 | 1.71         | 0.54        |
| 1:E:10:THR:CG2   | 1:E:36:ASN:HB2   | 2.37         | 0.54        |
| 2:F:309:ASP:O    | 2:F:312:GLU:N    | 2.37         | 0.54        |
| 1:C:75:LYS:O     | 1:C:79:LYS:HG3   | 2.08         | 0.54        |
| 2:F:219:GLU:OE1  | 2:F:222:ARG:HD2  | 2.07         | 0.54        |
| 1:C:246:THR:OG1  | 1:C:249:GLU:CG   | 2.55         | 0.54        |
| 2:D:266:MET:HG2  | 2:D:307:ILE:HG22 | 1.89         | 0.54        |
| 1:A:183:GLN:HG3  | 1:A:184:LEU:N    | 2.23         | 0.54        |



|                  |                  | Interatomic    | Clash       |
|------------------|------------------|----------------|-------------|
| Atom-1           | Atom-2           | distance $(Å)$ | overlap (Å) |
| 2:F:313:GLU:O    | 2:F:315:LYS:N    | 2.40           | 0.54        |
| 2:Z:60:LEU:HB3   | 2:Z:171:VAL:HG22 | 1.89           | 0.54        |
| 1:A:246:THR:HB   | 1:A:248:SER:H    | 1.73           | 0.54        |
| 1:A:226:MET:CE   | 2:B:112:TYR:O    | 2.56           | 0.54        |
| 2:Z:275:MET:HG2  | 2:Z:298:ILE:HD11 | 1.90           | 0.54        |
| 1:A:168:MET:CE   | 2:B:190:GLU:OE1  | 2.56           | 0.53        |
| 2:B:246:LYS:HZ1  | 2:B:249:GLN:HE22 | 1.53           | 0.53        |
| 1:E:63:SER:HA    | 3:E:1262:AMP:C2  | 2.43           | 0.53        |
| 2:B:273:GLN:H    | 2:B:273:GLN:NE2  | 2.06           | 0.53        |
| 1:C:38:TRP:HE1   | 1:C:183:GLN:NE2  | 2.07           | 0.53        |
| 2:D:200:THR:C    | 2:D:202:VAL:H    | 2.11           | 0.53        |
| 2:F:256:VAL:HG13 | 2:F:277:GLY:HA2  | 1.89           | 0.53        |
| 1:A:26:VAL:HG12  | 1:A:27:ASP:N     | 2.23           | 0.53        |
| 2:F:207:SER:HA   | 2:F:233:CYS:O    | 2.09           | 0.53        |
| 2:F:300:LYS:HG2  | 2:F:301:TYR:CE1  | 2.43           | 0.53        |
| 1:Q:94:GLY:HA3   | 1:Q:222:ALA:HB2  | 1.91           | 0.53        |
| 1:E:162:ARG:HE   | 1:E:170:GLN:NE2  | 2.06           | 0.53        |
| 1:E:209:SER:OG   | 1:E:211:ALA:HB3  | 2.09           | 0.53        |
| 1:A:10:THR:HG22  | 1:A:124:ASP:OD1  | 2.09           | 0.53        |
| 2:B:275:MET:HG2  | 2:B:298:ILE:HD13 | 1.89           | 0.53        |
| 1:E:237:LYS:O    | 1:E:238:GLY:C    | 2.47           | 0.53        |
| 2:B:79:VAL:O     | 2:B:83:ILE:HG13  | 2.10           | 0.52        |
| 2:F:309:ASP:N    | 2:F:309:ASP:OD1  | 2.41           | 0.52        |
| 2:Z:266:MET:HG2  | 2:Z:287:VAL:HB   | 1.90           | 0.52        |
| 1:E:254:ILE:O    | 1:E:258:ILE:HG13 | 2.10           | 0.52        |
| 1:C:230:ARG:NH2  | 2:D:124:GLN:NE2  | 2.53           | 0.52        |
| 1:Q:210:LEU:HB3  | 1:Q:215:LEU:HB2  | 1.91           | 0.52        |
| 1:C:28:GLU:OE2   | 1:C:33:TYR:OH    | 2.28           | 0.52        |
| 2:D:119:TYR:CE2  | 2:D:132:ARG:HA   | 2.44           | 0.52        |
| 1:E:226:MET:CE   | 2:F:112:TYR:O    | 2.56           | 0.52        |
| 2:B:36:VAL:O     | 2:B:36:VAL:HG12  | 2.09           | 0.52        |
| 2:Z:77:ALA:HB1   | 2:Z:177:PRO:HG2  | 1.92           | 0.52        |
| 2:D:251:GLY:HA3  | 4:D:1319:FAD:C4  | 2.40           | 0.52        |
| 1:E:183:GLN:HE21 | 1:E:184:LEU:H    | 1.57           | 0.52        |
| 1:E:252:ALA:HA   | 2:F:317:GLN:HE22 | 1.74           | 0.52        |
| 1:A:44:GLU:HG2   | 1:A:189:PRO:HA   | 1.92           | 0.51        |
| 2:D:290:ASP:O    | 2:D:296:PHE:HE1  | 1.92           | 0.51        |
| 1:C:77:LEU:HA    | 1:C:81:ALA:HB3   | 1.91           | 0.51        |
| 2:F:4:LEU:HB3    | 2:F:91:VAL:HB    | 1.92           | 0.51        |
| 1:Q:161:ARG:HA   | 1:Q:170:GLN:O    | 2.10           | 0.51        |
| 1:Q:17:PHE:HA    | 1:Q:30:PHE:CD1   | 2.46           | 0.51        |



|                  |                  | Interatomic             | Clash       |
|------------------|------------------|-------------------------|-------------|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |
| 2:D:208:ILE:HG13 | 2:D:233:CYS:O    | 2.10                    | 0.51        |
| 1:E:15:GLU:O     | 1:E:16:ASP:CB    | 2.54                    | 0.51        |
| 1:A:187:ASN:OD1  | 1:A:187:ASN:C    | 2.49                    | 0.51        |
| 2:D:25:ALA:HB2   | 2:D:92:LEU:CD1   | 2.40                    | 0.51        |
| 1:Q:19:ILE:HD13  | 1:Q:26:VAL:HG22  | 1.92                    | 0.51        |
| 2:Z:75:PHE:O     | 2:Z:79:VAL:HG23  | 2.10                    | 0.51        |
| 1:C:38:TRP:NE1   | 1:C:184:LEU:HG   | 2.25                    | 0.51        |
| 1:E:247:ILE:N    | 1:E:247:ILE:HD13 | 2.25                    | 0.51        |
| 2:D:290:ASP:OD1  | 2:D:290:ASP:C    | 2.49                    | 0.51        |
| 1:C:186:ILE:HG23 | 1:C:187:ASN:N    | 2.25                    | 0.51        |
| 1:C:247:ILE:HD12 | 2:D:309:ASP:HB3  | 1.93                    | 0.51        |
| 2:F:235:SER:OG   | 2:F:237:PRO:HD2  | 2.10                    | 0.51        |
| 1:C:183:GLN:HE21 | 1:C:183:GLN:HA   | 1.77                    | 0.50        |
| 1:A:33:TYR:CE1   | 1:A:68:ARG:HD2   | 2.46                    | 0.50        |
| 2:F:17:VAL:O     | 2:F:18:SER:C     | 2.49                    | 0.50        |
| 1:Q:63:SER:HB2   | 1:Q:73:LEU:HD21  | 1.93                    | 0.50        |
| 1:C:233:TYR:O    | 2:D:139:VAL:HB   | 2.11                    | 0.50        |
| 1:E:162:ARG:HE   | 1:E:170:GLN:HE21 | 1.59                    | 0.50        |
| 1:E:183:GLN:HG3  | 1:E:184:LEU:N    | 2.25                    | 0.50        |
| 1:E:38:TRP:HE1   | 1:E:183:GLN:NE2  | 2.09                    | 0.50        |
| 2:F:314:LEU:O    | 2:F:318:LEU:HG   | 2.10                    | 0.50        |
| 1:A:24:MET:O     | 1:A:25:ASP:HB2   | 2.10                    | 0.50        |
| 1:A:102:ARG:HH11 | 1:A:102:ARG:CG   | 2.22                    | 0.50        |
| 2:B:199:ILE:C    | 2:B:201:THR:N    | 2.64                    | 0.50        |
| 1:E:243:ILE:HD11 | 2:F:301:TYR:HB3  | 1.93                    | 0.50        |
| 2:Z:289:THR:H    | 4:Z:1319:FAD:C2A | 2.23                    | 0.50        |
| 1:E:186:ILE:HG23 | 1:E:187:ASN:ND2  | 2.27                    | 0.50        |
| 2:D:20:GLU:HG2   | 2:D:160:PHE:O    | 2.11                    | 0.50        |
| 2:Z:273:GLN:NE2  | 2:Z:273:GLN:H    | 2.10                    | 0.50        |
| 2:D:202:VAL:CG1  | 2:D:203:ASP:N    | 2.45                    | 0.50        |
| 1:E:216:SER:O    | 1:E:218:ASN:N    | 2.44                    | 0.50        |
| 1:C:19:ILE:O     | 1:C:20:ARG:C     | 2.50                    | 0.50        |
| 2:D:120:ILE:HG13 | 2:D:131:THR:HB   | 1.94                    | 0.50        |
| 2:D:176:ALA:C    | 2:D:177:PRO:O    | 2.46                    | 0.50        |
| 1:E:258:ILE:O    | 1:E:261:PHE:HB3  | 2.12                    | 0.49        |
| 2:F:273:GLN:H    | 2:F:273:GLN:NE2  | 2.10                    | 0.49        |
| 1:Q:131:GLY:O    | 1:Q:179:VAL:HG11 | 2.12                    | 0.49        |
| 2:Z:236:ARG:HB2  | 4:Z:1319:FAD:C2  | 2.42                    | 0.49        |
| 1:C:165:GLU:OE2  | 2:D:97:VAL:HG23  | 2.13                    | 0.49        |
| 1:C:8:LYS:HG3    | 3:C:1262:AMP:N7  | 2.27                    | 0.49        |
| 2:D:38:VAL:HG11  | 2:D:52:LEU:HD22  | 1.95                    | 0.49        |



|                  |                  | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:E:146:VAL:HG22 | 1:E:160:ILE:HD13 | 1.94         | 0.49        |
| 1:E:74:ARG:NH2   | 1:E:201:ALA:O    | 2.37         | 0.49        |
| 1:A:65:GLY:HA3   | 1:A:69:VAL:HG21  | 1.94         | 0.49        |
| 2:F:71:ASP:OD1   | 2:F:74:VAL:HG23  | 2.12         | 0.49        |
| 2:B:49:VAL:O     | 2:B:53:SER:OG    | 2.13         | 0.49        |
| 2:D:134:GLY:O    | 2:D:135:TYR:C    | 2.50         | 0.49        |
| 1:E:246:THR:O    | 1:E:247:ILE:C    | 2.51         | 0.49        |
| 2:F:165:GLY:O    | 2:F:166:ALA:O    | 2.30         | 0.49        |
| 1:E:36:ASN:HD21  | 1:E:38:TRP:HB2   | 1.77         | 0.49        |
| 1:A:129:SER:HB3  | 2:B:104:SER:HB3  | 1.95         | 0.49        |
| 1:C:20:ARG:HB3   | 1:C:22:ASP:HA    | 1.95         | 0.49        |
| 1:Q:149:LEU:HD13 | 1:Q:180:LEU:CD1  | 2.43         | 0.49        |
| 2:D:269:SER:HB3  | 4:D:1319:FAD:O1P | 2.12         | 0.49        |
| 2:D:238:ILE:HG21 | 2:D:244:LEU:HD12 | 1.95         | 0.49        |
| 2:D:46:ASP:O     | 2:D:47:ALA:C     | 2.52         | 0.49        |
| 1:A:230:ARG:O    | 1:A:231:ARG:HB3  | 2.12         | 0.48        |
| 2:D:264:VAL:HG12 | 2:D:264:VAL:O    | 2.13         | 0.48        |
| 2:B:310:ILE:O    | 2:B:314:LEU:HB2  | 2.12         | 0.48        |
| 2:B:57:VAL:HG12  | 2:B:169:PRO:HB3  | 1.95         | 0.48        |
| 1:Q:63:SER:HA    | 3:Q:1262:AMP:H2  | 1.78         | 0.48        |
| 1:A:183:GLN:NE2  | 1:A:184:LEU:H    | 2.09         | 0.48        |
| 1:A:26:VAL:CG1   | 1:A:27:ASP:N     | 2.76         | 0.48        |
| 2:F:199:ILE:C    | 2:F:201:THR:N    | 2.67         | 0.48        |
| 1:C:183:GLN:HE21 | 1:C:184:LEU:H    | 1.62         | 0.48        |
| 1:C:254:ILE:O    | 1:C:258:ILE:HG13 | 2.12         | 0.48        |
| 1:Q:252:ALA:CA   | 2:Z:317:GLN:HE22 | 2.27         | 0.48        |
| 1:A:231:ARG:HG3  | 1:A:231:ARG:O    | 2.11         | 0.48        |
| 1:Q:8:LYS:HB2    | 3:Q:1262:AMP:C5  | 2.48         | 0.48        |
| 1:Q:120:VAL:HG22 | 1:Q:145:VAL:HA   | 1.96         | 0.48        |
| 2:Z:202:VAL:HG13 | 2:Z:203:ASP:H    | 1.72         | 0.48        |
| 2:F:46:ASP:O     | 2:F:49:VAL:HG13  | 2.13         | 0.48        |
| 1:C:130:THR:OG1  | 3:C:1262:AMP:O2P | 2.25         | 0.48        |
| 1:E:2:LYS:NZ     | 1:E:111:GLU:OE1  | 2.47         | 0.48        |
| 2:Z:5:VAL:HG22   | 2:Z:92:LEU:HB2   | 1.94         | 0.48        |
| 2:D:215:GLU:O    | 2:D:218:VAL:HG23 | 2.14         | 0.48        |
| 2:F:199:ILE:HG12 | 2:F:201:THR:HB   | 1.95         | 0.48        |
| 1:E:237:LYS:HA   | 2:F:297:THR:HG22 | 1.96         | 0.48        |
| 1:A:226:MET:HE2  | 2:B:112:TYR:O    | 2.14         | 0.47        |
| 1:C:102:ARG:HH11 | 1:C:102:ARG:HG2  | 1.78         | 0.47        |
| 2:F:189:VAL:CG1  | 2:F:190:GLU:N    | 2.77         | 0.47        |
| 1:E:237:LYS:C    | 1:E:238:GLY:O    | 2.51         | 0.47        |



|                  | lo uo puge       | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:E:4:LEU:C      | 1:E:4:LEU:HD23   | 2.34         | 0.47        |
| 1:Q:110:LYS:HD2  | 1:Q:213:ILE:HG22 | 1.95         | 0.47        |
| 2:F:219:GLU:OE1  | 2:F:222:ARG:NH1  | 2.46         | 0.47        |
| 2:B:201:THR:HG22 | 2:B:259:SER:OG   | 2.14         | 0.47        |
| 2:D:228:ALA:HA   | 2:D:318:LEU:CD1  | 2.45         | 0.47        |
| 1:Q:15:GLU:O     | 1:Q:16:ASP:HB2   | 2.14         | 0.47        |
| 1:C:102:ARG:HH11 | 1:C:102:ARG:CG   | 2.28         | 0.47        |
| 1:C:226:MET:HE1  | 2:D:111:GLY:HA2  | 1.95         | 0.47        |
| 2:D:205:ILE:HG13 | 2:D:260:CYS:HG   | 1.77         | 0.47        |
| 1:E:183:GLN:NE2  | 1:E:184:LEU:H    | 2.12         | 0.47        |
| 1:A:66:PRO:O     | 1:A:86:ARG:HD2   | 2.13         | 0.47        |
| 2:B:273:GLN:H    | 2:B:273:GLN:HE21 | 1.62         | 0.47        |
| 1:C:129:SER:HB3  | 2:D:104:SER:CB   | 2.41         | 0.47        |
| 1:C:176:CYS:HA   | 1:C:177:PRO:C    | 2.35         | 0.47        |
| 1:A:15:GLU:O     | 1:A:16:ASP:HB2   | 2.14         | 0.47        |
| 1:A:162:ARG:HH21 | 1:A:170:GLN:HE22 | 1.62         | 0.47        |
| 2:B:168:SER:O    | 2:B:169:PRO:C    | 2.52         | 0.47        |
| 2:B:52:LEU:HD23  | 2:B:52:LEU:HA    | 1.81         | 0.47        |
| 1:E:106:GLU:HB3  | 1:E:213:ILE:HB   | 1.96         | 0.47        |
| 1:A:77:LEU:HD23  | 1:A:77:LEU:HA    | 1.56         | 0.47        |
| 1:E:141:PRO:HG2  | 1:E:177:PRO:O    | 2.15         | 0.47        |
| 1:E:98:ILE:N     | 1:E:98:ILE:HD12  | 2.28         | 0.47        |
| 2:B:63:VAL:HG13  | 2:B:174:VAL:HG23 | 1.96         | 0.47        |
| 1:C:239:ARG:HG2  | 2:D:297:THR:HA   | 1.96         | 0.47        |
| 2:D:199:ILE:HG13 | 2:D:201:THR:HB   | 1.97         | 0.47        |
| 2:D:228:ALA:HA   | 2:D:318:LEU:HD12 | 1.97         | 0.47        |
| 2:D:86:HIS:O     | 2:D:87:ASN:C     | 2.52         | 0.47        |
| 1:E:1:MET:HA     | 1:E:114:ASP:OD1  | 2.14         | 0.47        |
| 2:B:238:ILE:CG2  | 2:B:244:LEU:HD12 | 2.45         | 0.47        |
| 1:C:156:ASN:ND2  | 1:C:157:LYS:HG3  | 2.29         | 0.47        |
| 1:C:36:ASN:O     | 1:C:37:GLU:C     | 2.52         | 0.47        |
| 2:F:215:GLU:HB2  | 2:F:243:TRP:CD2  | 2.50         | 0.47        |
| 1:C:102:ARG:NH1  | 1:C:102:ARG:HG2  | 2.29         | 0.46        |
| 1:C:112:ALA:N    | 1:C:113:PRO:CD   | 2.78         | 0.46        |
| 2:D:11:ARG:CG    | 2:D:188:TYR:CE1  | 2.98         | 0.46        |
| 2:F:215:GLU:HB2  | 2:F:243:TRP:CE2  | 2.50         | 0.46        |
| 1:A:102:ARG:CG   | 1:A:102:ARG:NH1  | 2.77         | 0.46        |
| 2:D:283:THR:HG23 | 2:D:300:LYS:HD3  | 1.96         | 0.46        |
| 2:B:163:LEU:H    | 2:B:163:LEU:HD22 | 1.80         | 0.46        |
| 1:E:210:LEU:O    | 1:E:213:ILE:HG13 | 2.16         | 0.46        |
| 2:Z:269:SER:HB3  | 4:Z:1319:FAD:O5B | 2.16         | 0.46        |



|                  |                  | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 2:Z:19:LEU:HA    | 2:Z:19:LEU:HD22  | 1.54         | 0.46        |
| 1:A:247:ILE:N    | 1:A:247:ILE:CD1  | 2.75         | 0.46        |
| 1:C:67:ASP:C     | 1:C:69:VAL:H     | 2.17         | 0.46        |
| 2:D:278:MET:HE2  | 2:D:278:MET:C    | 2.35         | 0.46        |
| 1:E:170:GLN:HB2  | 2:F:188:TYR:CD2  | 2.50         | 0.46        |
| 1:Q:63:SER:HB3   | 1:Q:69:VAL:HG11  | 1.98         | 0.46        |
| 1:E:216:SER:C    | 1:E:218:ASN:N    | 2.67         | 0.46        |
| 1:Q:165:GLU:OE2  | 2:Z:97:VAL:HG23  | 2.15         | 0.46        |
| 2:B:272:ILE:HA   | 2:B:272:ILE:HD13 | 1.73         | 0.46        |
| 1:C:186:ILE:CG2  | 1:C:187:ASN:N    | 2.78         | 0.46        |
| 2:D:137:GLN:NE2  | 2:D:156:ARG:HH12 | 2.13         | 0.46        |
| 1:E:168:MET:HE2  | 1:E:168:MET:HB2  | 1.95         | 0.46        |
| 1:Q:164:LEU:HD13 | 2:Z:10:ARG:NE    | 2.31         | 0.46        |
| 2:B:1:SER:HB2    | 2:B:34:ASP:OD1   | 2.16         | 0.46        |
| 2:B:46:ASP:C     | 2:B:48:PHE:N     | 2.69         | 0.46        |
| 2:D:273:GLN:NE2  | 4:D:1319:FAD:O2' | 2.49         | 0.46        |
| 1:Q:38:TRP:HE1   | 1:Q:183:GLN:HE22 | 1.64         | 0.46        |
| 2:D:284:ILE:HB   | 2:D:299:ALA:HA   | 1.98         | 0.46        |
| 1:A:65:GLY:O     | 1:A:88:TRP:HB2   | 2.16         | 0.45        |
| 2:F:212:ILE:HG22 | 2:F:221:PHE:CE1  | 2.51         | 0.45        |
| 1:A:182:ILE:N    | 1:A:182:ILE:HD13 | 2.31         | 0.45        |
| 1:A:36:ASN:O     | 1:A:37:GLU:C     | 2.53         | 0.45        |
| 1:E:168:MET:CB   | 1:E:168:MET:CE   | 2.85         | 0.45        |
| 1:E:98:ILE:CD1   | 1:E:98:ILE:N     | 2.79         | 0.45        |
| 2:F:1:SER:H3     | 2:F:34:ASP:CG    | 2.15         | 0.45        |
| 1:Q:4:LEU:HD22   | 1:Q:108:ILE:HG12 | 1.98         | 0.45        |
| 1:Q:164:LEU:HD13 | 2:Z:10:ARG:CZ    | 2.46         | 0.45        |
| 1:C:162:ARG:HH21 | 1:C:170:GLN:HE22 | 1.62         | 0.45        |
| 2:D:197:ILE:CB   | 2:D:198:ASP:CG   | 2.85         | 0.45        |
| 1:A:196:GLY:O    | 1:A:197:ILE:C    | 2.54         | 0.45        |
| 1:A:36:ASN:HD21  | 1:A:38:TRP:HB2   | 1.79         | 0.45        |
| 1:C:145:VAL:HG12 | 1:C:145:VAL:O    | 2.15         | 0.45        |
| 2:D:176:ALA:O    | 2:D:177:PRO:O    | 2.34         | 0.45        |
| 1:E:216:SER:O    | 1:E:217:ALA:C    | 2.54         | 0.45        |
| 1:Q:254:ILE:O    | 1:Q:258:ILE:HG13 | 2.17         | 0.45        |
| 2:B:260:CYS:O    | 2:B:281:VAL:HG13 | 2.17         | 0.45        |
| 1:C:183:GLN:NE2  | 1:C:184:LEU:H    | 2.14         | 0.45        |
| 1:C:44:GLU:HB3   | 1:C:187:ASN:ND2  | 2.31         | 0.45        |
| 2:D:204:PHE:CZ   | 2:D:230:ALA:HB2  | 2.51         | 0.45        |
| 1:Q:132:ILE:O    | 1:Q:135:ALA:HB3  | 2.17         | 0.45        |
| 2:D:264:VAL:CG1  | 2:D:266:MET:CE   | 2.95         | 0.45        |



|                  |                  | Interatomic    | Clash       |
|------------------|------------------|----------------|-------------|
| Atom-1           | Atom-2           | distance $(Å)$ | overlap (Å) |
| 1:E:73:LEU:O     | 1:E:76:CYS:HB2   | 2.16           | 0.45        |
| 2:D:92:LEU:HD22  | 2:D:155:ILE:HD11 | 1.99           | 0.45        |
| 2:D:251:GLY:HA3  | 4:D:1319:FAD:O4  | 2.16           | 0.45        |
| 2:B:189:VAL:CG1  | 2:B:190:GLU:N    | 2.76           | 0.45        |
| 2:B:197:ILE:HD13 | 2:B:248:ARG:NE   | 2.23           | 0.45        |
| 2:D:251:GLY:HA3  | 4:D:1319:FAD:N3  | 2.32           | 0.45        |
| 2:F:306:ASP:OD1  | 2:F:308:PHE:CD1  | 2.70           | 0.45        |
| 1:C:150:GLN:HB3  | 1:C:150:GLN:HE21 | 1.43           | 0.45        |
| 1:C:79:LYS:O     | 1:C:190:ARG:HD2  | 2.17           | 0.45        |
| 1:C:216:SER:O    | 1:C:217:ALA:C    | 2.54           | 0.45        |
| 2:D:69:ASP:O     | 2:D:70:PHE:C     | 2.51           | 0.45        |
| 2:F:174:VAL:HG23 | 2:F:175:ASP:N    | 2.32           | 0.45        |
| 1:A:20:ARG:HB3   | 1:A:22:ASP:CA    | 2.47           | 0.45        |
| 1:A:53:SER:OG    | 1:A:55:THR:HG23  | 2.17           | 0.45        |
| 2:D:41:ILE:HG12  | 2:D:63:VAL:HB    | 1.99           | 0.45        |
| 2:B:281:VAL:HG13 | 2:B:282:PRO:HD2  | 1.98           | 0.44        |
| 2:D:218:VAL:O    | 2:D:221:PHE:N    | 2.50           | 0.44        |
| 2:D:273:GLN:HG2  | 4:D:1319:FAD:C9A | 2.47           | 0.44        |
| 2:B:284:ILE:HG21 | 2:B:284:ILE:HD13 | 1.64           | 0.44        |
| 1:C:183:GLN:HE21 | 1:C:183:GLN:CA   | 2.29           | 0.44        |
| 2:D:273:GLN:O    | 2:D:274:HIS:C    | 2.53           | 0.44        |
| 1:Q:102:ARG:NH1  | 1:Q:102:ARG:CG   | 2.54           | 0.44        |
| 1:Q:253:LYS:HD2  | 1:Q:257:ILE:HD11 | 1.97           | 0.44        |
| 1:A:124:ASP:OD1  | 1:A:124:ASP:N    | 2.50           | 0.44        |
| 2:D:112:TYR:CD1  | 2:D:150:THR:HB   | 2.53           | 0.44        |
| 2:F:260:CYS:SG   | 2:F:262:LEU:O    | 2.76           | 0.44        |
| 1:C:136:SER:HB2  | 2:D:105:SER:OG   | 2.17           | 0.44        |
| 2:D:208:ILE:HD11 | 2:D:244:LEU:HD11 | 1.98           | 0.44        |
| 2:F:60:LEU:HD23  | 2:F:60:LEU:HA    | 1.62           | 0.44        |
| 1:Q:231:ARG:CZ   | 1:Q:233:TYR:CE2  | 3.01           | 0.44        |
| 2:B:159:VAL:HG12 | 2:B:160:PHE:CD1  | 2.53           | 0.44        |
| 1:C:96:ASP:OD1   | 1:C:96:ASP:C     | 2.54           | 0.44        |
| 1:E:216:SER:C    | 1:E:218:ASN:H    | 2.21           | 0.44        |
| 2:Z:8:GLU:HG2    | 2:Z:15:ARG:HD3   | 2.00           | 0.44        |
| 2:B:263:TYR:CD2  | 2:B:278:MET:HE2  | 2.53           | 0.44        |
| 1:C:156:ASN:HD22 | 1:C:157:LYS:HG3  | 1.82           | 0.44        |
| 1:C:230:ARG:HH22 | 2:D:124:GLN:NE2  | 2.14           | 0.44        |
| 1:E:242:MET:CE   | 1:E:242:MET:CG   | 2.94           | 0.44        |
| 2:D:238:ILE:HA   | 2:D:238:ILE:HD12 | 1.93           | 0.44        |
| 1:E:75:LYS:O     | 1:E:79:LYS:HG3   | 2.18           | 0.44        |
| 1:Q:39:ASP:HA    | 1:Q:42:SER:HB3   | 1.98           | 0.44        |



|                  |                   | Interatomic  | Clash       |
|------------------|-------------------|--------------|-------------|
| Atom-1           | Atom-2            | distance (Å) | overlap (Å) |
| 1:A:20:ARG:O     | 1:A:22:ASP:CB     | 2.65         | 0.44        |
| 2:B:314:LEU:HA   | 2:B:314:LEU:HD12  | 1.82         | 0.44        |
| 2:D:119:TYR:CD2  | 2:D:119:TYR:N     | 2.85         | 0.44        |
| 1:C:121:GLN:C    | 3:C:1262:AMP:H5'2 | 2.38         | 0.43        |
| 1:C:228:ARG:NH2  | 2:D:144:ASP:OD2   | 2.50         | 0.43        |
| 1:E:174:ILE:HG12 | 1:E:175:ASN:N     | 2.31         | 0.43        |
| 1:C:102:ARG:HD3  | 1:C:102:ARG:O     | 2.17         | 0.43        |
| 2:D:316:ALA:O    | 2:D:318:LEU:N     | 2.50         | 0.43        |
| 1:Q:23:GLY:O     | 1:Q:231:ARG:HA    | 2.18         | 0.43        |
| 2:Z:295:ILE:HG13 | 2:Z:295:ILE:O     | 2.17         | 0.43        |
| 1:C:120:VAL:HG23 | 1:C:182:ILE:O     | 2.18         | 0.43        |
| 1:E:246:THR:C    | 1:E:248:SER:N     | 2.71         | 0.43        |
| 1:E:88:TRP:CG    | 1:E:89:ASP:N      | 2.87         | 0.43        |
| 1:E:136:SER:HB2  | 2:F:105:SER:OG    | 2.19         | 0.43        |
| 1:A:168:MET:HE3  | 2:B:190:GLU:OE1   | 2.18         | 0.43        |
| 2:B:4:LEU:HB3    | 2:B:91:VAL:HB     | 1.98         | 0.43        |
| 2:D:290:ASP:HA   | 2:D:291:PRO:HD3   | 1.77         | 0.43        |
| 2:D:49:VAL:HB    | 2:D:60:LEU:HD13   | 2.00         | 0.43        |
| 1:E:252:ALA:O    | 1:E:256:GLN:HG3   | 2.19         | 0.43        |
| 2:Z:113:GLY:O    | 2:Z:114:PHE:HB2   | 2.17         | 0.43        |
| 1:C:243:ILE:HG22 | 1:C:250:GLN:HG2   | 2.00         | 0.43        |
| 1:E:87:VAL:HG21  | 1:E:107:VAL:HG21  | 2.00         | 0.43        |
| 1:E:47:MET:CE    | 1:E:80:GLY:HA3    | 2.48         | 0.43        |
| 1:Q:13:LEU:HD22  | 1:Q:26:VAL:HG11   | 2.01         | 0.43        |
| 1:Q:18:GLU:HG3   | 1:Q:30:PHE:CE1    | 2.52         | 0.43        |
| 1:A:243:ILE:HG21 | 1:A:253:LYS:HG3   | 1.99         | 0.43        |
| 1:C:249:GLU:H    | 1:C:249:GLU:HG2   | 1.44         | 0.43        |
| 1:E:117:PHE:CD1  | 1:E:117:PHE:N     | 2.85         | 0.43        |
| 1:E:33:TYR:CD1   | 1:E:68:ARG:HD2    | 2.53         | 0.43        |
| 2:B:163:LEU:HD22 | 2:B:163:LEU:N     | 2.34         | 0.43        |
| 2:B:222:ARG:HA   | 2:B:232:LEU:HD22  | 2.00         | 0.43        |
| 1:C:258:ILE:O    | 1:C:261:PHE:HB3   | 2.19         | 0.43        |
| 2:D:2:LYS:NZ     | 2:D:86:HIS:ND1    | 2.65         | 0.43        |
| 2:F:306:ASP:OD1  | 2:F:308:PHE:N     | 2.46         | 0.43        |
| 1:A:120:VAL:HG22 | 1:A:145:VAL:HA    | 2.01         | 0.43        |
| 2:D:264:VAL:HG11 | 2:D:266:MET:HE1   | 2.01         | 0.43        |
| 1:E:73:LEU:HD23  | 1:E:73:LEU:HA     | 1.56         | 0.43        |
| 1:Q:38:TRP:HE1   | 1:Q:183:GLN:NE2   | 2.17         | 0.43        |
| 1:A:226:MET:HE3  | 2:B:112:TYR:O     | 2.18         | 0.43        |
| 1:E:35:LEU:HD12  | 1:E:35:LEU:HA     | 1.77         | 0.43        |
| 2:Z:214:GLU:OE2  | 2:Z:214:GLU:N     | 2.52         | 0.43        |



|                  |                  | Interatomic             | Clash       |
|------------------|------------------|-------------------------|-------------|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |
| 2:B:127:GLU:HA   | 2:B:127:GLU:OE2  | 2.19                    | 0.42        |
| 2:D:272:ILE:HG23 | 2:D:272:ILE:HD12 | 1.77                    | 0.42        |
| 1:C:182:ILE:HG23 | 1:C:182:ILE:HD12 | 1.76                    | 0.42        |
| 1:C:87:VAL:HG22  | 1:C:208:VAL:HB   | 2.01                    | 0.42        |
| 2:B:11:ARG:O     | 2:B:12:ASN:HB2   | 2.19                    | 0.42        |
| 1:E:253:LYS:O    | 1:E:254:ILE:C    | 2.56                    | 0.42        |
| 2:B:6:ILE:HD12   | 2:B:79:VAL:HG22  | 2.01                    | 0.42        |
| 1:C:20:ARG:CB    | 1:C:22:ASP:HA    | 2.50                    | 0.42        |
| 1:E:104:LEU:HA   | 1:E:104:LEU:HD23 | 1.55                    | 0.42        |
| 1:Q:7:VAL:HG12   | 1:Q:39:ASP:HB3   | 2.00                    | 0.42        |
| 2:Z:199:ILE:C    | 2:Z:201:THR:H    | 2.23                    | 0.42        |
| 1:A:162:ARG:HH11 | 1:A:162:ARG:HD2  | 1.59                    | 0.42        |
| 2:B:186:LYS:HA   | 2:B:186:LYS:HD2  | 1.72                    | 0.42        |
| 2:D:46:ASP:C     | 2:D:48:PHE:N     | 2.69                    | 0.42        |
| 1:E:261:PHE:CD1  | 1:E:261:PHE:C    | 2.93                    | 0.42        |
| 1:Q:103:ILE:HD13 | 1:Q:103:ILE:HG21 | 1.79                    | 0.42        |
| 2:B:236:ARG:HB2  | 4:B:1319:FAD:C2  | 2.50                    | 0.42        |
| 2:B:204:PHE:CE2  | 2:B:262:LEU:HD23 | 2.54                    | 0.42        |
| 2:D:71:ASP:OD1   | 2:D:74:VAL:HG23  | 2.20                    | 0.42        |
| 1:E:8:LYS:HD3    | 1:E:10:THR:HG22  | 2.01                    | 0.42        |
| 2:F:42:GLY:O     | 2:F:64:LYS:HA    | 2.20                    | 0.42        |
| 1:A:25:ASP:HA    | 1:A:232:MET:SD   | 2.59                    | 0.42        |
| 2:B:210:ARG:O    | 2:B:212:ILE:N    | 2.53                    | 0.42        |
| 2:D:28:LEU:HD13  | 2:D:121:VAL:HG13 | 2.01                    | 0.42        |
| 2:D:298:ILE:H    | 2:D:298:ILE:HG13 | 1.65                    | 0.42        |
| 2:D:266:MET:HB3  | 2:D:307:ILE:HG21 | 2.00                    | 0.42        |
| 2:F:273:GLN:H    | 2:F:273:GLN:HE21 | 1.66                    | 0.42        |
| 1:A:182:ILE:HG22 | 1:A:183:GLN:N    | 2.34                    | 0.42        |
| 1:A:215:LEU:HA   | 1:A:215:LEU:HD23 | 1.85                    | 0.42        |
| 1:E:38:TRP:NE1   | 1:E:184:LEU:HG   | 2.35                    | 0.42        |
| 1:E:58:GLU:HA    | 1:E:82:ASP:OD2   | 2.20                    | 0.42        |
| 1:C:116:VAL:O    | 1:C:179:VAL:HA   | 2.20                    | 0.42        |
| 1:E:13:LEU:HD23  | 1:E:13:LEU:HA    | 1.81                    | 0.42        |
| 2:Z:238:ILE:HG21 | 2:Z:244:LEU:HD12 | 2.02                    | 0.42        |
| 1:E:17:PHE:HA    | 1:E:30:PHE:CG    | 2.55                    | 0.42        |
| 1:C:118:ALA:O    | 1:C:181:THR:HA   | 2.20                    | 0.41        |
| 1:C:73:LEU:HA    | 1:C:73:LEU:HD23  | 1.85                    | 0.41        |
| 2:D:244:LEU:HA   | 2:D:245:PRO:HD2  | 1.79                    | 0.41        |
| 2:D:75:PHE:O     | 2:D:79:VAL:HG23  | 2.20                    | 0.41        |
| 2:F:75:PHE:O     | 2:F:79:VAL:HG23  | 2.20                    | 0.41        |
| 1:A:9:GLN:OE1    | 1:A:68:ARG:HG3   | 2.20                    | 0.41        |



|                  |                  | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 2:B:252:GLN:HB3  | 2:B:273:GLN:HB3  | 2.01         | 0.41        |
| 1:C:53:SER:C     | 1:C:55:THR:H     | 2.23         | 0.41        |
| 2:F:106:LEU:HD12 | 2:F:106:LEU:HA   | 1.91         | 0.41        |
| 2:F:45:ALA:HB3   | 2:F:62:VAL:CG1   | 2.50         | 0.41        |
| 2:F:224:LEU:HD23 | 2:F:224:LEU:HA   | 1.83         | 0.41        |
| 1:A:70:ASP:OD1   | 1:A:86:ARG:NE    | 2.52         | 0.41        |
| 1:E:220:VAL:O    | 1:E:224:GLN:HG2  | 2.20         | 0.41        |
| 1:A:125:GLN:O    | 1:A:126:ALA:C    | 2.58         | 0.41        |
| 1:A:154:GLY:O    | 1:A:155:ASP:O    | 2.39         | 0.41        |
| 1:A:168:MET:HE2  | 2:B:190:GLU:OE1  | 2.20         | 0.41        |
| 1:E:19:ILE:H     | 1:E:19:ILE:HG12  | 1.62         | 0.41        |
| 1:E:87:VAL:HG22  | 1:E:208:VAL:HB   | 2.01         | 0.41        |
| 2:F:156:ARG:HG2  | 2:F:159:VAL:HG21 | 2.03         | 0.41        |
| 2:F:199:ILE:CG1  | 2:F:201:THR:HB   | 2.49         | 0.41        |
| 2:Z:245:PRO:C    | 2:Z:247:SER:N    | 2.74         | 0.41        |
| 1:A:226:MET:HE3  | 2:B:111:GLY:C    | 2.41         | 0.41        |
| 1:C:16:ASP:C     | 1:C:17:PHE:O     | 2.58         | 0.41        |
| 1:C:9:GLN:CG     | 1:C:33:TYR:HB3   | 2.49         | 0.41        |
| 1:E:194:LEU:HA   | 1:E:194:LEU:HD23 | 1.76         | 0.41        |
| 1:E:231:ARG:HG3  | 1:E:232:MET:N    | 2.36         | 0.41        |
| 1:E:246:THR:OG1  | 1:E:249:GLU:HG2  | 2.20         | 0.41        |
| 1:E:249:GLU:O    | 1:E:252:ALA:N    | 2.54         | 0.41        |
| 1:E:228:ARG:NH2  | 2:F:144:ASP:OD2  | 2.42         | 0.41        |
| 1:C:75:LYS:O     | 1:C:78:ALA:HB3   | 2.21         | 0.41        |
| 2:D:278:MET:O    | 2:D:280:HIS:N    | 2.54         | 0.41        |
| 2:D:278:MET:HE1  | 2:D:284:ILE:HD13 | 2.01         | 0.41        |
| 2:F:224:LEU:O    | 2:F:225:ALA:C    | 2.58         | 0.41        |
| 2:Z:215:GLU:O    | 2:Z:218:VAL:HG23 | 2.21         | 0.41        |
| 2:B:307:ILE:H    | 2:B:307:ILE:HG12 | 1.61         | 0.41        |
| 2:B:5:VAL:HG12   | 2:B:6:ILE:N      | 2.32         | 0.41        |
| 1:C:42:SER:O     | 1:C:43:LEU:C     | 2.59         | 0.41        |
| 2:D:197:ILE:CB   | 2:D:198:ASP:CB   | 2.99         | 0.41        |
| 2:D:49:VAL:N     | 2:D:50:PRO:HD2   | 2.35         | 0.41        |
| 1:E:7:VAL:O      | 1:E:7:VAL:HG23   | 2.20         | 0.41        |
| 2:F:244:LEU:HD23 | 2:F:244:LEU:HA   | 1.89         | 0.41        |
| 2:F:257:VAL:HG22 | 2:F:277:GLY:O    | 2.20         | 0.41        |
| 1:Q:176:CYS:HA   | 1:Q:177:PRO:C    | 2.41         | 0.41        |
| 1:Q:254:ILE:HD11 | 2:Z:303:ILE:CD1  | 2.50         | 0.41        |
| 2:Z:199:ILE:O    | 2:Z:201:THR:N    | 2.54         | 0.41        |
| 1:A:27:ASP:C     | 1:A:29:ASP:H     | 2.24         | 0.41        |
| 2:B:102:TYR:O    | 2:B:105:SER:N    | 2.51         | 0.41        |



|                  | lo uo puge       | Interatomic    | Clash       |
|------------------|------------------|----------------|-------------|
| Atom-1           | Atom-2           | distance $(Å)$ | overlap (Å) |
| 2:B:275:MET:HG2  | 2:B:298:ILE:CD1  | 2.51           | 0.41        |
| 2:B:70:PHE:CG    | 2:B:71:ASP:N     | 2.89           | 0.41        |
| 1:C:87:VAL:CG2   | 1:C:107:VAL:HG21 | 2.49           | 0.41        |
| 2:D:197:ILE:CB   | 2:D:198:ASP:HB2  | 2.50           | 0.41        |
| 2:D:310:ILE:HG22 | 2:D:314:LEU:CD2  | 2.34           | 0.41        |
| 2:F:310:ILE:HD12 | 2:F:310:ILE:HG23 | 1.74           | 0.41        |
| 1:A:249:GLU:O    | 1:A:250:GLN:C    | 2.59           | 0.41        |
| 1:Q:18:GLU:HG3   | 1:Q:30:PHE:HE1   | 1.86           | 0.41        |
| 1:Q:89:ASP:CB    | 1:Q:210:LEU:HD12 | 2.51           | 0.41        |
| 1:Q:237:LYS:O    | 1:Q:238:GLY:C    | 2.59           | 0.41        |
| 1:A:121:GLN:HB3  | 1:A:128:ALA:HB2  | 2.03           | 0.40        |
| 1:C:17:PHE:HA    | 1:C:30:PHE:CD1   | 2.56           | 0.40        |
| 1:C:67:ASP:C     | 1:C:69:VAL:N     | 2.73           | 0.40        |
| 1:E:243:ILE:HG21 | 1:E:253:LYS:HG3  | 2.03           | 0.40        |
| 1:E:83:ARG:HD3   | 1:E:83:ARG:HH11  | 1.55           | 0.40        |
| 2:F:79:VAL:O     | 2:F:83:ILE:HG13  | 2.21           | 0.40        |
| 1:Q:162:ARG:HH21 | 1:Q:170:GLN:NE2  | 2.15           | 0.40        |
| 1:A:96:ASP:C     | 1:A:96:ASP:OD1   | 2.59           | 0.40        |
| 2:B:210:ARG:O    | 2:B:211:GLY:C    | 2.59           | 0.40        |
| 2:B:272:ILE:HG23 | 2:B:272:ILE:HD12 | 1.84           | 0.40        |
| 2:D:120:ILE:HD13 | 2:D:120:ILE:HG21 | 1.62           | 0.40        |
| 1:C:229:VAL:HA   | 2:D:143:VAL:HG12 | 2.03           | 0.40        |
| 1:E:57:VAL:HG12  | 1:E:58:GLU:N     | 2.36           | 0.40        |
| 2:F:308:PHE:O    | 2:F:311:GLU:HB3  | 2.20           | 0.40        |
| 2:F:52:LEU:HA    | 2:F:52:LEU:HD23  | 1.87           | 0.40        |
| 2:Z:289:THR:HG23 | 4:Z:1319:FAD:N1A | 2.36           | 0.40        |
| 2:Z:281:VAL:HA   | 2:Z:282:PRO:HD3  | 1.86           | 0.40        |
| 2:D:316:ALA:O    | 2:D:317:GLN:C    | 2.60           | 0.40        |
| 2:F:96:SER:H     | 2:F:99:SER:HB2   | 1.87           | 0.40        |
| 1:Q:62:VAL:HG22  | 1:Q:85:VAL:HB    | 2.03           | 0.40        |
| 1:C:246:THR:N    | 1:C:249:GLU:HG3  | 2.17           | 0.40        |
| 2:D:278:MET:HB2  | 2:D:278:MET:HE3  | 1.92           | 0.40        |
| 1:Q:70:ASP:OD1   | 1:Q:86:ARG:NE    | 2.54           | 0.40        |
| 2:Z:290:ASP:HA   | 2:Z:291:PRO:HD2  | 1.79           | 0.40        |
| 1:A:4:LEU:HD22   | 1:A:108:ILE:HG12 | 2.03           | 0.40        |
| 1:A:95:SER:HB3   | 1:A:99:VAL:HB    | 2.04           | 0.40        |
| 1:C:246:THR:O    | 1:C:248:SER:N    | 2.54           | 0.40        |
| 1:C:77:LEU:HD23  | 1:C:81:ALA:HB3   | 2.03           | 0.40        |
| 2:Z:224:LEU:HD21 | 2:Z:314:LEU:HB3  | 2.03           | 0.40        |

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.



| Atom-1         | Atom-2                   | ${f Interatomic} \ {f distance} \ ({ m \AA})$ | Clash<br>overlap (Å) |
|----------------|--------------------------|-----------------------------------------------|----------------------|
| 1:A:191:TYR:OH | $2:F:216:THR:CG2[4_456]$ | 2.19                                          | 0.01                 |

### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Favoured   | Allowed  | Outliers | P | erc | entiles |
|-----|-------|-----------------|------------|----------|----------|---|-----|---------|
| 1   | А     | 257/264~(97%)   | 228~(89%)  | 22 (9%)  | 7(3%)    |   | 5   | 25      |
| 1   | С     | 256/264~(97%)   | 221~(86%)  | 29 (11%) | 6 (2%)   |   | 6   | 28      |
| 1   | E     | 256/264~(97%)   | 227~(89%)  | 20 (8%)  | 9~(4%)   |   | 3   | 20      |
| 1   | Q     | 240/264~(91%)   | 221 (92%)  | 15~(6%)  | 4 (2%)   |   | 9   | 36      |
| 2   | В     | 310/320~(97%)   | 269~(87%)  | 33 (11%) | 8 (3%)   |   | 5   | 26      |
| 2   | D     | 310/320~(97%)   | 272 (88%)  | 26 (8%)  | 12~(4%)  |   | 3   | 18      |
| 2   | F     | 310/320~(97%)   | 272 (88%)  | 25~(8%)  | 13~(4%)  |   | 3   | 16      |
| 2   | Z     | 308/320~(96%)   | 279 (91%)  | 24 (8%)  | 5 (2%)   |   | 9   | 37      |
| All | All   | 2247/2336~(96%) | 1989 (88%) | 194 (9%) | 64 (3%)  |   | 5   | 25      |

All (64) Ramachandran outliers are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type |
|-----|-------|----------------|------|
| 1   | А     | 155            | ASP  |
| 2   | В     | 211            | GLY  |
| 1   | С     | 247            | ILE  |
| 2   | D     | 197            | ILE  |
| 2   | D     | 201            | THR  |
| 2   | D     | 269            | SER  |
| 2   | D     | 316            | ALA  |
| 1   | Ε     | 155            | ASP  |
| 1   | Е     | 211            | ALA  |
| 1   | Е     | 237            | LYS  |
| 2   | F     | 166            | ALA  |
| 2   | F     | 197            | ILE  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | F     | 202 | VAL  |
| 2   | F     | 314 | LEU  |
| 1   | Q     | 145 | VAL  |
| 2   | В     | 47  | ALA  |
| 2   | В     | 202 | VAL  |
| 1   | С     | 28  | GLU  |
| 2   | D     | 257 | VAL  |
| 2   | D     | 279 | LYS  |
| 1   | Е     | 145 | VAL  |
| 1   | Е     | 212 | ASP  |
| 2   | F     | 222 | ARG  |
| 2   | F     | 247 | SER  |
| 2   | F     | 276 | ALA  |
| 2   | F     | 310 | ILE  |
| 2   | F     | 316 | ALA  |
| 2   | F     | 317 | GLN  |
| 1   | Q     | 238 | GLY  |
| 1   | А     | 28  | GLU  |
| 2   | В     | 200 | THR  |
| 2   | В     | 276 | ALA  |
| 1   | С     | 93  | GLU  |
| 1   | С     | 145 | VAL  |
| 2   | D     | 12  | ASN  |
| 2   | D     | 34  | ASP  |
| 2   | D     | 177 | PRO  |
| 1   | Е     | 195 | ARG  |
| 1   | Е     | 236 | GLU  |
| 2   | F     | 258 | GLY  |
| 2   | Z     | 12  | ASN  |
| 2   | Z     | 316 | ALA  |
| 1   | A     | 126 | ALA  |
| 1   | A     | 187 | ASN  |
| 2   | В     | 197 | ILE  |
| 1   | E     | 196 | GLY  |
| 2   | F     | 55  | ASN  |
| 2   | F     | 200 | THR  |
| 1   | Q     | 89  | ASP  |
| 2   | Z     | 200 | THR  |
| 1   | A     | 222 | ALA  |
| 1   | С     | 260 | GLU  |
| 2   | D     | 246 | LYS  |
| 1   | E     | 25  | ASP  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 51  | GLU  |
| 1   | А     | 66  | PRO  |
| 2   | D     | 210 | ARG  |
| 2   | D     | 317 | GLN  |
| 1   | Q     | 153 | PRO  |
| 2   | В     | 298 | ILE  |
| 2   | Ζ     | 87  | ASN  |
| 1   | С     | 238 | GLY  |
| 2   | Ζ     | 197 | ILE  |
| 2   | В     | 282 | PRO  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Rotameric  | Outliers  | Perce | entiles |
|-----|-------|-----------------|------------|-----------|-------|---------|
| 1   | А     | 200/216~(93%)   | 173~(86%)  | 27 (14%)  | 4     | 16      |
| 1   | С     | 196/216~(91%)   | 181~(92%)  | 15~(8%)   | 13    | 41      |
| 1   | Ε     | 195/216~(90%)   | 176~(90%)  | 19 (10%)  | 8     | 30      |
| 1   | Q     | 184/216~(85%)   | 166~(90%)  | 18 (10%)  | 8     | 29      |
| 2   | В     | 245/258~(95%)   | 220~(90%)  | 25~(10%)  | 7     | 27      |
| 2   | D     | 243/258~(94%)   | 209~(86%)  | 34~(14%)  | 3     | 15      |
| 2   | F     | 243/258~(94%)   | 213~(88%)  | 30~(12%)  | 4     | 19      |
| 2   | Ζ     | 241/258~(93%)   | 223 (92%)  | 18 (8%)   | 13    | 42      |
| All | All   | 1747/1896~(92%) | 1561 (89%) | 186 (11%) | 6     | 26      |

All (186) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 1   | MET  |
| 1   | А     | 10  | THR  |
| 1   | А     | 16  | ASP  |
| 1   | А     | 34  | ASP  |
| 1   | А     | 42  | SER  |



| $\mathbf{Mol}$ | Chain | Res | Type |
|----------------|-------|-----|------|
| 1              | А     | 48  | LYS  |
| 1              | А     | 51  | GLU  |
| 1              | А     | 55  | THR  |
| 1              | А     | 56  | ASP  |
| 1              | А     | 60  | VAL  |
| 1              | А     | 68  | ARG  |
| 1              | А     | 74  | ARG  |
| 1              | А     | 98  | ILE  |
| 1              | А     | 102 | ARG  |
| 1              | А     | 132 | ILE  |
| 1              | А     | 141 | PRO  |
| 1              | А     | 145 | VAL  |
| 1              | А     | 156 | ASN  |
| 1              | А     | 162 | ARG  |
| 1              | А     | 180 | LEU  |
| 1              | А     | 183 | GLN  |
| 1              | А     | 203 | LYS  |
| 1              | А     | 239 | ARG  |
| 1              | А     | 246 | THR  |
| 1              | А     | 249 | GLU  |
| 1              | А     | 253 | LYS  |
| 1              | А     | 261 | PHE  |
| 2              | В     | 1   | SER  |
| 2              | В     | 16  | PRO  |
| 2              | В     | 29  | LYS  |
| 2              | В     | 30  | LYS  |
| 2              | В     | 49  | VAL  |
| 2              | В     | 60  | LEU  |
| 2              | В     | 66  | SER  |
| 2              | В     | 71  | ASP  |
| 2              | В     | 80  | SER  |
| 2              | В     | 91  | VAL  |
| 2              | В     | 158 | SER  |
| 2              | В     | 168 | SER  |
| 2              | В     | 172 | SER  |
| 2              | В     | 199 | ILE  |
| 2              | В     | 201 | THR  |
| 2              | В     | 203 | ASP  |
| 2              | В     | 219 | GLU  |
| 2              | В     | 224 | LEU  |
| 2              | В     | 237 | PRO  |
| 2              | В     | 246 | LYS  |



| Mol     | Chain | Res | Type |
|---------|-------|-----|------|
| 2       | В     | 259 | SER  |
| 2       | В     | 273 | GLN  |
| 2       | В     | 279 | LYS  |
| 2       | В     | 289 | THR  |
| 2       | В     | 307 | ILE  |
| 1       | С     | 32  | MET  |
| 1       | С     | 34  | ASP  |
| 1       | С     | 74  | ARG  |
| 1       | С     | 75  | LYS  |
| 1       | С     | 102 | ARG  |
| 1       | С     | 121 | GLN  |
| 1       | С     | 125 | GLN  |
| 1       | С     | 150 | GLN  |
| 1       | С     | 156 | ASN  |
| 1       | С     | 183 | GLN  |
| 1       | С     | 193 | SER  |
| 1       | С     | 216 | SER  |
| 1       | С     | 239 | ARG  |
| 1       | С     | 249 | GLU  |
| 1       | С     | 253 | LYS  |
| 2       | D     | 11  | ARG  |
| 2       | D     | 19  | LEU  |
| 2       | D     | 29  | LYS  |
| 2       | D     | 30  | LYS  |
| 2       | D     | 31  | SER  |
| 2       | D     | 60  | LEU  |
| 2       | D     | 80  | SER  |
| 2       | D     | 91  | VAL  |
| $2^{-}$ | D     | 119 | TYR  |
| 2       | D     | 120 | ILE  |
| 2       | D     | 149 | SER  |
| 2       | D     | 163 | LEU  |
| 2       | D     | 178 | SER  |
| 2       | D     | 199 | ILE  |
| 2       | D     | 201 | THR  |
| 2       | D     | 203 | ASP  |
| 2       | D     | 208 | ILE  |
| 2       | D     | 212 | ILE  |
| 2       | D     | 214 | GLU  |
| 2       | D     | 216 | THR  |
| 2       | D     | 223 | GLU  |
| 2       | D     | 224 | LEU  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | D     | 238 | ILE  |
| 2   | D     | 246 | LYS  |
| 2   | D     | 255 | LYS  |
| 2   | D     | 278 | MET  |
| 2   | D     | 294 | SER  |
| 2   | D     | 295 | ILE  |
| 2   | D     | 298 | ILE  |
| 2   | D     | 303 | ILE  |
| 2   | D     | 306 | ASP  |
| 2   | D     | 307 | ILE  |
| 2   | D     | 311 | GLU  |
| 2   | D     | 318 | LEU  |
| 1   | Е     | 1   | MET  |
| 1   | Е     | 18  | GLU  |
| 1   | Е     | 28  | GLU  |
| 1   | Е     | 55  | THR  |
| 1   | Е     | 74  | ARG  |
| 1   | Е     | 89  | ASP  |
| 1   | Е     | 102 | ARG  |
| 1   | Е     | 136 | SER  |
| 1   | Е     | 156 | ASN  |
| 1   | Е     | 168 | MET  |
| 1   | Е     | 174 | ILE  |
| 1   | Е     | 183 | GLN  |
| 1   | Е     | 195 | ARG  |
| 1   | Е     | 203 | LYS  |
| 1   | Е     | 213 | ILE  |
| 1   | Е     | 216 | SER  |
| 1   | Е     | 231 | ARG  |
| 1   | Е     | 249 | GLU  |
| 1   | Е     | 261 | PHE  |
| 2   | F     | 1   | SER  |
| 2   | F     | 11  | ARG  |
| 2   | F     | 19  | LEU  |
| 2   | F     | 29  | LYS  |
| 2   | F     | 31  | SER  |
| 2   | F     | 49  | VAL  |
| 2   | F     | 60  | LEU  |
| 2   | F     | 66  | SER  |
| 2   | F     | 89  | SER  |
| 2   | F     | 91  | VAL  |
| 2   | F     | 93  | LEU  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | F     | 105 | SER  |
| 2   | F     | 156 | ARG  |
| 2   | F     | 163 | LEU  |
| 2   | F     | 172 | SER  |
| 2   | F     | 174 | VAL  |
| 2   | F     | 178 | SER  |
| 2   | F     | 199 | ILE  |
| 2   | F     | 201 | THR  |
| 2   | F     | 203 | ASP  |
| 2   | F     | 219 | GLU  |
| 2   | F     | 222 | ARG  |
| 2   | F     | 224 | LEU  |
| 2   | F     | 246 | LYS  |
| 2   | F     | 255 | LYS  |
| 2   | F     | 259 | SER  |
| 2   | F     | 273 | GLN  |
| 2   | F     | 279 | LYS  |
| 2   | F     | 295 | ILE  |
| 2   | F     | 309 | ASP  |
| 1   | Q     | 10  | THR  |
| 1   | Q     | 18  | GLU  |
| 1   | Q     | 34  | ASP  |
| 1   | Q     | 56  | ASP  |
| 1   | Q     | 63  | SER  |
| 1   | Q     | 74  | ARG  |
| 1   | Q     | 75  | LYS  |
| 1   | Q     | 89  | ASP  |
| 1   | Q     | 98  | ILE  |
| 1   | Q     | 102 | ARG  |
| 1   | Q     | 110 | LYS  |
| 1   | Q     | 153 | PRO  |
| 1   | Q     | 156 | ASN  |
| 1   | Q     | 188 | LYS  |
| 1   | Q     | 206 | GLU  |
| 1   | Q     | 228 | ARG  |
| 1   | Q     | 249 | GLU  |
| 1   | Q     | 253 | LYS  |
| 2   | Ζ     | 19  | LEU  |
| 2   | Ζ     | 29  | LYS  |
| 2   | Ζ     | 60  | LEU  |
| 2   | Ζ     | 66  | SER  |
| 2   | Ζ     | 89  | SER  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | Ζ     | 91  | VAL  |
| 2   | Ζ     | 93  | LEU  |
| 2   | Ζ     | 163 | LEU  |
| 2   | Ζ     | 199 | ILE  |
| 2   | Ζ     | 201 | THR  |
| 2   | Ζ     | 207 | SER  |
| 2   | Ζ     | 214 | GLU  |
| 2   | Ζ     | 224 | LEU  |
| 2   | Ζ     | 245 | PRO  |
| 2   | Ζ     | 246 | LYS  |
| 2   | Ζ     | 279 | LYS  |
| 2   | Ζ     | 298 | ILE  |
| 2   | Ζ     | 314 | LEU  |

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (48) such sidechains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 170 | GLN  |
| 1   | А     | 175 | ASN  |
| 1   | А     | 183 | GLN  |
| 1   | А     | 199 | GLN  |
| 1   | А     | 250 | GLN  |
| 2   | В     | 124 | GLN  |
| 2   | В     | 173 | ASN  |
| 2   | В     | 249 | GLN  |
| 2   | В     | 273 | GLN  |
| 2   | В     | 317 | GLN  |
| 1   | С     | 121 | GLN  |
| 1   | С     | 150 | GLN  |
| 1   | С     | 156 | ASN  |
| 1   | С     | 170 | GLN  |
| 1   | С     | 175 | ASN  |
| 1   | С     | 183 | GLN  |
| 1   | С     | 199 | GLN  |
| 1   | С     | 250 | GLN  |
| 2   | D     | 124 | GLN  |
| 2   | D     | 137 | GLN  |
| 2   | D     | 249 | GLN  |
| 2   | D     | 273 | GLN  |
| 2   | D     | 317 | GLN  |
| 1   | Е     | 121 | GLN  |
| 1   | Е     | 170 | GLN  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | Е     | 175 | ASN  |
| 1   | Е     | 183 | GLN  |
| 1   | Е     | 199 | GLN  |
| 1   | Е     | 250 | GLN  |
| 1   | Е     | 256 | GLN  |
| 2   | F     | 124 | GLN  |
| 2   | F     | 173 | ASN  |
| 2   | F     | 249 | GLN  |
| 2   | F     | 273 | GLN  |
| 2   | F     | 317 | GLN  |
| 1   | Q     | 121 | GLN  |
| 1   | Q     | 150 | GLN  |
| 1   | Q     | 156 | ASN  |
| 1   | Q     | 170 | GLN  |
| 1   | Q     | 175 | ASN  |
| 1   | Q     | 183 | GLN  |
| 1   | Q     | 250 | GLN  |
| 1   | Q     | 256 | GLN  |
| 2   | Z     | 44  | GLN  |
| 2   | Z     | 173 | ASN  |
| 2   | Z     | 249 | GLN  |
| 2   | Z     | 273 | GLN  |
| 2   | Z     | 317 | GLN  |

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

#### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

### 5.5 Carbohydrates (i)

There are no carbohydrates in this entry.

### 5.6 Ligand geometry (i)

8 ligands are modelled in this entry.



1096

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Tune | Chain | Dec  | Tink  | В          | ond leng | gths     | B        | ond ang | gles                 |
|-----|------|-------|------|-------|------------|----------|----------|----------|---------|----------------------|
|     | туре | Chain | nes  | LIIIK | Counts     | RMSZ     | # Z >2   | Counts   | RMSZ    | # Z  > 2             |
| 4   | FAD  | D     | 1319 | -     | 51, 58, 58 | 2.52     | 20 (39%) | 60,89,89 | 1.76    | 14 (23%)             |
| 3   | AMP  | Q     | 1262 | -     | 22,25,25   | 1.59     | 4 (18%)  | 25,38,38 | 2.49    | 6 (24%)              |
| 4   | FAD  | F     | 1319 | -     | 51, 58, 58 | 2.05     | 17 (33%) | 60,89,89 | 1.87    | 12 (20%)             |
| 3   | AMP  | А     | 1263 | -     | 22,25,25   | 1.97     | 5 (22%)  | 25,38,38 | 1.94    | <mark>9 (36%)</mark> |
| 3   | AMP  | С     | 1262 | -     | 22,25,25   | 1.54     | 5 (22%)  | 25,38,38 | 2.43    | 8 (32%)              |
| 3   | AMP  | Е     | 1262 | -     | 22,25,25   | 1.81     | 3 (13%)  | 25,38,38 | 2.38    | 7 (28%)              |
| 4   | FAD  | Z     | 1319 | -     | 51, 58, 58 | 1.70     | 9 (17%)  | 60,89,89 | 2.12    | 13 (21%)             |
| 4   | FAD  | В     | 1319 | -     | 51, 58, 58 | 2.14     | 15 (29%) | 60,89,89 | 2.00    | 12 (20%)             |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res  | Link | Chirals | Torsions          | Rings   |
|-----|------|-------|------|------|---------|-------------------|---------|
| 4   | FAD  | D     | 1319 | -    | -       | 3/30/50/50        | 0/6/6/6 |
| 3   | AMP  | Q     | 1262 | -    | -       | 0/6/26/26         | 0/3/3/3 |
| 4   | FAD  | F     | 1319 | -    | -       | $\frac{4/30}{50}$ | 0/6/6/6 |
| 3   | AMP  | А     | 1263 | -    | -       | 4/6/26/26         | 0/3/3/3 |
| 3   | AMP  | С     | 1262 | -    | -       | 5/6/26/26         | 0/3/3/3 |
| 3   | AMP  | Е     | 1262 | -    | -       | 2/6/26/26         | 0/3/3/3 |
| 4   | FAD  | Z     | 1319 | -    | -       | 5/30/50/50        | 0/6/6/6 |
| 4   | FAD  | В     | 1319 | -    | -       | 4/30/50/50        | 0/6/6/6 |

All (78) bond length outliers are listed below:

| Mol | Chain | Res  | Type | Atoms   | Z    | $\operatorname{Observed}(\operatorname{\AA})$ | $\operatorname{Ideal}(\operatorname{\AA})$ |
|-----|-------|------|------|---------|------|-----------------------------------------------|--------------------------------------------|
| 4   | D     | 1319 | FAD  | C1'-N10 | 6.93 | 1.55                                          | 1.48                                       |
| 4   | В     | 1319 | FAD  | C5'-C4' | 6.48 | 1.61                                          | 1.51                                       |
| 3   | Е     | 1262 | AMP  | C2-N3   | 6.01 | 1.41                                          | 1.32                                       |
| 4   | D     | 1319 | FAD  | C2A-N3A | 6.00 | 1.41                                          | 1.32                                       |



| Mol | Chain | Res  | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|------|------|---------|-------|-------------|----------|
| 4   | D     | 1319 | FAD  | C4X-N5  | 5.69  | 1.41        | 1.33     |
| 3   | А     | 1263 | AMP  | C2-N3   | 5.31  | 1.40        | 1.32     |
| 4   | Ζ     | 1319 | FAD  | C2A-N3A | 5.27  | 1.40        | 1.32     |
| 4   | F     | 1319 | FAD  | C4X-N5  | 5.23  | 1.40        | 1.33     |
| 4   | В     | 1319 | FAD  | C10-N1  | 5.21  | 1.39        | 1.33     |
| 4   | В     | 1319 | FAD  | C4X-N5  | 4.96  | 1.40        | 1.33     |
| 4   | D     | 1319 | FAD  | C5'-C4' | 4.73  | 1.58        | 1.51     |
| 4   | F     | 1319 | FAD  | C5'-C4' | 4.65  | 1.58        | 1.51     |
| 4   | F     | 1319 | FAD  | C2A-N3A | 4.51  | 1.39        | 1.32     |
| 4   | F     | 1319 | FAD  | C2A-N1A | 4.50  | 1.42        | 1.33     |
| 4   | В     | 1319 | FAD  | C4X-C10 | 4.48  | 1.43        | 1.38     |
| 4   | D     | 1319 | FAD  | C8A-N7A | 4.26  | 1.42        | 1.34     |
| 4   | D     | 1319 | FAD  | C2A-N1A | 4.23  | 1.41        | 1.33     |
| 4   | F     | 1319 | FAD  | C10-N1  | 4.17  | 1.38        | 1.33     |
| 4   | Ζ     | 1319 | FAD  | C1'-N10 | 4.03  | 1.52        | 1.48     |
| 4   | Ζ     | 1319 | FAD  | C10-N1  | 4.02  | 1.38        | 1.33     |
| 4   | D     | 1319 | FAD  | C9A-N10 | 4.00  | 1.43        | 1.38     |
| 3   | А     | 1263 | AMP  | P-O1P   | 3.98  | 1.63        | 1.50     |
| 4   | В     | 1319 | FAD  | C1'-N10 | 3.95  | 1.52        | 1.48     |
| 4   | D     | 1319 | FAD  | C5X-N5  | 3.88  | 1.41        | 1.35     |
| 3   | С     | 1262 | AMP  | C2-N3   | 3.78  | 1.38        | 1.32     |
| 4   | D     | 1319 | FAD  | C4-N3   | 3.64  | 1.39        | 1.33     |
| 4   | D     | 1319 | FAD  | PA-O1A  | 3.64  | 1.63        | 1.50     |
| 3   | Q     | 1262 | AMP  | C2-N3   | 3.58  | 1.37        | 1.32     |
| 4   | Ζ     | 1319 | FAD  | C5'-C4' | 3.53  | 1.56        | 1.51     |
| 4   | В     | 1319 | FAD  | C2A-N3A | 3.52  | 1.37        | 1.32     |
| 4   | Ζ     | 1319 | FAD  | C4X-N5  | 3.39  | 1.38        | 1.33     |
| 4   | В     | 1319 | FAD  | C5X-N5  | 3.34  | 1.40        | 1.35     |
| 3   | Q     | 1262 | AMP  | C2-N1   | 3.32  | 1.40        | 1.33     |
| 4   | F     | 1319 | FAD  | C1'-N10 | 3.29  | 1.51        | 1.48     |
| 3   | А     | 1263 | AMP  | C2'-C1' | -3.29 | 1.48        | 1.53     |
| 4   | Z     | 1319 | FAD  | C4-N3   | 3.28  | 1.38        | 1.33     |
| 4   | F     | 1319 | FAD  | C2-N1   | 3.19  | 1.44        | 1.38     |
| 4   | Ζ     | 1319 | FAD  | C8A-N7A | 3.13  | 1.40        | 1.34     |
| 4   | D     | 1319 | FAD  | O4B-C1B | 3.05  | 1.45        | 1.41     |
| 3   | E     | 1262 | AMP  | P-O1P   | 3.01  | 1.60        | 1.50     |
| 4   | Z     | 1319 | FAD  | C2A-N1A | 3.01  | 1.39        | 1.33     |
| 4   | D     | 1319 | FAD  | C6-C5X  | -2.97 | 1.37        | 1.41     |
| 4   | В     | 1319 | FAD  | PA-O1A  | 2.87  | 1.61        | 1.50     |
| 4   | F     | 1319 | FAD  | PA-O1A  | 2.85  | 1.61        | 1.50     |
| 4   | F     | 1319 | FAD  | C8A-N7A | 2.84  | 1.39        | 1.34     |
| 4   | D     | 1319 | FAD  | P-O1P   | 2.77  | 1.60        | 1.50     |



| Mol | Chain | Res  | Type | Atoms   | Z     | $\operatorname{Observed}(\operatorname{\AA})$ | Ideal(Å) |
|-----|-------|------|------|---------|-------|-----------------------------------------------|----------|
| 4   | В     | 1319 | FAD  | C9-C8   | 2.76  | 1.44                                          | 1.37     |
| 4   | В     | 1319 | FAD  | C8A-N7A | 2.74  | 1.39                                          | 1.34     |
| 3   | А     | 1263 | AMP  | C2-N1   | 2.71  | 1.38                                          | 1.33     |
| 4   | D     | 1319 | FAD  | C8M-C8  | 2.70  | 1.56                                          | 1.51     |
| 3   | Q     | 1262 | AMP  | P-O1P   | 2.60  | 1.58                                          | 1.50     |
| 4   | F     | 1319 | FAD  | C2B-C1B | -2.59 | 1.49                                          | 1.53     |
| 4   | F     | 1319 | FAD  | C4A-N3A | 2.55  | 1.39                                          | 1.35     |
| 4   | Ζ     | 1319 | FAD  | C9A-C5X | -2.52 | 1.37                                          | 1.42     |
| 3   | С     | 1262 | AMP  | C2-N1   | 2.47  | 1.38                                          | 1.33     |
| 4   | F     | 1319 | FAD  | C9-C8   | 2.42  | 1.43                                          | 1.37     |
| 4   | В     | 1319 | FAD  | O2'-C2' | 2.39  | 1.48                                          | 1.43     |
| 4   | D     | 1319 | FAD  | C3B-C4B | 2.37  | 1.59                                          | 1.53     |
| 3   | С     | 1262 | AMP  | O4'-C4' | -2.34 | 1.39                                          | 1.45     |
| 4   | В     | 1319 | FAD  | C2A-N1A | 2.33  | 1.38                                          | 1.33     |
| 4   | F     | 1319 | FAD  | C4-N3   | 2.29  | 1.37                                          | 1.33     |
| 3   | С     | 1262 | AMP  | C2'-C1' | -2.29 | 1.50                                          | 1.53     |
| 4   | F     | 1319 | FAD  | O4B-C1B | 2.27  | 1.44                                          | 1.41     |
| 4   | В     | 1319 | FAD  | C4-N3   | 2.24  | 1.36                                          | 1.33     |
| 4   | В     | 1319 | FAD  | C6A-C5A | -2.22 | 1.35                                          | 1.43     |
| 3   | Е     | 1262 | AMP  | C2-N1   | 2.21  | 1.38                                          | 1.33     |
| 4   | D     | 1319 | FAD  | C5B-C4B | 2.19  | 1.58                                          | 1.51     |
| 4   | D     | 1319 | FAD  | C2B-C1B | -2.17 | 1.50                                          | 1.53     |
| 4   | F     | 1319 | FAD  | O2'-C2' | 2.12  | 1.47                                          | 1.43     |
| 3   | Q     | 1262 | AMP  | C4-N3   | 2.11  | 1.38                                          | 1.35     |
| 3   | А     | 1263 | AMP  | O4'-C4' | -2.10 | 1.40                                          | 1.45     |
| 4   | F     | 1319 | FAD  | P-O1P   | 2.09  | 1.58                                          | 1.50     |
| 4   | D     | 1319 | FAD  | C2-N1   | 2.08  | 1.42                                          | 1.38     |
| 4   | В     | 1319 | FAD  | P-O1P   | 2.07  | 1.58                                          | 1.50     |
| 4   | D     | 1319 | FAD  | C9A-C5X | -2.05 | 1.38                                          | 1.42     |
| 3   | С     | 1262 | AMP  | P-O2P   | -2.04 | 1.47                                          | 1.54     |
| 4   | D     | 1319 | FAD  | P-O5'   | 2.02  | 1.67                                          | 1.59     |
| 4   | F     | 1319 | FAD  | O3B-C3B | 2.00  | 1.47                                          | 1.43     |

Continued from previous page...

All (81) bond angle outliers are listed below:

| Mol | Chain | Res  | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|-------------|-------|------------------|---------------|
| 3   | Q     | 1262 | AMP  | N3-C2-N1    | -9.06 | 114.52           | 128.68        |
| 4   | F     | 1319 | FAD  | C1'-N10-C10 | -6.99 | 112.15           | 118.41        |
| 4   | В     | 1319 | FAD  | C1'-N10-C10 | -6.95 | 112.19           | 118.41        |
| 3   | Е     | 1262 | AMP  | N3-C2-N1    | -6.84 | 117.99           | 128.68        |
| 3   | С     | 1262 | AMP  | N3-C2-N1    | -6.32 | 118.81           | 128.68        |
| 4   | Z     | 1319 | FAD  | N3A-C2A-N1A | -6.18 | 119.03           | 128.68        |



| Mol | Chain | Res  | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|-------------|-------|------------------|---------------|
| 4   | Z     | 1319 | FAD  | C4X-N5-C5X  | 5.94  | 122.71           | 116.77        |
| 4   | Z     | 1319 | FAD  | C1'-N10-C10 | -5.93 | 113.10           | 118.41        |
| 4   | Z     | 1319 | FAD  | C4-N3-C2    | 5.92  | 120.14           | 115.14        |
| 3   | С     | 1262 | AMP  | O2P-P-O1P   | -5.86 | 87.74            | 110.68        |
| 4   | В     | 1319 | FAD  | C4-N3-C2    | 5.61  | 119.88           | 115.14        |
| 4   | В     | 1319 | FAD  | N3A-C2A-N1A | -5.55 | 120.00           | 128.68        |
| 4   | D     | 1319 | FAD  | N3A-C2A-N1A | -5.27 | 120.44           | 128.68        |
| 4   | Ζ     | 1319 | FAD  | C10-C4X-N5  | -4.98 | 117.81           | 121.26        |
| 3   | Е     | 1262 | AMP  | O5'-P-O1P   | -4.75 | 93.16            | 106.47        |
| 4   | F     | 1319 | FAD  | C5X-C9A-N10 | 4.71  | 121.13           | 117.72        |
| 3   | С     | 1262 | AMP  | O2P-P-O5'   | 4.67  | 119.16           | 106.73        |
| 4   | В     | 1319 | FAD  | C5X-C9A-N10 | 4.56  | 121.02           | 117.72        |
| 4   | F     | 1319 | FAD  | C1'-N10-C9A | 4.50  | 121.84           | 118.29        |
| 3   | Е     | 1262 | AMP  | P-O5'-C5'   | 4.18  | 129.82           | 118.30        |
| 4   | D     | 1319 | FAD  | C5'-C4'-C3' | -4.15 | 104.19           | 112.20        |
| 3   | Q     | 1262 | AMP  | O2P-P-O5'   | 4.12  | 117.69           | 106.73        |
| 3   | А     | 1263 | AMP  | O5'-C5'-C4' | 4.03  | 122.87           | 108.99        |
| 4   | D     | 1319 | FAD  | P-O3P-PA    | -4.00 | 119.11           | 132.83        |
| 4   | Ζ     | 1319 | FAD  | C1'-N10-C9A | 3.84  | 121.31           | 118.29        |
| 4   | В     | 1319 | FAD  | C1'-N10-C9A | 3.80  | 121.28           | 118.29        |
| 4   | F     | 1319 | FAD  | C5'-C4'-C3' | -3.76 | 104.94           | 112.20        |
| 3   | А     | 1263 | AMP  | O2P-P-O5'   | 3.74  | 116.68           | 106.73        |
| 3   | С     | 1262 | AMP  | P-O5'-C5'   | 3.72  | 128.53           | 118.30        |
| 3   | Е     | 1262 | AMP  | O3P-P-O5'   | 3.65  | 116.44           | 106.73        |
| 4   | D     | 1319 | FAD  | C5A-C6A-N6A | -3.52 | 115.00           | 120.35        |
| 4   | Z     | 1319 | FAD  | P-O3P-PA    | -3.48 | 120.89           | 132.83        |
| 3   | Q     | 1262 | AMP  | O5'-P-O1P   | -3.44 | 96.83            | 106.47        |
| 4   | Z     | 1319 | FAD  | C4-C4X-N5   | 3.35  | 122.43           | 118.60        |
| 4   | D     | 1319 | FAD  | C4X-N5-C5X  | 3.31  | 120.08           | 116.77        |
| 4   | F     | 1319 | FAD  | C4X-N5-C5X  | 3.27  | 120.04           | 116.77        |
| 3   | Q     | 1262 | AMP  | C2'-C3'-C4' | -3.12 | 96.57            | 102.64        |
| 3   | С     | 1262 | AMP  | O3P-P-O2P   | 3.04  | 119.26           | 107.64        |
| 4   | Z     | 1319 | FAD  | C4X-C4-N3   | -2.85 | 119.53           | 123.43        |
| 4   | В     | 1319 | FAD  | C3B-C2B-C1B | 2.84  | 105.25           | 100.98        |
| 3   | Q     | 1262 | AMP  | O3P-P-O5'   | 2.75  | 114.05           | 106.73        |
| 3   | А     | 1263 | AMP  | N3-C2-N1    | -2.74 | 124.39           | 128.68        |
| 4   | F     | 1319 | FAD  | O4B-C4B-C3B | 2.69  | 110.44           | 105.11        |
| 4   | F     | 1319 | FAD  | C9A-C5X-N5  | -2.69 | 118.15           | 122.36        |
| 4   | D     | 1319 | FAD  | O2B-C2B-C1B | -2.64 | 101.10           | 110.85        |
| 4   | В     | 1319 | FAD  | O4'-C4'-C5' | 2.60  | 115.75           | 109.92        |
| 3   | Е     | 1262 | AMP  | O4'-C4'-C3' | -2.57 | 100.02           | 105.11        |
| 4   | D     | 1319 | FAD  | C6-C5X-N5   | 2.56  | 121.87           | 119.05        |



| Mol | Chain | $\mathbf{Res}$    | Type | Atoms       |       | $\mathbf{Observed}(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-------------------|------|-------------|-------|---------------------------|---------------|
| 4   | D     | 1319              | FAD  | C1B-N9A-C4A | -2.56 | 122.15                    | 126.64        |
| 4   | D     | 1319              | FAD  | C9-C8-C7    | -2.55 | 115.62                    | 119.91        |
| 4   | В     | 1319              | FAD  | C5'-C4'-C3' | -2.55 | 107.28                    | 112.20        |
| 3   | А     | 1263              | AMP  | C3'-C2'-C1' | 2.52  | 104.78                    | 100.98        |
| 3   | А     | 1263              | AMP  | C2'-C3'-C4' | -2.49 | 97.80                     | 102.64        |
| 3   | Q     | 1262              | AMP  | C5-C6-N6    | -2.48 | 116.58                    | 120.35        |
| 3   | А     | 1263              | AMP  | O3P-P-O5'   | -2.47 | 100.17                    | 106.73        |
| 4   | F     | 1319              | FAD  | C4-N3-C2    | 2.43  | 117.19                    | 115.14        |
| 3   | А     | 1263              | AMP  | C4-C5-N7    | -2.41 | 106.89                    | 109.40        |
| 4   | В     | 1319              | FAD  | C4X-C4-N3   | -2.40 | 120.15                    | 123.43        |
| 4   | В     | 1319              | FAD  | C9-C8-C7    | -2.35 | 115.95                    | 119.91        |
| 4   | D     | 1319              | FAD  | O4'-C4'-C5' | 2.35  | 115.20                    | 109.92        |
| 3   | С     | 1262              | AMP  | O2'-C2'-C1' | -2.34 | 102.22                    | 110.85        |
| 4   | D     | 1319              | FAD  | C10-C4X-N5  | -2.33 | 119.65                    | 121.26        |
| 4   | F     | 1319              | FAD  | C1B-N9A-C4A | -2.30 | 122.59                    | 126.64        |
| 4   | F     | 1319              | FAD  | P-O3P-PA    | -2.30 | 124.94                    | 132.83        |
| 4   | Z     | 1319              | FAD  | O4B-C1B-C2B | -2.29 | 103.58                    | 106.93        |
| 3   | E     | 1262              | AMP  | O3P-P-O1P   | 2.27  | 119.58                    | 110.68        |
| 4   | Z     | 1319              | FAD  | C5'-C4'-C3' | -2.24 | 107.88                    | 112.20        |
| 3   | А     | 1263              | AMP  | C5'-C4'-C3' | 2.21  | 123.45                    | 115.18        |
| 3   | С     | 1262              | AMP  | O3P-P-O5'   | 2.20  | 112.60                    | 106.73        |
| 4   | В     | 1319              | FAD  | C5A-C6A-N6A | -2.17 | 117.05                    | 120.35        |
| 4   | F     | 1319              | FAD  | C9-C8-C7    | -2.17 | 116.26                    | 119.91        |
| 3   | С     | 1262              | AMP  | O5'-P-O1P   | -2.16 | 100.41                    | 106.47        |
| 4   | Z     | 1319              | FAD  | C9A-C5X-N5  | -2.15 | 119.00                    | 122.36        |
| 4   | D     | 1319              | FAD  | O5B-C5B-C4B | -2.14 | 101.61                    | 108.99        |
| 4   | D     | 1319              | FAD  | N6A-C6A-N1A | 2.11  | 122.96                    | 118.57        |
| 4   | D     | 1319              | FAD  | C5X-C9A-N10 | 2.11  | 119.24                    | 117.72        |
| 4   | B     | $13\overline{19}$ | FAD  | O4B-C1B-C2B | -2.11 | 103.84                    | 106.93        |
| 3   | E     | 1262              | AMP  | O2P-P-O5'   | 2.08  | 112.27                    | 106.73        |
| 4   | Z     | $13\overline{19}$ | FAD  | C1B-N9A-C4A | -2.07 | 123.01                    | 126.64        |
| 4   | F     | 1319              | FAD  | C6-C5X-C9A  | 2.06  | 121.75                    | 119.05        |
| 3   | A     | 1263              | AMP  | C5-C6-N6    | -2.05 | 117.24                    | 120.35        |

Continued from previous page...

There are no chirality outliers.

All (27) torsion outliers are listed below:

| Mol | Chain | Res  | Type | Atoms           |
|-----|-------|------|------|-----------------|
| 4   | D     | 1319 | FAD  | N10-C1'-C2'-O2' |
| 3   | А     | 1263 | AMP  | C5'-O5'-P-O1P   |
| 3   | А     | 1263 | AMP  | C5'-O5'-P-O2P   |
| 3   | А     | 1263 | AMP  | C5'-O5'-P-O3P   |



| Mol | Chain | Res  | Type | Atoms           |
|-----|-------|------|------|-----------------|
| 3   | С     | 1262 | AMP  | C5'-O5'-P-O3P   |
| 3   | С     | 1262 | AMP  | O4'-C4'-C5'-O5' |
| 3   | Е     | 1262 | AMP  | O4'-C4'-C5'-O5' |
| 3   | С     | 1262 | AMP  | C3'-C4'-C5'-O5' |
| 3   | Е     | 1262 | AMP  | C3'-C4'-C5'-O5' |
| 3   | А     | 1263 | AMP  | C4'-C5'-O5'-P   |
| 4   | В     | 1319 | FAD  | PA-O3P-P-O1P    |
| 4   | D     | 1319 | FAD  | N10-C1'-C2'-C3' |
| 3   | С     | 1262 | AMP  | C5'-O5'-P-O1P   |
| 4   | Z     | 1319 | FAD  | PA-O3P-P-O1P    |
| 4   | Z     | 1319 | FAD  | PA-O3P-P-O2P    |
| 4   | F     | 1319 | FAD  | PA-O3P-P-O1P    |
| 3   | С     | 1262 | AMP  | C4'-C5'-O5'-P   |
| 4   | F     | 1319 | FAD  | O4B-C4B-C5B-O5B |
| 4   | Z     | 1319 | FAD  | O4B-C4B-C5B-O5B |
| 4   | В     | 1319 | FAD  | O4B-C4B-C5B-O5B |
| 4   | F     | 1319 | FAD  | PA-O3P-P-O2P    |
| 4   | В     | 1319 | FAD  | PA-O3P-P-O2P    |
| 4   | Z     | 1319 | FAD  | C2'-C3'-C4'-O4' |
| 4   | D     | 1319 | FAD  | O4B-C4B-C5B-O5B |
| 4   | F     | 1319 | FAD  | N10-C1'-C2'-O2' |
| 4   | Ζ     | 1319 | FAD  | N10-C1'-C2'-O2' |
| 4   | В     | 1319 | FAD  | N10-C1'-C2'-O2' |

Continued from previous page...

There are no ring outliers.

6 monomers are involved in 20 short contacts:

| Mol | Chain | Res  | Type | Clashes | Symm-Clashes |
|-----|-------|------|------|---------|--------------|
| 4   | D     | 1319 | FAD  | 8       | 0            |
| 3   | Q     | 1262 | AMP  | 2       | 0            |
| 3   | С     | 1262 | AMP  | 3       | 0            |
| 3   | Е     | 1262 | AMP  | 2       | 0            |
| 4   | Z     | 1319 | FAD  | 4       | 0            |
| 4   | В     | 1319 | FAD  | 1       | 0            |

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring



in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.



















## 5.7 Other polymers (i)

There are no such residues in this entry.

## 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.





# 6 Fit of model and data (i)

### 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95<sup>th</sup> percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed        | <RSRZ $>$ | #RSRZ>2       | $\mathbf{OWAB}(\mathrm{\AA}^2)$ | $Q{<}0.9$ |
|-----|-------|-----------------|-----------|---------------|---------------------------------|-----------|
| 1   | А     | 261/264~(98%)   | -0.74     | 0 100 100     | 20,43,65,83                     | 0         |
| 1   | С     | 260/264~(98%)   | -0.60     | 0 100 100     | 29, 52, 90, 112                 | 0         |
| 1   | Ε     | 260/264~(98%)   | -0.60     | 1 (0%) 92 84  | 27, 52, 77, 88                  | 0         |
| 1   | Q     | 246/264~(93%)   | 0.09      | 13 (5%) 26 12 | 41, 76, 93, 102                 | 27~(10%)  |
| 2   | В     | 314/320~(98%)   | -0.65     | 2 (0%) 89 78  | 25, 47, 68, 86                  | 0         |
| 2   | D     | 314/320~(98%)   | -0.58     | 3 (0%) 82 67  | 2, 50, 83, 98                   | 0         |
| 2   | F     | 314/320~(98%)   | -0.66     | 2 (0%) 89 78  | 31,  49,  70,  88               | 0         |
| 2   | Z     | 312/320~(97%)   | 0.44      | 30 (9%) 8 2   | 46, 77, 95, 114                 | 123 (39%) |
| All | All   | 2281/2336~(97%) | -0.41     | 51 (2%) 62 41 | 2, 54, 86, 114                  | 150 (6%)  |

All (51) RSRZ outliers are listed below:

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 2   | Ζ     | 198 | ASP  | 7.8  |
| 2   | Ζ     | 315 | LYS  | 5.2  |
| 2   | Ζ     | 203 | ASP  | 5.1  |
| 2   | Ζ     | 316 | ALA  | 4.9  |
| 2   | Ζ     | 219 | GLU  | 4.6  |
| 2   | В     | 126 | ASP  | 4.2  |
| 1   | Q     | 238 | GLY  | 3.9  |
| 1   | Q     | 239 | ARG  | 3.8  |
| 2   | Ζ     | 317 | GLN  | 3.7  |
| 2   | Ζ     | 218 | VAL  | 3.7  |
| 2   | D     | 196 | ASP  | 3.6  |
| 2   | D     | 191 | VAL  | 3.6  |
| 2   | Ζ     | 231 | THR  | 3.5  |
| 2   | Z     | 126 | ASP  | 3.4  |
| 1   | Q     | 247 | ILE  | 3.4  |
| 2   | Z     | 206 | MET  | 3.2  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 2   | Z     | 111 | GLY  | 3.2  |
| 2   | Ζ     | 264 | VAL  | 3.2  |
| 2   | Z     | 32  | GLY  | 3.2  |
| 2   | Z     | 30  | LYS  | 2.9  |
| 2   | D     | 198 | ASP  | 2.9  |
| 2   | Ζ     | 207 | SER  | 2.8  |
| 2   | Ζ     | 214 | GLU  | 2.8  |
| 2   | Ζ     | 318 | LEU  | 2.7  |
| 2   | Ζ     | 258 | GLY  | 2.7  |
| 2   | F     | 126 | ASP  | 2.7  |
| 1   | Q     | 16  | ASP  | 2.6  |
| 1   | Q     | 90  | ASP  | 2.6  |
| 1   | Q     | 261 | PHE  | 2.5  |
| 2   | Ζ     | 199 | ILE  | 2.5  |
| 1   | Q     | 256 | GLN  | 2.5  |
| 2   | Z     | 291 | PRO  | 2.5  |
| 2   | В     | 125 | GLY  | 2.4  |
| 2   | Ζ     | 211 | GLY  | 2.4  |
| 2   | Z     | 125 | GLY  | 2.3  |
| 2   | Z     | 260 | CYS  | 2.3  |
| 2   | Ζ     | 308 | PHE  | 2.3  |
| 2   | Ζ     | 301 | TYR  | 2.3  |
| 2   | Ζ     | 33  | GLU  | 2.3  |
| 2   | Ζ     | 179 | VAL  | 2.3  |
| 1   | Q     | 67  | ASP  | 2.2  |
| 1   | Q     | 18  | GLU  | 2.2  |
| 1   | Е     | 238 | GLY  | 2.2  |
| 2   | Z     | 31  | SER  | 2.1  |
| 1   | Q     | 29  | ASP  | 2.1  |
| 2   | Ζ     | 230 | ALA  | 2.1  |
| 1   | Q     | 56  | ASP  | 2.1  |
| 1   | Q     | 53  | SER  | 2.1  |
| 1   | Q     | 55  | THR  | 2.0  |
| 2   | Ζ     | 217 | ASN  | 2.0  |
| 2   | F     | 191 | VAL  | 2.0  |

Continued from previous page...

## 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.



### 6.3 Carbohydrates (i)

There are no carbohydrates in this entry.

#### 6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

| Mol | Type | Chain | Res  | Atoms | RSCC | RSR  | $\mathbf{B}	extsf{-}\mathbf{B}	extsf{-}\mathbf{factors}(\mathbf{A}^2)$ | Q<0.9 |
|-----|------|-------|------|-------|------|------|------------------------------------------------------------------------|-------|
| 4   | FAD  | Z     | 1319 | 53/53 | 0.89 | 0.22 | $17,\!28,\!36,\!42$                                                    | 53    |
| 4   | FAD  | D     | 1319 | 53/53 | 0.95 | 0.15 | 21,28,38,42                                                            | 0     |
| 3   | AMP  | Q     | 1262 | 23/23 | 0.96 | 0.13 | 57,62,69,74                                                            | 0     |
| 4   | FAD  | В     | 1319 | 53/53 | 0.96 | 0.14 | 17,24,31,33                                                            | 0     |
| 4   | FAD  | F     | 1319 | 53/53 | 0.97 | 0.12 | 17,24,29,35                                                            | 0     |
| 3   | AMP  | А     | 1263 | 23/23 | 0.98 | 0.12 | $23,\!28,\!34,\!37$                                                    | 0     |
| 3   | AMP  | Е     | 1262 | 23/23 | 0.98 | 0.11 | 25,33,38,39                                                            | 0     |
| 3   | AMP  | С     | 1262 | 23/23 | 0.99 | 0.12 | $30,\!46,\!52,\!52$                                                    | 0     |

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

























## 6.5 Other polymers (i)

There are no such residues in this entry.

